From: Liam Beguin <[email protected]>
Add temperature rescaling support to the IIO Analog Front End driver.
This series includes minor bug fixes and adds support for RTD temperature
sensors as well as temperature transducers.
At first I tried to use iio_convert_raw_to_processed() to get more
precision out of processed values but ran into issues when one of my
ADCs didn't provide a scale. I tried to address this in the first few
patches.
When adding offset support to iio-rescale, I also noticed that
iio_read_channel_processed() assumes that the offset is always an
integer which I tried to address in the third patch without breaking
valid implicit truncations.
As Jonathan suggested, I also started a Kunit test suite for the
iio-rescale driver.
Adding these test cases, I found that the IIO_VAL_FRACTIONAL_LOG2
rescaling wasn't as precise as expected so I tried to fix that as well.
Changes since v6:
- rework IIO_VAL_INT_PLUS_{NANO,MICRO} based on Peter's suggestion
- combine IIO_VAL_INT_PLUS_{NANO,MICRO} cases
- add test cases for negative IIO_VAL_INT_PLUS_{NANO,MICRO} corner cases
- force use of positive integers with gcd()
- reduce risk of integer overflow in IIO_VAL_FRACTIONAL_LOG2
- fix duplicate symbol build error
- apply Reviewed-by
Changes since v5:
- add include/linux/iio/afe/rescale.h
- expose functions use to process scale and offset
- add basic iio-rescale kunit test cases
- fix integer overflow case
- improve precision for IIO_VAL_FRACTIONAL_LOG2
Changes since v4:
- only use gcd() when necessary in overflow mitigation
- fix INT_PLUS_{MICRO,NANO} support
- apply Reviewed-by
- fix temperature-transducer bindings
Changes since v3:
- drop unnecessary fallthrough statements
- drop redundant local variables in some calculations
- fix s64 divisions on 32bit platforms by using do_div
- add comment describing iio-rescaler offset calculation
- drop unnecessary MAINTAINERS entry
Changes since v2:
- don't break implicit offset truncations
- make a best effort to get a valid value for fractional types
- drop return value change in iio_convert_raw_to_processed_unlocked()
- don't rely on processed value for offset calculation
- add INT_PLUS_{MICRO,NANO} support in iio-rescale
- revert generic implementation in favor of temperature-sense-rtd and
temperature-transducer
- add separate section to MAINTAINERS file
Changes since v1:
- rebase on latest iio `testing` branch
- also apply consumer scale on integer channel scale types
- don't break implicit truncation in processed channel offset
calculation
- drop temperature AFE flavors in favor of a simpler generic
implementation
Thanks for your time
Liam Beguin (13):
iio: inkern: apply consumer scale on IIO_VAL_INT cases
iio: inkern: apply consumer scale when no channel scale is available
iio: inkern: make a best effort on offset calculation
iio: afe: rescale: expose scale processing function
iio: afe: rescale: add INT_PLUS_{MICRO,NANO} support
iio: afe: rescale: add offset support
iio: afe: rescale: reduce risk of integer overflow
iio: afe: rescale: fix precision on fractional log scale
iio: test: add basic tests for the iio-rescale driver
iio: afe: rescale: add RTD temperature sensor support
iio: afe: rescale: add temperature transducers
dt-bindings: iio: afe: add bindings for temperature-sense-rtd
dt-bindings: iio: afe: add bindings for temperature transducers
.../iio/afe/temperature-sense-rtd.yaml | 101 ++++
.../iio/afe/temperature-transducer.yaml | 114 +++++
drivers/iio/afe/iio-rescale.c | 271 ++++++++--
drivers/iio/inkern.c | 40 +-
drivers/iio/test/Kconfig | 10 +
drivers/iio/test/Makefile | 1 +
drivers/iio/test/iio-test-rescale.c | 483 ++++++++++++++++++
include/linux/iio/afe/rescale.h | 34 ++
8 files changed, 1010 insertions(+), 44 deletions(-)
create mode 100644 Documentation/devicetree/bindings/iio/afe/temperature-sense-rtd.yaml
create mode 100644 Documentation/devicetree/bindings/iio/afe/temperature-transducer.yaml
create mode 100644 drivers/iio/test/iio-test-rescale.c
create mode 100644 include/linux/iio/afe/rescale.h
Range-diff against v6:
1: 16627ca44022 < -: ------------ iio: afe: rescale: add INT_PLUS_{MICRO,NANO} support
-: ------------ > 1: 42a7a1047edc iio: inkern: apply consumer scale on IIO_VAL_INT cases
-: ------------ > 2: a1cd89fdad11 iio: inkern: apply consumer scale when no channel scale is available
-: ------------ > 3: ed0721fb6bd1 iio: inkern: make a best effort on offset calculation
-: ------------ > 4: f8fb78bb1112 iio: afe: rescale: expose scale processing function
-: ------------ > 5: 014363f5f703 iio: afe: rescale: add INT_PLUS_{MICRO,NANO} support
2: dec2a933fbf3 = 6: e4e3bcd752dd iio: afe: rescale: add offset support
4: f2f4af324d5d ! 7: 23efde61c576 iio: afe: rescale: reduce risk of integer overflow
@@ drivers/iio/afe/iio-rescale.c
- unsigned long long tmp;
+ s64 tmp, tmp2;
+ u32 factor;
+ u32 mult;
+ u32 rem;
+ u32 neg;
switch (scale_type) {
case IIO_VAL_FRACTIONAL:
@@ drivers/iio/afe/iio-rescale.c
+ check_mul_overflow(*val2, rescale->denominator, (s32 *)&tmp2)) {
+ tmp = (s64)*val * rescale->numerator;
+ tmp2 = (s64)*val2 * rescale->denominator;
-+ factor = gcd(tmp, tmp2);
++ factor = gcd(abs(tmp), abs(tmp2));
+ tmp = div_s64(tmp, factor);
+ tmp2 = div_s64(tmp2, factor);
+ }
5: 4a8d77501f32 ! 8: e16f69d61f09 iio: afe: rescale: fix precision on fractional log scale
@@ drivers/iio/afe/iio-rescale.c: int rescale_process_scale(struct rescale *rescale
- do_div(tmp, rescale->denominator);
- tmp *= rescale->numerator;
- do_div(tmp, 1000000000LL);
-- *val = tmp;
++ if (check_mul_overflow(*val, rescale->numerator, (s32 *)&tmp) ||
++ check_mul_overflow(rescale->denominator, (1 << *val2), (s32 *)&tmp2)) {
++ tmp = (s64)*val * rescale->numerator;
++ tmp2 = (s64)rescale->denominator * (1 << *val2);
++ factor = gcd(abs(tmp), abs(tmp2));
++ tmp = div_s64(tmp, factor);
++ tmp2 = div_s64(tmp2, factor);
++ }
+ *val = tmp;
- return scale_type;
-+ *val = rescale->numerator * *val;
-+ *val2 = rescale->denominator * (1 << *val2);
++ *val2 = tmp2;
+ return IIO_VAL_FRACTIONAL;
case IIO_VAL_INT_PLUS_NANO:
- tmp = ((s64)*val * 1000000000LL + *val2) * rescale->numerator;
- tmp = div_s64(tmp, rescale->denominator);
+ case IIO_VAL_INT_PLUS_MICRO:
+ if (scale_type == IIO_VAL_INT_PLUS_NANO)
3: 60bd09555300 ! 9: 88ad312c5a1b iio: test: add basic tests for the iio-rescale driver
@@ drivers/iio/test/Kconfig
# Keep in alphabetical order
+config IIO_RESCALE_KUNIT_TEST
+ bool "Test IIO rescale conversion functions"
-+ depends on KUNIT=y
++ depends on KUNIT && !IIO_RESCALE
+ default KUNIT_ALL_TESTS
+ help
+ If you want to run tests on the iio-rescale code say Y here.
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
++ .schan_val2 = 123456,
++ .expected = "1240.710106203\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_NANO, negative",
++ .numerator = -1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = 10,
++ .schan_val2 = 123456,
++ .expected = "-1240.710106203\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_MICRO, positive",
++ .numerator = 1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
++ .schan_val = 10,
++ .schan_val2 = 1234,
++ .expected = "1240.847890\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_MICRO, negative",
++ .numerator = -1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
++ .schan_val = 10,
++ .schan_val2 = 1234,
++ .expected = "-1240.847890\n",
++ },
++ /*
++ * INT_PLUS_{MICRO,NANO} positive/negative corner cases
++ */
++ {
++ .name = "typical IIO_VAL_INT_PLUS_NANO, negative schan",
++ .numerator = 1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = -10,
++ .schan_val2 = 123456,
++ .expected = "-1240.710106203\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_NANO, both negative",
++ .numerator = -1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = -10,
++ .schan_val2 = 123456,
++ .expected = "1240.710106203\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_NANO, 3 negative",
++ .numerator = -1000000,
++ .denominator = -8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = -10,
++ .schan_val2 = 123456,
++ .expected = "-1240.710106203\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_NANO, 4 negative",
++ .numerator = -1000000,
++ .denominator = -8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = -10,
++ .schan_val2 = -123456,
++ .expected = "-1240.710106203\n",
++ },
++ {
++ .name = "typical IIO_VAL_INT_PLUS_NANO, negative, *val = 0",
++ .numerator = 1,
++ .denominator = -10,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = 0,
++ .schan_val2 = 123456789,
++ .expected = "-0.012345678\n",
++ },
++ /*
++ * INT_PLUS_{MICRO,NANO} decimal part overflow
++ */
++ {
++ .name = "decimal overflow IIO_VAL_INT_PLUS_NANO, positive",
++ .numerator = 1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .expected = "1256.012008560\n",
+ },
+ {
-+ .name = "typical IIO_VAL_INT_PLUS_NANO, negative",
++ .name = "decimal overflow IIO_VAL_INT_PLUS_NANO, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .expected = "-1256.012008560\n",
+ },
+ {
-+ .name = "typical IIO_VAL_INT_PLUS_MICRO, positive",
++ .name = "decimal overflow IIO_VAL_INT_PLUS_NANO, negative schan",
++ .numerator = 1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = -10,
++ .schan_val2 = 123456789,
++ .expected = "-1256.012008560\n",
++ },
++ {
++ .name = "decimal overflow IIO_VAL_INT_PLUS_MICRO, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .expected = "16557.914267\n",
+ },
+ {
-+ .name = "typical IIO_VAL_INT_PLUS_MICRO, negative",
++ .name = "decimal overflow IIO_VAL_INT_PLUS_MICRO, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .schan_val2 = 123456789,
+ .expected = "-16557.914267\n",
+ },
++ {
++ .name = "decimal overflow IIO_VAL_INT_PLUS_MICRO, negative schan",
++ .numerator = 1000000,
++ .denominator = 8060,
++ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
++ .schan_val = -10,
++ .schan_val2 = 123456789,
++ .expected = "-16557.914267\n",
++ },
+ /*
+ * 32-bit overflow conditions
+ */
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .expected = "-214748364.700000000\n",
+ },
+ {
++ .name = "overflow IIO_VAL_FRACTIONAL_LOG2, positive",
++ .numerator = 0x7FFFFFFF,
++ .denominator = 53,
++ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
++ .schan_val = 4096,
++ .schan_val2 = 16,
++ .expected = "2532409.961084905\n",
++ },
++ {
++ .name = "overflow IIO_VAL_FRACTIONAL_LOG2, negative",
++ .numerator = 0x7FFFFFFF,
++ .denominator = 53,
++ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
++ .schan_val = -4096,
++ .schan_val2 = 16,
++ .expected = "-2532409.961084905\n",
++ },
++ {
+ .name = "overflow IIO_VAL_INT_PLUS_NANO, positive",
+ .numerator = 2,
+ .denominator = 20,
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .expected = "-1.214748364\n",
+ },
+ {
++ .name = "overflow IIO_VAL_INT_PLUS_NANO, negative schan",
++ .numerator = 2,
++ .denominator = 20,
++ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
++ .schan_val = -10,
++ .schan_val2 = 0x7fffffff,
++ .expected = "-1.214748364\n",
++ },
++ {
+ .name = "overflow IIO_VAL_INT_PLUS_MICRO, positive",
+ .numerator = 2,
+ .denominator = 20,
@@ drivers/iio/test/iio-test-rescale.c (new)
+ .schan_val2 = 0x7fffffff,
+ .expected = "-215.748364\n",
+ },
++ {
++ .name = "overflow IIO_VAL_INT_PLUS_MICRO, negative schan",
++ .numerator = 2,
++ .denominator = 20,
++ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
++ .schan_val = -10,
++ .schan_val2 = 0x7fffffff,
++ .expected = "-215.748364\n",
++ },
+};
+
+const struct rescale_tc_data offset_cases[] = {
6: 2b6e4f47c974 = 10: 2c4a31e62c31 iio: afe: rescale: add RTD temperature sensor support
7: 715e1877e30f = 11: d1258a38d194 iio: afe: rescale: add temperature transducers
8: 0bc8546f13e5 = 12: 01fa34bf5362 dt-bindings: iio: afe: add bindings for temperature-sense-rtd
9: 4bc54afa3e94 ! 13: 107e61e09eec dt-bindings: iio: afe: add bindings for temperature transducers
@@ Commit message
through a temperature transducer (either voltage or current).
Signed-off-by: Liam Beguin <[email protected]>
+ Reviewed-by: Rob Herring <[email protected]>
## Documentation/devicetree/bindings/iio/afe/temperature-transducer.yaml (new) ##
@@
base-commit: 6cbb3aa0f9d5d23221df787cf36f74d3866fdb78
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
When a consumer calls iio_read_channel_processed() and the channel has
an integer scale, the scale channel scale is applied and the processed
value is returned as expected.
On the other hand, if the consumer calls iio_convert_raw_to_processed()
the scaling factor requested by the consumer is not applied.
This for example causes the consumer to process mV when expecting uV.
Make sure to always apply the scaling factor requested by the consumer.
Fixes: 48e44ce0f881 ("iio:inkern: Add function to read the processed value")
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/inkern.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/drivers/iio/inkern.c b/drivers/iio/inkern.c
index 391a3380a1d1..b752fe5818e7 100644
--- a/drivers/iio/inkern.c
+++ b/drivers/iio/inkern.c
@@ -599,7 +599,7 @@ static int iio_convert_raw_to_processed_unlocked(struct iio_channel *chan,
switch (scale_type) {
case IIO_VAL_INT:
- *processed = raw64 * scale_val;
+ *processed = raw64 * scale_val * scale;
break;
case IIO_VAL_INT_PLUS_MICRO:
if (scale_val2 < 0)
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
When a consumer calls iio_read_channel_processed() and no channel scale
is available, it's assumed that the scale is one and the raw value is
returned as expected.
On the other hand, if the consumer calls iio_convert_raw_to_processed()
the scaling factor requested by the consumer is not applied.
This for example causes the consumer to process mV when expecting uV.
Make sure to always apply the scaling factor requested by the consumer.
Fixes: adc8ec5ff183 ("iio: inkern: pass through raw values if no scaling")
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/inkern.c | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/drivers/iio/inkern.c b/drivers/iio/inkern.c
index b752fe5818e7..b69027690ed5 100644
--- a/drivers/iio/inkern.c
+++ b/drivers/iio/inkern.c
@@ -590,10 +590,10 @@ static int iio_convert_raw_to_processed_unlocked(struct iio_channel *chan,
IIO_CHAN_INFO_SCALE);
if (scale_type < 0) {
/*
- * Just pass raw values as processed if no scaling is
- * available.
+ * If no channel scaling is available apply consumer scale to
+ * raw value and return.
*/
- *processed = raw;
+ *processed = raw * scale;
return 0;
}
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
Some ADCs use IIO_VAL_INT_PLUS_{NANO,MICRO} scale types.
Add support for these to allow using the iio-rescaler with them.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 35 +++++++++++++++++++++++++++++++++++
1 file changed, 35 insertions(+)
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index d0669fd8eac5..615f5d9cbb8b 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -22,6 +22,9 @@ int rescale_process_scale(struct rescale *rescale, int scale_type,
int *val, int *val2)
{
unsigned long long tmp;
+ u32 mult;
+ u32 rem;
+ u32 neg;
switch (scale_type) {
case IIO_VAL_FRACTIONAL:
@@ -40,6 +43,38 @@ int rescale_process_scale(struct rescale *rescale, int scale_type,
tmp *= rescale->numerator;
do_div(tmp, 1000000000LL);
*val = tmp;
+ return scale_type;
+ case IIO_VAL_INT_PLUS_NANO:
+ case IIO_VAL_INT_PLUS_MICRO:
+ if (scale_type == IIO_VAL_INT_PLUS_NANO)
+ mult = 1000000000LL;
+ else
+ mult = 1000000LL;
+ /*
+ * For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if *val OR
+ * *val2 is negative the schan scale is negative
+ */
+ neg = *val < 0 || *val2 < 0;
+
+ tmp = (s64)abs(*val) * abs(rescale->numerator);
+ *val = div_s64_rem(tmp, abs(rescale->denominator), &rem);
+
+ tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
+ tmp = div_s64(tmp, abs(rescale->denominator));
+
+ *val += div_s64_rem(tmp, mult, val2);
+
+ /*
+ * If only one of the rescaler elements or the schan scale is
+ * negative, the combined scale is negative.
+ */
+ if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
+ if (*val)
+ *val = -*val;
+ else
+ *val2 = -*val2;
+ }
+
return scale_type;
default:
return -EOPNOTSUPP;
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
This is a preparatory change required for the addition of temperature
sensing front ends.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 80 +++++++++++++++++++++++++++++++++
include/linux/iio/afe/rescale.h | 4 ++
2 files changed, 84 insertions(+)
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index 615f5d9cbb8b..623744da269a 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -81,11 +81,46 @@ int rescale_process_scale(struct rescale *rescale, int scale_type,
}
}
+int rescale_process_offset(struct rescale *rescale, int scale_type,
+ int scale, int scale2, int schan_off,
+ int *val, int *val2)
+{
+ s64 tmp, tmp2;
+
+ switch (scale_type) {
+ case IIO_VAL_FRACTIONAL:
+ tmp = (s64)rescale->offset * scale2;
+ *val = div_s64(tmp, scale) + schan_off;
+ return IIO_VAL_INT;
+ case IIO_VAL_INT:
+ *val = div_s64(rescale->offset, scale) + schan_off;
+ return IIO_VAL_INT;
+ case IIO_VAL_FRACTIONAL_LOG2:
+ tmp = (s64)rescale->offset * (1 << scale2);
+ *val = div_s64(tmp, scale) + schan_off;
+ return IIO_VAL_INT;
+ case IIO_VAL_INT_PLUS_NANO:
+ tmp = (s64)rescale->offset * 1000000000;
+ tmp2 = ((s64)scale * 1000000000L) + scale2;
+ *val = div64_s64(tmp, tmp2) + schan_off;
+ return IIO_VAL_INT;
+ case IIO_VAL_INT_PLUS_MICRO:
+ tmp = (s64)rescale->offset * 1000000L;
+ tmp2 = ((s64)scale * 1000000L) + scale2;
+ *val = div64_s64(tmp, tmp2) + schan_off;
+ return IIO_VAL_INT;
+ default:
+ return -EOPNOTSUPP;
+ }
+}
+
static int rescale_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct rescale *rescale = iio_priv(indio_dev);
+ int scale, scale2;
+ int schan_off = 0;
int ret;
switch (mask) {
@@ -112,6 +147,47 @@ static int rescale_read_raw(struct iio_dev *indio_dev,
ret = iio_read_channel_scale(rescale->source, val, val2);
}
return rescale_process_scale(rescale, ret, val, val2);
+ case IIO_CHAN_INFO_OFFSET:
+ /*
+ * Processed channels are scaled 1-to-1 and source offset is
+ * already taken into account.
+ *
+ * In other cases, real world measurement are expressed as:
+ *
+ * schan_scale * (raw + schan_offset)
+ *
+ * Given that the rescaler parameters are applied recursively:
+ *
+ * rescaler_scale * (schan_scale * (raw + schan_offset) +
+ * rescaler_offset)
+ *
+ * Or,
+ *
+ * (rescaler_scale * schan_scale) * (raw +
+ * (schan_offset + rescaler_offset / schan_scale)
+ *
+ * Thus, reusing the original expression the parameters exposed
+ * to userspace are:
+ *
+ * scale = schan_scale * rescaler_scale
+ * offset = schan_offset + rescaler_offset / schan_scale
+ */
+ if (rescale->chan_processed) {
+ *val = rescale->offset;
+ return IIO_VAL_INT;
+ }
+
+ if (iio_channel_has_info(rescale->source->channel,
+ IIO_CHAN_INFO_OFFSET)) {
+ ret = iio_read_channel_offset(rescale->source,
+ &schan_off, NULL);
+ if (ret != IIO_VAL_INT)
+ return ret < 0 ? ret : -EOPNOTSUPP;
+ }
+
+ ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
+ return rescale_process_offset(rescale, ret, scale, scale2,
+ schan_off, val, val2);
default:
return -EINVAL;
}
@@ -188,6 +264,9 @@ static int rescale_configure_channel(struct device *dev,
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE);
+ if (rescale->offset)
+ chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);
+
/*
* Using .read_avail() is fringe to begin with and makes no sense
* whatsoever for processed channels, so we make sure that this cannot
@@ -352,6 +431,7 @@ static int rescale_probe(struct platform_device *pdev)
rescale->cfg = of_device_get_match_data(dev);
rescale->numerator = 1;
rescale->denominator = 1;
+ rescale->offset = 0;
ret = rescale->cfg->props(dev, rescale);
if (ret)
diff --git a/include/linux/iio/afe/rescale.h b/include/linux/iio/afe/rescale.h
index 14d4ee1227c6..b152ac487403 100644
--- a/include/linux/iio/afe/rescale.h
+++ b/include/linux/iio/afe/rescale.h
@@ -23,8 +23,12 @@ struct rescale {
bool chan_processed;
s32 numerator;
s32 denominator;
+ s32 offset;
};
int rescale_process_scale(struct rescale *rescale, int scale_type,
int *val, int *val2);
+int rescale_process_offset(struct rescale *rescale, int scale_type,
+ int scale, int scale2, int schan_off,
+ int *val, int *val2);
#endif /* __IIO_RESCALE_H__ */
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
iio_convert_raw_to_processed_unlocked() assumes the offset is an
integer. Make a best effort to get a valid offset value for fractional
cases without breaking implicit truncations.
Fixes: 48e44ce0f881 ("iio:inkern: Add function to read the processed value")
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/inkern.c | 32 +++++++++++++++++++++++++++-----
1 file changed, 27 insertions(+), 5 deletions(-)
diff --git a/drivers/iio/inkern.c b/drivers/iio/inkern.c
index b69027690ed5..5e74d8983874 100644
--- a/drivers/iio/inkern.c
+++ b/drivers/iio/inkern.c
@@ -578,13 +578,35 @@ EXPORT_SYMBOL_GPL(iio_read_channel_average_raw);
static int iio_convert_raw_to_processed_unlocked(struct iio_channel *chan,
int raw, int *processed, unsigned int scale)
{
- int scale_type, scale_val, scale_val2, offset;
+ int scale_type, scale_val, scale_val2;
+ int offset_type, offset_val, offset_val2;
s64 raw64 = raw;
- int ret;
- ret = iio_channel_read(chan, &offset, NULL, IIO_CHAN_INFO_OFFSET);
- if (ret >= 0)
- raw64 += offset;
+ offset_type = iio_channel_read(chan, &offset_val, &offset_val2,
+ IIO_CHAN_INFO_OFFSET);
+ if (offset_type >= 0) {
+ switch (offset_type) {
+ case IIO_VAL_INT:
+ break;
+ case IIO_VAL_INT_PLUS_MICRO:
+ case IIO_VAL_INT_PLUS_NANO:
+ /*
+ * Both IIO_VAL_INT_PLUS_MICRO and IIO_VAL_INT_PLUS_NANO
+ * implicitely truncate the offset to it's integer form.
+ */
+ break;
+ case IIO_VAL_FRACTIONAL:
+ offset_val /= offset_val2;
+ break;
+ case IIO_VAL_FRACTIONAL_LOG2:
+ offset_val /= (1 << offset_val2);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ raw64 += offset_val;
+ }
scale_type = iio_channel_read(chan, &scale_val, &scale_val2,
IIO_CHAN_INFO_SCALE);
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
In preparation for the addition of kunit tests, expose the logic
responsible for combining channel scales.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 65 ++++++++++++++-------------------
include/linux/iio/afe/rescale.h | 30 +++++++++++++++
2 files changed, 58 insertions(+), 37 deletions(-)
create mode 100644 include/linux/iio/afe/rescale.h
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index 774eb3044edd..d0669fd8eac5 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -11,35 +11,46 @@
#include <linux/gcd.h>
#include <linux/iio/consumer.h>
#include <linux/iio/iio.h>
+#include <linux/iio/afe/rescale.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/property.h>
-struct rescale;
-
-struct rescale_cfg {
- enum iio_chan_type type;
- int (*props)(struct device *dev, struct rescale *rescale);
-};
+int rescale_process_scale(struct rescale *rescale, int scale_type,
+ int *val, int *val2)
+{
+ unsigned long long tmp;
-struct rescale {
- const struct rescale_cfg *cfg;
- struct iio_channel *source;
- struct iio_chan_spec chan;
- struct iio_chan_spec_ext_info *ext_info;
- bool chan_processed;
- s32 numerator;
- s32 denominator;
-};
+ switch (scale_type) {
+ case IIO_VAL_FRACTIONAL:
+ *val *= rescale->numerator;
+ *val2 *= rescale->denominator;
+ return scale_type;
+ case IIO_VAL_INT:
+ *val *= rescale->numerator;
+ if (rescale->denominator == 1)
+ return scale_type;
+ *val2 = rescale->denominator;
+ return IIO_VAL_FRACTIONAL;
+ case IIO_VAL_FRACTIONAL_LOG2:
+ tmp = *val * 1000000000LL;
+ do_div(tmp, rescale->denominator);
+ tmp *= rescale->numerator;
+ do_div(tmp, 1000000000LL);
+ *val = tmp;
+ return scale_type;
+ default:
+ return -EOPNOTSUPP;
+ }
+}
static int rescale_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct rescale *rescale = iio_priv(indio_dev);
- unsigned long long tmp;
int ret;
switch (mask) {
@@ -65,27 +76,7 @@ static int rescale_read_raw(struct iio_dev *indio_dev,
} else {
ret = iio_read_channel_scale(rescale->source, val, val2);
}
- switch (ret) {
- case IIO_VAL_FRACTIONAL:
- *val *= rescale->numerator;
- *val2 *= rescale->denominator;
- return ret;
- case IIO_VAL_INT:
- *val *= rescale->numerator;
- if (rescale->denominator == 1)
- return ret;
- *val2 = rescale->denominator;
- return IIO_VAL_FRACTIONAL;
- case IIO_VAL_FRACTIONAL_LOG2:
- tmp = *val * 1000000000LL;
- do_div(tmp, rescale->denominator);
- tmp *= rescale->numerator;
- do_div(tmp, 1000000000LL);
- *val = tmp;
- return ret;
- default:
- return -EOPNOTSUPP;
- }
+ return rescale_process_scale(rescale, ret, val, val2);
default:
return -EINVAL;
}
diff --git a/include/linux/iio/afe/rescale.h b/include/linux/iio/afe/rescale.h
new file mode 100644
index 000000000000..14d4ee1227c6
--- /dev/null
+++ b/include/linux/iio/afe/rescale.h
@@ -0,0 +1,30 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2021 Liam Beguin <[email protected]>
+ */
+
+#ifndef __IIO_RESCALE_H__
+#define __IIO_RESCALE_H__
+
+#include <linux/iio/iio.h>
+
+struct rescale;
+
+struct rescale_cfg {
+ enum iio_chan_type type;
+ int (*props)(struct device *dev, struct rescale *rescale);
+};
+
+struct rescale {
+ const struct rescale_cfg *cfg;
+ struct iio_channel *source;
+ struct iio_chan_spec chan;
+ struct iio_chan_spec_ext_info *ext_info;
+ bool chan_processed;
+ s32 numerator;
+ s32 denominator;
+};
+
+int rescale_process_scale(struct rescale *rescale, int scale_type,
+ int *val, int *val2);
+#endif /* __IIO_RESCALE_H__ */
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
The IIO_VAL_FRACTIONAL_LOG2 scale type doesn't return the expected
scale. Update the case so that the rescaler returns a fractional type
and a more precise scale.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 15 ++++++++++-----
1 file changed, 10 insertions(+), 5 deletions(-)
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index abd7ad73d1ce..e37a9766080c 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -47,12 +47,17 @@ int rescale_process_scale(struct rescale *rescale, int scale_type,
*val2 = rescale->denominator;
return IIO_VAL_FRACTIONAL;
case IIO_VAL_FRACTIONAL_LOG2:
- tmp = *val * 1000000000LL;
- do_div(tmp, rescale->denominator);
- tmp *= rescale->numerator;
- do_div(tmp, 1000000000LL);
+ if (check_mul_overflow(*val, rescale->numerator, (s32 *)&tmp) ||
+ check_mul_overflow(rescale->denominator, (1 << *val2), (s32 *)&tmp2)) {
+ tmp = (s64)*val * rescale->numerator;
+ tmp2 = (s64)rescale->denominator * (1 << *val2);
+ factor = gcd(abs(tmp), abs(tmp2));
+ tmp = div_s64(tmp, factor);
+ tmp2 = div_s64(tmp2, factor);
+ }
*val = tmp;
- return scale_type;
+ *val2 = tmp2;
+ return IIO_VAL_FRACTIONAL;
case IIO_VAL_INT_PLUS_NANO:
case IIO_VAL_INT_PLUS_MICRO:
if (scale_type == IIO_VAL_INT_PLUS_NANO)
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
Reduce the risk of integer overflow by doing the scale calculation with
64bit integers and looking for a Greatest Common Divider for both parts
of the fractional value when required.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 15 ++++++++++++---
1 file changed, 12 insertions(+), 3 deletions(-)
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index 623744da269a..abd7ad73d1ce 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -21,15 +21,24 @@
int rescale_process_scale(struct rescale *rescale, int scale_type,
int *val, int *val2)
{
- unsigned long long tmp;
+ s64 tmp, tmp2;
+ u32 factor;
u32 mult;
u32 rem;
u32 neg;
switch (scale_type) {
case IIO_VAL_FRACTIONAL:
- *val *= rescale->numerator;
- *val2 *= rescale->denominator;
+ if (check_mul_overflow(*val, rescale->numerator, (s32 *)&tmp) ||
+ check_mul_overflow(*val2, rescale->denominator, (s32 *)&tmp2)) {
+ tmp = (s64)*val * rescale->numerator;
+ tmp2 = (s64)*val2 * rescale->denominator;
+ factor = gcd(abs(tmp), abs(tmp2));
+ tmp = div_s64(tmp, factor);
+ tmp2 = div_s64(tmp2, factor);
+ }
+ *val = tmp;
+ *val2 = tmp2;
return scale_type;
case IIO_VAL_INT:
*val *= rescale->numerator;
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
A temperature transducer is a device that converts a thermal quantity
into any other physical quantity. This patch add support for temperature
to voltage (like the LTC2997) and temperature to current (like the
AD590) linear transducers.
In both cases these are assumed to be connected to a voltage ADC.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 33 +++++++++++++++++++++++++++++++++
1 file changed, 33 insertions(+)
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index 9683380aee5e..dc638402782d 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -421,11 +421,38 @@ static int rescale_temp_sense_rtd_props(struct device *dev,
return 0;
}
+static int rescale_temp_transducer_props(struct device *dev,
+ struct rescale *rescale)
+{
+ s32 offset = 0;
+ s32 sense = 1;
+ s32 alpha;
+ s64 tmp;
+ int ret;
+
+ device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
+ device_property_read_u32(dev, "sense-resistor-ohms", &sense);
+ ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
+ if (ret) {
+ dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
+ return ret;
+ }
+
+ rescale->numerator = 1000000;
+ rescale->denominator = alpha * sense;
+
+ tmp = (s64)offset * (s64)alpha * (s64)sense;
+ rescale->offset = div_s64(tmp, (s32)1000000);
+
+ return 0;
+}
+
enum rescale_variant {
CURRENT_SENSE_AMPLIFIER,
CURRENT_SENSE_SHUNT,
VOLTAGE_DIVIDER,
TEMP_SENSE_RTD,
+ TEMP_TRANSDUCER,
};
static const struct rescale_cfg rescale_cfg[] = {
@@ -445,6 +472,10 @@ static const struct rescale_cfg rescale_cfg[] = {
.type = IIO_TEMP,
.props = rescale_temp_sense_rtd_props,
},
+ [TEMP_TRANSDUCER] = {
+ .type = IIO_TEMP,
+ .props = rescale_temp_transducer_props,
+ },
};
static const struct of_device_id rescale_match[] = {
@@ -456,6 +487,8 @@ static const struct of_device_id rescale_match[] = {
.data = &rescale_cfg[VOLTAGE_DIVIDER], },
{ .compatible = "temperature-sense-rtd",
.data = &rescale_cfg[TEMP_SENSE_RTD], },
+ { .compatible = "temperature-transducer",
+ .data = &rescale_cfg[TEMP_TRANSDUCER], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rescale_match);
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
An RTD (Resistance Temperature Detector) is a kind of temperature
sensor used to get a linear voltage to temperature reading within a
give range (usually 0 to 100 degrees Celsius). Common types of RTDs
include PT100, PT500, and PT1000.
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/afe/iio-rescale.c | 48 +++++++++++++++++++++++++++++++++++
1 file changed, 48 insertions(+)
diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
index e37a9766080c..9683380aee5e 100644
--- a/drivers/iio/afe/iio-rescale.c
+++ b/drivers/iio/afe/iio-rescale.c
@@ -380,10 +380,52 @@ static int rescale_voltage_divider_props(struct device *dev,
return 0;
}
+static int rescale_temp_sense_rtd_props(struct device *dev,
+ struct rescale *rescale)
+{
+ u32 factor;
+ u32 alpha;
+ u32 iexc;
+ u32 tmp;
+ int ret;
+ u32 r0;
+
+ ret = device_property_read_u32(dev, "excitation-current-microamp",
+ &iexc);
+ if (ret) {
+ dev_err(dev, "failed to read excitation-current-microamp: %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
+ if (ret) {
+ dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
+ if (ret) {
+ dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
+ return ret;
+ }
+
+ tmp = r0 * iexc * alpha / 1000000;
+ factor = gcd(tmp, 1000000);
+ rescale->numerator = 1000000 / factor;
+ rescale->denominator = tmp / factor;
+
+ rescale->offset = -1 * ((r0 * iexc) / 1000);
+
+ return 0;
+}
+
enum rescale_variant {
CURRENT_SENSE_AMPLIFIER,
CURRENT_SENSE_SHUNT,
VOLTAGE_DIVIDER,
+ TEMP_SENSE_RTD,
};
static const struct rescale_cfg rescale_cfg[] = {
@@ -399,6 +441,10 @@ static const struct rescale_cfg rescale_cfg[] = {
.type = IIO_VOLTAGE,
.props = rescale_voltage_divider_props,
},
+ [TEMP_SENSE_RTD] = {
+ .type = IIO_TEMP,
+ .props = rescale_temp_sense_rtd_props,
+ },
};
static const struct of_device_id rescale_match[] = {
@@ -408,6 +454,8 @@ static const struct of_device_id rescale_match[] = {
.data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
{ .compatible = "voltage-divider",
.data = &rescale_cfg[VOLTAGE_DIVIDER], },
+ { .compatible = "temperature-sense-rtd",
+ .data = &rescale_cfg[TEMP_SENSE_RTD], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rescale_match);
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
An ADC is often used to measure other quantities indirectly.
This binding describe one case, the measurement of a temperature
through a temperature transducer (either voltage or current).
Signed-off-by: Liam Beguin <[email protected]>
Reviewed-by: Rob Herring <[email protected]>
---
.../iio/afe/temperature-transducer.yaml | 114 ++++++++++++++++++
1 file changed, 114 insertions(+)
create mode 100644 Documentation/devicetree/bindings/iio/afe/temperature-transducer.yaml
diff --git a/Documentation/devicetree/bindings/iio/afe/temperature-transducer.yaml b/Documentation/devicetree/bindings/iio/afe/temperature-transducer.yaml
new file mode 100644
index 000000000000..cfbf5350db27
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/afe/temperature-transducer.yaml
@@ -0,0 +1,114 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/afe/temperature-transducer.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Temperature Transducer
+
+maintainers:
+ - Liam Beguin <[email protected]>
+
+description: |
+ A temperature transducer is a device that converts a thermal quantity
+ into any other physical quantity. This binding applies to temperature to
+ voltage (like the LTC2997), and temperature to current (like the AD590)
+ linear transducers.
+ In both cases these are assumed to be connected to a voltage ADC.
+
+ When an io-channel measures the output voltage of a temperature analog front
+ end such as a temperature transducer, the interesting measurement is almost
+ always the corresponding temperature, not the voltage output. This binding
+ describes such a circuit.
+
+ The general transfer function here is (using SI units)
+ V(T) = Rsense * Isense(T)
+ T = (Isense(T) / alpha) + offset
+ T = 1 / (Rsense * alpha) * (V + offset * Rsense * alpha)
+
+ When using a temperature to voltage transducer, Rsense is set to 1.
+
+ The following circuits show a temperature to current and a temperature to
+ voltage transducer that can be used with this binding.
+
+ VCC
+ -----
+ |
+ +---+---+
+ | AD590 | VCC
+ +---+---+ -----
+ | |
+ V proportional to T +----+----+
+ | D+ --+ |
+ +---- Vout | LTC2997 +--- Vout
+ | D- --+ |
+ +---+----+ +---------+
+ | Rsense | |
+ +---+----+ -----
+ | GND
+ -----
+ GND
+
+properties:
+ compatible:
+ const: temperature-transducer
+
+ io-channels:
+ maxItems: 1
+ description: |
+ Channel node of a voltage io-channel.
+
+ '#io-channel-cells':
+ const: 0
+
+ sense-offset-millicelsius:
+ description: |
+ Temperature offset.
+ This offset is commonly used to convert from Kelvins to degrees Celsius.
+ In that case, sense-offset-millicelsius would be set to <(-273150)>.
+ default: 0
+
+ sense-resistor-ohms:
+ description: |
+ The sense resistor.
+ By default sense-resistor-ohms cancels out the resistor making the
+ circuit behave like a temperature transducer.
+ default: 1
+
+ alpha-ppm-per-celsius:
+ description: |
+ Sometimes referred to as output gain, slope, or temperature coefficient.
+
+ alpha is expressed in parts per million which can be micro-amps per
+ degrees Celsius or micro-volts per degrees Celsius. The is the main
+ characteristic of a temperature transducer and should be stated in the
+ datasheet.
+
+additionalProperties: false
+
+required:
+ - compatible
+ - io-channels
+ - alpha-ppm-per-celsius
+
+examples:
+ - |
+ ad950: temperature-sensor-0 {
+ compatible = "temperature-transducer";
+ #io-channel-cells = <0>;
+ io-channels = <&temp_adc 3>;
+
+ sense-offset-millicelsius = <(-273150)>; /* Kelvin to degrees Celsius */
+ sense-resistor-ohms = <8060>;
+ alpha-ppm-per-celsius = <1>; /* 1 uA/K */
+ };
+ - |
+ znq_tmp: temperature-sensor-1 {
+ compatible = "temperature-transducer";
+ #io-channel-cells = <0>;
+ io-channels = <&temp_adc 2>;
+
+ sense-offset-millicelsius = <(-273150)>; /* Kelvin to degrees Celsius */
+ alpha-ppm-per-celsius = <4000>; /* 4 mV/K */
+ };
+...
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
The iio-rescale driver supports various combinations of scale types and
offsets. These can often result in large integer multiplications. Make
sure these calculations are done right by adding a set of kunit test
cases that build on top of iio-test-format.
To run these tests, add the following to .kunitconfig
$ cat .kunitconfig
CONFIG_IIO=y
CONFIG_IIO_RESCALE_KUNIT_TEST=y
CONFIG_KUNIT=y
Then run:
$ ./tools/testing/kunit/kunit.py run --kunitconfig .kunitconfig
Signed-off-by: Liam Beguin <[email protected]>
---
drivers/iio/test/Kconfig | 10 +
drivers/iio/test/Makefile | 1 +
drivers/iio/test/iio-test-rescale.c | 483 ++++++++++++++++++++++++++++
3 files changed, 494 insertions(+)
create mode 100644 drivers/iio/test/iio-test-rescale.c
diff --git a/drivers/iio/test/Kconfig b/drivers/iio/test/Kconfig
index 679a7794af20..872ed4ed140a 100644
--- a/drivers/iio/test/Kconfig
+++ b/drivers/iio/test/Kconfig
@@ -4,6 +4,16 @@
#
# Keep in alphabetical order
+config IIO_RESCALE_KUNIT_TEST
+ bool "Test IIO rescale conversion functions"
+ depends on KUNIT && !IIO_RESCALE
+ default KUNIT_ALL_TESTS
+ help
+ If you want to run tests on the iio-rescale code say Y here.
+
+ This takes advantage of ARCH=um to run tests and should be used by
+ developers to tests their changes to the rescaling logic.
+
config IIO_TEST_FORMAT
bool "Test IIO formatting functions"
depends on KUNIT=y
diff --git a/drivers/iio/test/Makefile b/drivers/iio/test/Makefile
index f1099b495301..908963ca0b2f 100644
--- a/drivers/iio/test/Makefile
+++ b/drivers/iio/test/Makefile
@@ -4,4 +4,5 @@
#
# Keep in alphabetical order
+obj-$(CONFIG_IIO_RESCALE_KUNIT_TEST) += iio-test-rescale.o ../afe/iio-rescale.o
obj-$(CONFIG_IIO_TEST_FORMAT) += iio-test-format.o
diff --git a/drivers/iio/test/iio-test-rescale.c b/drivers/iio/test/iio-test-rescale.c
new file mode 100644
index 000000000000..9008fb223d9d
--- /dev/null
+++ b/drivers/iio/test/iio-test-rescale.c
@@ -0,0 +1,483 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kunit tests for IIO rescale conversions
+ *
+ * Copyright (c) 2021 Liam Beguin <[email protected]>
+ */
+
+#include <kunit/test.h>
+#include <linux/gcd.h>
+#include <linux/iio/afe/rescale.h>
+#include <linux/iio/iio.h>
+#include <linux/overflow.h>
+
+struct rescale_tc_data {
+ const char *name;
+
+ const s32 numerator;
+ const s32 denominator;
+ const s32 offset;
+
+ const int schan_val;
+ const int schan_val2;
+ const int schan_off;
+ const int schan_scale_type;
+
+ const char *expected;
+ const char *expected_off;
+};
+
+const struct rescale_tc_data scale_cases[] = {
+ /*
+ * Typical use cases
+ */
+ {
+ .name = "typical IIO_VAL_INT, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT,
+ .schan_val = 42,
+ .expected = "5210.918114143\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT,
+ .schan_val = 42,
+ .expected = "-5210.918114143\n",
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_FRACTIONAL,
+ .schan_val = 42,
+ .schan_val2 = 20,
+ .expected = "260.545905707\n",
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_FRACTIONAL,
+ .schan_val = 42,
+ .schan_val2 = 20,
+ .expected = "-260.545905707\n",
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL_LOG2, positive",
+ .numerator = 42,
+ .denominator = 53,
+ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
+ .schan_val = 4096,
+ .schan_val2 = 16,
+ .expected = "0.049528301\n",
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL_LOG2, negative",
+ .numerator = -42,
+ .denominator = 53,
+ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
+ .schan_val = 4096,
+ .schan_val2 = 16,
+ .expected = "-0.049528301\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 123456,
+ .expected = "1240.710106203\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 123456,
+ .expected = "-1240.710106203\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_MICRO, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 1234,
+ .expected = "1240.847890\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_MICRO, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 1234,
+ .expected = "-1240.847890\n",
+ },
+ /*
+ * INT_PLUS_{MICRO,NANO} positive/negative corner cases
+ */
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, negative schan",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = -10,
+ .schan_val2 = 123456,
+ .expected = "-1240.710106203\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, both negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = -10,
+ .schan_val2 = 123456,
+ .expected = "1240.710106203\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, 3 negative",
+ .numerator = -1000000,
+ .denominator = -8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = -10,
+ .schan_val2 = 123456,
+ .expected = "-1240.710106203\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, 4 negative",
+ .numerator = -1000000,
+ .denominator = -8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = -10,
+ .schan_val2 = -123456,
+ .expected = "-1240.710106203\n",
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, negative, *val = 0",
+ .numerator = 1,
+ .denominator = -10,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 0,
+ .schan_val2 = 123456789,
+ .expected = "-0.012345678\n",
+ },
+ /*
+ * INT_PLUS_{MICRO,NANO} decimal part overflow
+ */
+ {
+ .name = "decimal overflow IIO_VAL_INT_PLUS_NANO, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .expected = "1256.012008560\n",
+ },
+ {
+ .name = "decimal overflow IIO_VAL_INT_PLUS_NANO, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .expected = "-1256.012008560\n",
+ },
+ {
+ .name = "decimal overflow IIO_VAL_INT_PLUS_NANO, negative schan",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = -10,
+ .schan_val2 = 123456789,
+ .expected = "-1256.012008560\n",
+ },
+ {
+ .name = "decimal overflow IIO_VAL_INT_PLUS_MICRO, positive",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .expected = "16557.914267\n",
+ },
+ {
+ .name = "decimal overflow IIO_VAL_INT_PLUS_MICRO, negative",
+ .numerator = -1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .expected = "-16557.914267\n",
+ },
+ {
+ .name = "decimal overflow IIO_VAL_INT_PLUS_MICRO, negative schan",
+ .numerator = 1000000,
+ .denominator = 8060,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = -10,
+ .schan_val2 = 123456789,
+ .expected = "-16557.914267\n",
+ },
+ /*
+ * 32-bit overflow conditions
+ */
+ {
+ .name = "overflow IIO_VAL_FRACTIONAL, positive",
+ .numerator = 2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_FRACTIONAL,
+ .schan_val = 0x7FFFFFFF,
+ .schan_val2 = 1,
+ .expected = "214748364.700000000\n",
+ },
+ {
+ .name = "overflow IIO_VAL_FRACTIONAL, negative",
+ .numerator = -2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_FRACTIONAL,
+ .schan_val = 0x7FFFFFFF,
+ .schan_val2 = 1,
+ .expected = "-214748364.700000000\n",
+ },
+ {
+ .name = "overflow IIO_VAL_FRACTIONAL_LOG2, positive",
+ .numerator = 0x7FFFFFFF,
+ .denominator = 53,
+ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
+ .schan_val = 4096,
+ .schan_val2 = 16,
+ .expected = "2532409.961084905\n",
+ },
+ {
+ .name = "overflow IIO_VAL_FRACTIONAL_LOG2, negative",
+ .numerator = 0x7FFFFFFF,
+ .denominator = 53,
+ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
+ .schan_val = -4096,
+ .schan_val2 = 16,
+ .expected = "-2532409.961084905\n",
+ },
+ {
+ .name = "overflow IIO_VAL_INT_PLUS_NANO, positive",
+ .numerator = 2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 0x7fffffff,
+ .expected = "1.214748364\n",
+ },
+ {
+ .name = "overflow IIO_VAL_INT_PLUS_NANO, negative",
+ .numerator = -2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 0x7fffffff,
+ .expected = "-1.214748364\n",
+ },
+ {
+ .name = "overflow IIO_VAL_INT_PLUS_NANO, negative schan",
+ .numerator = 2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = -10,
+ .schan_val2 = 0x7fffffff,
+ .expected = "-1.214748364\n",
+ },
+ {
+ .name = "overflow IIO_VAL_INT_PLUS_MICRO, positive",
+ .numerator = 2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 0x7fffffff,
+ .expected = "215.748364\n",
+ },
+ {
+ .name = "overflow IIO_VAL_INT_PLUS_MICRO, negative",
+ .numerator = -2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 0x7fffffff,
+ .expected = "-215.748364\n",
+ },
+ {
+ .name = "overflow IIO_VAL_INT_PLUS_MICRO, negative schan",
+ .numerator = 2,
+ .denominator = 20,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = -10,
+ .schan_val2 = 0x7fffffff,
+ .expected = "-215.748364\n",
+ },
+};
+
+const struct rescale_tc_data offset_cases[] = {
+ /*
+ * Typical use cases
+ */
+ {
+ .name = "typical IIO_VAL_INT, positive",
+ .offset = 1234,
+ .schan_scale_type = IIO_VAL_INT,
+ .schan_val = 123,
+ .schan_val2 = 0,
+ .schan_off = 14,
+ .expected_off = "24\n", /* 23.872 */
+ },
+ {
+ .name = "typical IIO_VAL_INT, negative",
+ .offset = -1234,
+ .schan_scale_type = IIO_VAL_INT,
+ .schan_val = 12,
+ .schan_val2 = 0,
+ .schan_off = 14,
+ .expected_off = "-88\n", /* -88.83333333333333 */
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL, positive",
+ .offset = 1234,
+ .schan_scale_type = IIO_VAL_FRACTIONAL,
+ .schan_val = 12,
+ .schan_val2 = 34,
+ .schan_off = 14,
+ .expected_off = "3510\n", /* 3510.333333333333 */
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL, negative",
+ .offset = -1234,
+ .schan_scale_type = IIO_VAL_FRACTIONAL,
+ .schan_val = 12,
+ .schan_val2 = 34,
+ .schan_off = 14,
+ .expected_off = "-3482\n", /* -3482.333333333333 */
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL_LOG2, positive",
+ .offset = 1234,
+ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
+ .schan_val = 12,
+ .schan_val2 = 16,
+ .schan_off = 14,
+ .expected_off = "6739299\n", /* 6739299.333333333 */
+ },
+ {
+ .name = "typical IIO_VAL_FRACTIONAL_LOG2, negative",
+ .offset = -1234,
+ .schan_scale_type = IIO_VAL_FRACTIONAL_LOG2,
+ .schan_val = 12,
+ .schan_val2 = 16,
+ .schan_off = 14,
+ .expected_off = "-6739271\n", /* -6739271.333333333 */
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, positive",
+ .offset = 1234,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .schan_off = 14,
+ .expected_off = "135\n", /* 135.8951219647469 */
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_NANO, negative",
+ .offset = -1234,
+ .schan_scale_type = IIO_VAL_INT_PLUS_NANO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .schan_off = 14,
+ .expected_off = "-107\n", /* -107.89512196474689 */
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_MICRO, positive",
+ .offset = 1234,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .schan_off = 14,
+ .expected_off = "23\n", /* 23.246438560723952 */
+ },
+ {
+ .name = "typical IIO_VAL_INT_PLUS_MICRO, negative",
+ .offset = -12345,
+ .schan_scale_type = IIO_VAL_INT_PLUS_MICRO,
+ .schan_val = 10,
+ .schan_val2 = 123456789,
+ .schan_off = 14,
+ .expected_off = "-78\n", /* -78.50185091745313 */
+ },
+};
+
+static void case_to_desc(const struct rescale_tc_data *t, char *desc)
+{
+ strcpy(desc, t->name);
+}
+
+KUNIT_ARRAY_PARAM(iio_rescale_scale, scale_cases, case_to_desc);
+KUNIT_ARRAY_PARAM(iio_rescale_offset, offset_cases, case_to_desc);
+
+static void iio_rescale_test_scale(struct kunit *test)
+{
+ struct rescale_tc_data *t = (struct rescale_tc_data *)test->param_value;
+ char *buf = kunit_kmalloc(test, PAGE_SIZE, GFP_KERNEL);
+ struct rescale rescale;
+ int values[2];
+ int ret;
+
+ rescale.numerator = t->numerator;
+ rescale.denominator = t->denominator;
+ rescale.offset = t->offset;
+ values[0] = t->schan_val;
+ values[1] = t->schan_val2;
+
+ ret = rescale_process_scale(&rescale, t->schan_scale_type,
+ &values[0], &values[1]);
+
+ ret = iio_format_value(buf, ret, 2, values);
+
+ KUNIT_EXPECT_EQ(test, (int)strlen(buf), ret);
+ KUNIT_EXPECT_STREQ(test, buf, t->expected);
+}
+
+static void iio_rescale_test_offset(struct kunit *test)
+{
+ struct rescale_tc_data *t = (struct rescale_tc_data *)test->param_value;
+ char *buf = kunit_kmalloc(test, PAGE_SIZE, GFP_KERNEL);
+ struct rescale rescale;
+ int values[2];
+ int ret;
+
+ rescale.numerator = t->numerator;
+ rescale.denominator = t->denominator;
+ rescale.offset = t->offset;
+ values[0] = t->schan_val;
+ values[1] = t->schan_val2;
+
+ ret = rescale_process_offset(&rescale, t->schan_scale_type,
+ t->schan_val, t->schan_val2, t->schan_off,
+ &values[0], &values[1]);
+
+ ret = iio_format_value(buf, ret, 2, values);
+
+ KUNIT_EXPECT_EQ(test, (int)strlen(buf), ret);
+ KUNIT_EXPECT_STREQ(test, buf, t->expected_off);
+}
+
+static struct kunit_case iio_rescale_test_cases[] = {
+ KUNIT_CASE_PARAM(iio_rescale_test_scale, iio_rescale_scale_gen_params),
+ KUNIT_CASE_PARAM(iio_rescale_test_offset, iio_rescale_offset_gen_params),
+ {}
+};
+
+static struct kunit_suite iio_rescale_test_suite = {
+ .name = "iio-rescale",
+ .test_cases = iio_rescale_test_cases,
+};
+kunit_test_suite(iio_rescale_test_suite);
--
2.30.1.489.g328c10930387
From: Liam Beguin <[email protected]>
An ADC is often used to measure other quantities indirectly. This
binding describe one case, the measurement of a temperature through the
voltage across an RTD resistor such as a PT1000.
Signed-off-by: Liam Beguin <[email protected]>
Reviewed-by: Rob Herring <[email protected]>
---
.../iio/afe/temperature-sense-rtd.yaml | 101 ++++++++++++++++++
1 file changed, 101 insertions(+)
create mode 100644 Documentation/devicetree/bindings/iio/afe/temperature-sense-rtd.yaml
diff --git a/Documentation/devicetree/bindings/iio/afe/temperature-sense-rtd.yaml b/Documentation/devicetree/bindings/iio/afe/temperature-sense-rtd.yaml
new file mode 100644
index 000000000000..336ce96371db
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/afe/temperature-sense-rtd.yaml
@@ -0,0 +1,101 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/afe/temperature-sense-rtd.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Temperature Sense RTD
+
+maintainers:
+ - Liam Beguin <[email protected]>
+
+description: |
+ RTDs (Resistance Temperature Detectors) are a kind of temperature sensors
+ used to get a linear voltage to temperature reading within a give range
+ (usually 0 to 100 degrees Celsius).
+
+ When an io-channel measures the output voltage across an RTD such as a
+ PT1000, the interesting measurement is almost always the corresponding
+ temperature, not the voltage output. This binding describes such a circuit.
+
+ The general transfer function here is (using SI units)
+
+ V = R(T) * iexc
+ R(T) = r0 * (1 + alpha * T)
+ T = 1 / (alpha * r0 * iexc) * (V - r0 * iexc)
+
+ The following circuit matches what's in the examples section.
+
+ 5V0
+ -----
+ |
+ +---+----+
+ | R 5k |
+ +---+----+
+ |
+ V 1mA
+ |
+ +---- Vout
+ |
+ +---+----+
+ | PT1000 |
+ +---+----+
+ |
+ -----
+ GND
+
+properties:
+ compatible:
+ const: temperature-sense-rtd
+
+ io-channels:
+ maxItems: 1
+ description: |
+ Channel node of a voltage io-channel.
+
+ '#io-channel-cells':
+ const: 0
+
+ excitation-current-microamp:
+ description: The current fed through the RTD sensor.
+
+ alpha-ppm-per-celsius:
+ description: |
+ alpha can also be expressed in micro-ohms per ohm Celsius. It's a linear
+ approximation of the resistance versus temperature relationship
+ between 0 and 100 degrees Celsius.
+
+ alpha = (R_100 - R_0) / (100 * R_0)
+
+ Where, R_100 is the resistance of the sensor at 100 degrees Celsius, and
+ R_0 (or r-naught-ohms) is the resistance of the sensor at 0 degrees
+ Celsius.
+
+ Pure platinum has an alpha of 3925. Industry standards such as IEC60751
+ and ASTM E-1137 specify an alpha of 3850.
+
+ r-naught-ohms:
+ description: |
+ Resistance of the sensor at 0 degrees Celsius.
+ Common values are 100 for PT100, 500 for PT500, and 1000 for PT1000
+
+additionalProperties: false
+required:
+ - compatible
+ - io-channels
+ - excitation-current-microamp
+ - alpha-ppm-per-celsius
+ - r-naught-ohms
+
+examples:
+ - |
+ pt1000_1: temperature-sensor0 {
+ compatible = "temperature-sense-rtd";
+ #io-channel-cells = <0>;
+ io-channels = <&temp_adc1 0>;
+
+ excitation-current-microamp = <1000>; /* i = U/R = 5 / 5000 */
+ alpha-ppm-per-celsius = <3908>;
+ r-naught-ohms = <1000>;
+ };
+...
--
2.30.1.489.g328c10930387
On 2021-08-01 21:39, Liam Beguin wrote:
> From: Liam Beguin <[email protected]>
>
> The IIO_VAL_FRACTIONAL_LOG2 scale type doesn't return the expected
> scale. Update the case so that the rescaler returns a fractional type
> and a more precise scale.
>
> Signed-off-by: Liam Beguin <[email protected]>
> ---
> drivers/iio/afe/iio-rescale.c | 15 ++++++++++-----
> 1 file changed, 10 insertions(+), 5 deletions(-)
>
> diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
> index abd7ad73d1ce..e37a9766080c 100644
> --- a/drivers/iio/afe/iio-rescale.c
> +++ b/drivers/iio/afe/iio-rescale.c
> @@ -47,12 +47,17 @@ int rescale_process_scale(struct rescale *rescale, int scale_type,
> *val2 = rescale->denominator;
> return IIO_VAL_FRACTIONAL;
> case IIO_VAL_FRACTIONAL_LOG2:
> - tmp = *val * 1000000000LL;
> - do_div(tmp, rescale->denominator);
> - tmp *= rescale->numerator;
> - do_div(tmp, 1000000000LL);
> + if (check_mul_overflow(*val, rescale->numerator, (s32 *)&tmp) ||
> + check_mul_overflow(rescale->denominator, (1 << *val2), (s32 *)&tmp2)) {
> + tmp = (s64)*val * rescale->numerator;
> + tmp2 = (s64)rescale->denominator * (1 << *val2);
> + factor = gcd(abs(tmp), abs(tmp2));
> + tmp = div_s64(tmp, factor);
> + tmp2 = div_s64(tmp2, factor);
The case I really worry about is when trying to get an exact result by using
gcd() really doesn't improve the situation, and the only way to avoid overflow
is to reduce the precision. A perhaps contrived example:
scale numerator 1,220,703,125 i.e. 5 ^ 13
scale denominator 1,162,261,467 i.e. 3 ^ 19
*val 1,129,900,996 i.e. 7 ^ 10 * 2 ^ 2
*val2 2 i.e. value = 7 ^ 10
Then you get overflow for both the calls to check_mul_overflow(). But when gcd()
returns 1 (or something too small) the overflow is "returned" as-is.
With the old code you get something that is at least not completely wrong, just
not as accurate as is perhaps possible:
*val 1,186,715,480
*val2 2
Or 1,186,715,480 / 2^2 = 296,678,870.
With this patch the above makes you attempt to return the fraction:
*val 1,379,273,676,757,812,500
*val2 4,649,045,868
Or 296,678,870.443403528 (or something like that, not 100% sure about all the
fractional digits, but they are not really important for my argument)
While the latter is more correct, truncation to 32-bit clobbers the result so
in reality this is returned:
*val -281,918,188
*val2 354,078,572
Or -0.796202341
So, while it might seem unlucky that gcd() will not find a big enough factor,
it is certainly possible. And I also worry that when this happens it will only
happen once in a while, and that the resulting bad values might be extremely
unexpected and difficult to track down. Things that happen once in a blue moon
are simply not fun to debug.
I.e. I worry that small islands of input will cause failures. With the old code
there are no such islands. The scale factor alone determines the precision, and
if you get poor precision you get poor precision throughout the range. And any
problem will therefore be "stable" and much easier to debug for "innocent" 3rd
party users that may not even be aware that the rescaler is involved at all.
This is also an issue I have with patch 7/13, but there the only thing that is
sacrificed is CPU cycles. But nonetheless, I'm dubious if patch 7/13 is wise
precisely because it might cause issues that are intermittent and therefore
difficult to debug.
Also, changing the calculation so that you get more precision whenever that is
possible feels dangerous. I fear linearity breaks and that bigger input cause
smaller output due to rounding if the bigger value has to be rounded down, but
that this isn't done carefully enough. I.e. attempting to return an exact
fraction and only falling back to the old code when that is not possible is
still not safe since the old code isn't careful enough about rounding. I think
it is really important that bigger input cause bigger (or equal) output.
Otherwise you might trigger instability in feedback loops should a rescaler be
involved in a some regulator function.
Cheers,
Peter
> + }
> *val = tmp;
> - return scale_type;
> + *val2 = tmp2;
> + return IIO_VAL_FRACTIONAL;
> case IIO_VAL_INT_PLUS_NANO:
> case IIO_VAL_INT_PLUS_MICRO:
> if (scale_type == IIO_VAL_INT_PLUS_NANO)
>
On Mon Aug 2, 2021 at 5:17 AM EDT, Peter Rosin wrote:
> On 2021-08-01 21:39, Liam Beguin wrote:
> > From: Liam Beguin <[email protected]>
> >
> > The IIO_VAL_FRACTIONAL_LOG2 scale type doesn't return the expected
> > scale. Update the case so that the rescaler returns a fractional type
> > and a more precise scale.
> >
> > Signed-off-by: Liam Beguin <[email protected]>
> > ---
> > drivers/iio/afe/iio-rescale.c | 15 ++++++++++-----
> > 1 file changed, 10 insertions(+), 5 deletions(-)
> >
> > diff --git a/drivers/iio/afe/iio-rescale.c b/drivers/iio/afe/iio-rescale.c
> > index abd7ad73d1ce..e37a9766080c 100644
> > --- a/drivers/iio/afe/iio-rescale.c
> > +++ b/drivers/iio/afe/iio-rescale.c
> > @@ -47,12 +47,17 @@ int rescale_process_scale(struct rescale *rescale, int scale_type,
> > *val2 = rescale->denominator;
> > return IIO_VAL_FRACTIONAL;
> > case IIO_VAL_FRACTIONAL_LOG2:
> > - tmp = *val * 1000000000LL;
> > - do_div(tmp, rescale->denominator);
> > - tmp *= rescale->numerator;
> > - do_div(tmp, 1000000000LL);
> > + if (check_mul_overflow(*val, rescale->numerator, (s32 *)&tmp) ||
> > + check_mul_overflow(rescale->denominator, (1 << *val2), (s32 *)&tmp2)) {
> > + tmp = (s64)*val * rescale->numerator;
> > + tmp2 = (s64)rescale->denominator * (1 << *val2);
> > + factor = gcd(abs(tmp), abs(tmp2));
> > + tmp = div_s64(tmp, factor);
> > + tmp2 = div_s64(tmp2, factor);
Hi Peter,
Apologies for the delay, I got caught up on some other work.
>
> The case I really worry about is when trying to get an exact result by
> using
> gcd() really doesn't improve the situation, and the only way to avoid
> overflow
> is to reduce the precision. A perhaps contrived example:
>
> scale numerator 1,220,703,125 i.e. 5 ^ 13
> scale denominator 1,162,261,467 i.e. 3 ^ 19
> *val 1,129,900,996 i.e. 7 ^ 10 * 2 ^ 2
> *val2 2 i.e. value = 7 ^ 10
>
> Then you get overflow for both the calls to check_mul_overflow(). But
> when gcd()
> returns 1 (or something too small) the overflow is "returned" as-is.
I was aware of the issue when gcd() returns 1 and thought it would be
unlikely enough to not be an issue, but as you pointed out there's also
cases where it returns something that's not good enough to take care of
the overflow. This is unfortunately more likely to happen, and makes it
impossible to ignore.
>
> With the old code you get something that is at least not completely
> wrong, just
> not as accurate as is perhaps possible:
> *val 1,186,715,480
> *val2 2
> Or 1,186,715,480 / 2^2 = 296,678,870.
>
> With this patch the above makes you attempt to return the fraction:
> *val 1,379,273,676,757,812,500
> *val2 4,649,045,868
> Or 296,678,870.443403528 (or something like that, not 100% sure about
> all the
> fractional digits, but they are not really important for my argument)
>
> While the latter is more correct, truncation to 32-bit clobbers the
> result so
> in reality this is returned:
> *val -281,918,188
> *val2 354,078,572
> Or -0.796202341
>
> So, while it might seem unlucky that gcd() will not find a big enough
> factor,
> it is certainly possible. And I also worry that when this happens it
> will only
> happen once in a while, and that the resulting bad values might be
> extremely
> unexpected and difficult to track down. Things that happen once in a
> blue moon
> are simply not fun to debug.
>
> I.e. I worry that small islands of input will cause failures. With the
> old code
> there are no such islands. The scale factor alone determines the
> precision, and
> if you get poor precision you get poor precision throughout the range.
> And any
> problem will therefore be "stable" and much easier to debug for
> "innocent" 3rd
> party users that may not even be aware that the rescaler is involved at
> all.
I agree with you, that such islands are a bad thing that might cause a
lot of pain, and it's probably not worth it just to gain a few digits of
precision (that can sometimes be irrelevant).
I'll drop this change and will update the test cases to take into
account an error margin.
>
> This is also an issue I have with patch 7/13, but there the only thing
> that is
> sacrificed is CPU cycles. But nonetheless, I'm dubious if patch 7/13 is
> wise
> precisely because it might cause issues that are intermittent and
> therefore
> difficult to debug.
Again, I agree with you, patch 7/13 has the same limitations,
unfortunately, I did run into an overflow while testing this on a real
setup.
>
> Also, changing the calculation so that you get more precision whenever
> that is
> possible feels dangerous. I fear linearity breaks and that bigger input
> cause
> smaller output due to rounding if the bigger value has to be rounded
> down, but
> that this isn't done carefully enough. I.e. attempting to return an
> exact
> fraction and only falling back to the old code when that is not possible
> is
> still not safe since the old code isn't careful enough about rounding. I
> think
> it is really important that bigger input cause bigger (or equal) output.
> Otherwise you might trigger instability in feedback loops should a
> rescaler be
> involved in a some regulator function.
I see what you mean here, and it's a good point I hadn't considered.
To address some of these concerns, I was thinking of using consecutive
right shifts instead of gcd(), but that seems like the wrong way to go
given that we're working with signed integers.
For 7/13, I'll look into approximating like you did here originally.
Thanks,
Liam
>
> Cheers,
> Peter
>
> > + }
> > *val = tmp;
> > - return scale_type;
> > + *val2 = tmp2;
> > + return IIO_VAL_FRACTIONAL;
> > case IIO_VAL_INT_PLUS_NANO:
> > case IIO_VAL_INT_PLUS_MICRO:
> > if (scale_type == IIO_VAL_INT_PLUS_NANO)
> >