2020-06-12 15:26:49

by Christophe Kerello

[permalink] [raw]
Subject: [PATCH v5 0/6] add STM32 FMC2 EBI controller driver

The FMC2 functional block makes the interface with: synchronous and
asynchronous static devices (such as PSNOR, PSRAM or other memory-mapped
peripherals) and NAND flash memories.
Its main purposes are:
- to translate AXI transactions into the appropriate external device
protocol
- to meet the access time requirements of the external devices
All external devices share the addresses, data and control signals with the
controller. Each external device is accessed by means of a unique Chip
Select. The FMC2 performs only one access at a time to an external device.

Changes in v5:
- NAND:
- do not display errors if the driver is deferred.
- look at the parent compatible string to match what we expect.
- bindings:
- add Rob reviewed-by tag on patch 3.
- fix indent descriptions.
- add new NFC compatible string to handle reg number of entries.

Changes in v4:
- bindings:
- fix filename: st,stm32-fmc2-ebi.yaml

Changes in v3:
- NAND:
- rename labels used on errors
- add in the commit log the reason to increase FMC2_TIMEOUT_MS (patch 3)
- add Miquel reviewed-by tag (patches 2/4/5/9)
- EBI:
- move in memory folder
- merge MFD and BUS drivers to avoid a MFD driver
- bindings:
- pattern name has been modified
- vendor properties have been modified
- s/_/-/
- add unit suffix (-ns) on timing properties

Christophe Kerello (6):
mtd: rawnand: stm32_fmc2: do not display errors if the driver is
deferred
dt-bindings: mtd: update STM32 FMC2 NAND controller documentation
dt-bindings: memory-controller: add STM32 FMC2 EBI controller
documentation
memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver
mtd: rawnand: stm32_fmc2: use regmap APIs
mtd: rawnand: stm32_fmc2: get resources from parent node

.../memory-controllers/st,stm32-fmc2-ebi.yaml | 252 ++++
.../bindings/mtd/st,stm32-fmc2-nand.yaml | 83 +-
drivers/memory/Kconfig | 10 +
drivers/memory/Makefile | 1 +
drivers/memory/stm32-fmc2-ebi.c | 1206 ++++++++++++++++++++
drivers/mtd/nand/raw/Kconfig | 1 +
drivers/mtd/nand/raw/stm32_fmc2_nand.c | 311 ++---
7 files changed, 1688 insertions(+), 176 deletions(-)
create mode 100644 Documentation/devicetree/bindings/memory-controllers/st,stm32-fmc2-ebi.yaml
create mode 100644 drivers/memory/stm32-fmc2-ebi.c

--
1.9.1


2020-06-12 15:26:57

by Christophe Kerello

[permalink] [raw]
Subject: [PATCH v5 4/6] memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver

The driver adds the support for the STMicroelectronics FMC2 EBI controller
found on STM32MP SOCs.

Signed-off-by: Christophe Kerello <[email protected]>
---
Changes in v3:
- Move in memory folder
- Merge MFD and BUS drivers to avoid a MFD driver

drivers/memory/Kconfig | 10 +
drivers/memory/Makefile | 1 +
drivers/memory/stm32-fmc2-ebi.c | 1206 +++++++++++++++++++++++++++++++++++++++
3 files changed, 1217 insertions(+)
create mode 100644 drivers/memory/stm32-fmc2-ebi.c

diff --git a/drivers/memory/Kconfig b/drivers/memory/Kconfig
index 9bddca2..c651aaf 100644
--- a/drivers/memory/Kconfig
+++ b/drivers/memory/Kconfig
@@ -163,6 +163,16 @@ config PL353_SMC
This driver is for the ARM PL351/PL353 Static Memory
Controller(SMC) module.

+config STM32_FMC2_EBI
+ tristate "Support for FMC2 External Bus Interface on STM32MP SoCs"
+ depends on MACH_STM32MP157 || COMPILE_TEST
+ select MFD_SYSCON
+ help
+ Select this option to enable the STM32 FMC2 External Bus Interface
+ controller. This driver configures the transactions with external
+ devices (like SRAM, ethernet adapters, FPGAs, LCD displays, ...) on
+ SOCs containing the FMC2 External Bus Interface.
+
source "drivers/memory/samsung/Kconfig"
source "drivers/memory/tegra/Kconfig"

diff --git a/drivers/memory/Makefile b/drivers/memory/Makefile
index 27b4934..c7d36db 100644
--- a/drivers/memory/Makefile
+++ b/drivers/memory/Makefile
@@ -21,6 +21,7 @@ obj-$(CONFIG_JZ4780_NEMC) += jz4780-nemc.o
obj-$(CONFIG_MTK_SMI) += mtk-smi.o
obj-$(CONFIG_DA8XX_DDRCTL) += da8xx-ddrctl.o
obj-$(CONFIG_PL353_SMC) += pl353-smc.o
+obj-$(CONFIG_STM32_FMC2_EBI) += stm32-fmc2-ebi.o

obj-$(CONFIG_SAMSUNG_MC) += samsung/
obj-$(CONFIG_TEGRA_MC) += tegra/
diff --git a/drivers/memory/stm32-fmc2-ebi.c b/drivers/memory/stm32-fmc2-ebi.c
new file mode 100644
index 0000000..4d5758c4
--- /dev/null
+++ b/drivers/memory/stm32-fmc2-ebi.c
@@ -0,0 +1,1206 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) STMicroelectronics 2020
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/mfd/syscon.h>
+#include <linux/module.h>
+#include <linux/of_platform.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/regmap.h>
+#include <linux/reset.h>
+
+/* FMC2 Controller Registers */
+#define FMC2_BCR1 0x0
+#define FMC2_BTR1 0x4
+#define FMC2_BCR(x) ((x) * 0x8 + FMC2_BCR1)
+#define FMC2_BTR(x) ((x) * 0x8 + FMC2_BTR1)
+#define FMC2_PCSCNTR 0x20
+#define FMC2_BWTR1 0x104
+#define FMC2_BWTR(x) ((x) * 0x8 + FMC2_BWTR1)
+
+/* Register: FMC2_BCR1 */
+#define FMC2_BCR1_CCLKEN BIT(20)
+#define FMC2_BCR1_FMC2EN BIT(31)
+
+/* Register: FMC2_BCRx */
+#define FMC2_BCR_MBKEN BIT(0)
+#define FMC2_BCR_MUXEN BIT(1)
+#define FMC2_BCR_MTYP GENMASK(3, 2)
+#define FMC2_BCR_MWID GENMASK(5, 4)
+#define FMC2_BCR_FACCEN BIT(6)
+#define FMC2_BCR_BURSTEN BIT(8)
+#define FMC2_BCR_WAITPOL BIT(9)
+#define FMC2_BCR_WAITCFG BIT(11)
+#define FMC2_BCR_WREN BIT(12)
+#define FMC2_BCR_WAITEN BIT(13)
+#define FMC2_BCR_EXTMOD BIT(14)
+#define FMC2_BCR_ASYNCWAIT BIT(15)
+#define FMC2_BCR_CPSIZE GENMASK(18, 16)
+#define FMC2_BCR_CBURSTRW BIT(19)
+#define FMC2_BCR_NBLSET GENMASK(23, 22)
+
+/* Register: FMC2_BTRx/FMC2_BWTRx */
+#define FMC2_BXTR_ADDSET GENMASK(3, 0)
+#define FMC2_BXTR_ADDHLD GENMASK(7, 4)
+#define FMC2_BXTR_DATAST GENMASK(15, 8)
+#define FMC2_BXTR_BUSTURN GENMASK(19, 16)
+#define FMC2_BTR_CLKDIV GENMASK(23, 20)
+#define FMC2_BTR_DATLAT GENMASK(27, 24)
+#define FMC2_BXTR_ACCMOD GENMASK(29, 28)
+#define FMC2_BXTR_DATAHLD GENMASK(31, 30)
+
+/* Register: FMC2_PCSCNTR */
+#define FMC2_PCSCNTR_CSCOUNT GENMASK(15, 0)
+#define FMC2_PCSCNTR_CNTBEN(x) BIT((x) + 16)
+
+#define FMC2_MAX_EBI_CE 4
+#define FMC2_MAX_BANKS 5
+
+#define FMC2_BCR_CPSIZE_0 0x0
+#define FMC2_BCR_CPSIZE_128 0x1
+#define FMC2_BCR_CPSIZE_256 0x2
+#define FMC2_BCR_CPSIZE_512 0x3
+#define FMC2_BCR_CPSIZE_1024 0x4
+
+#define FMC2_BCR_MWID_8 0x0
+#define FMC2_BCR_MWID_16 0x1
+
+#define FMC2_BCR_MTYP_SRAM 0x0
+#define FMC2_BCR_MTYP_PSRAM 0x1
+#define FMC2_BCR_MTYP_NOR 0x2
+
+#define FMC2_BXTR_EXTMOD_A 0x0
+#define FMC2_BXTR_EXTMOD_B 0x1
+#define FMC2_BXTR_EXTMOD_C 0x2
+#define FMC2_BXTR_EXTMOD_D 0x3
+
+#define FMC2_BCR_NBLSET_MAX 0x3
+#define FMC2_BXTR_ADDSET_MAX 0xf
+#define FMC2_BXTR_ADDHLD_MAX 0xf
+#define FMC2_BXTR_DATAST_MAX 0xff
+#define FMC2_BXTR_BUSTURN_MAX 0xf
+#define FMC2_BXTR_DATAHLD_MAX 0x3
+#define FMC2_BTR_CLKDIV_MAX 0xf
+#define FMC2_BTR_DATLAT_MAX 0xf
+#define FMC2_PCSCNTR_CSCOUNT_MAX 0xff
+
+enum stm32_fmc2_ebi_bank {
+ FMC2_EBI1 = 0,
+ FMC2_EBI2,
+ FMC2_EBI3,
+ FMC2_EBI4,
+ FMC2_NAND
+};
+
+enum stm32_fmc2_ebi_register_type {
+ FMC2_REG_BCR = 1,
+ FMC2_REG_BTR,
+ FMC2_REG_BWTR,
+ FMC2_REG_PCSCNTR
+};
+
+enum stm32_fmc2_ebi_transaction_type {
+ FMC2_ASYNC_MODE_1_SRAM = 0,
+ FMC2_ASYNC_MODE_1_PSRAM,
+ FMC2_ASYNC_MODE_A_SRAM,
+ FMC2_ASYNC_MODE_A_PSRAM,
+ FMC2_ASYNC_MODE_2_NOR,
+ FMC2_ASYNC_MODE_B_NOR,
+ FMC2_ASYNC_MODE_C_NOR,
+ FMC2_ASYNC_MODE_D_NOR,
+ FMC2_SYNC_READ_SYNC_WRITE_PSRAM,
+ FMC2_SYNC_READ_ASYNC_WRITE_PSRAM,
+ FMC2_SYNC_READ_SYNC_WRITE_NOR,
+ FMC2_SYNC_READ_ASYNC_WRITE_NOR
+};
+
+enum stm32_fmc2_ebi_buswidth {
+ FMC2_BUSWIDTH_8 = 8,
+ FMC2_BUSWIDTH_16 = 16
+};
+
+enum stm32_fmc2_ebi_cpsize {
+ FMC2_CPSIZE_0 = 0,
+ FMC2_CPSIZE_128 = 128,
+ FMC2_CPSIZE_256 = 256,
+ FMC2_CPSIZE_512 = 512,
+ FMC2_CPSIZE_1024 = 1024
+};
+
+struct stm32_fmc2_ebi {
+ struct device *dev;
+ struct clk *clk;
+ struct regmap *regmap;
+ u8 bank_assigned;
+
+ u32 bcr[FMC2_MAX_EBI_CE];
+ u32 btr[FMC2_MAX_EBI_CE];
+ u32 bwtr[FMC2_MAX_EBI_CE];
+ u32 pcscntr;
+};
+
+/*
+ * struct stm32_fmc2_prop - STM32 FMC2 EBI property
+ * @name: the device tree binding name of the property
+ * @bprop: indicate that it is a boolean property
+ * @mprop: indicate that it is a mandatory property
+ * @reg_type: the register that have to be modified
+ * @reg_mask: the bit that have to be modified in the selected register
+ * in case of it is a boolean property
+ * @reset_val: the default value that have to be set in case the property
+ * has not been defined in the device tree
+ * @check: this callback ckecks that the property is compliant with the
+ * transaction type selected
+ * @calculate: this callback is called to calculate for exemple a timing
+ * set in nanoseconds in the device tree in clock cycles or in
+ * clock period
+ * @set: this callback applies the values in the registers
+ */
+struct stm32_fmc2_prop {
+ const char *name;
+ bool bprop;
+ bool mprop;
+ int reg_type;
+ u32 reg_mask;
+ u32 reset_val;
+ int (*check)(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop, int cs);
+ u32 (*calculate)(struct stm32_fmc2_ebi *ebi, int cs, u32 setup);
+ int (*set)(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup);
+};
+
+static int stm32_fmc2_ebi_check_mux(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr;
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+
+ if (bcr & FMC2_BCR_MTYP)
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_waitcfg(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr, val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+
+ if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_sync_trans(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr;
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+
+ if (bcr & FMC2_BCR_BURSTEN)
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_async_trans(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr;
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+
+ if (!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW))
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_cpsize(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr, val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+
+ if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_address_hold(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr, bxtr, val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+ if (prop->reg_type == FMC2_REG_BWTR)
+ regmap_read(ebi->regmap, FMC2_BWTR(cs), &bxtr);
+ else
+ regmap_read(ebi->regmap, FMC2_BTR(cs), &bxtr);
+
+ if ((!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW)) &&
+ ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN))
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_clk_period(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ u32 bcr, bcr1;
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+ if (cs)
+ regmap_read(ebi->regmap, FMC2_BCR1, &bcr1);
+ else
+ bcr1 = bcr;
+
+ if (bcr & FMC2_BCR_BURSTEN && (!cs || !(bcr1 & FMC2_BCR1_CCLKEN)))
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_fmc2_ebi_check_cclk(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ if (cs)
+ return -EINVAL;
+
+ return stm32_fmc2_ebi_check_sync_trans(ebi, prop, cs);
+}
+
+static u32 stm32_fmc2_ebi_ns_to_clock_cycles(struct stm32_fmc2_ebi *ebi,
+ int cs, u32 setup)
+{
+ unsigned long hclk = clk_get_rate(ebi->clk);
+ unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
+
+ return DIV_ROUND_UP(setup * 1000, hclkp);
+}
+
+static u32 stm32_fmc2_ebi_ns_to_clk_period(struct stm32_fmc2_ebi *ebi,
+ int cs, u32 setup)
+{
+ u32 nb_clk_cycles = stm32_fmc2_ebi_ns_to_clock_cycles(ebi, cs, setup);
+ u32 bcr, btr, clk_period;
+
+ regmap_read(ebi->regmap, FMC2_BCR1, &bcr);
+ if (bcr & FMC2_BCR1_CCLKEN || !cs)
+ regmap_read(ebi->regmap, FMC2_BTR1, &btr);
+ else
+ regmap_read(ebi->regmap, FMC2_BTR(cs), &btr);
+
+ clk_period = FIELD_GET(FMC2_BTR_CLKDIV, btr) + 1;
+
+ return DIV_ROUND_UP(nb_clk_cycles, clk_period);
+}
+
+static int stm32_fmc2_ebi_get_reg(int reg_type, int cs, u32 *reg)
+{
+ switch (reg_type) {
+ case FMC2_REG_BCR:
+ *reg = FMC2_BCR(cs);
+ break;
+ case FMC2_REG_BTR:
+ *reg = FMC2_BTR(cs);
+ break;
+ case FMC2_REG_BWTR:
+ *reg = FMC2_BWTR(cs);
+ break;
+ case FMC2_REG_PCSCNTR:
+ *reg = FMC2_PCSCNTR;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_bit_field(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 reg;
+ int ret;
+
+ ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
+ if (ret)
+ return ret;
+
+ regmap_update_bits(ebi->regmap, reg, prop->reg_mask,
+ setup ? prop->reg_mask : 0);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_trans_type(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 bcr_mask, bcr = FMC2_BCR_WREN;
+ u32 btr_mask, btr = 0;
+ u32 bwtr_mask, bwtr = 0;
+
+ bwtr_mask = FMC2_BXTR_ACCMOD;
+ btr_mask = FMC2_BXTR_ACCMOD;
+ bcr_mask = FMC2_BCR_MUXEN | FMC2_BCR_MTYP | FMC2_BCR_FACCEN |
+ FMC2_BCR_WREN | FMC2_BCR_WAITEN | FMC2_BCR_BURSTEN |
+ FMC2_BCR_EXTMOD | FMC2_BCR_CBURSTRW;
+
+ switch (setup) {
+ case FMC2_ASYNC_MODE_1_SRAM:
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
+ /*
+ * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
+ */
+ break;
+ case FMC2_ASYNC_MODE_1_PSRAM:
+ /*
+ * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
+ break;
+ case FMC2_ASYNC_MODE_A_SRAM:
+ /*
+ * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
+ bcr |= FMC2_BCR_EXTMOD;
+ btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
+ bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
+ break;
+ case FMC2_ASYNC_MODE_A_PSRAM:
+ /*
+ * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
+ bcr |= FMC2_BCR_EXTMOD;
+ btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
+ bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
+ break;
+ case FMC2_ASYNC_MODE_2_NOR:
+ /*
+ * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+ bcr |= FMC2_BCR_FACCEN;
+ break;
+ case FMC2_ASYNC_MODE_B_NOR:
+ /*
+ * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 1
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+ bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
+ btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
+ bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
+ break;
+ case FMC2_ASYNC_MODE_C_NOR:
+ /*
+ * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 2
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+ bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
+ btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
+ bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
+ break;
+ case FMC2_ASYNC_MODE_D_NOR:
+ /*
+ * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
+ * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 3
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+ bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
+ btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
+ bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
+ break;
+ case FMC2_SYNC_READ_SYNC_WRITE_PSRAM:
+ /*
+ * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
+ bcr |= FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
+ break;
+ case FMC2_SYNC_READ_ASYNC_WRITE_PSRAM:
+ /*
+ * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
+ bcr |= FMC2_BCR_BURSTEN;
+ break;
+ case FMC2_SYNC_READ_SYNC_WRITE_NOR:
+ /*
+ * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+ bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
+ break;
+ case FMC2_SYNC_READ_ASYNC_WRITE_NOR:
+ /*
+ * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
+ * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
+ */
+ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
+ bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN;
+ break;
+ default:
+ /* Type of transaction not supported */
+ return -EINVAL;
+ }
+
+ if (bcr & FMC2_BCR_EXTMOD)
+ regmap_update_bits(ebi->regmap, FMC2_BWTR(cs),
+ bwtr_mask, bwtr);
+ regmap_update_bits(ebi->regmap, FMC2_BTR(cs), btr_mask, btr);
+ regmap_update_bits(ebi->regmap, FMC2_BCR(cs), bcr_mask, bcr);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_buswidth(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val;
+
+ switch (setup) {
+ case FMC2_BUSWIDTH_8:
+ val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_8);
+ break;
+ case FMC2_BUSWIDTH_16:
+ val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_16);
+ break;
+ default:
+ /* Buswidth not supported */
+ return -EINVAL;
+ }
+
+ regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MWID, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_cpsize(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val;
+
+ switch (setup) {
+ case FMC2_CPSIZE_0:
+ val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_0);
+ break;
+ case FMC2_CPSIZE_128:
+ val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_128);
+ break;
+ case FMC2_CPSIZE_256:
+ val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_256);
+ break;
+ case FMC2_CPSIZE_512:
+ val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_512);
+ break;
+ case FMC2_CPSIZE_1024:
+ val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_1024);
+ break;
+ default:
+ /* Cpsize not supported */
+ return -EINVAL;
+ }
+
+ regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_CPSIZE, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_bl_setup(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val;
+
+ val = min_t(u32, setup, FMC2_BCR_NBLSET_MAX);
+ val = FIELD_PREP(FMC2_BCR_NBLSET, val);
+ regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_NBLSET, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_address_setup(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 bcr, bxtr, reg;
+ u32 val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
+ int ret;
+
+ ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
+ if (ret)
+ return ret;
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+ if (prop->reg_type == FMC2_REG_BWTR)
+ regmap_read(ebi->regmap, FMC2_BWTR(cs), &bxtr);
+ else
+ regmap_read(ebi->regmap, FMC2_BTR(cs), &bxtr);
+
+ if ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN)
+ val = clamp_val(setup, 1, FMC2_BXTR_ADDSET_MAX);
+ else
+ val = min_t(u32, setup, FMC2_BXTR_ADDSET_MAX);
+ val = FIELD_PREP(FMC2_BXTR_ADDSET, val);
+ regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_ADDSET, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_address_hold(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val, reg;
+ int ret;
+
+ ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
+ if (ret)
+ return ret;
+
+ val = clamp_val(setup, 1, FMC2_BXTR_ADDHLD_MAX);
+ val = FIELD_PREP(FMC2_BXTR_ADDHLD, val);
+ regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_ADDHLD, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_data_setup(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val, reg;
+ int ret;
+
+ ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
+ if (ret)
+ return ret;
+
+ val = clamp_val(setup, 1, FMC2_BXTR_DATAST_MAX);
+ val = FIELD_PREP(FMC2_BXTR_DATAST, val);
+ regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_DATAST, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_bus_turnaround(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val, reg;
+ int ret;
+
+ ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
+ if (ret)
+ return ret;
+
+ val = setup ? min_t(u32, setup - 1, FMC2_BXTR_BUSTURN_MAX) : 0;
+ val = FIELD_PREP(FMC2_BXTR_BUSTURN, val);
+ regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_BUSTURN, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_data_hold(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val, reg;
+ int ret;
+
+ ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
+ if (ret)
+ return ret;
+
+ if (prop->reg_type == FMC2_REG_BWTR)
+ val = setup ? min_t(u32, setup - 1, FMC2_BXTR_DATAHLD_MAX) : 0;
+ else
+ val = min_t(u32, setup, FMC2_BXTR_DATAHLD_MAX);
+ val = FIELD_PREP(FMC2_BXTR_DATAHLD, val);
+ regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_DATAHLD, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_clk_period(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val;
+
+ val = setup ? clamp_val(setup - 1, 1, FMC2_BTR_CLKDIV_MAX) : 1;
+ val = FIELD_PREP(FMC2_BTR_CLKDIV, val);
+ regmap_update_bits(ebi->regmap, FMC2_BTR(cs), FMC2_BTR_CLKDIV, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_data_latency(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 val;
+
+ val = setup > 1 ? min_t(u32, setup - 2, FMC2_BTR_DATLAT_MAX) : 0;
+ val = FIELD_PREP(FMC2_BTR_DATLAT, val);
+ regmap_update_bits(ebi->regmap, FMC2_BTR(cs), FMC2_BTR_DATLAT, val);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_set_max_low_pulse(struct stm32_fmc2_ebi *ebi,
+ const struct stm32_fmc2_prop *prop,
+ int cs, u32 setup)
+{
+ u32 old_val, new_val, pcscntr;
+
+ if (setup < 1)
+ return 0;
+
+ regmap_read(ebi->regmap, FMC2_PCSCNTR, &pcscntr);
+
+ /* Enable counter for the bank */
+ regmap_update_bits(ebi->regmap, FMC2_PCSCNTR,
+ FMC2_PCSCNTR_CNTBEN(cs),
+ FMC2_PCSCNTR_CNTBEN(cs));
+
+ new_val = min_t(u32, setup - 1, FMC2_PCSCNTR_CSCOUNT_MAX);
+ old_val = FIELD_GET(FMC2_PCSCNTR_CSCOUNT, pcscntr);
+ if (old_val && new_val > old_val)
+ /* Keep current counter value */
+ return 0;
+
+ new_val = FIELD_PREP(FMC2_PCSCNTR_CSCOUNT, new_val);
+ regmap_update_bits(ebi->regmap, FMC2_PCSCNTR,
+ FMC2_PCSCNTR_CSCOUNT, new_val);
+
+ return 0;
+}
+
+static const struct stm32_fmc2_prop stm32_fmc2_child_props[] = {
+ /* st,fmc2-ebi-cs-trans-type must be the first property */
+ {
+ .name = "st,fmc2-ebi-cs-transaction-type",
+ .mprop = true,
+ .set = stm32_fmc2_ebi_set_trans_type,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-cclk-enable",
+ .bprop = true,
+ .reg_type = FMC2_REG_BCR,
+ .reg_mask = FMC2_BCR1_CCLKEN,
+ .check = stm32_fmc2_ebi_check_cclk,
+ .set = stm32_fmc2_ebi_set_bit_field,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-mux-enable",
+ .bprop = true,
+ .reg_type = FMC2_REG_BCR,
+ .reg_mask = FMC2_BCR_MUXEN,
+ .check = stm32_fmc2_ebi_check_mux,
+ .set = stm32_fmc2_ebi_set_bit_field,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-buswidth",
+ .reset_val = FMC2_BUSWIDTH_16,
+ .set = stm32_fmc2_ebi_set_buswidth,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-waitpol-high",
+ .bprop = true,
+ .reg_type = FMC2_REG_BCR,
+ .reg_mask = FMC2_BCR_WAITPOL,
+ .set = stm32_fmc2_ebi_set_bit_field,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-waitcfg-enable",
+ .bprop = true,
+ .reg_type = FMC2_REG_BCR,
+ .reg_mask = FMC2_BCR_WAITCFG,
+ .check = stm32_fmc2_ebi_check_waitcfg,
+ .set = stm32_fmc2_ebi_set_bit_field,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-wait-enable",
+ .bprop = true,
+ .reg_type = FMC2_REG_BCR,
+ .reg_mask = FMC2_BCR_WAITEN,
+ .check = stm32_fmc2_ebi_check_sync_trans,
+ .set = stm32_fmc2_ebi_set_bit_field,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-asyncwait-enable",
+ .bprop = true,
+ .reg_type = FMC2_REG_BCR,
+ .reg_mask = FMC2_BCR_ASYNCWAIT,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .set = stm32_fmc2_ebi_set_bit_field,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-cpsize",
+ .check = stm32_fmc2_ebi_check_cpsize,
+ .set = stm32_fmc2_ebi_set_cpsize,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-byte-lane-setup-ns",
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_bl_setup,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-address-setup-ns",
+ .reg_type = FMC2_REG_BTR,
+ .reset_val = FMC2_BXTR_ADDSET_MAX,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_address_setup,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-address-hold-ns",
+ .reg_type = FMC2_REG_BTR,
+ .reset_val = FMC2_BXTR_ADDHLD_MAX,
+ .check = stm32_fmc2_ebi_check_address_hold,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_address_hold,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-data-setup-ns",
+ .reg_type = FMC2_REG_BTR,
+ .reset_val = FMC2_BXTR_DATAST_MAX,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_data_setup,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-bus-turnaround-ns",
+ .reg_type = FMC2_REG_BTR,
+ .reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_bus_turnaround,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-data-hold-ns",
+ .reg_type = FMC2_REG_BTR,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_data_hold,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-clk-period-ns",
+ .reset_val = FMC2_BTR_CLKDIV_MAX + 1,
+ .check = stm32_fmc2_ebi_check_clk_period,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_clk_period,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-data-latency-ns",
+ .check = stm32_fmc2_ebi_check_sync_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clk_period,
+ .set = stm32_fmc2_ebi_set_data_latency,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-write-address-setup-ns",
+ .reg_type = FMC2_REG_BWTR,
+ .reset_val = FMC2_BXTR_ADDSET_MAX,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_address_setup,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-write-address-hold-ns",
+ .reg_type = FMC2_REG_BWTR,
+ .reset_val = FMC2_BXTR_ADDHLD_MAX,
+ .check = stm32_fmc2_ebi_check_address_hold,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_address_hold,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-write-data-setup-ns",
+ .reg_type = FMC2_REG_BWTR,
+ .reset_val = FMC2_BXTR_DATAST_MAX,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_data_setup,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-write-bus-turnaround-ns",
+ .reg_type = FMC2_REG_BWTR,
+ .reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_bus_turnaround,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-write-data-hold-ns",
+ .reg_type = FMC2_REG_BWTR,
+ .check = stm32_fmc2_ebi_check_async_trans,
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_data_hold,
+ },
+ {
+ .name = "st,fmc2-ebi-cs-max-low-pulse-ns",
+ .calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
+ .set = stm32_fmc2_ebi_set_max_low_pulse,
+ },
+};
+
+static int stm32_fmc2_ebi_parse_prop(struct stm32_fmc2_ebi *ebi,
+ struct device_node *dev_node,
+ const struct stm32_fmc2_prop *prop,
+ int cs)
+{
+ struct device *dev = ebi->dev;
+ u32 setup = 0;
+
+ if (!prop->set) {
+ dev_err(dev, "property %s is not well defined\n", prop->name);
+ return -EINVAL;
+ }
+
+ if (prop->check && prop->check(ebi, prop, cs))
+ /* Skeep this property */
+ return 0;
+
+ if (prop->bprop) {
+ bool bprop;
+
+ bprop = of_property_read_bool(dev_node, prop->name);
+ if (prop->mprop && !bprop) {
+ dev_err(dev, "mandatory property %s not defined in the device tree\n",
+ prop->name);
+ return -EINVAL;
+ }
+
+ if (bprop)
+ setup = 1;
+ } else {
+ u32 val;
+ int ret;
+
+ ret = of_property_read_u32(dev_node, prop->name, &val);
+ if (prop->mprop && ret) {
+ dev_err(dev, "mandatory property %s not defined in the device tree\n",
+ prop->name);
+ return ret;
+ }
+
+ if (ret)
+ setup = prop->reset_val;
+ else if (prop->calculate)
+ setup = prop->calculate(ebi, cs, val);
+ else
+ setup = val;
+ }
+
+ return prop->set(ebi, prop, cs, setup);
+}
+
+static void stm32_fmc2_ebi_enable_bank(struct stm32_fmc2_ebi *ebi, int cs)
+{
+ regmap_update_bits(ebi->regmap, FMC2_BCR(cs),
+ FMC2_BCR_MBKEN, FMC2_BCR_MBKEN);
+}
+
+static void stm32_fmc2_ebi_disable_bank(struct stm32_fmc2_ebi *ebi, int cs)
+{
+ regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MBKEN, 0);
+}
+
+static void stm32_fmc2_ebi_save_setup(struct stm32_fmc2_ebi *ebi)
+{
+ unsigned int cs;
+
+ for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &ebi->bcr[cs]);
+ regmap_read(ebi->regmap, FMC2_BTR(cs), &ebi->btr[cs]);
+ regmap_read(ebi->regmap, FMC2_BWTR(cs), &ebi->bwtr[cs]);
+ }
+
+ regmap_read(ebi->regmap, FMC2_PCSCNTR, &ebi->pcscntr);
+}
+
+static void stm32_fmc2_ebi_set_setup(struct stm32_fmc2_ebi *ebi)
+{
+ unsigned int cs;
+
+ for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
+ regmap_write(ebi->regmap, FMC2_BCR(cs), ebi->bcr[cs]);
+ regmap_write(ebi->regmap, FMC2_BTR(cs), ebi->btr[cs]);
+ regmap_write(ebi->regmap, FMC2_BWTR(cs), ebi->bwtr[cs]);
+ }
+
+ regmap_write(ebi->regmap, FMC2_PCSCNTR, ebi->pcscntr);
+}
+
+static void stm32_fmc2_ebi_disable_banks(struct stm32_fmc2_ebi *ebi)
+{
+ unsigned int cs;
+
+ for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
+ if (!(ebi->bank_assigned & BIT(cs)))
+ continue;
+
+ stm32_fmc2_ebi_disable_bank(ebi, cs);
+ }
+}
+
+/* NWAIT signal can not be connected to EBI controller and NAND controller */
+static bool stm32_fmc2_ebi_nwait_used_by_ctrls(struct stm32_fmc2_ebi *ebi)
+{
+ unsigned int cs;
+ u32 bcr;
+
+ for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
+ if (!(ebi->bank_assigned & BIT(cs)))
+ continue;
+
+ regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
+ if ((bcr & FMC2_BCR_WAITEN || bcr & FMC2_BCR_ASYNCWAIT) &&
+ ebi->bank_assigned & BIT(FMC2_NAND))
+ return true;
+ }
+
+ return false;
+}
+
+static void stm32_fmc2_ebi_enable(struct stm32_fmc2_ebi *ebi)
+{
+ regmap_update_bits(ebi->regmap, FMC2_BCR1,
+ FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
+}
+
+static void stm32_fmc2_ebi_disable(struct stm32_fmc2_ebi *ebi)
+{
+ regmap_update_bits(ebi->regmap, FMC2_BCR1, FMC2_BCR1_FMC2EN, 0);
+}
+
+static int stm32_fmc2_ebi_setup_cs(struct stm32_fmc2_ebi *ebi,
+ struct device_node *dev_node,
+ u32 cs)
+{
+ unsigned int i;
+ int ret;
+
+ stm32_fmc2_ebi_disable_bank(ebi, cs);
+
+ for (i = 0; i < ARRAY_SIZE(stm32_fmc2_child_props); i++) {
+ const struct stm32_fmc2_prop *p = &stm32_fmc2_child_props[i];
+
+ ret = stm32_fmc2_ebi_parse_prop(ebi, dev_node, p, cs);
+ if (ret) {
+ dev_err(ebi->dev, "property %s could not be set: %d\n",
+ p->name, ret);
+ return ret;
+ }
+ }
+
+ stm32_fmc2_ebi_enable_bank(ebi, cs);
+
+ return 0;
+}
+
+static int stm32_fmc2_ebi_parse_dt(struct stm32_fmc2_ebi *ebi)
+{
+ struct device *dev = ebi->dev;
+ struct device_node *child;
+ bool child_found = false;
+ u32 bank;
+ int ret;
+
+ for_each_available_child_of_node(dev->of_node, child) {
+ ret = of_property_read_u32(child, "reg", &bank);
+ if (ret) {
+ dev_err(dev, "could not retrieve reg property: %d\n",
+ ret);
+ return ret;
+ }
+
+ if (bank >= FMC2_MAX_BANKS) {
+ dev_err(dev, "invalid reg value: %d\n", bank);
+ return -EINVAL;
+ }
+
+ if (ebi->bank_assigned & BIT(bank)) {
+ dev_err(dev, "bank already assigned: %d\n", bank);
+ return -EINVAL;
+ }
+
+ if (bank < FMC2_MAX_EBI_CE) {
+ ret = stm32_fmc2_ebi_setup_cs(ebi, child, bank);
+ if (ret) {
+ dev_err(dev, "setup chip select %d failed: %d\n",
+ bank, ret);
+ return ret;
+ }
+ }
+
+ ebi->bank_assigned |= BIT(bank);
+ child_found = true;
+ }
+
+ if (!child_found) {
+ dev_warn(dev, "no subnodes found, disable the driver.\n");
+ return -ENODEV;
+ }
+
+ if (stm32_fmc2_ebi_nwait_used_by_ctrls(ebi)) {
+ dev_err(dev, "NWAIT signal connected to EBI and NAND controllers\n");
+ return -EINVAL;
+ }
+
+ stm32_fmc2_ebi_enable(ebi);
+
+ return of_platform_populate(dev->of_node, NULL, NULL, dev);
+}
+
+static int stm32_fmc2_ebi_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct stm32_fmc2_ebi *ebi;
+ struct reset_control *rstc;
+ int ret;
+
+ ebi = devm_kzalloc(&pdev->dev, sizeof(*ebi), GFP_KERNEL);
+ if (!ebi)
+ return -ENOMEM;
+
+ ebi->dev = dev;
+
+ ebi->regmap = device_node_to_regmap(dev->of_node);
+ if (IS_ERR(ebi->regmap))
+ return PTR_ERR(ebi->regmap);
+
+ ebi->clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(ebi->clk))
+ return PTR_ERR(ebi->clk);
+
+ rstc = devm_reset_control_get(dev, NULL);
+ if (PTR_ERR(rstc) == -EPROBE_DEFER)
+ return -EPROBE_DEFER;
+
+ ret = clk_prepare_enable(ebi->clk);
+ if (ret)
+ return ret;
+
+ if (!IS_ERR(rstc)) {
+ reset_control_assert(rstc);
+ reset_control_deassert(rstc);
+ }
+
+ ret = stm32_fmc2_ebi_parse_dt(ebi);
+ if (ret)
+ goto err_release;
+
+ stm32_fmc2_ebi_save_setup(ebi);
+ platform_set_drvdata(pdev, ebi);
+
+ return 0;
+
+err_release:
+ stm32_fmc2_ebi_disable_banks(ebi);
+ stm32_fmc2_ebi_disable(ebi);
+ clk_disable_unprepare(ebi->clk);
+
+ return ret;
+}
+
+static int stm32_fmc2_ebi_remove(struct platform_device *pdev)
+{
+ struct stm32_fmc2_ebi *ebi = platform_get_drvdata(pdev);
+
+ of_platform_depopulate(&pdev->dev);
+ stm32_fmc2_ebi_disable_banks(ebi);
+ stm32_fmc2_ebi_disable(ebi);
+ clk_disable_unprepare(ebi->clk);
+
+ return 0;
+}
+
+static int __maybe_unused stm32_fmc2_ebi_suspend(struct device *dev)
+{
+ struct stm32_fmc2_ebi *ebi = dev_get_drvdata(dev);
+
+ stm32_fmc2_ebi_disable(ebi);
+ clk_disable_unprepare(ebi->clk);
+ pinctrl_pm_select_sleep_state(dev);
+
+ return 0;
+}
+
+static int __maybe_unused stm32_fmc2_ebi_resume(struct device *dev)
+{
+ struct stm32_fmc2_ebi *ebi = dev_get_drvdata(dev);
+ int ret;
+
+ pinctrl_pm_select_default_state(dev);
+
+ ret = clk_prepare_enable(ebi->clk);
+ if (ret)
+ return ret;
+
+ stm32_fmc2_ebi_set_setup(ebi);
+ stm32_fmc2_ebi_enable(ebi);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(stm32_fmc2_ebi_pm_ops, stm32_fmc2_ebi_suspend,
+ stm32_fmc2_ebi_resume);
+
+static const struct of_device_id stm32_fmc2_ebi_match[] = {
+ {.compatible = "st,stm32mp1-fmc2-ebi"},
+ {}
+};
+MODULE_DEVICE_TABLE(of, stm32_fmc2_ebi_match);
+
+static struct platform_driver stm32_fmc2_ebi_driver = {
+ .probe = stm32_fmc2_ebi_probe,
+ .remove = stm32_fmc2_ebi_remove,
+ .driver = {
+ .name = "stm32_fmc2_ebi",
+ .of_match_table = stm32_fmc2_ebi_match,
+ .pm = &stm32_fmc2_ebi_pm_ops,
+ },
+};
+module_platform_driver(stm32_fmc2_ebi_driver);
+
+MODULE_ALIAS("platform:stm32_fmc2_ebi");
+MODULE_AUTHOR("Christophe Kerello <[email protected]>");
+MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 ebi driver");
+MODULE_LICENSE("GPL v2");
--
1.9.1

2020-06-12 15:27:23

by Christophe Kerello

[permalink] [raw]
Subject: [PATCH v5 6/6] mtd: rawnand: stm32_fmc2: get resources from parent node

FMC2 EBI support has been added. Common resources (registers base
address and clock) can now be shared between the 2 drivers using
"st,stm32mp1-fmc2-nfc" compatible string. It means that the
common resources should now be found in the parent device when EBI
node is available.

Signed-off-by: Christophe Kerello <[email protected]>
---
Changes in v5:
- look at the parent compatible string to match what we expect.

drivers/mtd/nand/raw/Kconfig | 3 +-
drivers/mtd/nand/raw/stm32_fmc2_nand.c | 71 ++++++++++++++++++++++++----------
2 files changed, 51 insertions(+), 23 deletions(-)

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 0a03ebf..8dd0d7c 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -415,8 +415,7 @@ config MTD_NAND_TEGRA
config MTD_NAND_STM32_FMC2
tristate "Support for NAND controller on STM32MP SoCs"
depends on MACH_STM32MP157 || COMPILE_TEST
- select REGMAP
- select REGMAP_MMIO
+ select MFD_SYSCON
help
Enables support for NAND Flash chips on SoCs containing the FMC2
NAND controller. This controller is found on STM32MP SoCs.
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
index 6aa3695..396b325 100644
--- a/drivers/mtd/nand/raw/stm32_fmc2_nand.c
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -11,8 +11,10 @@
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
+#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
+#include <linux/of_address.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
@@ -204,16 +206,6 @@
#define FMC2_BCHDSR4_EBP7 GENMASK(12, 0)
#define FMC2_BCHDSR4_EBP8 GENMASK(28, 16)

-/* Regmap registers configuration */
-#define FMC2_MAX_REGISTER 0x3fc
-
-static const struct regmap_config stm32_fmc2_regmap_cfg = {
- .reg_bits = 32,
- .val_bits = 32,
- .reg_stride = sizeof(u32),
- .max_register = FMC2_MAX_REGISTER,
-};
-
enum stm32_fmc2_ecc {
FMC2_ECC_HAM = 1,
FMC2_ECC_BCH4 = 4,
@@ -253,6 +245,7 @@ struct stm32_fmc2_nfc {
struct nand_controller base;
struct stm32_fmc2_nand nand;
struct device *dev;
+ struct device *cdev;
struct regmap *regmap;
void __iomem *data_base[FMC2_MAX_CE];
void __iomem *cmd_base[FMC2_MAX_CE];
@@ -1384,8 +1377,9 @@ static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);

/* Enable FMC2 controller */
- regmap_update_bits(nfc->regmap, FMC2_BCR1,
- FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
+ if (nfc->dev == nfc->cdev)
+ regmap_update_bits(nfc->regmap, FMC2_BCR1,
+ FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);

regmap_write(nfc->regmap, FMC2_PCR, pcr);
regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
@@ -1815,6 +1809,33 @@ static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
return ret;
}

+static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
+{
+ struct device *dev = nfc->dev;
+ bool ebi_found = false;
+
+ if (dev->parent && of_device_is_compatible(dev->parent->of_node,
+ "st,stm32mp1-fmc2-ebi"))
+ ebi_found = true;
+
+ if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
+ if (ebi_found) {
+ nfc->cdev = dev->parent;
+
+ return 0;
+ }
+
+ return -EINVAL;
+ }
+
+ if (ebi_found)
+ return -EINVAL;
+
+ nfc->cdev = dev;
+
+ return 0;
+}
+
static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
@@ -1824,8 +1845,9 @@ static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
struct resource *res;
struct mtd_info *mtd;
struct nand_chip *chip;
- void __iomem *mmio;
+ struct resource cres;
int chip_cs, mem_region, ret, irq;
+ int start_region = 0;

nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
@@ -1835,22 +1857,28 @@ static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
nand_controller_init(&nfc->base);
nfc->base.ops = &stm32_fmc2_nfc_controller_ops;

+ ret = stm32_fmc2_nfc_set_cdev(nfc);
+ if (ret)
+ return ret;
+
ret = stm32_fmc2_nfc_parse_dt(nfc);
if (ret)
return ret;

- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- mmio = devm_ioremap_resource(dev, res);
- if (IS_ERR(mmio))
- return PTR_ERR(mmio);
+ ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
+ if (ret)
+ return ret;
+
+ nfc->io_phys_addr = cres.start;

- nfc->regmap = devm_regmap_init_mmio(dev, mmio, &stm32_fmc2_regmap_cfg);
+ nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
if (IS_ERR(nfc->regmap))
return PTR_ERR(nfc->regmap);

- nfc->io_phys_addr = res->start;
+ if (nfc->dev == nfc->cdev)
+ start_region = 1;

- for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
+ for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
chip_cs++, mem_region += 3) {
if (!(nfc->cs_assigned & BIT(chip_cs)))
continue;
@@ -1888,7 +1916,7 @@ static int stm32_fmc2_nfc_probe(struct platform_device *pdev)

init_completion(&nfc->complete);

- nfc->clk = devm_clk_get(dev, NULL);
+ nfc->clk = devm_clk_get(nfc->cdev, NULL);
if (IS_ERR(nfc->clk))
return PTR_ERR(nfc->clk);

@@ -2029,6 +2057,7 @@ static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,

static const struct of_device_id stm32_fmc2_nfc_match[] = {
{.compatible = "st,stm32mp15-fmc2"},
+ {.compatible = "st,stm32mp1-fmc2-nfc"},
{}
};
MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
--
1.9.1

2020-06-12 15:27:29

by Christophe Kerello

[permalink] [raw]
Subject: [PATCH v5 5/6] mtd: rawnand: stm32_fmc2: use regmap APIs

This patch uses regmap APIs to access all FMC2 registers.

Signed-off-by: Christophe Kerello <[email protected]>
Reviewed-by: Miquel Raynal <[email protected]>
---
Changes in v3:
- add Miquel reviewed-by tag

drivers/mtd/nand/raw/Kconfig | 2 +
drivers/mtd/nand/raw/stm32_fmc2_nand.c | 268 +++++++++++++++------------------
2 files changed, 127 insertions(+), 143 deletions(-)

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 113f610..0a03ebf 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -415,6 +415,8 @@ config MTD_NAND_TEGRA
config MTD_NAND_STM32_FMC2
tristate "Support for NAND controller on STM32MP SoCs"
depends on MACH_STM32MP157 || COMPILE_TEST
+ select REGMAP
+ select REGMAP_MMIO
help
Enables support for NAND Flash chips on SoCs containing the FMC2
NAND controller. This controller is found on STM32MP SoCs.
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
index e7b706b..6aa3695 100644
--- a/drivers/mtd/nand/raw/stm32_fmc2_nand.c
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -15,6 +15,7 @@
#include <linux/mtd/rawnand.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
+#include <linux/regmap.h>
#include <linux/reset.h>

/* Bad block marker length */
@@ -203,6 +204,16 @@
#define FMC2_BCHDSR4_EBP7 GENMASK(12, 0)
#define FMC2_BCHDSR4_EBP8 GENMASK(28, 16)

+/* Regmap registers configuration */
+#define FMC2_MAX_REGISTER 0x3fc
+
+static const struct regmap_config stm32_fmc2_regmap_cfg = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = sizeof(u32),
+ .max_register = FMC2_MAX_REGISTER,
+};
+
enum stm32_fmc2_ecc {
FMC2_ECC_HAM = 1,
FMC2_ECC_BCH4 = 4,
@@ -242,7 +253,7 @@ struct stm32_fmc2_nfc {
struct nand_controller base;
struct stm32_fmc2_nand nand;
struct device *dev;
- void __iomem *io_base;
+ struct regmap *regmap;
void __iomem *data_base[FMC2_MAX_CE];
void __iomem *cmd_base[FMC2_MAX_CE];
void __iomem *addr_base[FMC2_MAX_CE];
@@ -277,40 +288,37 @@ static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *timings = &nand->timings;
- u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
u32 pmem, patt;

/* Set tclr/tar timings */
- pcr &= ~FMC2_PCR_TCLR;
- pcr |= FIELD_PREP(FMC2_PCR_TCLR, timings->tclr);
- pcr &= ~FMC2_PCR_TAR;
- pcr |= FIELD_PREP(FMC2_PCR_TAR, timings->tar);
+ regmap_update_bits(nfc->regmap, FMC2_PCR,
+ FMC2_PCR_TCLR | FMC2_PCR_TAR,
+ FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
+ FIELD_PREP(FMC2_PCR_TAR, timings->tar));

/* Set tset/twait/thold/thiz timings in common bank */
pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
+ regmap_write(nfc->regmap, FMC2_PMEM, pmem);

/* Set tset/twait/thold/thiz timings in attribut bank */
patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
-
- writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
- writel_relaxed(pmem, nfc->io_base + FMC2_PMEM);
- writel_relaxed(patt, nfc->io_base + FMC2_PATT);
+ regmap_write(nfc->regmap, FMC2_PATT, patt);
}

static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
- u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
+ u32 pcr = 0, pcr_mask;

/* Configure ECC algorithm (default configuration is Hamming) */
- pcr &= ~FMC2_PCR_ECCALG;
- pcr &= ~FMC2_PCR_BCHECC;
+ pcr_mask = FMC2_PCR_ECCALG;
+ pcr_mask |= FMC2_PCR_BCHECC;
if (chip->ecc.strength == FMC2_ECC_BCH8) {
pcr |= FMC2_PCR_ECCALG;
pcr |= FMC2_PCR_BCHECC;
@@ -319,15 +327,15 @@ static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
}

/* Set buswidth */
- pcr &= ~FMC2_PCR_PWID;
+ pcr_mask |= FMC2_PCR_PWID;
if (chip->options & NAND_BUSWIDTH_16)
pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);

/* Set ECC sector size */
- pcr &= ~FMC2_PCR_ECCSS;
+ pcr_mask |= FMC2_PCR_ECCSS;
pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);

- writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
+ regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
}

static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
@@ -393,81 +401,63 @@ static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)

static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
{
- u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
+ u32 pcr;

- pcr &= ~FMC2_PCR_PWID;
- if (set)
- pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
- writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
+ pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
+ FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
+
+ regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
}

static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
{
- u32 pcr = readl(nfc->io_base + FMC2_PCR);
-
- pcr &= ~FMC2_PCR_ECCEN;
- if (enable)
- pcr |= FMC2_PCR_ECCEN;
- writel(pcr, nfc->io_base + FMC2_PCR);
+ regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
+ enable ? FMC2_PCR_ECCEN : 0);
}

-static inline void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
+static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
{
- u32 csqier = readl_relaxed(nfc->io_base + FMC2_CSQIER);
-
- csqier |= FMC2_CSQIER_TCIE;
-
nfc->irq_state = FMC2_IRQ_SEQ;

- writel_relaxed(csqier, nfc->io_base + FMC2_CSQIER);
+ regmap_update_bits(nfc->regmap, FMC2_CSQIER,
+ FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
}

-static inline void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
+static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
{
- u32 csqier = readl_relaxed(nfc->io_base + FMC2_CSQIER);
-
- csqier &= ~FMC2_CSQIER_TCIE;
-
- writel_relaxed(csqier, nfc->io_base + FMC2_CSQIER);
+ regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);

nfc->irq_state = FMC2_IRQ_UNKNOWN;
}

-static inline void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
+static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
{
- writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, nfc->io_base + FMC2_CSQICR);
+ regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
}

-static inline void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc,
- int mode)
+static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
{
- u32 bchier = readl_relaxed(nfc->io_base + FMC2_BCHIER);
+ nfc->irq_state = FMC2_IRQ_BCH;

if (mode == NAND_ECC_WRITE)
- bchier |= FMC2_BCHIER_EPBRIE;
+ regmap_update_bits(nfc->regmap, FMC2_BCHIER,
+ FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
else
- bchier |= FMC2_BCHIER_DERIE;
-
- nfc->irq_state = FMC2_IRQ_BCH;
-
- writel_relaxed(bchier, nfc->io_base + FMC2_BCHIER);
+ regmap_update_bits(nfc->regmap, FMC2_BCHIER,
+ FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
}

-static inline void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
+static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
{
- u32 bchier = readl_relaxed(nfc->io_base + FMC2_BCHIER);
-
- bchier &= ~FMC2_BCHIER_DERIE;
- bchier &= ~FMC2_BCHIER_EPBRIE;
-
- writel_relaxed(bchier, nfc->io_base + FMC2_BCHIER);
+ regmap_update_bits(nfc->regmap, FMC2_BCHIER,
+ FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);

nfc->irq_state = FMC2_IRQ_UNKNOWN;
}

-static inline void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
+static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
{
- writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
+ regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
}

/*
@@ -481,13 +471,8 @@ static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
stm32_fmc2_nfc_set_ecc(nfc, false);

if (chip->ecc.strength != FMC2_ECC_HAM) {
- u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
-
- if (mode == NAND_ECC_WRITE)
- pcr |= FMC2_PCR_WEN;
- else
- pcr &= ~FMC2_PCR_WEN;
- writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
+ regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
+ mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);

reinit_completion(&nfc->complete);
stm32_fmc2_nfc_clear_bch_irq(nfc);
@@ -502,7 +487,7 @@ static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
* ECC is 3 bytes for 512 bytes of data (supports error correction up to
* max of 1-bit)
*/
-static inline void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
+static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
{
ecc[0] = ecc_sta;
ecc[1] = ecc_sta >> 8;
@@ -516,15 +501,15 @@ static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
u32 sr, heccr;
int ret;

- ret = readl_relaxed_poll_timeout(nfc->io_base + FMC2_SR,
- sr, sr & FMC2_SR_NWRF, 1,
- 1000 * FMC2_TIMEOUT_MS);
+ ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
+ sr & FMC2_SR_NWRF, 1,
+ 1000 * FMC2_TIMEOUT_MS);
if (ret) {
dev_err(nfc->dev, "ham timeout\n");
return ret;
}

- heccr = readl_relaxed(nfc->io_base + FMC2_HECCR);
+ regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
stm32_fmc2_nfc_set_ecc(nfc, false);

@@ -603,13 +588,13 @@ static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
}

/* Read parity bits */
- bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR1);
+ regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
ecc[0] = bchpbr;
ecc[1] = bchpbr >> 8;
ecc[2] = bchpbr >> 16;
ecc[3] = bchpbr >> 24;

- bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR2);
+ regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
ecc[4] = bchpbr;
ecc[5] = bchpbr >> 8;
ecc[6] = bchpbr >> 16;
@@ -617,13 +602,13 @@ static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
if (chip->ecc.strength == FMC2_ECC_BCH8) {
ecc[7] = bchpbr >> 24;

- bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR3);
+ regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
ecc[8] = bchpbr;
ecc[9] = bchpbr >> 8;
ecc[10] = bchpbr >> 16;
ecc[11] = bchpbr >> 24;

- bchpbr = readl_relaxed(nfc->io_base + FMC2_BCHPBR4);
+ regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
ecc[12] = bchpbr;
}

@@ -685,11 +670,7 @@ static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
return -ETIMEDOUT;
}

- ecc_sta[0] = readl_relaxed(nfc->io_base + FMC2_BCHDSR0);
- ecc_sta[1] = readl_relaxed(nfc->io_base + FMC2_BCHDSR1);
- ecc_sta[2] = readl_relaxed(nfc->io_base + FMC2_BCHDSR2);
- ecc_sta[3] = readl_relaxed(nfc->io_base + FMC2_BCHDSR3);
- ecc_sta[4] = readl_relaxed(nfc->io_base + FMC2_BCHDSR4);
+ regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);

stm32_fmc2_nfc_set_ecc(nfc, false);

@@ -764,30 +745,29 @@ static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
- u32 csqcfgr1, csqcfgr2, csqcfgr3;
- u32 csqar1, csqar2;
u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
- u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
+ /*
+ * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
+ * cfg[3] => csqar1, cfg[4] => csqar2
+ */
+ u32 cfg[5];

- if (write_data)
- pcr |= FMC2_PCR_WEN;
- else
- pcr &= ~FMC2_PCR_WEN;
- writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
+ regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
+ write_data ? FMC2_PCR_WEN : 0);

/*
* - Set Program Page/Page Read command
* - Enable DMA request data
* - Set timings
*/
- csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
+ cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
if (write_data)
- csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
+ cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
else
- csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
- FMC2_CSQCFGR1_CMD2EN |
- FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
- FMC2_CSQCFGR1_CMD2T;
+ cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
+ FMC2_CSQCFGR1_CMD2EN |
+ FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
+ FMC2_CSQCFGR1_CMD2T;

/*
* - Set Random Data Input/Random Data Read command
@@ -796,30 +776,29 @@ static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
* - Set timings
*/
if (write_data)
- csqcfgr2 = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
+ cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
else
- csqcfgr2 = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
- FMC2_CSQCFGR2_RCMD2EN |
- FIELD_PREP(FMC2_CSQCFGR2_RCMD2,
- NAND_CMD_RNDOUTSTART) |
- FMC2_CSQCFGR2_RCMD1T |
- FMC2_CSQCFGR2_RCMD2T;
+ cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
+ FMC2_CSQCFGR2_RCMD2EN |
+ FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
+ FMC2_CSQCFGR2_RCMD1T |
+ FMC2_CSQCFGR2_RCMD2T;
if (!raw) {
- csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
- csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
+ cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
+ cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
}

/*
* - Set the number of sectors to be written
* - Set timings
*/
- csqcfgr3 = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
+ cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
if (write_data) {
- csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
+ cfg[2] |= FMC2_CSQCFGR3_RAC2T;
if (chip->options & NAND_ROW_ADDR_3)
- csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
+ cfg[2] |= FMC2_CSQCFGR3_AC5T;
else
- csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
+ cfg[2] |= FMC2_CSQCFGR3_AC4T;
}

/*
@@ -827,8 +806,8 @@ static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
* Byte 1 and byte 2 => column, we start at 0x0
* Byte 3 and byte 4 => page
*/
- csqar1 = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
- csqar1 |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
+ cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
+ cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);

/*
* - Set chip enable number
@@ -836,23 +815,19 @@ static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
* - Calculate the number of address cycles to be issued
* - Set byte 5 of address cycle if needed
*/
- csqar2 = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
+ cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
if (chip->options & NAND_BUSWIDTH_16)
- csqar2 |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
+ cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
else
- csqar2 |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
+ cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
if (chip->options & NAND_ROW_ADDR_3) {
- csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
- csqar2 |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
+ cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
+ cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
} else {
- csqcfgr1 |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
+ cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
}

- writel_relaxed(csqcfgr1, nfc->io_base + FMC2_CSQCFGR1);
- writel_relaxed(csqcfgr2, nfc->io_base + FMC2_CSQCFGR2);
- writel_relaxed(csqcfgr3, nfc->io_base + FMC2_CSQCFGR3);
- writel_relaxed(csqar1, nfc->io_base + FMC2_CSQAR1);
- writel_relaxed(csqar2, nfc->io_base + FMC2_CSQAR2);
+ regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
}

static void stm32_fmc2_nfc_dma_callback(void *arg)
@@ -870,7 +845,6 @@ static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
struct dma_chan *dma_ch = nfc->dma_rx_ch;
enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
- u32 csqcr = readl_relaxed(nfc->io_base + FMC2_CSQCR);
int eccsteps = chip->ecc.steps;
int eccsize = chip->ecc.size;
unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
@@ -948,8 +922,8 @@ static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
stm32_fmc2_nfc_enable_seq_irq(nfc);

/* Start the transfer */
- csqcr |= FMC2_CSQCR_CSQSTART;
- writel_relaxed(csqcr, nfc->io_base + FMC2_CSQCR);
+ regmap_update_bits(nfc->regmap, FMC2_CSQCR,
+ FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);

/* Wait end of sequencer transfer */
if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
@@ -1042,11 +1016,13 @@ static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
}

/* Get a status indicating which sectors have errors */
-static inline u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
+static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
{
- u32 csqemsr = readl_relaxed(nfc->io_base + FMC2_CSQEMSR);
+ u32 csqemsr;
+
+ regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);

- return csqemsr & FMC2_CSQEMSR_SEM;
+ return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
}

static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
@@ -1302,9 +1278,9 @@ static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
u32 isr, sr;

/* Check if there is no pending requests to the NAND flash */
- if (readl_relaxed_poll_timeout_atomic(nfc->io_base + FMC2_SR, sr,
- sr & FMC2_SR_NWRF, 1,
- 1000 * FMC2_TIMEOUT_MS))
+ if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
+ sr & FMC2_SR_NWRF, 1,
+ 1000 * FMC2_TIMEOUT_MS))
dev_warn(nfc->dev, "Waitrdy timeout\n");

/* Wait tWB before R/B# signal is low */
@@ -1312,12 +1288,12 @@ static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
ndelay(PSEC_TO_NSEC(timings->tWB_max));

/* R/B# signal is low, clear high level flag */
- writel_relaxed(FMC2_ICR_CIHLF, nfc->io_base + FMC2_ICR);
+ regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);

/* Wait R/B# signal is high */
- return readl_relaxed_poll_timeout_atomic(nfc->io_base + FMC2_ISR,
- isr, isr & FMC2_ISR_IHLF,
- 5, 1000 * timeout_ms);
+ return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
+ isr & FMC2_ISR_IHLF, 5,
+ 1000 * FMC2_TIMEOUT_MS);
}

static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
@@ -1375,8 +1351,9 @@ static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,

static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
{
- u32 pcr = readl_relaxed(nfc->io_base + FMC2_PCR);
- u32 bcr1 = readl_relaxed(nfc->io_base + FMC2_BCR1);
+ u32 pcr;
+
+ regmap_read(nfc->regmap, FMC2_PCR, &pcr);

/* Set CS used to undefined */
nfc->cs_sel = -1;
@@ -1407,12 +1384,12 @@ static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);

/* Enable FMC2 controller */
- bcr1 |= FMC2_BCR1_FMC2EN;
+ regmap_update_bits(nfc->regmap, FMC2_BCR1,
+ FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);

- writel_relaxed(bcr1, nfc->io_base + FMC2_BCR1);
- writel_relaxed(pcr, nfc->io_base + FMC2_PCR);
- writel_relaxed(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
- writel_relaxed(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
+ regmap_write(nfc->regmap, FMC2_PCR, pcr);
+ regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
+ regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
}

static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
@@ -1847,6 +1824,7 @@ static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
struct resource *res;
struct mtd_info *mtd;
struct nand_chip *chip;
+ void __iomem *mmio;
int chip_cs, mem_region, ret, irq;

nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
@@ -1862,9 +1840,13 @@ static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
return ret;

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- nfc->io_base = devm_ioremap_resource(dev, res);
- if (IS_ERR(nfc->io_base))
- return PTR_ERR(nfc->io_base);
+ mmio = devm_ioremap_resource(dev, res);
+ if (IS_ERR(mmio))
+ return PTR_ERR(mmio);
+
+ nfc->regmap = devm_regmap_init_mmio(dev, mmio, &stm32_fmc2_regmap_cfg);
+ if (IS_ERR(nfc->regmap))
+ return PTR_ERR(nfc->regmap);

nfc->io_phys_addr = res->start;

--
1.9.1

2020-06-12 15:28:22

by Christophe Kerello

[permalink] [raw]
Subject: [PATCH v5 1/6] mtd: rawnand: stm32_fmc2: do not display errors if the driver is deferred

A MDMA issue has been solved on Kernel 5.7. The effect of this fix is
that the MDMA driver is now deferred and the FMC2 NFC driver is also
deferred. All is working fine but there is a FMC2 log in the console:
stm32_fmc2_nfc 58002000.nand-controller: failed to request tx DMA
channel: -517

This patch removes the display of this log in the console in case of
this error is -EPROBE_DEFER.

Signed-off-by: Christophe Kerello <[email protected]>
---
drivers/mtd/nand/raw/stm32_fmc2_nand.c | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
index 65c9d17..e7b706b 100644
--- a/drivers/mtd/nand/raw/stm32_fmc2_nand.c
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -1570,7 +1570,7 @@ static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
if (IS_ERR(nfc->dma_tx_ch)) {
ret = PTR_ERR(nfc->dma_tx_ch);
- if (ret != -ENODEV)
+ if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(nfc->dev,
"failed to request tx DMA channel: %d\n", ret);
nfc->dma_tx_ch = NULL;
@@ -1580,7 +1580,7 @@ static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
if (IS_ERR(nfc->dma_rx_ch)) {
ret = PTR_ERR(nfc->dma_rx_ch);
- if (ret != -ENODEV)
+ if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(nfc->dev,
"failed to request rx DMA channel: %d\n", ret);
nfc->dma_rx_ch = NULL;
@@ -1590,7 +1590,7 @@ static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
if (IS_ERR(nfc->dma_ecc_ch)) {
ret = PTR_ERR(nfc->dma_ecc_ch);
- if (ret != -ENODEV)
+ if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(nfc->dev,
"failed to request ecc DMA channel: %d\n", ret);
nfc->dma_ecc_ch = NULL;
--
1.9.1

2020-06-12 15:28:43

by Christophe Kerello

[permalink] [raw]
Subject: [PATCH v5 3/6] dt-bindings: memory-controller: add STM32 FMC2 EBI controller documentation

This patch adds the documentation of the device tree bindings for the STM32
FMC2 EBI controller.

Signed-off-by: Christophe Kerello <[email protected]>
Reviewed-by: Rob Herring <[email protected]>
---
Changes in v5:
- fix indent descriptions
- add Rob reviewed-by tag

Changes in v4:
- fix filename: st,stm32-fmc2-ebi.yaml

Changes in v3:
- pattern name has been modified
- vendor properties have been modified
- s/_/-/
- add unit suffix (-ns) on timing properties

.../memory-controllers/st,stm32-fmc2-ebi.yaml | 252 +++++++++++++++++++++
1 file changed, 252 insertions(+)
create mode 100644 Documentation/devicetree/bindings/memory-controllers/st,stm32-fmc2-ebi.yaml

diff --git a/Documentation/devicetree/bindings/memory-controllers/st,stm32-fmc2-ebi.yaml b/Documentation/devicetree/bindings/memory-controllers/st,stm32-fmc2-ebi.yaml
new file mode 100644
index 0000000..70eaf73
--- /dev/null
+++ b/Documentation/devicetree/bindings/memory-controllers/st,stm32-fmc2-ebi.yaml
@@ -0,0 +1,252 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/memory-controllers/st,stm32-fmc2-ebi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: STMicroelectronics Flexible Memory Controller 2 (FMC2) Bindings
+
+description: |
+ The FMC2 functional block makes the interface with: synchronous and
+ asynchronous static devices (such as PSNOR, PSRAM or other memory-mapped
+ peripherals) and NAND flash memories.
+ Its main purposes are:
+ - to translate AXI transactions into the appropriate external device
+ protocol
+ - to meet the access time requirements of the external devices
+ All external devices share the addresses, data and control signals with the
+ controller. Each external device is accessed by means of a unique Chip
+ Select. The FMC2 performs only one access at a time to an external device.
+
+maintainers:
+ - Christophe Kerello <[email protected]>
+
+properties:
+ compatible:
+ const: st,stm32mp1-fmc2-ebi
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ "#address-cells":
+ const: 2
+
+ "#size-cells":
+ const: 1
+
+ ranges:
+ description: |
+ Reflects the memory layout with four integer values per bank. Format:
+ <bank-number> 0 <address of the bank> <size>
+
+patternProperties:
+ "^.*@[0-4],[a-f0-9]+$":
+ type: object
+
+ properties:
+ reg:
+ description: Bank number, base address and size of the device.
+
+ st,fmc2-ebi-cs-transaction-type:
+ description: |
+ Select one of the transactions type supported
+ 0: Asynchronous mode 1 SRAM/FRAM.
+ 1: Asynchronous mode 1 PSRAM.
+ 2: Asynchronous mode A SRAM/FRAM.
+ 3: Asynchronous mode A PSRAM.
+ 4: Asynchronous mode 2 NOR.
+ 5: Asynchronous mode B NOR.
+ 6: Asynchronous mode C NOR.
+ 7: Asynchronous mode D NOR.
+ 8: Synchronous read synchronous write PSRAM.
+ 9: Synchronous read asynchronous write PSRAM.
+ 10: Synchronous read synchronous write NOR.
+ 11: Synchronous read asynchronous write NOR.
+ $ref: /schemas/types.yaml#/definitions/uint32
+ minimum: 0
+ maximum: 11
+
+ st,fmc2-ebi-cs-cclk-enable:
+ description: Continuous clock enable (first bank must be configured
+ in synchronous mode). The FMC_CLK is generated continuously
+ during asynchronous and synchronous access. By default, the
+ FMC_CLK is only generated during synchronous access.
+ $ref: /schemas/types.yaml#/definitions/flag
+
+ st,fmc2-ebi-cs-mux-enable:
+ description: Address/Data multiplexed on databus (valid only with
+ NOR and PSRAM transactions type). By default, Address/Data
+ are not multiplexed.
+ $ref: /schemas/types.yaml#/definitions/flag
+
+ st,fmc2-ebi-cs-buswidth:
+ description: Data bus width
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 8, 16 ]
+ default: 16
+
+ st,fmc2-ebi-cs-waitpol-high:
+ description: Wait signal polarity (NWAIT signal active high).
+ By default, NWAIT is active low.
+ $ref: /schemas/types.yaml#/definitions/flag
+
+ st,fmc2-ebi-cs-waitcfg-enable:
+ description: The NWAIT signal indicates wheither the data from the
+ device are valid or if a wait state must be inserted when accessing
+ the device in synchronous mode. By default, the NWAIT signal is
+ active one data cycle before wait state.
+ $ref: /schemas/types.yaml#/definitions/flag
+
+ st,fmc2-ebi-cs-wait-enable:
+ description: The NWAIT signal is enabled (its level is taken into
+ account after the programmed latency period to insert wait states
+ if asserted). By default, the NWAIT signal is disabled.
+ $ref: /schemas/types.yaml#/definitions/flag
+
+ st,fmc2-ebi-cs-asyncwait-enable:
+ description: The NWAIT signal is taken into account during asynchronous
+ transactions. By default, the NWAIT signal is not taken into account
+ during asynchronous transactions.
+ $ref: /schemas/types.yaml#/definitions/flag
+
+ st,fmc2-ebi-cs-cpsize:
+ description: CRAM page size. The controller splits the burst access
+ when the memory page is reached. By default, no burst split when
+ crossing page boundary.
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 128, 256, 512, 1024 ]
+ default: 0
+
+ st,fmc2-ebi-cs-byte-lane-setup-ns:
+ description: This property configures the byte lane setup timing
+ defined in nanoseconds from NBLx low to Chip Select NEx low.
+
+ st,fmc2-ebi-cs-address-setup-ns:
+ description: This property defines the duration of the address setup
+ phase in nanoseconds used for asynchronous read/write transactions.
+
+ st,fmc2-ebi-cs-address-hold-ns:
+ description: This property defines the duration of the address hold
+ phase in nanoseconds used for asynchronous multiplexed read/write
+ transactions.
+
+ st,fmc2-ebi-cs-data-setup-ns:
+ description: This property defines the duration of the data setup phase
+ in nanoseconds used for asynchronous read/write transactions.
+
+ st,fmc2-ebi-cs-bus-turnaround-ns:
+ description: This property defines the delay in nanoseconds between the
+ end of current read/write transaction and the next transaction.
+
+ st,fmc2-ebi-cs-data-hold-ns:
+ description: This property defines the duration of the data hold phase
+ in nanoseconds used for asynchronous read/write transactions.
+
+ st,fmc2-ebi-cs-clk-period-ns:
+ description: This property defines the FMC_CLK output signal period in
+ nanoseconds.
+
+ st,fmc2-ebi-cs-data-latency-ns:
+ description: This property defines the data latency before reading or
+ writing the first data in nanoseconds.
+
+ st,fmc2_ebi-cs-write-address-setup-ns:
+ description: This property defines the duration of the address setup
+ phase in nanoseconds used for asynchronous write transactions.
+
+ st,fmc2-ebi-cs-write-address-hold-ns:
+ description: This property defines the duration of the address hold
+ phase in nanoseconds used for asynchronous multiplexed write
+ transactions.
+
+ st,fmc2-ebi-cs-write-data-setup-ns:
+ description: This property defines the duration of the data setup
+ phase in nanoseconds used for asynchronous write transactions.
+
+ st,fmc2-ebi-cs-write-bus-turnaround-ns:
+ description: This property defines the delay between the end of current
+ write transaction and the next transaction in nanoseconds.
+
+ st,fmc2-ebi-cs-write-data-hold-ns:
+ description: This property defines the duration of the data hold phase
+ in nanoseconds used for asynchronous write transactions.
+
+ st,fmc2-ebi-cs-max-low-pulse-ns:
+ description: This property defines the maximum chip select low pulse
+ duration in nanoseconds for synchronous transactions. When this timing
+ reaches 0, the controller splits the current access, toggles NE to
+ allow device refresh and restarts a new access.
+
+ required:
+ - reg
+
+required:
+ - "#address-cells"
+ - "#size-cells"
+ - compatible
+ - reg
+ - clocks
+ - ranges
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/stm32mp1-clks.h>
+ #include <dt-bindings/reset/stm32mp1-resets.h>
+ memory-controller@58002000 {
+ #address-cells = <2>;
+ #size-cells = <1>;
+ compatible = "st,stm32mp1-fmc2-ebi";
+ reg = <0x58002000 0x1000>;
+ clocks = <&rcc FMC_K>;
+ resets = <&rcc FMC_R>;
+
+ ranges = <0 0 0x60000000 0x04000000>, /* EBI CS 1 */
+ <1 0 0x64000000 0x04000000>, /* EBI CS 2 */
+ <2 0 0x68000000 0x04000000>, /* EBI CS 3 */
+ <3 0 0x6c000000 0x04000000>, /* EBI CS 4 */
+ <4 0 0x80000000 0x10000000>; /* NAND */
+
+ psram@0,0 {
+ compatible = "mtd-ram";
+ reg = <0 0x00000000 0x100000>;
+ bank-width = <2>;
+
+ st,fmc2-ebi-cs-transaction-type = <1>;
+ st,fmc2-ebi-cs-address-setup-ns = <60>;
+ st,fmc2-ebi-cs-data-setup-ns = <30>;
+ st,fmc2-ebi-cs-bus-turnaround-ns = <5>;
+ };
+
+ nand-controller@4,0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "st,stm32mp1-fmc2-nfc";
+ reg = <4 0x00000000 0x1000>,
+ <4 0x08010000 0x1000>,
+ <4 0x08020000 0x1000>,
+ <4 0x01000000 0x1000>,
+ <4 0x09010000 0x1000>,
+ <4 0x09020000 0x1000>;
+ interrupts = <GIC_SPI 48 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&mdma1 20 0x2 0x12000a02 0x0 0x0>,
+ <&mdma1 20 0x2 0x12000a08 0x0 0x0>,
+ <&mdma1 21 0x2 0x12000a0a 0x0 0x0>;
+ dma-names = "tx", "rx", "ecc";
+
+ nand@0 {
+ reg = <0>;
+ nand-on-flash-bbt;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ };
+ };
+ };
+
+...
--
1.9.1

2020-06-30 09:24:31

by Richard Weinberger

[permalink] [raw]
Subject: Re: [PATCH v5 4/6] memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver

On Fri, Jun 12, 2020 at 5:24 PM Christophe Kerello
<[email protected]> wrote:
>
> The driver adds the support for the STMicroelectronics FMC2 EBI controller
> found on STM32MP SOCs.
>
> Signed-off-by: Christophe Kerello <[email protected]>
> ---
> + if (!IS_ERR(rstc)) {
> + reset_control_assert(rstc);
> + reset_control_deassert(rstc);

Shouldn't there be a small delay between assert and deassert?
Other than that the code looks good to me.

--
Thanks,
//richard

2020-06-30 09:37:02

by Christophe Kerello

[permalink] [raw]
Subject: Re: [PATCH v5 4/6] memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver

Hi Richard,

On 6/30/20 11:13 AM, Richard Weinberger wrote:
> On Fri, Jun 12, 2020 at 5:24 PM Christophe Kerello
> <[email protected]> wrote:
>>
>> The driver adds the support for the STMicroelectronics FMC2 EBI controller
>> found on STM32MP SOCs.
>>
>> Signed-off-by: Christophe Kerello <[email protected]>
>> ---
>> + if (!IS_ERR(rstc)) {
>> + reset_control_assert(rstc);
>> + reset_control_deassert(rstc);
>
> Shouldn't there be a small delay between assert and deassert?
> Other than that the code looks good to me.
>

Even if I have currently not met any issue, I will add a udelay(2) to be
safe. It will be part of v6.

Thanks,
Christophe Kerello.

2020-06-30 09:41:55

by Richard Weinberger

[permalink] [raw]
Subject: Re: [PATCH v5 4/6] memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver

----- Ursprüngliche Mail -----
> Von: "Christophe Kerello" <[email protected]>
> An: "Richard Weinberger" <[email protected]>
> CC: "Miquel Raynal" <[email protected]>, "richard" <[email protected]>, "Vignesh Raghavendra" <[email protected]>,
> "Rob Herring" <[email protected]>, "Mark Rutland" <[email protected]>, [email protected], "Alexandre Torgue"
> <[email protected]>, "Marek Vasut" <[email protected]>, "devicetree" <[email protected]>, "linux-kernel"
> <[email protected]>, "linux-mtd" <[email protected]>, [email protected]
> Gesendet: Dienstag, 30. Juni 2020 11:35:38
> Betreff: Re: [PATCH v5 4/6] memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver

> Hi Richard,
>
> On 6/30/20 11:13 AM, Richard Weinberger wrote:
>> On Fri, Jun 12, 2020 at 5:24 PM Christophe Kerello
>> <[email protected]> wrote:
>>>
>>> The driver adds the support for the STMicroelectronics FMC2 EBI controller
>>> found on STM32MP SOCs.
>>>
>>> Signed-off-by: Christophe Kerello <[email protected]>
>>> ---
>>> + if (!IS_ERR(rstc)) {
>>> + reset_control_assert(rstc);
>>> + reset_control_deassert(rstc);
>>
>> Shouldn't there be a small delay between assert and deassert?
>> Other than that the code looks good to me.
>>
>
> Even if I have currently not met any issue, I will add a udelay(2) to be
> safe. It will be part of v6.

Well, if it works and you are sure, please go for it. Like I said, I'm no expert in
this.
I just noticed that other users add a delay and wondered.

Thanks,
//richard

2020-07-07 19:00:32

by Miquel Raynal

[permalink] [raw]
Subject: Re: [PATCH v5 5/6] mtd: rawnand: stm32_fmc2: use regmap APIs

On Fri, 2020-06-12 at 15:22:41 UTC, Christophe Kerello wrote:
> This patch uses regmap APIs to access all FMC2 registers.
>
> Signed-off-by: Christophe Kerello <[email protected]>
> Reviewed-by: Miquel Raynal <[email protected]>

Applied to https://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git mtd/next, thanks.

Miquel

2020-07-07 19:00:44

by Miquel Raynal

[permalink] [raw]
Subject: Re: [PATCH v5 4/6] memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver

On Fri, 2020-06-12 at 15:22:40 UTC, Christophe Kerello wrote:
> The driver adds the support for the STMicroelectronics FMC2 EBI controller
> found on STM32MP SOCs.
>
> Signed-off-by: Christophe Kerello <[email protected]>

Applied to https://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git mtd/next, thanks.

Miquel

2020-07-07 19:01:19

by Miquel Raynal

[permalink] [raw]
Subject: Re: [PATCH v5 6/6] mtd: rawnand: stm32_fmc2: get resources from parent node

On Fri, 2020-06-12 at 15:22:42 UTC, Christophe Kerello wrote:
> FMC2 EBI support has been added. Common resources (registers base
> address and clock) can now be shared between the 2 drivers using
> "st,stm32mp1-fmc2-nfc" compatible string. It means that the
> common resources should now be found in the parent device when EBI
> node is available.
>
> Signed-off-by: Christophe Kerello <[email protected]>

Applied to https://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git mtd/next, thanks.

Miquel

2020-07-07 19:01:41

by Miquel Raynal

[permalink] [raw]
Subject: Re: [PATCH v5 1/6] mtd: rawnand: stm32_fmc2: do not display errors if the driver is deferred

On Fri, 2020-06-12 at 15:22:37 UTC, Christophe Kerello wrote:
> A MDMA issue has been solved on Kernel 5.7. The effect of this fix is
> that the MDMA driver is now deferred and the FMC2 NFC driver is also
> deferred. All is working fine but there is a FMC2 log in the console:
> stm32_fmc2_nfc 58002000.nand-controller: failed to request tx DMA
> channel: -517
>
> This patch removes the display of this log in the console in case of
> this error is -EPROBE_DEFER.
>
> Signed-off-by: Christophe Kerello <[email protected]>

Applied to https://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git mtd/next, thanks.

Miquel

2020-07-07 19:03:11

by Miquel Raynal

[permalink] [raw]
Subject: Re: [PATCH v5 3/6] dt-bindings: memory-controller: add STM32 FMC2 EBI controller documentation

On Fri, 2020-06-12 at 15:22:39 UTC, Christophe Kerello wrote:
> This patch adds the documentation of the device tree bindings for the STM32
> FMC2 EBI controller.
>
> Signed-off-by: Christophe Kerello <[email protected]>
> Reviewed-by: Rob Herring <[email protected]>

Applied to https://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux.git mtd/next, thanks.

Miquel