Hi all,
There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware PMU
task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
- HW breakpoint PMU
- ARM big.little PMU
- Intel Branch Monitoring PMU
Since we now track the events in RB trees, we can 'simply' add a pmu
order to them and have them grouped that way, reducing to a single
context. Of course, reality never quite works out that simple, and below
ends up adding an intermediate data structure to bridge the context ->
pmu mapping.
Something a little like:
,------------------------[1:n]---------------------.
V V
perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
^ ^ | |
`--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
This patch builds (provided you disable CGROUP_PERF), boots and survives
perf-top without the machine catching fire.
There's still a fair bit of loose ends (look for XXX), but I think this
is the direction we should be going.
Comments?
Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
---
arch/powerpc/perf/core-book3s.c | 4
arch/x86/events/core.c | 4
arch/x86/events/intel/core.c | 6
arch/x86/events/intel/ds.c | 6
arch/x86/events/intel/lbr.c | 16
arch/x86/events/perf_event.h | 6
include/linux/perf_event.h | 80 +-
include/linux/sched.h | 2
kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
9 files changed, 815 insertions(+), 721 deletions(-)
--- a/arch/powerpc/perf/core-book3s.c
+++ b/arch/powerpc/perf/core-book3s.c
@@ -125,7 +125,7 @@ static unsigned long ebb_switch_in(bool
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
-static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
+static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
static void pmao_restore_workaround(bool ebb) { }
#endif /* CONFIG_PPC32 */
@@ -395,7 +395,7 @@ static void power_pmu_bhrb_disable(struc
/* Called from ctxsw to prevent one process's branch entries to
* mingle with the other process's entries during context switch.
*/
-static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
+static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
if (!ppmu->bhrb_nr)
return;
--- a/arch/x86/events/core.c
+++ b/arch/x86/events/core.c
@@ -2286,10 +2286,10 @@ static const struct attribute_group *x86
NULL,
};
-static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
+static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
if (x86_pmu.sched_task)
- x86_pmu.sched_task(ctx, sched_in);
+ x86_pmu.sched_task(pmu_ctx, sched_in);
}
void perf_check_microcode(void)
--- a/arch/x86/events/intel/core.c
+++ b/arch/x86/events/intel/core.c
@@ -3537,11 +3537,11 @@ static void intel_pmu_cpu_dying(int cpu)
disable_counter_freeze();
}
-static void intel_pmu_sched_task(struct perf_event_context *ctx,
+static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
bool sched_in)
{
- intel_pmu_pebs_sched_task(ctx, sched_in);
- intel_pmu_lbr_sched_task(ctx, sched_in);
+ intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
+ intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
}
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
--- a/arch/x86/events/intel/ds.c
+++ b/arch/x86/events/intel/ds.c
@@ -885,7 +885,7 @@ static inline bool pebs_needs_sched_cb(s
return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}
-void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
+void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
@@ -947,7 +947,7 @@ void intel_pmu_pebs_add(struct perf_even
if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
cpuc->n_large_pebs++;
- pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
+ pebs_update_state(needed_cb, cpuc, event->pmu);
}
void intel_pmu_pebs_enable(struct perf_event *event)
@@ -991,7 +991,7 @@ void intel_pmu_pebs_del(struct perf_even
if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
cpuc->n_large_pebs--;
- pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
+ pebs_update_state(needed_cb, cpuc, event->pmu);
}
void intel_pmu_pebs_disable(struct perf_event *event)
--- a/arch/x86/events/intel/lbr.c
+++ b/arch/x86/events/intel/lbr.c
@@ -417,7 +417,7 @@ static void __intel_pmu_lbr_save(struct
cpuc->last_log_id = ++task_ctx->log_id;
}
-void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
+void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct x86_perf_task_context *task_ctx;
@@ -430,7 +430,7 @@ void intel_pmu_lbr_sched_task(struct per
* the task was scheduled out, restore the stack. Otherwise flush
* the LBR stack.
*/
- task_ctx = ctx ? ctx->task_ctx_data : NULL;
+ task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
if (task_ctx) {
if (sched_in)
__intel_pmu_lbr_restore(task_ctx);
@@ -464,8 +464,8 @@ void intel_pmu_lbr_add(struct perf_event
cpuc->br_sel = event->hw.branch_reg.reg;
- if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
- task_ctx = event->ctx->task_ctx_data;
+ if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data) {
+ task_ctx = event->pmu_ctx->task_ctx_data;
task_ctx->lbr_callstack_users++;
}
@@ -488,7 +488,7 @@ void intel_pmu_lbr_add(struct perf_event
* be 'new'. Conversely, a new event can get installed through the
* context switch path for the first time.
*/
- perf_sched_cb_inc(event->ctx->pmu);
+ perf_sched_cb_inc(event->pmu);
if (!cpuc->lbr_users++ && !event->total_time_running)
intel_pmu_lbr_reset();
}
@@ -502,14 +502,14 @@ void intel_pmu_lbr_del(struct perf_event
return;
if (branch_user_callstack(cpuc->br_sel) &&
- event->ctx->task_ctx_data) {
- task_ctx = event->ctx->task_ctx_data;
+ event->pmu_ctx->task_ctx_data) {
+ task_ctx = event->pmu_ctx->task_ctx_data;
task_ctx->lbr_callstack_users--;
}
cpuc->lbr_users--;
WARN_ON_ONCE(cpuc->lbr_users < 0);
- perf_sched_cb_dec(event->ctx->pmu);
+ perf_sched_cb_dec(event->pmu);
}
void intel_pmu_lbr_enable_all(bool pmi)
--- a/arch/x86/events/perf_event.h
+++ b/arch/x86/events/perf_event.h
@@ -589,7 +589,7 @@ struct x86_pmu {
void (*cpu_dead)(int cpu);
void (*check_microcode)(void);
- void (*sched_task)(struct perf_event_context *ctx,
+ void (*sched_task)(struct perf_event_pmu_context *pmu_ctx,
bool sched_in);
/*
@@ -930,13 +930,13 @@ void intel_pmu_pebs_enable_all(void);
void intel_pmu_pebs_disable_all(void);
-void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in);
+void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
void intel_pmu_auto_reload_read(struct perf_event *event);
void intel_ds_init(void);
-void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in);
+void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
u64 lbr_from_signext_quirk_wr(u64 val);
--- a/include/linux/perf_event.h
+++ b/include/linux/perf_event.h
@@ -227,6 +227,7 @@ struct hw_perf_event {
};
struct perf_event;
+struct perf_event_pmu_context;
/*
* Common implementation detail of pmu::{start,commit,cancel}_txn
@@ -263,7 +264,9 @@ struct pmu {
int capabilities;
int * __percpu pmu_disable_count;
- struct perf_cpu_context * __percpu pmu_cpu_context;
+ struct perf_cpu_pmu_context * __percpu cpu_pmu_context;
+
+
atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
int task_ctx_nr;
int hrtimer_interval_ms;
@@ -398,7 +401,7 @@ struct pmu {
/*
* context-switches callback
*/
- void (*sched_task) (struct perf_event_context *ctx,
+ void (*sched_task) (struct perf_event_pmu_context *ctx,
bool sched_in);
/*
* PMU specific data size
@@ -619,6 +622,7 @@ struct perf_event {
struct hw_perf_event hw;
struct perf_event_context *ctx;
+ struct perf_event_pmu_context *pmu_ctx;
atomic_long_t refcount;
/*
@@ -698,6 +702,41 @@ struct perf_event {
#endif /* CONFIG_PERF_EVENTS */
};
+/*
+ * ,------------------------[1:n]---------------------.
+ * V V
+ * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
+ * ^ ^ | |
+ * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
+ *
+ *
+ * XXX destroy epc when empty
+ * refcount, !rcu
+ *
+ * XXX epc locking
+ *
+ * event->pmu_ctx ctx->mutex && inactive
+ * ctx->pmu_ctx_list ctx->mutex && ctx->lock
+ *
+ */
+struct perf_event_pmu_context {
+ struct pmu *pmu;
+ struct perf_event_context *ctx;
+
+ struct list_head pmu_ctx_entry;
+
+ struct list_head pinned_active;
+ struct list_head flexible_active;
+
+ unsigned int embedded : 1;
+
+ unsigned int nr_events;
+ unsigned int nr_active;
+
+ atomic_t refcount; /* event <-> epc */
+
+ void *task_ctx_data; /* pmu specific data */
+};
struct perf_event_groups {
struct rb_root tree;
@@ -710,7 +749,6 @@ struct perf_event_groups {
* Used as a container for task events and CPU events as well:
*/
struct perf_event_context {
- struct pmu *pmu;
/*
* Protect the states of the events in the list,
* nr_active, and the list:
@@ -723,20 +761,21 @@ struct perf_event_context {
*/
struct mutex mutex;
- struct list_head active_ctx_list;
+ struct list_head pmu_ctx_list;
+
struct perf_event_groups pinned_groups;
struct perf_event_groups flexible_groups;
struct list_head event_list;
- struct list_head pinned_active;
- struct list_head flexible_active;
-
int nr_events;
int nr_active;
int is_active;
+
+ int nr_task_data;
int nr_stat;
int nr_freq;
int rotate_disable;
+
atomic_t refcount;
struct task_struct *task;
@@ -757,7 +796,6 @@ struct perf_event_context {
#ifdef CONFIG_CGROUP_PERF
int nr_cgroups; /* cgroup evts */
#endif
- void *task_ctx_data; /* pmu specific data */
struct rcu_head rcu_head;
};
@@ -767,12 +805,13 @@ struct perf_event_context {
*/
#define PERF_NR_CONTEXTS 4
-/**
- * struct perf_event_cpu_context - per cpu event context structure
- */
-struct perf_cpu_context {
- struct perf_event_context ctx;
- struct perf_event_context *task_ctx;
+struct perf_cpu_pmu_context {
+ struct perf_event_pmu_context epc;
+ struct perf_event_pmu_context *task_epc;
+
+ struct list_head sched_cb_entry;
+ int sched_cb_usage;
+
int active_oncpu;
int exclusive;
@@ -780,15 +819,20 @@ struct perf_cpu_context {
struct hrtimer hrtimer;
ktime_t hrtimer_interval;
unsigned int hrtimer_active;
+};
+
+/**
+ * struct perf_event_cpu_context - per cpu event context structure
+ */
+struct perf_cpu_context {
+ struct perf_event_context ctx;
+ struct perf_event_context *task_ctx;
#ifdef CONFIG_CGROUP_PERF
struct perf_cgroup *cgrp;
struct list_head cgrp_cpuctx_entry;
#endif
- struct list_head sched_cb_entry;
- int sched_cb_usage;
-
int online;
};
@@ -1022,7 +1066,7 @@ static inline int is_software_event(stru
*/
static inline int in_software_context(struct perf_event *event)
{
- return event->ctx->pmu->task_ctx_nr == perf_sw_context;
+ return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
}
extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1000,7 +1000,7 @@ struct task_struct {
struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
- struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
+ struct perf_event_context *perf_event_ctxp;
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -143,12 +143,6 @@ static int cpu_function_call(int cpu, re
return data.ret;
}
-static inline struct perf_cpu_context *
-__get_cpu_context(struct perf_event_context *ctx)
-{
- return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
-}
-
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx)
{
@@ -172,6 +166,8 @@ static bool is_kernel_event(struct perf_
return READ_ONCE(event->owner) == TASK_TOMBSTONE;
}
+static DEFINE_PER_CPU(struct perf_cpu_context, cpu_context);
+
/*
* On task ctx scheduling...
*
@@ -205,7 +201,7 @@ static int event_function(void *info)
struct event_function_struct *efs = info;
struct perf_event *event = efs->event;
struct perf_event_context *ctx = event->ctx;
- struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
struct perf_event_context *task_ctx = cpuctx->task_ctx;
int ret = 0;
@@ -302,7 +298,7 @@ static void event_function_call(struct p
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
struct perf_event_context *ctx = event->ctx;
- struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
struct task_struct *task = READ_ONCE(ctx->task);
struct perf_event_context *task_ctx = NULL;
@@ -376,7 +372,6 @@ static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
-static DEFINE_PER_CPU(int, perf_sched_cb_usages);
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
static atomic_t nr_mmap_events __read_mostly;
@@ -430,7 +425,7 @@ static void update_perf_cpu_limits(void)
WRITE_ONCE(perf_sample_allowed_ns, tmp);
}
-static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
+static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
int perf_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
@@ -555,13 +550,6 @@ void perf_sample_event_took(u64 sample_l
static atomic64_t perf_event_id;
-static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
- enum event_type_t event_type);
-
-static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
- enum event_type_t event_type,
- struct task_struct *task);
-
static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
@@ -810,7 +798,7 @@ static void perf_cgroup_switch(struct ta
perf_pmu_disable(cpuctx->ctx.pmu);
if (mode & PERF_CGROUP_SWOUT) {
- cpu_ctx_sched_out(cpuctx, EVENT_ALL);
+ ctx_sched_out(&cpuctx->ctx, EVENT_ALL);
/*
* must not be done before ctxswout due
* to event_filter_match() in event_sched_out()
@@ -827,9 +815,8 @@ static void perf_cgroup_switch(struct ta
* we pass the cpuctx->ctx to perf_cgroup_from_task()
* because cgorup events are only per-cpu
*/
- cpuctx->cgrp = perf_cgroup_from_task(task,
- &cpuctx->ctx);
- cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
+ cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
+ ctx_sched_in(&cpuctx->ctx, EVENT_ALL, task);
}
perf_pmu_enable(cpuctx->ctx.pmu);
perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
@@ -1063,34 +1050,30 @@ list_update_cgroup_event(struct perf_eve
*/
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
{
- struct perf_cpu_context *cpuctx;
+ struct perf_cpu_pmu_context *cpc;
bool rotations;
lockdep_assert_irqs_disabled();
- cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
- rotations = perf_rotate_context(cpuctx);
+ cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
+ rotations = perf_rotate_context(cpc);
- raw_spin_lock(&cpuctx->hrtimer_lock);
+ raw_spin_lock(&cpc->hrtimer_lock);
if (rotations)
- hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
+ hrtimer_forward_now(hr, cpc->hrtimer_interval);
else
- cpuctx->hrtimer_active = 0;
- raw_spin_unlock(&cpuctx->hrtimer_lock);
+ cpc->hrtimer_active = 0;
+ raw_spin_unlock(&cpc->hrtimer_lock);
return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
}
-static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
+static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
{
- struct hrtimer *timer = &cpuctx->hrtimer;
- struct pmu *pmu = cpuctx->ctx.pmu;
+ struct hrtimer *timer = &cpc->hrtimer;
+ struct pmu *pmu = cpc->epc.pmu;
u64 interval;
- /* no multiplexing needed for SW PMU */
- if (pmu->task_ctx_nr == perf_sw_context)
- return;
-
/*
* check default is sane, if not set then force to
* default interval (1/tick)
@@ -1099,30 +1082,25 @@ static void __perf_mux_hrtimer_init(stru
if (interval < 1)
interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
- cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
+ cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
- raw_spin_lock_init(&cpuctx->hrtimer_lock);
+ raw_spin_lock_init(&cpc->hrtimer_lock);
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
timer->function = perf_mux_hrtimer_handler;
}
-static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
+static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
{
- struct hrtimer *timer = &cpuctx->hrtimer;
- struct pmu *pmu = cpuctx->ctx.pmu;
+ struct hrtimer *timer = &cpc->hrtimer;
unsigned long flags;
- /* not for SW PMU */
- if (pmu->task_ctx_nr == perf_sw_context)
- return 0;
-
- raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
- if (!cpuctx->hrtimer_active) {
- cpuctx->hrtimer_active = 1;
- hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
+ raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
+ if (!cpc->hrtimer_active) {
+ cpc->hrtimer_active = 1;
+ hrtimer_forward_now(timer, cpc->hrtimer_interval);
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
}
- raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
+ raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
return 0;
}
@@ -1141,32 +1119,25 @@ void perf_pmu_enable(struct pmu *pmu)
pmu->pmu_enable(pmu);
}
-static DEFINE_PER_CPU(struct list_head, active_ctx_list);
-
-/*
- * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
- * perf_event_task_tick() are fully serialized because they're strictly cpu
- * affine and perf_event_ctx{activate,deactivate} are called with IRQs
- * disabled, while perf_event_task_tick is called from IRQ context.
- */
-static void perf_event_ctx_activate(struct perf_event_context *ctx)
+void perf_assert_pmu_disabled(struct pmu *pmu)
{
- struct list_head *head = this_cpu_ptr(&active_ctx_list);
-
- lockdep_assert_irqs_disabled();
+ WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
+}
- WARN_ON(!list_empty(&ctx->active_ctx_list));
+void perf_ctx_disable(struct perf_event_context *ctx)
+{
+ struct perf_event_pmu_context *pmu_ctx;
- list_add(&ctx->active_ctx_list, head);
+ list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
+ perf_pmu_disable(pmu_ctx->pmu);
}
-static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
+void perf_ctx_enable(struct perf_event_context *ctx)
{
- lockdep_assert_irqs_disabled();
+ struct perf_event_pmu_context *pmu_ctx;
- WARN_ON(list_empty(&ctx->active_ctx_list));
-
- list_del_init(&ctx->active_ctx_list);
+ list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
+ perf_pmu_enable(pmu_ctx->pmu);
}
static void get_ctx(struct perf_event_context *ctx)
@@ -1179,7 +1150,6 @@ static void free_ctx(struct rcu_head *he
struct perf_event_context *ctx;
ctx = container_of(head, struct perf_event_context, rcu_head);
- kfree(ctx->task_ctx_data);
kfree(ctx);
}
@@ -1363,7 +1333,7 @@ static u64 primary_event_id(struct perf_
* the context could get moved to another task.
*/
static struct perf_event_context *
-perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
+perf_lock_task_context(struct task_struct *task, unsigned long *flags)
{
struct perf_event_context *ctx;
@@ -1379,7 +1349,7 @@ perf_lock_task_context(struct task_struc
*/
local_irq_save(*flags);
rcu_read_lock();
- ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
+ ctx = rcu_dereference(task->perf_event_ctxp);
if (ctx) {
/*
* If this context is a clone of another, it might
@@ -1392,7 +1362,7 @@ perf_lock_task_context(struct task_struc
* can't get swapped on us any more.
*/
raw_spin_lock(&ctx->lock);
- if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
+ if (ctx != rcu_dereference(task->perf_event_ctxp)) {
raw_spin_unlock(&ctx->lock);
rcu_read_unlock();
local_irq_restore(*flags);
@@ -1419,12 +1389,12 @@ perf_lock_task_context(struct task_struc
* reference count so that the context can't get freed.
*/
static struct perf_event_context *
-perf_pin_task_context(struct task_struct *task, int ctxn)
+perf_pin_task_context(struct task_struct *task)
{
struct perf_event_context *ctx;
unsigned long flags;
- ctx = perf_lock_task_context(task, ctxn, &flags);
+ ctx = perf_lock_task_context(task, &flags);
if (ctx) {
++ctx->pin_count;
raw_spin_unlock_irqrestore(&ctx->lock, flags);
@@ -1528,6 +1498,11 @@ perf_event_groups_less(struct perf_event
if (left->cpu > right->cpu)
return false;
+ if (left->pmu_ctx->pmu < right->pmu_ctx->pmu)
+ return true;
+ if (left->pmu_ctx->pmu > right->pmu_ctx->pmu)
+ return false;
+
if (left->group_index < right->group_index)
return true;
if (left->group_index > right->group_index)
@@ -1610,7 +1585,7 @@ del_event_from_groups(struct perf_event
* Get the leftmost event in the @cpu subtree.
*/
static struct perf_event *
-perf_event_groups_first(struct perf_event_groups *groups, int cpu)
+perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu)
{
struct perf_event *node_event = NULL, *match = NULL;
struct rb_node *node = groups->tree.rb_node;
@@ -1623,8 +1598,19 @@ perf_event_groups_first(struct perf_even
} else if (cpu > node_event->cpu) {
node = node->rb_right;
} else {
- match = node_event;
- node = node->rb_left;
+ if (pmu) {
+ if (pmu < node_event->pmu_ctx->pmu) {
+ node = node->rb_left;
+ } else if (pmu > node_event->pmu_ctx->pmu) {
+ node = node->rb_right;
+ } else {
+ match = node_event;
+ node = node->rb_left;
+ }
+ } else {
+ match = node_event;
+ node = node->rb_left;
+ }
}
}
@@ -1635,13 +1621,17 @@ perf_event_groups_first(struct perf_even
* Like rb_entry_next_safe() for the @cpu subtree.
*/
static struct perf_event *
-perf_event_groups_next(struct perf_event *event)
+perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
{
struct perf_event *next;
next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
- if (next && next->cpu == event->cpu)
+ if (next && next->cpu == event->cpu) {
+ if (pmu && next->pmu_ctx->pmu != pmu)
+ return NULL;
+
return next;
+ }
return NULL;
}
@@ -1687,6 +1677,8 @@ list_add_event(struct perf_event *event,
ctx->nr_stat++;
ctx->generation++;
+
+ event->pmu_ctx->nr_events++;
}
/*
@@ -1883,6 +1875,8 @@ list_del_event(struct perf_event *event,
perf_event_set_state(event, PERF_EVENT_STATE_OFF);
ctx->generation++;
+
+ event->pmu_ctx->nr_events--;
}
static void perf_group_detach(struct perf_event *event)
@@ -1926,8 +1920,9 @@ static void perf_group_detach(struct per
add_event_to_groups(sibling, event->ctx);
if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
+ struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
struct list_head *list = sibling->attr.pinned ?
- &ctx->pinned_active : &ctx->flexible_active;
+ &pmu_ctx->pinned_active : &pmu_ctx->flexible_active;
list_add_tail(&sibling->active_list, list);
}
@@ -1983,12 +1978,14 @@ event_filter_match(struct perf_event *ev
}
static void
-event_sched_out(struct perf_event *event,
- struct perf_cpu_context *cpuctx,
- struct perf_event_context *ctx)
+event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
{
+ struct perf_event_pmu_context *epc = event->pmu_ctx;
+ struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
+ // XXX cpc serialization, probably per-cpu IRQ disabled
+
WARN_ON_ONCE(event->ctx != ctx);
lockdep_assert_held(&ctx->lock);
@@ -2014,41 +2011,35 @@ event_sched_out(struct perf_event *event
perf_event_set_state(event, state);
if (!is_software_event(event))
- cpuctx->active_oncpu--;
+ cpc->active_oncpu--;
if (!--ctx->nr_active)
- perf_event_ctx_deactivate(ctx);
+ ;
+ event->pmu_ctx->nr_active--;
if (event->attr.freq && event->attr.sample_freq)
ctx->nr_freq--;
- if (event->attr.exclusive || !cpuctx->active_oncpu)
- cpuctx->exclusive = 0;
+ if (event->attr.exclusive || !cpc->active_oncpu)
+ cpc->exclusive = 0;
perf_pmu_enable(event->pmu);
}
static void
-group_sched_out(struct perf_event *group_event,
- struct perf_cpu_context *cpuctx,
- struct perf_event_context *ctx)
+group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
{
struct perf_event *event;
if (group_event->state != PERF_EVENT_STATE_ACTIVE)
return;
- perf_pmu_disable(ctx->pmu);
+ perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
- event_sched_out(group_event, cpuctx, ctx);
+ event_sched_out(group_event, ctx);
/*
* Schedule out siblings (if any):
*/
for_each_sibling_event(event, group_event)
- event_sched_out(event, cpuctx, ctx);
-
- perf_pmu_enable(ctx->pmu);
-
- if (group_event->attr.exclusive)
- cpuctx->exclusive = 0;
+ event_sched_out(event, ctx);
}
#define DETACH_GROUP 0x01UL
@@ -2072,7 +2063,7 @@ __perf_remove_from_context(struct perf_e
update_cgrp_time_from_cpuctx(cpuctx);
}
- event_sched_out(event, cpuctx, ctx);
+ event_sched_out(event, ctx);
if (flags & DETACH_GROUP)
perf_group_detach(event);
list_del_event(event, ctx);
@@ -2139,12 +2130,16 @@ static void __perf_event_disable(struct
update_cgrp_time_from_event(event);
}
+ perf_pmu_disable(event->pmu_ctx->pmu);
+
if (event == event->group_leader)
- group_sched_out(event, cpuctx, ctx);
+ group_sched_out(event, ctx);
else
- event_sched_out(event, cpuctx, ctx);
+ event_sched_out(event, ctx);
perf_event_set_state(event, PERF_EVENT_STATE_OFF);
+
+ perf_pmu_enable(event->pmu_ctx->pmu);
}
/*
@@ -2240,10 +2235,10 @@ static void perf_log_throttle(struct per
static void perf_log_itrace_start(struct perf_event *event);
static int
-event_sched_in(struct perf_event *event,
- struct perf_cpu_context *cpuctx,
- struct perf_event_context *ctx)
+event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
{
+ struct perf_event_pmu_context *epc = event->pmu_ctx;
+ struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
int ret = 0;
lockdep_assert_held(&ctx->lock);
@@ -2284,14 +2279,15 @@ event_sched_in(struct perf_event *event,
}
if (!is_software_event(event))
- cpuctx->active_oncpu++;
+ cpc->active_oncpu++;
if (!ctx->nr_active++)
- perf_event_ctx_activate(ctx);
+ ;
+ event->pmu_ctx->nr_active++;
if (event->attr.freq && event->attr.sample_freq)
ctx->nr_freq++;
if (event->attr.exclusive)
- cpuctx->exclusive = 1;
+ cpc->exclusive = 1;
out:
perf_pmu_enable(event->pmu);
@@ -2300,21 +2296,19 @@ event_sched_in(struct perf_event *event,
}
static int
-group_sched_in(struct perf_event *group_event,
- struct perf_cpu_context *cpuctx,
- struct perf_event_context *ctx)
+group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
{
struct perf_event *event, *partial_group = NULL;
- struct pmu *pmu = ctx->pmu;
+ struct pmu *pmu = group_event->pmu_ctx->pmu;
if (group_event->state == PERF_EVENT_STATE_OFF)
return 0;
pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
- if (event_sched_in(group_event, cpuctx, ctx)) {
+ if (event_sched_in(group_event, ctx)) {
pmu->cancel_txn(pmu);
- perf_mux_hrtimer_restart(cpuctx);
+ perf_mux_hrtimer_restart(this_cpu_ptr(pmu->cpu_pmu_context));
return -EAGAIN;
}
@@ -2322,7 +2316,7 @@ group_sched_in(struct perf_event *group_
* Schedule in siblings as one group (if any):
*/
for_each_sibling_event(event, group_event) {
- if (event_sched_in(event, cpuctx, ctx)) {
+ if (event_sched_in(event, ctx)) {
partial_group = event;
goto group_error;
}
@@ -2341,13 +2335,13 @@ group_sched_in(struct perf_event *group_
if (event == partial_group)
break;
- event_sched_out(event, cpuctx, ctx);
+ event_sched_out(event, ctx);
}
- event_sched_out(group_event, cpuctx, ctx);
+ event_sched_out(group_event, ctx);
pmu->cancel_txn(pmu);
- perf_mux_hrtimer_restart(cpuctx);
+ perf_mux_hrtimer_restart(this_cpu_ptr(pmu->cpu_pmu_context));
return -EAGAIN;
}
@@ -2355,10 +2349,11 @@ group_sched_in(struct perf_event *group_
/*
* Work out whether we can put this event group on the CPU now.
*/
-static int group_can_go_on(struct perf_event *event,
- struct perf_cpu_context *cpuctx,
- int can_add_hw)
+static int group_can_go_on(struct perf_event *event, int can_add_hw)
{
+ struct perf_event_pmu_context *epc = event->pmu_ctx;
+ struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
+
/*
* Groups consisting entirely of software events can always go on.
*/
@@ -2368,13 +2363,13 @@ static int group_can_go_on(struct perf_e
* If an exclusive group is already on, no other hardware
* events can go on.
*/
- if (cpuctx->exclusive)
+ if (cpc->exclusive)
return 0;
/*
* If this group is exclusive and there are already
* events on the CPU, it can't go on.
*/
- if (event->attr.exclusive && cpuctx->active_oncpu)
+ if (event->attr.exclusive && cpc->active_oncpu)
return 0;
/*
* Otherwise, try to add it if all previous groups were able
@@ -2391,37 +2386,36 @@ static void add_event_to_ctx(struct perf
}
static void ctx_sched_out(struct perf_event_context *ctx,
- struct perf_cpu_context *cpuctx,
enum event_type_t event_type);
static void
ctx_sched_in(struct perf_event_context *ctx,
- struct perf_cpu_context *cpuctx,
enum event_type_t event_type,
struct task_struct *task);
-static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
- struct perf_event_context *ctx,
+static void task_ctx_sched_out(struct perf_event_context *ctx,
enum event_type_t event_type)
{
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
+
if (!cpuctx->task_ctx)
return;
if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
return;
- ctx_sched_out(ctx, cpuctx, event_type);
+ ctx_sched_out(ctx, event_type);
}
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx,
struct task_struct *task)
{
- cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
+ ctx_sched_in(&cpuctx->ctx, EVENT_PINNED, task);
if (ctx)
- ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
- cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
+ ctx_sched_in(ctx, EVENT_PINNED, task);
+ ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE, task);
if (ctx)
- ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
+ ctx_sched_in(ctx, EVENT_FLEXIBLE, task);
}
/*
@@ -2438,12 +2432,12 @@ static void perf_event_sched_in(struct p
* This can be called after a batch operation on task events, in which case
* event_type is a bit mask of the types of events involved. For CPU events,
* event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
+ *
*/
static void ctx_resched(struct perf_cpu_context *cpuctx,
struct perf_event_context *task_ctx,
enum event_type_t event_type)
{
- enum event_type_t ctx_event_type;
bool cpu_event = !!(event_type & EVENT_CPU);
/*
@@ -2453,11 +2447,13 @@ static void ctx_resched(struct perf_cpu_
if (event_type & EVENT_PINNED)
event_type |= EVENT_FLEXIBLE;
- ctx_event_type = event_type & EVENT_ALL;
+ event_type &= EVENT_ALL;
- perf_pmu_disable(cpuctx->ctx.pmu);
- if (task_ctx)
- task_ctx_sched_out(cpuctx, task_ctx, event_type);
+ perf_ctx_disable(&cpuctx->ctx);
+ if (task_ctx) {
+ perf_ctx_disable(task_ctx);
+ task_ctx_sched_out(task_ctx, event_type);
+ }
/*
* Decide which cpu ctx groups to schedule out based on the types
@@ -2467,12 +2463,15 @@ static void ctx_resched(struct perf_cpu_
* - otherwise, do nothing more.
*/
if (cpu_event)
- cpu_ctx_sched_out(cpuctx, ctx_event_type);
- else if (ctx_event_type & EVENT_PINNED)
- cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
+ ctx_sched_out(&cpuctx->ctx, event_type);
+ else if (event_type & EVENT_PINNED)
+ ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
perf_event_sched_in(cpuctx, task_ctx, current);
- perf_pmu_enable(cpuctx->ctx.pmu);
+
+ perf_ctx_enable(&cpuctx->ctx);
+ if (task_ctx)
+ perf_ctx_enable(task_ctx);
}
/*
@@ -2485,7 +2484,7 @@ static int __perf_install_in_context(vo
{
struct perf_event *event = info;
struct perf_event_context *ctx = event->ctx;
- struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
struct perf_event_context *task_ctx = cpuctx->task_ctx;
bool reprogram = true;
int ret = 0;
@@ -2527,7 +2526,7 @@ static int __perf_install_in_context(vo
#endif
if (reprogram) {
- ctx_sched_out(ctx, cpuctx, EVENT_TIME);
+ ctx_sched_out(ctx, EVENT_TIME);
add_event_to_ctx(event, ctx);
ctx_resched(cpuctx, task_ctx, get_event_type(event));
} else {
@@ -2648,7 +2647,7 @@ static void __perf_event_enable(struct p
return;
if (ctx->is_active)
- ctx_sched_out(ctx, cpuctx, EVENT_TIME);
+ ctx_sched_out(ctx, EVENT_TIME);
perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
@@ -2656,7 +2655,7 @@ static void __perf_event_enable(struct p
return;
if (!event_filter_match(event)) {
- ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
+ ctx_sched_in(ctx, EVENT_TIME, current);
return;
}
@@ -2665,7 +2664,7 @@ static void __perf_event_enable(struct p
* then don't put it on unless the group is on.
*/
if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
- ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
+ ctx_sched_in(ctx, EVENT_TIME, current);
return;
}
@@ -2889,11 +2888,46 @@ static int perf_event_modify_attr(struct
}
}
-static void ctx_sched_out(struct perf_event_context *ctx,
- struct perf_cpu_context *cpuctx,
- enum event_type_t event_type)
+static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
+ enum event_type_t event_type)
{
+ struct perf_event_context *ctx = pmu_ctx->ctx;
struct perf_event *event, *tmp;
+ struct pmu *pmu = pmu_ctx->pmu;
+
+ if (ctx->task && !ctx->is_active) {
+ struct perf_cpu_pmu_context *cpc;
+
+ cpc = this_cpu_ptr(pmu->cpu_pmu_context);
+ WARN_ON_ONCE(cpc->task_epc != pmu_ctx);
+ cpc->task_epc = NULL;
+ }
+
+ if (!event_type)
+ return;
+
+ perf_pmu_disable(pmu);
+ if (event_type & EVENT_PINNED) {
+ list_for_each_entry_safe(event, tmp,
+ &pmu_ctx->pinned_active,
+ active_list)
+ group_sched_out(event, ctx);
+ }
+
+ if (event_type & EVENT_FLEXIBLE) {
+ list_for_each_entry_safe(event, tmp,
+ &pmu_ctx->flexible_active,
+ active_list)
+ group_sched_out(event, ctx);
+ }
+ perf_pmu_enable(pmu);
+}
+
+static void
+ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
+{
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
+ struct perf_event_pmu_context *pmu_ctx;
int is_active = ctx->is_active;
lockdep_assert_held(&ctx->lock);
@@ -2936,20 +2970,8 @@ static void ctx_sched_out(struct perf_ev
is_active ^= ctx->is_active; /* changed bits */
- if (!ctx->nr_active || !(is_active & EVENT_ALL))
- return;
-
- perf_pmu_disable(ctx->pmu);
- if (is_active & EVENT_PINNED) {
- list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
- group_sched_out(event, cpuctx, ctx);
- }
-
- if (is_active & EVENT_FLEXIBLE) {
- list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
- group_sched_out(event, cpuctx, ctx);
- }
- perf_pmu_enable(ctx->pmu);
+ list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
+ __pmu_ctx_sched_out(pmu_ctx, is_active);
}
/*
@@ -3054,10 +3076,34 @@ static void perf_event_sync_stat(struct
}
}
-static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
- struct task_struct *next)
+static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
+ struct perf_event_context *next_ctx)
+{
+ struct perf_event_pmu_context *prev_epc, *next_epc;
+
+ if (!prev_ctx->nr_task_data)
+ return;
+
+ prev_epc = list_first_entry(&prev_ctx->pmu_ctx_list,
+ struct perf_event_pmu_context,
+ pmu_ctx_entry);
+ next_epc = list_first_entry(&next_ctx->pmu_ctx_list,
+ struct perf_event_pmu_context,
+ pmu_ctx_entry);
+
+ while (&prev_epc->pmu_ctx_entry != &prev_ctx->pmu_ctx_list &&
+ &next_epc->pmu_ctx_entry != &next_ctx->pmu_ctx_list) {
+
+ WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu);
+
+ swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
+ }
+}
+
+static void
+perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
{
- struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
+ struct perf_event_context *ctx = task->perf_event_ctxp;
struct perf_event_context *next_ctx;
struct perf_event_context *parent, *next_parent;
struct perf_cpu_context *cpuctx;
@@ -3066,12 +3112,12 @@ static void perf_event_context_sched_out
if (likely(!ctx))
return;
- cpuctx = __get_cpu_context(ctx);
+ cpuctx = this_cpu_ptr(&cpu_context);
if (!cpuctx->task_ctx)
return;
rcu_read_lock();
- next_ctx = next->perf_event_ctxp[ctxn];
+ next_ctx = rcu_dereference(next->perf_event_ctxp);
if (!next_ctx)
goto unlock;
@@ -3098,7 +3144,7 @@ static void perf_event_context_sched_out
WRITE_ONCE(ctx->task, next);
WRITE_ONCE(next_ctx->task, task);
- swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
+ perf_event_swap_task_ctx_data(ctx, next_ctx);
/*
* RCU_INIT_POINTER here is safe because we've not
@@ -3107,8 +3153,8 @@ static void perf_event_context_sched_out
* since those values are always verified under
* ctx->lock which we're now holding.
*/
- RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
- RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
+ RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
+ RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
do_switch = 0;
@@ -3122,31 +3168,34 @@ static void perf_event_context_sched_out
if (do_switch) {
raw_spin_lock(&ctx->lock);
- task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
+ task_ctx_sched_out(ctx, EVENT_ALL);
raw_spin_unlock(&ctx->lock);
}
}
static DEFINE_PER_CPU(struct list_head, sched_cb_list);
+static DEFINE_PER_CPU(int, perf_sched_cb_usages);
void perf_sched_cb_dec(struct pmu *pmu)
{
- struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+ struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
this_cpu_dec(perf_sched_cb_usages);
+ barrier();
- if (!--cpuctx->sched_cb_usage)
- list_del(&cpuctx->sched_cb_entry);
+ if (!--cpc->sched_cb_usage)
+ list_del(&cpc->sched_cb_entry);
}
void perf_sched_cb_inc(struct pmu *pmu)
{
- struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+ struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
- if (!cpuctx->sched_cb_usage++)
- list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
+ if (!cpc->sched_cb_usage++)
+ list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
+ barrier();
this_cpu_inc(perf_sched_cb_usages);
}
@@ -3162,22 +3211,24 @@ static void perf_pmu_sched_task(struct t
struct task_struct *next,
bool sched_in)
{
- struct perf_cpu_context *cpuctx;
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
+ struct perf_cpu_pmu_context *cpc;
struct pmu *pmu;
if (prev == next)
return;
- list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
- pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
+ list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
+ pmu = cpc->epc.pmu;
+ /* software PMUs will not have sched_task */
if (WARN_ON_ONCE(!pmu->sched_task))
continue;
perf_ctx_lock(cpuctx, cpuctx->task_ctx);
perf_pmu_disable(pmu);
- pmu->sched_task(cpuctx->task_ctx, sched_in);
+ pmu->sched_task(cpc->task_epc, sched_in);
perf_pmu_enable(pmu);
perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
@@ -3187,9 +3238,6 @@ static void perf_pmu_sched_task(struct t
static void perf_event_switch(struct task_struct *task,
struct task_struct *next_prev, bool sched_in);
-#define for_each_task_context_nr(ctxn) \
- for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
-
/*
* Called from scheduler to remove the events of the current task,
* with interrupts disabled.
@@ -3204,16 +3252,13 @@ static void perf_event_switch(struct tas
void __perf_event_task_sched_out(struct task_struct *task,
struct task_struct *next)
{
- int ctxn;
-
if (__this_cpu_read(perf_sched_cb_usages))
perf_pmu_sched_task(task, next, false);
if (atomic_read(&nr_switch_events))
perf_event_switch(task, next, false);
- for_each_task_context_nr(ctxn)
- perf_event_context_sched_out(task, ctxn, next);
+ perf_event_context_sched_out(task, next);
/*
* if cgroup events exist on this CPU, then we need
@@ -3224,27 +3269,19 @@ void __perf_event_task_sched_out(struct
perf_cgroup_sched_out(task, next);
}
-/*
- * Called with IRQs disabled
- */
-static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
- enum event_type_t event_type)
-{
- ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
-}
-
-static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
- int (*func)(struct perf_event *, void *), void *data)
+static int
+visit_groups_merge(struct perf_event_groups *groups, int cpu, struct pmu *pmu,
+ int (*func)(struct perf_event *, void *), void *data)
{
struct perf_event **evt, *evt1, *evt2;
int ret;
- evt1 = perf_event_groups_first(groups, -1);
- evt2 = perf_event_groups_first(groups, cpu);
+ evt1 = perf_event_groups_first(groups, -1, pmu);
+ evt2 = perf_event_groups_first(groups, cpu, pmu);
while (evt1 || evt2) {
if (evt1 && evt2) {
- if (evt1->group_index < evt2->group_index)
+ if (perf_event_groups_less(evt1, evt2))
evt = &evt1;
else
evt = &evt2;
@@ -3258,7 +3295,7 @@ static int visit_groups_merge(struct per
if (ret)
return ret;
- *evt = perf_event_groups_next(*evt);
+ *evt = perf_event_groups_next(*evt, pmu);
}
return 0;
@@ -3266,91 +3303,106 @@ static int visit_groups_merge(struct per
struct sched_in_data {
struct perf_event_context *ctx;
- struct perf_cpu_context *cpuctx;
+ struct perf_event_pmu_context *epc;
int can_add_hw;
+
+ int pinned; /* set for pinned semantics */
+ int busy; /* set to terminate on busy */
};
-static int pinned_sched_in(struct perf_event *event, void *data)
+static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
{
- struct sched_in_data *sid = data;
+ struct perf_cpu_pmu_context *cpc;
- if (event->state <= PERF_EVENT_STATE_OFF)
- return 0;
-
- if (!event_filter_match(event))
- return 0;
-
- if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
- if (!group_sched_in(event, sid->cpuctx, sid->ctx))
- list_add_tail(&event->active_list, &sid->ctx->pinned_active);
- }
-
- /*
- * If this pinned group hasn't been scheduled,
- * put it in error state.
- */
- if (event->state == PERF_EVENT_STATE_INACTIVE)
- perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
+ if (!pmu_ctx->ctx->task)
+ return;
- return 0;
+ cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
+ WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
+ cpc->task_epc = pmu_ctx;
}
-static int flexible_sched_in(struct perf_event *event, void *data)
+static int merge_sched_in(struct perf_event *event, void *data)
{
struct sched_in_data *sid = data;
+ if (sid->epc != event->pmu_ctx) {
+ sid->epc = event->pmu_ctx;
+ sid->can_add_hw = 1;
+ __link_epc(event->pmu_ctx);
+
+ perf_assert_pmu_disabled(sid->epc->pmu);
+ }
+
if (event->state <= PERF_EVENT_STATE_OFF)
return 0;
if (!event_filter_match(event))
return 0;
- if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
- if (!group_sched_in(event, sid->cpuctx, sid->ctx))
- list_add_tail(&event->active_list, &sid->ctx->flexible_active);
- else
+ if (group_can_go_on(event, sid->can_add_hw)) {
+ if (!group_sched_in(event, sid->ctx)) {
+ struct list_head *list;
+
+ if (sid->pinned)
+ list = &sid->epc->pinned_active;
+ else
+ list = &sid->epc->flexible_active;
+
+ list_add_tail(&event->active_list, list);
+ }
+ }
+
+ if (event->state == PERF_EVENT_STATE_INACTIVE) {
+ if (sid->pinned) {
+ /*
+ * If this pinned group hasn't been scheduled,
+ * put it in error state.
+ */
+ perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
+ } else {
sid->can_add_hw = 0;
+ return sid->busy;
+ }
}
return 0;
}
static void
-ctx_pinned_sched_in(struct perf_event_context *ctx,
- struct perf_cpu_context *cpuctx)
+ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
{
struct sched_in_data sid = {
.ctx = ctx,
- .cpuctx = cpuctx,
- .can_add_hw = 1,
+ .pinned = 1,
};
- visit_groups_merge(&ctx->pinned_groups,
- smp_processor_id(),
- pinned_sched_in, &sid);
+ visit_groups_merge(&ctx->pinned_groups, smp_processor_id(), pmu,
+ merge_sched_in, &sid);
}
static void
-ctx_flexible_sched_in(struct perf_event_context *ctx,
- struct perf_cpu_context *cpuctx)
+ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
{
struct sched_in_data sid = {
.ctx = ctx,
- .cpuctx = cpuctx,
- .can_add_hw = 1,
+ .busy = pmu ? -EBUSY : 0,
};
- visit_groups_merge(&ctx->flexible_groups,
- smp_processor_id(),
- flexible_sched_in, &sid);
+ visit_groups_merge(&ctx->flexible_groups, smp_processor_id(), pmu,
+ merge_sched_in, &sid);
+}
+
+static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
+{
+ ctx_flexible_sched_in(ctx, pmu);
}
static void
-ctx_sched_in(struct perf_event_context *ctx,
- struct perf_cpu_context *cpuctx,
- enum event_type_t event_type,
+ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type,
struct task_struct *task)
{
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
int is_active = ctx->is_active;
u64 now;
@@ -3373,6 +3425,7 @@ ctx_sched_in(struct perf_event_context *
/* start ctx time */
now = perf_clock();
ctx->timestamp = now;
+ // XXX ctx->task =? task
perf_cgroup_set_timestamp(task, ctx);
}
@@ -3381,30 +3434,25 @@ ctx_sched_in(struct perf_event_context *
* in order to give them the best chance of going on.
*/
if (is_active & EVENT_PINNED)
- ctx_pinned_sched_in(ctx, cpuctx);
+ ctx_pinned_sched_in(ctx, NULL);
/* Then walk through the lower prio flexible groups */
if (is_active & EVENT_FLEXIBLE)
- ctx_flexible_sched_in(ctx, cpuctx);
+ ctx_flexible_sched_in(ctx, NULL);
}
-static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
- enum event_type_t event_type,
- struct task_struct *task)
+static void perf_event_context_sched_in(struct task_struct *task)
{
- struct perf_event_context *ctx = &cpuctx->ctx;
-
- ctx_sched_in(ctx, cpuctx, event_type, task);
-}
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
+ struct perf_event_context *ctx;
-static void perf_event_context_sched_in(struct perf_event_context *ctx,
- struct task_struct *task)
-{
- struct perf_cpu_context *cpuctx;
+ rcu_read_lock();
+ ctx = rcu_dereference(task->perf_event_ctxp);
+ if (!ctx)
+ goto rcu_unlock;
- cpuctx = __get_cpu_context(ctx);
if (cpuctx->task_ctx == ctx)
- return;
+ goto rcu_unlock;
perf_ctx_lock(cpuctx, ctx);
/*
@@ -3414,7 +3462,7 @@ static void perf_event_context_sched_in(
if (!ctx->nr_events)
goto unlock;
- perf_pmu_disable(ctx->pmu);
+ perf_ctx_disable(ctx);
/*
* We want to keep the following priority order:
* cpu pinned (that don't need to move), task pinned,
@@ -3423,13 +3471,21 @@ static void perf_event_context_sched_in(
* However, if task's ctx is not carrying any pinned
* events, no need to flip the cpuctx's events around.
*/
- if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
- cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
+ if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
+ perf_ctx_disable(&cpuctx->ctx);
+ ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
+ }
+
perf_event_sched_in(cpuctx, ctx, task);
- perf_pmu_enable(ctx->pmu);
+
+ if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
+ perf_ctx_enable(&cpuctx->ctx);
+ perf_ctx_enable(ctx);
unlock:
perf_ctx_unlock(cpuctx, ctx);
+rcu_unlock:
+ rcu_read_unlock();
}
/*
@@ -3446,9 +3502,6 @@ static void perf_event_context_sched_in(
void __perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task)
{
- struct perf_event_context *ctx;
- int ctxn;
-
/*
* If cgroup events exist on this CPU, then we need to check if we have
* to switch in PMU state; cgroup event are system-wide mode only.
@@ -3459,13 +3512,7 @@ void __perf_event_task_sched_in(struct t
if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
perf_cgroup_sched_in(prev, task);
- for_each_task_context_nr(ctxn) {
- ctx = task->perf_event_ctxp[ctxn];
- if (likely(!ctx))
- continue;
-
- perf_event_context_sched_in(ctx, task);
- }
+ perf_event_context_sched_in(task);
if (atomic_read(&nr_switch_events))
perf_event_switch(task, prev, true);
@@ -3584,8 +3631,8 @@ static void perf_adjust_period(struct pe
* events. At the same time, make sure, having freq events does not change
* the rate of unthrottling as that would introduce bias.
*/
-static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
- int needs_unthr)
+static void
+perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
{
struct perf_event *event;
struct hw_perf_event *hwc;
@@ -3597,16 +3644,16 @@ static void perf_adjust_freq_unthr_conte
* - context have events in frequency mode (needs freq adjust)
* - there are events to unthrottle on this cpu
*/
- if (!(ctx->nr_freq || needs_unthr))
+ if (!(ctx->nr_freq || unthrottle))
return;
raw_spin_lock(&ctx->lock);
- perf_pmu_disable(ctx->pmu);
list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
if (event->state != PERF_EVENT_STATE_ACTIVE)
continue;
+ // XXX use visit thingy to avoid the -1,cpu match
if (!event_filter_match(event))
continue;
@@ -3647,7 +3694,6 @@ static void perf_adjust_freq_unthr_conte
perf_pmu_enable(event->pmu);
}
- perf_pmu_enable(ctx->pmu);
raw_spin_unlock(&ctx->lock);
}
@@ -3668,71 +3714,97 @@ static void rotate_ctx(struct perf_event
}
static inline struct perf_event *
-ctx_first_active(struct perf_event_context *ctx)
+ctx_first_active(struct perf_event_pmu_context *pmu_ctx)
{
- return list_first_entry_or_null(&ctx->flexible_active,
+ return list_first_entry_or_null(&pmu_ctx->flexible_active,
struct perf_event, active_list);
}
-static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
+/*
+ * XXX somewhat completely buggered; this is in cpu_pmu_context, but we need
+ * event_pmu_context for rotations. We also need event_pmu_context specific
+ * scheduling routines. ARGH
+ *
+ * - fixed the cpu_pmu_context vs event_pmu_context thingy
+ * (cpu_pmu_context embeds an event_pmu_context)
+ *
+ * - need nr_events/nr_active in epc to do per epc rotation
+ * (done)
+ *
+ * - need cpu and task pmu ctx together...
+ * (cpc->task_epc)
+ */
+static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
{
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
+ struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
struct perf_event *cpu_event = NULL, *task_event = NULL;
bool cpu_rotate = false, task_rotate = false;
struct perf_event_context *ctx = NULL;
+ struct pmu *pmu;
/*
* Since we run this from IRQ context, nobody can install new
* events, thus the event count values are stable.
*/
- if (cpuctx->ctx.nr_events) {
- if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
- cpu_rotate = true;
- }
+ cpu_epc = &cpc->epc;
+ pmu = cpu_epc->pmu;
- ctx = cpuctx->task_ctx;
- if (ctx && ctx->nr_events) {
- if (ctx->nr_events != ctx->nr_active)
+ if (cpu_epc->nr_events && cpu_epc->nr_events != cpu_epc->nr_active)
+ cpu_rotate = true;
+
+ task_epc = cpc->task_epc;
+ if (task_epc) {
+ WARN_ON_ONCE(task_epc->pmu != pmu);
+ if (task_epc->nr_events && task_epc->nr_events != task_epc->nr_active)
task_rotate = true;
}
if (!(cpu_rotate || task_rotate))
return false;
- perf_ctx_lock(cpuctx, cpuctx->task_ctx);
- perf_pmu_disable(cpuctx->ctx.pmu);
+ perf_ctx_lock(cpuctx, ctx);
+ perf_pmu_disable(pmu);
if (task_rotate)
- task_event = ctx_first_active(ctx);
+ task_event = ctx_first_active(task_epc);
+
if (cpu_rotate)
- cpu_event = ctx_first_active(&cpuctx->ctx);
+ cpu_event = ctx_first_active(cpu_epc);
/*
* As per the order given at ctx_resched() first 'pop' task flexible
* and then, if needed CPU flexible.
*/
- if (task_event || (ctx && cpu_event))
- ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
- if (cpu_event)
- cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
+ if (task_event || (task_epc && cpu_event)) {
+ update_context_time(ctx);
+ __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
+ }
+
+ if (cpu_event) {
+ update_context_time(&cpuctx->ctx);
+ __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
+ rotate_ctx(&cpuctx->ctx, cpu_event);
+ __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
+ }
if (task_event)
rotate_ctx(ctx, task_event);
- if (cpu_event)
- rotate_ctx(&cpuctx->ctx, cpu_event);
- perf_event_sched_in(cpuctx, ctx, current);
+ if (task_event || (task_epc && cpu_event))
+ __pmu_ctx_sched_in(ctx, pmu);
- perf_pmu_enable(cpuctx->ctx.pmu);
- perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
+ perf_pmu_enable(pmu);
+ perf_ctx_unlock(cpuctx, ctx);
return true;
}
void perf_event_task_tick(void)
{
- struct list_head *head = this_cpu_ptr(&active_ctx_list);
- struct perf_event_context *ctx, *tmp;
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
+ struct perf_event_context *ctx;
int throttled;
lockdep_assert_irqs_disabled();
@@ -3741,8 +3813,13 @@ void perf_event_task_tick(void)
throttled = __this_cpu_xchg(perf_throttled_count, 0);
tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
- list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
- perf_adjust_freq_unthr_context(ctx, throttled);
+ perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
+
+ rcu_read_lock();
+ ctx = rcu_dereference(current->perf_event_ctxp);
+ if (ctx)
+ perf_adjust_freq_unthr_context(ctx, !!throttled);
+ rcu_read_unlock();
}
static int event_enable_on_exec(struct perf_event *event,
@@ -3764,9 +3841,9 @@ static int event_enable_on_exec(struct p
* Enable all of a task's events that have been marked enable-on-exec.
* This expects task == current.
*/
-static void perf_event_enable_on_exec(int ctxn)
+static void perf_event_enable_on_exec(struct perf_event_context *ctx)
{
- struct perf_event_context *ctx, *clone_ctx = NULL;
+ struct perf_event_context *clone_ctx = NULL;
enum event_type_t event_type = 0;
struct perf_cpu_context *cpuctx;
struct perf_event *event;
@@ -3774,13 +3851,16 @@ static void perf_event_enable_on_exec(in
int enabled = 0;
local_irq_save(flags);
- ctx = current->perf_event_ctxp[ctxn];
- if (!ctx || !ctx->nr_events)
+ if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
goto out;
- cpuctx = __get_cpu_context(ctx);
+ if (!ctx->nr_events)
+ goto out;
+
+ cpuctx = this_cpu_ptr(&cpu_context);
perf_ctx_lock(cpuctx, ctx);
- ctx_sched_out(ctx, cpuctx, EVENT_TIME);
+ ctx_sched_out(ctx, EVENT_TIME);
+
list_for_each_entry(event, &ctx->event_list, event_entry) {
enabled |= event_enable_on_exec(event, ctx);
event_type |= get_event_type(event);
@@ -3793,7 +3873,7 @@ static void perf_event_enable_on_exec(in
clone_ctx = unclone_ctx(ctx);
ctx_resched(cpuctx, ctx, event_type);
} else {
- ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
+ ctx_sched_in(ctx, EVENT_TIME, current);
}
perf_ctx_unlock(cpuctx, ctx);
@@ -3835,7 +3915,7 @@ static void __perf_event_read(void *info
struct perf_read_data *data = info;
struct perf_event *sub, *event = data->event;
struct perf_event_context *ctx = event->ctx;
- struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
struct pmu *pmu = event->pmu;
/*
@@ -4050,17 +4130,25 @@ static void __perf_event_init_context(st
{
raw_spin_lock_init(&ctx->lock);
mutex_init(&ctx->mutex);
- INIT_LIST_HEAD(&ctx->active_ctx_list);
+ INIT_LIST_HEAD(&ctx->pmu_ctx_list);
perf_event_groups_init(&ctx->pinned_groups);
perf_event_groups_init(&ctx->flexible_groups);
INIT_LIST_HEAD(&ctx->event_list);
- INIT_LIST_HEAD(&ctx->pinned_active);
- INIT_LIST_HEAD(&ctx->flexible_active);
atomic_set(&ctx->refcount, 1);
}
+static void
+__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
+{
+ epc->pmu = pmu;
+ INIT_LIST_HEAD(&epc->pmu_ctx_entry);
+ INIT_LIST_HEAD(&epc->pinned_active);
+ INIT_LIST_HEAD(&epc->flexible_active);
+ atomic_set(&epc->refcount, 1);
+}
+
static struct perf_event_context *
-alloc_perf_context(struct pmu *pmu, struct task_struct *task)
+alloc_perf_context(struct task_struct *task)
{
struct perf_event_context *ctx;
@@ -4073,7 +4161,6 @@ alloc_perf_context(struct pmu *pmu, stru
ctx->task = task;
get_task_struct(task);
}
- ctx->pmu = pmu;
return ctx;
}
@@ -4102,22 +4189,19 @@ find_lively_task_by_vpid(pid_t vpid)
* Returns a matching context with refcount and pincount.
*/
static struct perf_event_context *
-find_get_context(struct pmu *pmu, struct task_struct *task,
- struct perf_event *event)
+find_get_context(struct task_struct *task, struct perf_event *event)
{
struct perf_event_context *ctx, *clone_ctx = NULL;
struct perf_cpu_context *cpuctx;
- void *task_ctx_data = NULL;
unsigned long flags;
- int ctxn, err;
- int cpu = event->cpu;
+ int err;
if (!task) {
/* Must be root to operate on a CPU event: */
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
return ERR_PTR(-EACCES);
- cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
+ cpuctx = per_cpu_ptr(&cpu_context, event->cpu);
ctx = &cpuctx->ctx;
get_ctx(ctx);
++ctx->pin_count;
@@ -4126,43 +4210,22 @@ find_get_context(struct pmu *pmu, struct
}
err = -EINVAL;
- ctxn = pmu->task_ctx_nr;
- if (ctxn < 0)
- goto errout;
-
- if (event->attach_state & PERF_ATTACH_TASK_DATA) {
- task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
- if (!task_ctx_data) {
- err = -ENOMEM;
- goto errout;
- }
- }
-
retry:
- ctx = perf_lock_task_context(task, ctxn, &flags);
+ ctx = perf_lock_task_context(task, &flags);
if (ctx) {
clone_ctx = unclone_ctx(ctx);
++ctx->pin_count;
- if (task_ctx_data && !ctx->task_ctx_data) {
- ctx->task_ctx_data = task_ctx_data;
- task_ctx_data = NULL;
- }
raw_spin_unlock_irqrestore(&ctx->lock, flags);
if (clone_ctx)
put_ctx(clone_ctx);
} else {
- ctx = alloc_perf_context(pmu, task);
+ ctx = alloc_perf_context(task);
err = -ENOMEM;
if (!ctx)
goto errout;
- if (task_ctx_data) {
- ctx->task_ctx_data = task_ctx_data;
- task_ctx_data = NULL;
- }
-
err = 0;
mutex_lock(&task->perf_event_mutex);
/*
@@ -4171,12 +4234,12 @@ find_get_context(struct pmu *pmu, struct
*/
if (task->flags & PF_EXITING)
err = -ESRCH;
- else if (task->perf_event_ctxp[ctxn])
+ else if (task->perf_event_ctxp)
err = -EAGAIN;
else {
get_ctx(ctx);
++ctx->pin_count;
- rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
+ rcu_assign_pointer(task->perf_event_ctxp, ctx);
}
mutex_unlock(&task->perf_event_mutex);
@@ -4189,14 +4252,117 @@ find_get_context(struct pmu *pmu, struct
}
}
- kfree(task_ctx_data);
return ctx;
errout:
- kfree(task_ctx_data);
return ERR_PTR(err);
}
+struct perf_event_pmu_context *
+find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
+ struct perf_event *event)
+{
+ struct perf_event_pmu_context *new = NULL, *epc;
+ void *task_ctx_data = NULL;
+
+ if (!ctx->task) {
+ struct perf_cpu_pmu_context *cpc;
+
+ cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
+ epc = &cpc->epc;
+
+ if (!epc->ctx) {
+ atomic_set(&epc->refcount, 1);
+ epc->embedded = 1;
+ raw_spin_lock_irq(&ctx->lock);
+ list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
+ epc->ctx = ctx;
+ raw_spin_unlock_irq(&ctx->lock);
+ } else {
+ WARN_ON_ONCE(epc->ctx != ctx);
+ atomic_inc(&epc->refcount);
+ }
+
+ return epc;
+ }
+
+ new = kzalloc(sizeof(*epc), GFP_KERNEL);
+ if (!new)
+ return ERR_PTR(-ENOMEM);
+
+ if (event->attach_state & PERF_ATTACH_TASK_DATA) {
+ task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
+ if (!task_ctx_data) {
+ kfree(new);
+ return ERR_PTR(-ENOMEM);
+ }
+ }
+
+ __perf_init_event_pmu_context(new, pmu);
+
+ raw_spin_lock_irq(&ctx->lock);
+ list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
+ if (epc->pmu == pmu) {
+ WARN_ON_ONCE(epc->ctx != ctx);
+ atomic_inc(&epc->refcount);
+ goto found_epc;
+ }
+ }
+
+ epc = new;
+ new = NULL;
+
+ list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
+ epc->ctx = ctx;
+
+found_epc:
+ if (task_ctx_data && !epc->task_ctx_data) {
+ epc->task_ctx_data = task_ctx_data;
+ task_ctx_data = NULL;
+ ctx->nr_task_data++;
+ }
+ raw_spin_unlock_irq(&ctx->lock);
+
+ kfree(task_ctx_data);
+ kfree(new);
+
+ return epc;
+}
+
+static void get_pmu_ctx(struct perf_event_pmu_context *epc)
+{
+ WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
+}
+
+static void put_pmu_ctx(struct perf_event_pmu_context *epc)
+{
+ unsigned long flags;
+
+ if (!atomic_dec_and_test(&epc->refcount))
+ return;
+
+ if (epc->ctx) {
+ struct perf_event_context *ctx = epc->ctx;
+
+ // XXX ctx->mutex
+
+ WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
+ raw_spin_lock_irqsave(&ctx->lock, flags);
+ list_del_init(&epc->pmu_ctx_entry);
+ epc->ctx = NULL;
+ raw_spin_unlock_irqrestore(&ctx->lock, flags);
+ }
+
+ WARN_ON_ONCE(!list_empty(&epc->pinned_active));
+ WARN_ON_ONCE(!list_empty(&epc->flexible_active));
+
+ if (epc->embedded)
+ return;
+
+ kfree(epc->task_ctx_data);
+ kfree(epc);
+}
+
static void perf_event_free_filter(struct perf_event *event);
static void perf_event_free_bpf_prog(struct perf_event *event);
@@ -4445,6 +4611,9 @@ static void _free_event(struct perf_even
if (event->destroy)
event->destroy(event);
+ if (event->pmu_ctx)
+ put_pmu_ctx(event->pmu_ctx);
+
if (event->ctx)
put_ctx(event->ctx);
@@ -4943,7 +5112,7 @@ static void __perf_event_period(struct p
active = (event->state == PERF_EVENT_STATE_ACTIVE);
if (active) {
- perf_pmu_disable(ctx->pmu);
+ perf_pmu_disable(event->pmu);
/*
* We could be throttled; unthrottle now to avoid the tick
* trying to unthrottle while we already re-started the event.
@@ -4959,7 +5128,7 @@ static void __perf_event_period(struct p
if (active) {
event->pmu->start(event, PERF_EF_RELOAD);
- perf_pmu_enable(ctx->pmu);
+ perf_pmu_enable(event->pmu);
}
}
@@ -6634,7 +6803,6 @@ perf_iterate_sb(perf_iterate_f output, v
struct perf_event_context *task_ctx)
{
struct perf_event_context *ctx;
- int ctxn;
rcu_read_lock();
preempt_disable();
@@ -6651,11 +6819,9 @@ perf_iterate_sb(perf_iterate_f output, v
perf_iterate_sb_cpu(output, data);
- for_each_task_context_nr(ctxn) {
- ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
- if (ctx)
- perf_iterate_ctx(ctx, output, data, false);
- }
+ ctx = rcu_dereference(current->perf_event_ctxp);
+ if (ctx)
+ perf_iterate_ctx(ctx, output, data, false);
done:
preempt_enable();
rcu_read_unlock();
@@ -6696,18 +6862,12 @@ static void perf_event_addr_filters_exec
void perf_event_exec(void)
{
struct perf_event_context *ctx;
- int ctxn;
rcu_read_lock();
- for_each_task_context_nr(ctxn) {
- ctx = current->perf_event_ctxp[ctxn];
- if (!ctx)
- continue;
-
- perf_event_enable_on_exec(ctxn);
-
- perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
- true);
+ ctx = rcu_dereference(current->perf_event_ctxp);
+ if (ctx) {
+ perf_event_enable_on_exec(ctx);
+ perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
}
rcu_read_unlock();
}
@@ -6749,8 +6909,7 @@ static void __perf_event_output_stop(str
static int __perf_pmu_output_stop(void *info)
{
struct perf_event *event = info;
- struct pmu *pmu = event->pmu;
- struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
struct remote_output ro = {
.rb = event->rb,
};
@@ -7398,7 +7557,6 @@ static void __perf_addr_filters_adjust(s
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
struct perf_event_context *ctx;
- int ctxn;
/*
* Data tracing isn't supported yet and as such there is no need
@@ -7408,13 +7566,9 @@ static void perf_addr_filters_adjust(str
return;
rcu_read_lock();
- for_each_task_context_nr(ctxn) {
- ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
- if (!ctx)
- continue;
-
+ ctx = rcu_dereference(current->perf_event_ctxp);
+ if (ctx)
perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
- }
rcu_read_unlock();
}
@@ -8309,10 +8463,13 @@ void perf_tp_event(u16 event_type, u64 c
struct trace_entry *entry = record;
rcu_read_lock();
- ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
+ ctx = rcu_dereference(task->perf_event_ctxp);
if (!ctx)
goto unlock;
+ // XXX iterate groups instead, we should be able to
+ // find the subtree for the perf_tracepoint pmu and CPU.
+
list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
if (event->cpu != smp_processor_id())
continue;
@@ -9404,25 +9561,6 @@ static int perf_event_idx_default(struct
return 0;
}
-/*
- * Ensures all contexts with the same task_ctx_nr have the same
- * pmu_cpu_context too.
- */
-static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
-{
- struct pmu *pmu;
-
- if (ctxn < 0)
- return NULL;
-
- list_for_each_entry(pmu, &pmus, entry) {
- if (pmu->task_ctx_nr == ctxn)
- return pmu->pmu_cpu_context;
- }
-
- return NULL;
-}
-
static void free_pmu_context(struct pmu *pmu)
{
/*
@@ -9433,7 +9571,7 @@ static void free_pmu_context(struct pmu
if (pmu->task_ctx_nr > perf_invalid_context)
return;
- free_percpu(pmu->pmu_cpu_context);
+ free_percpu(pmu->cpu_pmu_context);
}
/*
@@ -9497,12 +9635,12 @@ perf_event_mux_interval_ms_store(struct
/* update all cpuctx for this PMU */
cpus_read_lock();
for_each_online_cpu(cpu) {
- struct perf_cpu_context *cpuctx;
- cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
- cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
+ struct perf_cpu_pmu_context *cpc;
+ cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
+ cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
cpu_function_call(cpu,
- (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
+ (remote_function_f)perf_mux_hrtimer_restart, cpc);
}
cpus_read_unlock();
mutex_unlock(&mux_interval_mutex);
@@ -9602,44 +9740,19 @@ int perf_pmu_register(struct pmu *pmu, c
}
skip_type:
- if (pmu->task_ctx_nr == perf_hw_context) {
- static int hw_context_taken = 0;
-
- /*
- * Other than systems with heterogeneous CPUs, it never makes
- * sense for two PMUs to share perf_hw_context. PMUs which are
- * uncore must use perf_invalid_context.
- */
- if (WARN_ON_ONCE(hw_context_taken &&
- !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
- pmu->task_ctx_nr = perf_invalid_context;
-
- hw_context_taken = 1;
- }
-
- pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
- if (pmu->pmu_cpu_context)
- goto got_cpu_context;
-
ret = -ENOMEM;
- pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
- if (!pmu->pmu_cpu_context)
+ pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
+ if (!pmu->cpu_pmu_context)
goto free_dev;
for_each_possible_cpu(cpu) {
- struct perf_cpu_context *cpuctx;
+ struct perf_cpu_pmu_context *cpc;
- cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
- __perf_event_init_context(&cpuctx->ctx);
- lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
- lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
- cpuctx->ctx.pmu = pmu;
- cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
-
- __perf_mux_hrtimer_init(cpuctx, cpu);
+ cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
+ __perf_init_event_pmu_context(&cpc->epc, pmu);
+ __perf_mux_hrtimer_init(cpc, cpu);
}
-got_cpu_context:
if (!pmu->start_txn) {
if (pmu->pmu_enable) {
/*
@@ -10349,37 +10462,6 @@ static int perf_event_set_clock(struct p
return 0;
}
-/*
- * Variation on perf_event_ctx_lock_nested(), except we take two context
- * mutexes.
- */
-static struct perf_event_context *
-__perf_event_ctx_lock_double(struct perf_event *group_leader,
- struct perf_event_context *ctx)
-{
- struct perf_event_context *gctx;
-
-again:
- rcu_read_lock();
- gctx = READ_ONCE(group_leader->ctx);
- if (!atomic_inc_not_zero(&gctx->refcount)) {
- rcu_read_unlock();
- goto again;
- }
- rcu_read_unlock();
-
- mutex_lock_double(&gctx->mutex, &ctx->mutex);
-
- if (group_leader->ctx != gctx) {
- mutex_unlock(&ctx->mutex);
- mutex_unlock(&gctx->mutex);
- put_ctx(gctx);
- goto again;
- }
-
- return gctx;
-}
-
/**
* sys_perf_event_open - open a performance event, associate it to a task/cpu
*
@@ -10393,9 +10475,10 @@ SYSCALL_DEFINE5(perf_event_open,
pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
{
struct perf_event *group_leader = NULL, *output_event = NULL;
+ struct perf_event_pmu_context *pmu_ctx;
struct perf_event *event, *sibling;
struct perf_event_attr attr;
- struct perf_event_context *ctx, *uninitialized_var(gctx);
+ struct perf_event_context *ctx;
struct file *event_file = NULL;
struct fd group = {NULL, 0};
struct task_struct *task = NULL;
@@ -10506,6 +10589,8 @@ SYSCALL_DEFINE5(perf_event_open,
goto err_cred;
}
+ // XXX premature; what if this is allowed, but we get moved to a PMU
+ // that doesn't have this.
if (is_sampling_event(event)) {
if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
err = -EOPNOTSUPP;
@@ -10525,50 +10610,45 @@ SYSCALL_DEFINE5(perf_event_open,
goto err_alloc;
}
+ if (pmu->task_ctx_nr < 0 && task) {
+ err = -EINVAL;
+ goto err_alloc;
+ }
+
if (pmu->task_ctx_nr == perf_sw_context)
event->event_caps |= PERF_EV_CAP_SOFTWARE;
- if (group_leader) {
- if (is_software_event(event) &&
- !in_software_context(group_leader)) {
- /*
- * If the event is a sw event, but the group_leader
- * is on hw context.
- *
- * Allow the addition of software events to hw
- * groups, this is safe because software events
- * never fail to schedule.
- */
- pmu = group_leader->ctx->pmu;
- } else if (!is_software_event(event) &&
- is_software_event(group_leader) &&
- (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
- /*
- * In case the group is a pure software group, and we
- * try to add a hardware event, move the whole group to
- * the hardware context.
- */
- move_group = 1;
- }
- }
-
/*
* Get the target context (task or percpu):
*/
- ctx = find_get_context(pmu, task, event);
+ ctx = find_get_context(task, event);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
goto err_alloc;
}
- if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
- err = -EBUSY;
- goto err_context;
+ mutex_lock(&ctx->mutex);
+
+ if (ctx->task == TASK_TOMBSTONE) {
+ err = -ESRCH;
+ goto err_locked;
+ }
+
+ if (!task) {
+ /*
+ * Check if the @cpu we're creating an event for is online.
+ *
+ * We use the perf_cpu_context::ctx::mutex to serialize against
+ * the hotplug notifiers. See perf_event_{init,exit}_cpu().
+ */
+ struct perf_cpu_context *cpuctx = per_cpu_ptr(&cpu_context, event->cpu);
+
+ if (!cpuctx->online) {
+ err = -ENODEV;
+ goto err_locked;
+ }
}
- /*
- * Look up the group leader (we will attach this event to it):
- */
if (group_leader) {
err = -EINVAL;
@@ -10577,11 +10657,11 @@ SYSCALL_DEFINE5(perf_event_open,
* becoming part of another group-sibling):
*/
if (group_leader->group_leader != group_leader)
- goto err_context;
+ goto err_locked;
/* All events in a group should have the same clock */
if (group_leader->clock != event->clock)
- goto err_context;
+ goto err_locked;
/*
* Make sure we're both events for the same CPU;
@@ -10589,28 +10669,57 @@ SYSCALL_DEFINE5(perf_event_open,
* you can never concurrently schedule them anyhow.
*/
if (group_leader->cpu != event->cpu)
- goto err_context;
-
- /*
- * Make sure we're both on the same task, or both
- * per-CPU events.
- */
- if (group_leader->ctx->task != ctx->task)
- goto err_context;
+ goto err_locked;
/*
- * Do not allow to attach to a group in a different task
- * or CPU context. If we're moving SW events, we'll fix
- * this up later, so allow that.
+ * Make sure we're both on the same context; either task or cpu.
*/
- if (!move_group && group_leader->ctx != ctx)
- goto err_context;
+ if (group_leader->ctx != ctx)
+ goto err_locked;
/*
* Only a group leader can be exclusive or pinned
*/
if (attr.exclusive || attr.pinned)
- goto err_context;
+ goto err_locked;
+
+ if (is_software_event(event) &&
+ !in_software_context(group_leader)) {
+ /*
+ * If the event is a sw event, but the group_leader
+ * is on hw context.
+ *
+ * Allow the addition of software events to hw
+ * groups, this is safe because software events
+ * never fail to schedule.
+ */
+ pmu = group_leader->pmu_ctx->pmu;
+ } else if (!is_software_event(event) &&
+ is_software_event(group_leader) &&
+ (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
+ /*
+ * In case the group is a pure software group, and we
+ * try to add a hardware event, move the whole group to
+ * the hardware context.
+ */
+ move_group = 1;
+ }
+ }
+
+ /*
+ * Now that we're certain of the pmu; find the pmu_ctx.
+ */
+ pmu_ctx = find_get_pmu_context(pmu, ctx, event);
+ if (IS_ERR(pmu_ctx)) {
+ err = PTR_ERR(pmu_ctx);
+ goto err_locked;
+ }
+ event->pmu_ctx = pmu_ctx;
+
+ // XXX think about exclusive
+ if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
+ err = -EBUSY;
+ goto err_context;
}
if (output_event) {
@@ -10619,71 +10728,18 @@ SYSCALL_DEFINE5(perf_event_open,
goto err_context;
}
- event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
- f_flags);
+ event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
if (IS_ERR(event_file)) {
err = PTR_ERR(event_file);
event_file = NULL;
goto err_context;
}
- if (move_group) {
- gctx = __perf_event_ctx_lock_double(group_leader, ctx);
-
- if (gctx->task == TASK_TOMBSTONE) {
- err = -ESRCH;
- goto err_locked;
- }
-
- /*
- * Check if we raced against another sys_perf_event_open() call
- * moving the software group underneath us.
- */
- if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
- /*
- * If someone moved the group out from under us, check
- * if this new event wound up on the same ctx, if so
- * its the regular !move_group case, otherwise fail.
- */
- if (gctx != ctx) {
- err = -EINVAL;
- goto err_locked;
- } else {
- perf_event_ctx_unlock(group_leader, gctx);
- move_group = 0;
- }
- }
- } else {
- mutex_lock(&ctx->mutex);
- }
-
- if (ctx->task == TASK_TOMBSTONE) {
- err = -ESRCH;
- goto err_locked;
- }
-
if (!perf_event_validate_size(event)) {
err = -E2BIG;
- goto err_locked;
+ goto err_file;
}
- if (!task) {
- /*
- * Check if the @cpu we're creating an event for is online.
- *
- * We use the perf_cpu_context::ctx::mutex to serialize against
- * the hotplug notifiers. See perf_event_{init,exit}_cpu().
- */
- struct perf_cpu_context *cpuctx =
- container_of(ctx, struct perf_cpu_context, ctx);
-
- if (!cpuctx->online) {
- err = -ENODEV;
- goto err_locked;
- }
- }
-
-
/*
* Must be under the same ctx::mutex as perf_install_in_context(),
* because we need to serialize with concurrent event creation.
@@ -10693,7 +10749,7 @@ SYSCALL_DEFINE5(perf_event_open,
WARN_ON_ONCE(move_group);
err = -EBUSY;
- goto err_locked;
+ goto err_file;
}
WARN_ON_ONCE(ctx->parent_ctx);
@@ -10704,25 +10760,15 @@ SYSCALL_DEFINE5(perf_event_open,
*/
if (move_group) {
- /*
- * See perf_event_ctx_lock() for comments on the details
- * of swizzling perf_event::ctx.
- */
perf_remove_from_context(group_leader, 0);
- put_ctx(gctx);
+ put_pmu_ctx(group_leader->pmu_ctx);
for_each_sibling_event(sibling, group_leader) {
perf_remove_from_context(sibling, 0);
- put_ctx(gctx);
+ put_pmu_ctx(sibling->pmu_ctx);
}
/*
- * Wait for everybody to stop referencing the events through
- * the old lists, before installing it on new lists.
- */
- synchronize_rcu();
-
- /*
* Install the group siblings before the group leader.
*
* Because a group leader will try and install the entire group
@@ -10733,9 +10779,10 @@ SYSCALL_DEFINE5(perf_event_open,
* reachable through the group lists.
*/
for_each_sibling_event(sibling, group_leader) {
+ sibling->pmu_ctx = pmu_ctx;
+ get_pmu_ctx(pmu_ctx);
perf_event__state_init(sibling);
perf_install_in_context(ctx, sibling, sibling->cpu);
- get_ctx(ctx);
}
/*
@@ -10743,9 +10790,10 @@ SYSCALL_DEFINE5(perf_event_open,
* event. What we want here is event in the initial
* startup state, ready to be add into new context.
*/
+ group_leader->pmu_ctx = pmu_ctx;
+ get_pmu_ctx(pmu_ctx);
perf_event__state_init(group_leader);
perf_install_in_context(ctx, group_leader, group_leader->cpu);
- get_ctx(ctx);
}
/*
@@ -10762,8 +10810,6 @@ SYSCALL_DEFINE5(perf_event_open,
perf_install_in_context(ctx, event, event->cpu);
perf_unpin_context(ctx);
- if (move_group)
- perf_event_ctx_unlock(group_leader, gctx);
mutex_unlock(&ctx->mutex);
if (task) {
@@ -10785,13 +10831,12 @@ SYSCALL_DEFINE5(perf_event_open,
fd_install(event_fd, event_file);
return event_fd;
-err_locked:
- if (move_group)
- perf_event_ctx_unlock(group_leader, gctx);
- mutex_unlock(&ctx->mutex);
-/* err_file: */
+err_file:
fput(event_file);
err_context:
+ /* event->pmu_ctx freed by free_event() */
+err_locked:
+ mutex_unlock(&ctx->mutex);
perf_unpin_context(ctx);
put_ctx(ctx);
err_alloc:
@@ -10827,8 +10872,10 @@ perf_event_create_kernel_counter(struct
perf_overflow_handler_t overflow_handler,
void *context)
{
+ struct perf_event_pmu_context *pmu_ctx;
struct perf_event_context *ctx;
struct perf_event *event;
+ struct pmu *pmu;
int err;
/*
@@ -10844,12 +10891,28 @@ perf_event_create_kernel_counter(struct
/* Mark owner so we could distinguish it from user events. */
event->owner = TASK_TOMBSTONE;
+ pmu = event->pmu;
+
+ if (pmu->task_ctx_nr < 0 && task) {
+ err = -EINVAL;
+ goto err_alloc;
+ }
+
+ if (pmu->task_ctx_nr == perf_sw_context)
+ event->event_caps |= PERF_EV_CAP_SOFTWARE;
- ctx = find_get_context(event->pmu, task, event);
+ ctx = find_get_context(task, event);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
- goto err_free;
+ goto err_alloc;
+ }
+
+ pmu_ctx = find_get_pmu_context(pmu, ctx, event);
+ if (IS_ERR(pmu_ctx)) {
+ err = PTR_ERR(pmu_ctx);
+ goto err_ctx;
}
+ event->pmu_ctx = pmu_ctx;
WARN_ON_ONCE(ctx->parent_ctx);
mutex_lock(&ctx->mutex);
@@ -10886,9 +10949,10 @@ perf_event_create_kernel_counter(struct
err_unlock:
mutex_unlock(&ctx->mutex);
+err_ctx:
perf_unpin_context(ctx);
put_ctx(ctx);
-err_free:
+err_alloc:
free_event(event);
err:
return ERR_PTR(err);
@@ -10897,6 +10961,7 @@ EXPORT_SYMBOL_GPL(perf_event_create_kern
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
+#if 0 // XXX buggered - cpu hotplug, who cares
struct perf_event_context *src_ctx;
struct perf_event_context *dst_ctx;
struct perf_event *event, *tmp;
@@ -10957,6 +11022,7 @@ void perf_pmu_migrate_context(struct pmu
}
mutex_unlock(&dst_ctx->mutex);
mutex_unlock(&src_ctx->mutex);
+#endif
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
@@ -11038,14 +11104,14 @@ perf_event_exit_event(struct perf_event
put_event(parent_event);
}
-static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
+static void perf_event_exit_task_context(struct task_struct *child)
{
struct perf_event_context *child_ctx, *clone_ctx = NULL;
struct perf_event *child_event, *next;
WARN_ON_ONCE(child != current);
- child_ctx = perf_pin_task_context(child, ctxn);
+ child_ctx = perf_pin_task_context(child);
if (!child_ctx)
return;
@@ -11067,13 +11133,13 @@ static void perf_event_exit_task_context
* in.
*/
raw_spin_lock_irq(&child_ctx->lock);
- task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
+ task_ctx_sched_out(child_ctx, EVENT_ALL);
/*
* Now that the context is inactive, destroy the task <-> ctx relation
* and mark the context dead.
*/
- RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
+ RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
put_ctx(child_ctx); /* cannot be last */
WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
put_task_struct(current); /* cannot be last */
@@ -11108,7 +11174,6 @@ static void perf_event_exit_task_context
void perf_event_exit_task(struct task_struct *child)
{
struct perf_event *event, *tmp;
- int ctxn;
mutex_lock(&child->perf_event_mutex);
list_for_each_entry_safe(event, tmp, &child->perf_event_list,
@@ -11124,8 +11189,7 @@ void perf_event_exit_task(struct task_st
}
mutex_unlock(&child->perf_event_mutex);
- for_each_task_context_nr(ctxn)
- perf_event_exit_task_context(child, ctxn);
+ perf_event_exit_task_context(child);
/*
* The perf_event_exit_task_context calls perf_event_task
@@ -11168,40 +11232,34 @@ void perf_event_free_task(struct task_st
{
struct perf_event_context *ctx;
struct perf_event *event, *tmp;
- int ctxn;
- for_each_task_context_nr(ctxn) {
- ctx = task->perf_event_ctxp[ctxn];
- if (!ctx)
- continue;
+ ctx = rcu_dereference(task->perf_event_ctxp);
+ if (!ctx)
+ return;
- mutex_lock(&ctx->mutex);
- raw_spin_lock_irq(&ctx->lock);
- /*
- * Destroy the task <-> ctx relation and mark the context dead.
- *
- * This is important because even though the task hasn't been
- * exposed yet the context has been (through child_list).
- */
- RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
- WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
- put_task_struct(task); /* cannot be last */
- raw_spin_unlock_irq(&ctx->lock);
+ mutex_lock(&ctx->mutex);
+ raw_spin_lock_irq(&ctx->lock);
+ /*
+ * Destroy the task <-> ctx relation and mark the context dead.
+ *
+ * This is important because even though the task hasn't been
+ * exposed yet the context has been (through child_list).
+ */
+ RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
+ WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
+ put_task_struct(task); /* cannot be last */
+ raw_spin_unlock_irq(&ctx->lock);
- list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
- perf_free_event(event, ctx);
+ list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
+ perf_free_event(event, ctx);
- mutex_unlock(&ctx->mutex);
- put_ctx(ctx);
- }
+ mutex_unlock(&ctx->mutex);
+ put_ctx(ctx);
}
void perf_event_delayed_put(struct task_struct *task)
{
- int ctxn;
-
- for_each_task_context_nr(ctxn)
- WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
+ WARN_ON_ONCE(task->perf_event_ctxp);
}
struct file *perf_event_get(unsigned int fd)
@@ -11253,6 +11311,7 @@ inherit_event(struct perf_event *parent_
struct perf_event_context *child_ctx)
{
enum perf_event_state parent_state = parent_event->state;
+ struct perf_event_pmu_context *pmu_ctx;
struct perf_event *child_event;
unsigned long flags;
@@ -11273,18 +11332,12 @@ inherit_event(struct perf_event *parent_
if (IS_ERR(child_event))
return child_event;
-
- if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
- !child_ctx->task_ctx_data) {
- struct pmu *pmu = child_event->pmu;
-
- child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
- GFP_KERNEL);
- if (!child_ctx->task_ctx_data) {
- free_event(child_event);
- return NULL;
- }
+ pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
+ if (!pmu_ctx) {
+ free_event(child_event);
+ return NULL;
}
+ child_event->pmu_ctx = pmu_ctx;
/*
* is_orphaned_event() and list_add_tail(&parent_event->child_list)
@@ -11402,18 +11455,18 @@ static int inherit_group(struct perf_eve
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
struct perf_event_context *parent_ctx,
- struct task_struct *child, int ctxn,
+ struct task_struct *child,
int *inherited_all)
{
- int ret;
struct perf_event_context *child_ctx;
+ int ret;
if (!event->attr.inherit) {
*inherited_all = 0;
return 0;
}
- child_ctx = child->perf_event_ctxp[ctxn];
+ child_ctx = child->perf_event_ctxp;
if (!child_ctx) {
/*
* This is executed from the parent task context, so
@@ -11421,16 +11474,14 @@ inherit_task_group(struct perf_event *ev
* First allocate and initialize a context for the
* child.
*/
- child_ctx = alloc_perf_context(parent_ctx->pmu, child);
+ child_ctx = alloc_perf_context(child);
if (!child_ctx)
return -ENOMEM;
- child->perf_event_ctxp[ctxn] = child_ctx;
+ child->perf_event_ctxp = child_ctx;
}
- ret = inherit_group(event, parent, parent_ctx,
- child, child_ctx);
-
+ ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
if (ret)
*inherited_all = 0;
@@ -11440,7 +11491,7 @@ inherit_task_group(struct perf_event *ev
/*
* Initialize the perf_event context in task_struct
*/
-static int perf_event_init_context(struct task_struct *child, int ctxn)
+static int perf_event_init_context(struct task_struct *child)
{
struct perf_event_context *child_ctx, *parent_ctx;
struct perf_event_context *cloned_ctx;
@@ -11450,14 +11501,14 @@ static int perf_event_init_context(struc
unsigned long flags;
int ret = 0;
- if (likely(!parent->perf_event_ctxp[ctxn]))
+ if (likely(!parent->perf_event_ctxp))
return 0;
/*
* If the parent's context is a clone, pin it so it won't get
* swapped under us.
*/
- parent_ctx = perf_pin_task_context(parent, ctxn);
+ parent_ctx = perf_pin_task_context(parent);
if (!parent_ctx)
return 0;
@@ -11480,7 +11531,7 @@ static int perf_event_init_context(struc
*/
perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
ret = inherit_task_group(event, parent, parent_ctx,
- child, ctxn, &inherited_all);
+ child, &inherited_all);
if (ret)
goto out_unlock;
}
@@ -11496,7 +11547,7 @@ static int perf_event_init_context(struc
perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
ret = inherit_task_group(event, parent, parent_ctx,
- child, ctxn, &inherited_all);
+ child, &inherited_all);
if (ret)
goto out_unlock;
}
@@ -11504,7 +11555,7 @@ static int perf_event_init_context(struc
raw_spin_lock_irqsave(&parent_ctx->lock, flags);
parent_ctx->rotate_disable = 0;
- child_ctx = child->perf_event_ctxp[ctxn];
+ child_ctx = child->perf_event_ctxp;
if (child_ctx && inherited_all) {
/*
@@ -11540,18 +11591,16 @@ static int perf_event_init_context(struc
*/
int perf_event_init_task(struct task_struct *child)
{
- int ctxn, ret;
+ int ret;
- memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
+ child->perf_event_ctxp = NULL;
mutex_init(&child->perf_event_mutex);
INIT_LIST_HEAD(&child->perf_event_list);
- for_each_task_context_nr(ctxn) {
- ret = perf_event_init_context(child, ctxn);
- if (ret) {
- perf_event_free_task(child);
- return ret;
- }
+ ret = perf_event_init_context(child);
+ if (ret) {
+ perf_event_free_task(child);
+ return ret;
}
return 0;
@@ -11560,6 +11609,7 @@ int perf_event_init_task(struct task_str
static void __init perf_event_init_all_cpus(void)
{
struct swevent_htable *swhash;
+ struct perf_cpu_context *cpuctx;
int cpu;
zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
@@ -11567,7 +11617,6 @@ static void __init perf_event_init_all_c
for_each_possible_cpu(cpu) {
swhash = &per_cpu(swevent_htable, cpu);
mutex_init(&swhash->hlist_mutex);
- INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
@@ -11576,6 +11625,12 @@ static void __init perf_event_init_all_c
INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
+
+ cpuctx = per_cpu_ptr(&cpu_context, cpu);
+ __perf_event_init_context(&cpuctx->ctx);
+ lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
+ lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
+ cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
}
}
@@ -11597,12 +11652,12 @@ void perf_swevent_init_cpu(unsigned int
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
static void __perf_event_exit_context(void *__info)
{
+ struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
struct perf_event_context *ctx = __info;
- struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
struct perf_event *event;
raw_spin_lock(&ctx->lock);
- ctx_sched_out(ctx, cpuctx, EVENT_TIME);
+ ctx_sched_out(ctx, EVENT_TIME);
list_for_each_entry(event, &ctx->event_list, event_entry)
__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
raw_spin_unlock(&ctx->lock);
@@ -11612,18 +11667,16 @@ static void perf_event_exit_cpu_context(
{
struct perf_cpu_context *cpuctx;
struct perf_event_context *ctx;
- struct pmu *pmu;
+ // XXX simplify cpuctx->online
mutex_lock(&pmus_lock);
- list_for_each_entry(pmu, &pmus, entry) {
- cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
- ctx = &cpuctx->ctx;
+ cpuctx = per_cpu_ptr(&cpu_context, cpu);
+ ctx = &cpuctx->ctx;
- mutex_lock(&ctx->mutex);
- smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
- cpuctx->online = 0;
- mutex_unlock(&ctx->mutex);
- }
+ mutex_lock(&ctx->mutex);
+ smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
+ cpuctx->online = 0;
+ mutex_unlock(&ctx->mutex);
cpumask_clear_cpu(cpu, perf_online_mask);
mutex_unlock(&pmus_lock);
}
@@ -11637,20 +11690,17 @@ int perf_event_init_cpu(unsigned int cpu
{
struct perf_cpu_context *cpuctx;
struct perf_event_context *ctx;
- struct pmu *pmu;
perf_swevent_init_cpu(cpu);
mutex_lock(&pmus_lock);
cpumask_set_cpu(cpu, perf_online_mask);
- list_for_each_entry(pmu, &pmus, entry) {
- cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
- ctx = &cpuctx->ctx;
+ cpuctx = per_cpu_ptr(&cpu_context, cpu);
+ ctx = &cpuctx->ctx;
- mutex_lock(&ctx->mutex);
- cpuctx->online = 1;
- mutex_unlock(&ctx->mutex);
- }
+ mutex_lock(&ctx->mutex);
+ cpuctx->online = 1;
+ mutex_unlock(&ctx->mutex);
mutex_unlock(&pmus_lock);
return 0;
Hi Peter,
I am trying to understand this. Pardon me if any question is silly.
I am not sure I fully understand the motivation here. I guess we
see problem when there are two (or more) independent hardware PMUs
per cpu? Then on a given cpu, there are two (or more)
perf_cpu_context, but only one task context?
If this is correct (I really doubt...), I guess perf_rotate_context()
is the problem? And if this is still correct, this patch may not help,
as we are doing rotation for each perf_cpu_pmu_context? (or rotation
per perf_event_context is the next step?).
Or step back a little... I see two big changes:
1. struct perf_ctx_context is now per cpu (instead of per pmu per cpu);
2. one perf_event_ctxp per task_struct (instead of 2).
I think #1 is a bigger change than #2. Is this correct?
Of course, I could be totally lost. I will continue reading the code
tomorrow.
Could you please help me understand it better?
Thanks,
Song
> On Oct 10, 2018, at 3:45 AM, Peter Zijlstra <[email protected]> wrote:
>
> Hi all,
>
> There have been various issues and limitations with the way perf uses
> (task) contexts to track events. Most notable is the single hardware PMU
> task context, which has resulted in a number of yucky things (both
> proposed and merged).
> Notably:
>
> - HW breakpoint PMU
> - ARM big.little PMU
> - Intel Branch Monitoring PMU
>
> Since we now track the events in RB trees, we can 'simply' add a pmu
> order to them and have them grouped that way, reducing to a single
> context. Of course, reality never quite works out that simple, and below
> ends up adding an intermediate data structure to bridge the context ->
> pmu mapping.
>
> Something a little like:
>
> ,------------------------[1:n]---------------------.
> V V
> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> ^ ^ | |
> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>
> This patch builds (provided you disable CGROUP_PERF), boots and survives
> perf-top without the machine catching fire.
>
> There's still a fair bit of loose ends (look for XXX), but I think this
> is the direction we should be going.
>
> Comments?
>
> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
> ---
> arch/powerpc/perf/core-book3s.c | 4
> arch/x86/events/core.c | 4
> arch/x86/events/intel/core.c | 6
> arch/x86/events/intel/ds.c | 6
> arch/x86/events/intel/lbr.c | 16
> arch/x86/events/perf_event.h | 6
> include/linux/perf_event.h | 80 +-
> include/linux/sched.h | 2
> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
> 9 files changed, 815 insertions(+), 721 deletions(-)
>
> --- a/arch/powerpc/perf/core-book3s.c
> +++ b/arch/powerpc/perf/core-book3s.c
> @@ -125,7 +125,7 @@ static unsigned long ebb_switch_in(bool
>
> static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
> static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
> -static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
> +static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
> static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
> static void pmao_restore_workaround(bool ebb) { }
> #endif /* CONFIG_PPC32 */
> @@ -395,7 +395,7 @@ static void power_pmu_bhrb_disable(struc
> /* Called from ctxsw to prevent one process's branch entries to
> * mingle with the other process's entries during context switch.
> */
> -static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
> +static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
> {
> if (!ppmu->bhrb_nr)
> return;
> --- a/arch/x86/events/core.c
> +++ b/arch/x86/events/core.c
> @@ -2286,10 +2286,10 @@ static const struct attribute_group *x86
> NULL,
> };
>
> -static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
> +static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
> {
> if (x86_pmu.sched_task)
> - x86_pmu.sched_task(ctx, sched_in);
> + x86_pmu.sched_task(pmu_ctx, sched_in);
> }
>
> void perf_check_microcode(void)
> --- a/arch/x86/events/intel/core.c
> +++ b/arch/x86/events/intel/core.c
> @@ -3537,11 +3537,11 @@ static void intel_pmu_cpu_dying(int cpu)
> disable_counter_freeze();
> }
>
> -static void intel_pmu_sched_task(struct perf_event_context *ctx,
> +static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
> bool sched_in)
> {
> - intel_pmu_pebs_sched_task(ctx, sched_in);
> - intel_pmu_lbr_sched_task(ctx, sched_in);
> + intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
> + intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
> }
>
> PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
> --- a/arch/x86/events/intel/ds.c
> +++ b/arch/x86/events/intel/ds.c
> @@ -885,7 +885,7 @@ static inline bool pebs_needs_sched_cb(s
> return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
> }
>
> -void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
> +void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
> {
> struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
>
> @@ -947,7 +947,7 @@ void intel_pmu_pebs_add(struct perf_even
> if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
> cpuc->n_large_pebs++;
>
> - pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
> + pebs_update_state(needed_cb, cpuc, event->pmu);
> }
>
> void intel_pmu_pebs_enable(struct perf_event *event)
> @@ -991,7 +991,7 @@ void intel_pmu_pebs_del(struct perf_even
> if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
> cpuc->n_large_pebs--;
>
> - pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
> + pebs_update_state(needed_cb, cpuc, event->pmu);
> }
>
> void intel_pmu_pebs_disable(struct perf_event *event)
> --- a/arch/x86/events/intel/lbr.c
> +++ b/arch/x86/events/intel/lbr.c
> @@ -417,7 +417,7 @@ static void __intel_pmu_lbr_save(struct
> cpuc->last_log_id = ++task_ctx->log_id;
> }
>
> -void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
> +void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
> {
> struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
> struct x86_perf_task_context *task_ctx;
> @@ -430,7 +430,7 @@ void intel_pmu_lbr_sched_task(struct per
> * the task was scheduled out, restore the stack. Otherwise flush
> * the LBR stack.
> */
> - task_ctx = ctx ? ctx->task_ctx_data : NULL;
> + task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
> if (task_ctx) {
> if (sched_in)
> __intel_pmu_lbr_restore(task_ctx);
> @@ -464,8 +464,8 @@ void intel_pmu_lbr_add(struct perf_event
>
> cpuc->br_sel = event->hw.branch_reg.reg;
>
> - if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
> - task_ctx = event->ctx->task_ctx_data;
> + if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data) {
> + task_ctx = event->pmu_ctx->task_ctx_data;
> task_ctx->lbr_callstack_users++;
> }
>
> @@ -488,7 +488,7 @@ void intel_pmu_lbr_add(struct perf_event
> * be 'new'. Conversely, a new event can get installed through the
> * context switch path for the first time.
> */
> - perf_sched_cb_inc(event->ctx->pmu);
> + perf_sched_cb_inc(event->pmu);
> if (!cpuc->lbr_users++ && !event->total_time_running)
> intel_pmu_lbr_reset();
> }
> @@ -502,14 +502,14 @@ void intel_pmu_lbr_del(struct perf_event
> return;
>
> if (branch_user_callstack(cpuc->br_sel) &&
> - event->ctx->task_ctx_data) {
> - task_ctx = event->ctx->task_ctx_data;
> + event->pmu_ctx->task_ctx_data) {
> + task_ctx = event->pmu_ctx->task_ctx_data;
> task_ctx->lbr_callstack_users--;
> }
>
> cpuc->lbr_users--;
> WARN_ON_ONCE(cpuc->lbr_users < 0);
> - perf_sched_cb_dec(event->ctx->pmu);
> + perf_sched_cb_dec(event->pmu);
> }
>
> void intel_pmu_lbr_enable_all(bool pmi)
> --- a/arch/x86/events/perf_event.h
> +++ b/arch/x86/events/perf_event.h
> @@ -589,7 +589,7 @@ struct x86_pmu {
> void (*cpu_dead)(int cpu);
>
> void (*check_microcode)(void);
> - void (*sched_task)(struct perf_event_context *ctx,
> + void (*sched_task)(struct perf_event_pmu_context *pmu_ctx,
> bool sched_in);
>
> /*
> @@ -930,13 +930,13 @@ void intel_pmu_pebs_enable_all(void);
>
> void intel_pmu_pebs_disable_all(void);
>
> -void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in);
> +void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
>
> void intel_pmu_auto_reload_read(struct perf_event *event);
>
> void intel_ds_init(void);
>
> -void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in);
> +void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
>
> u64 lbr_from_signext_quirk_wr(u64 val);
>
> --- a/include/linux/perf_event.h
> +++ b/include/linux/perf_event.h
> @@ -227,6 +227,7 @@ struct hw_perf_event {
> };
>
> struct perf_event;
> +struct perf_event_pmu_context;
>
> /*
> * Common implementation detail of pmu::{start,commit,cancel}_txn
> @@ -263,7 +264,9 @@ struct pmu {
> int capabilities;
>
> int * __percpu pmu_disable_count;
> - struct perf_cpu_context * __percpu pmu_cpu_context;
> + struct perf_cpu_pmu_context * __percpu cpu_pmu_context;
> +
> +
> atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
> int task_ctx_nr;
> int hrtimer_interval_ms;
> @@ -398,7 +401,7 @@ struct pmu {
> /*
> * context-switches callback
> */
> - void (*sched_task) (struct perf_event_context *ctx,
> + void (*sched_task) (struct perf_event_pmu_context *ctx,
> bool sched_in);
> /*
> * PMU specific data size
> @@ -619,6 +622,7 @@ struct perf_event {
> struct hw_perf_event hw;
>
> struct perf_event_context *ctx;
> + struct perf_event_pmu_context *pmu_ctx;
> atomic_long_t refcount;
>
> /*
> @@ -698,6 +702,41 @@ struct perf_event {
> #endif /* CONFIG_PERF_EVENTS */
> };
>
> +/*
> + * ,------------------------[1:n]---------------------.
> + * V V
> + * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> + * ^ ^ | |
> + * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
> + *
> + *
> + * XXX destroy epc when empty
> + * refcount, !rcu
> + *
> + * XXX epc locking
> + *
> + * event->pmu_ctx ctx->mutex && inactive
> + * ctx->pmu_ctx_list ctx->mutex && ctx->lock
> + *
> + */
> +struct perf_event_pmu_context {
> + struct pmu *pmu;
> + struct perf_event_context *ctx;
> +
> + struct list_head pmu_ctx_entry;
> +
> + struct list_head pinned_active;
> + struct list_head flexible_active;
> +
> + unsigned int embedded : 1;
> +
> + unsigned int nr_events;
> + unsigned int nr_active;
> +
> + atomic_t refcount; /* event <-> epc */
> +
> + void *task_ctx_data; /* pmu specific data */
> +};
>
> struct perf_event_groups {
> struct rb_root tree;
> @@ -710,7 +749,6 @@ struct perf_event_groups {
> * Used as a container for task events and CPU events as well:
> */
> struct perf_event_context {
> - struct pmu *pmu;
> /*
> * Protect the states of the events in the list,
> * nr_active, and the list:
> @@ -723,20 +761,21 @@ struct perf_event_context {
> */
> struct mutex mutex;
>
> - struct list_head active_ctx_list;
> + struct list_head pmu_ctx_list;
> +
> struct perf_event_groups pinned_groups;
> struct perf_event_groups flexible_groups;
> struct list_head event_list;
>
> - struct list_head pinned_active;
> - struct list_head flexible_active;
> -
> int nr_events;
> int nr_active;
> int is_active;
> +
> + int nr_task_data;
> int nr_stat;
> int nr_freq;
> int rotate_disable;
> +
> atomic_t refcount;
> struct task_struct *task;
>
> @@ -757,7 +796,6 @@ struct perf_event_context {
> #ifdef CONFIG_CGROUP_PERF
> int nr_cgroups; /* cgroup evts */
> #endif
> - void *task_ctx_data; /* pmu specific data */
> struct rcu_head rcu_head;
> };
>
> @@ -767,12 +805,13 @@ struct perf_event_context {
> */
> #define PERF_NR_CONTEXTS 4
>
> -/**
> - * struct perf_event_cpu_context - per cpu event context structure
> - */
> -struct perf_cpu_context {
> - struct perf_event_context ctx;
> - struct perf_event_context *task_ctx;
> +struct perf_cpu_pmu_context {
> + struct perf_event_pmu_context epc;
> + struct perf_event_pmu_context *task_epc;
> +
> + struct list_head sched_cb_entry;
> + int sched_cb_usage;
> +
> int active_oncpu;
> int exclusive;
>
> @@ -780,15 +819,20 @@ struct perf_cpu_context {
> struct hrtimer hrtimer;
> ktime_t hrtimer_interval;
> unsigned int hrtimer_active;
> +};
> +
> +/**
> + * struct perf_event_cpu_context - per cpu event context structure
> + */
> +struct perf_cpu_context {
> + struct perf_event_context ctx;
> + struct perf_event_context *task_ctx;
>
> #ifdef CONFIG_CGROUP_PERF
> struct perf_cgroup *cgrp;
> struct list_head cgrp_cpuctx_entry;
> #endif
>
> - struct list_head sched_cb_entry;
> - int sched_cb_usage;
> -
> int online;
> };
>
> @@ -1022,7 +1066,7 @@ static inline int is_software_event(stru
> */
> static inline int in_software_context(struct perf_event *event)
> {
> - return event->ctx->pmu->task_ctx_nr == perf_sw_context;
> + return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
> }
>
> extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
> --- a/include/linux/sched.h
> +++ b/include/linux/sched.h
> @@ -1000,7 +1000,7 @@ struct task_struct {
> struct futex_pi_state *pi_state_cache;
> #endif
> #ifdef CONFIG_PERF_EVENTS
> - struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
> + struct perf_event_context *perf_event_ctxp;
> struct mutex perf_event_mutex;
> struct list_head perf_event_list;
> #endif
> --- a/kernel/events/core.c
> +++ b/kernel/events/core.c
> @@ -143,12 +143,6 @@ static int cpu_function_call(int cpu, re
> return data.ret;
> }
>
> -static inline struct perf_cpu_context *
> -__get_cpu_context(struct perf_event_context *ctx)
> -{
> - return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
> -}
> -
> static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
> struct perf_event_context *ctx)
> {
> @@ -172,6 +166,8 @@ static bool is_kernel_event(struct perf_
> return READ_ONCE(event->owner) == TASK_TOMBSTONE;
> }
>
> +static DEFINE_PER_CPU(struct perf_cpu_context, cpu_context);
> +
> /*
> * On task ctx scheduling...
> *
> @@ -205,7 +201,7 @@ static int event_function(void *info)
> struct event_function_struct *efs = info;
> struct perf_event *event = efs->event;
> struct perf_event_context *ctx = event->ctx;
> - struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> struct perf_event_context *task_ctx = cpuctx->task_ctx;
> int ret = 0;
>
> @@ -302,7 +298,7 @@ static void event_function_call(struct p
> static void event_function_local(struct perf_event *event, event_f func, void *data)
> {
> struct perf_event_context *ctx = event->ctx;
> - struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> struct task_struct *task = READ_ONCE(ctx->task);
> struct perf_event_context *task_ctx = NULL;
>
> @@ -376,7 +372,6 @@ static DEFINE_MUTEX(perf_sched_mutex);
> static atomic_t perf_sched_count;
>
> static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
> -static DEFINE_PER_CPU(int, perf_sched_cb_usages);
> static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
>
> static atomic_t nr_mmap_events __read_mostly;
> @@ -430,7 +425,7 @@ static void update_perf_cpu_limits(void)
> WRITE_ONCE(perf_sample_allowed_ns, tmp);
> }
>
> -static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
> +static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
>
> int perf_proc_update_handler(struct ctl_table *table, int write,
> void __user *buffer, size_t *lenp,
> @@ -555,13 +550,6 @@ void perf_sample_event_took(u64 sample_l
>
> static atomic64_t perf_event_id;
>
> -static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
> - enum event_type_t event_type);
> -
> -static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
> - enum event_type_t event_type,
> - struct task_struct *task);
> -
> static void update_context_time(struct perf_event_context *ctx);
> static u64 perf_event_time(struct perf_event *event);
>
> @@ -810,7 +798,7 @@ static void perf_cgroup_switch(struct ta
> perf_pmu_disable(cpuctx->ctx.pmu);
>
> if (mode & PERF_CGROUP_SWOUT) {
> - cpu_ctx_sched_out(cpuctx, EVENT_ALL);
> + ctx_sched_out(&cpuctx->ctx, EVENT_ALL);
> /*
> * must not be done before ctxswout due
> * to event_filter_match() in event_sched_out()
> @@ -827,9 +815,8 @@ static void perf_cgroup_switch(struct ta
> * we pass the cpuctx->ctx to perf_cgroup_from_task()
> * because cgorup events are only per-cpu
> */
> - cpuctx->cgrp = perf_cgroup_from_task(task,
> - &cpuctx->ctx);
> - cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
> + cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
> + ctx_sched_in(&cpuctx->ctx, EVENT_ALL, task);
> }
> perf_pmu_enable(cpuctx->ctx.pmu);
> perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
> @@ -1063,34 +1050,30 @@ list_update_cgroup_event(struct perf_eve
> */
> static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
> {
> - struct perf_cpu_context *cpuctx;
> + struct perf_cpu_pmu_context *cpc;
> bool rotations;
>
> lockdep_assert_irqs_disabled();
>
> - cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
> - rotations = perf_rotate_context(cpuctx);
> + cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
> + rotations = perf_rotate_context(cpc);
>
> - raw_spin_lock(&cpuctx->hrtimer_lock);
> + raw_spin_lock(&cpc->hrtimer_lock);
> if (rotations)
> - hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
> + hrtimer_forward_now(hr, cpc->hrtimer_interval);
> else
> - cpuctx->hrtimer_active = 0;
> - raw_spin_unlock(&cpuctx->hrtimer_lock);
> + cpc->hrtimer_active = 0;
> + raw_spin_unlock(&cpc->hrtimer_lock);
>
> return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
> }
>
> -static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
> +static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
> {
> - struct hrtimer *timer = &cpuctx->hrtimer;
> - struct pmu *pmu = cpuctx->ctx.pmu;
> + struct hrtimer *timer = &cpc->hrtimer;
> + struct pmu *pmu = cpc->epc.pmu;
> u64 interval;
>
> - /* no multiplexing needed for SW PMU */
> - if (pmu->task_ctx_nr == perf_sw_context)
> - return;
> -
> /*
> * check default is sane, if not set then force to
> * default interval (1/tick)
> @@ -1099,30 +1082,25 @@ static void __perf_mux_hrtimer_init(stru
> if (interval < 1)
> interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
>
> - cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
> + cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
>
> - raw_spin_lock_init(&cpuctx->hrtimer_lock);
> + raw_spin_lock_init(&cpc->hrtimer_lock);
> hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
> timer->function = perf_mux_hrtimer_handler;
> }
>
> -static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
> +static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
> {
> - struct hrtimer *timer = &cpuctx->hrtimer;
> - struct pmu *pmu = cpuctx->ctx.pmu;
> + struct hrtimer *timer = &cpc->hrtimer;
> unsigned long flags;
>
> - /* not for SW PMU */
> - if (pmu->task_ctx_nr == perf_sw_context)
> - return 0;
> -
> - raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
> - if (!cpuctx->hrtimer_active) {
> - cpuctx->hrtimer_active = 1;
> - hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
> + raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
> + if (!cpc->hrtimer_active) {
> + cpc->hrtimer_active = 1;
> + hrtimer_forward_now(timer, cpc->hrtimer_interval);
> hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
> }
> - raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
> + raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
>
> return 0;
> }
> @@ -1141,32 +1119,25 @@ void perf_pmu_enable(struct pmu *pmu)
> pmu->pmu_enable(pmu);
> }
>
> -static DEFINE_PER_CPU(struct list_head, active_ctx_list);
> -
> -/*
> - * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
> - * perf_event_task_tick() are fully serialized because they're strictly cpu
> - * affine and perf_event_ctx{activate,deactivate} are called with IRQs
> - * disabled, while perf_event_task_tick is called from IRQ context.
> - */
> -static void perf_event_ctx_activate(struct perf_event_context *ctx)
> +void perf_assert_pmu_disabled(struct pmu *pmu)
> {
> - struct list_head *head = this_cpu_ptr(&active_ctx_list);
> -
> - lockdep_assert_irqs_disabled();
> + WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
> +}
>
> - WARN_ON(!list_empty(&ctx->active_ctx_list));
> +void perf_ctx_disable(struct perf_event_context *ctx)
> +{
> + struct perf_event_pmu_context *pmu_ctx;
>
> - list_add(&ctx->active_ctx_list, head);
> + list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
> + perf_pmu_disable(pmu_ctx->pmu);
> }
>
> -static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
> +void perf_ctx_enable(struct perf_event_context *ctx)
> {
> - lockdep_assert_irqs_disabled();
> + struct perf_event_pmu_context *pmu_ctx;
>
> - WARN_ON(list_empty(&ctx->active_ctx_list));
> -
> - list_del_init(&ctx->active_ctx_list);
> + list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
> + perf_pmu_enable(pmu_ctx->pmu);
> }
>
> static void get_ctx(struct perf_event_context *ctx)
> @@ -1179,7 +1150,6 @@ static void free_ctx(struct rcu_head *he
> struct perf_event_context *ctx;
>
> ctx = container_of(head, struct perf_event_context, rcu_head);
> - kfree(ctx->task_ctx_data);
> kfree(ctx);
> }
>
> @@ -1363,7 +1333,7 @@ static u64 primary_event_id(struct perf_
> * the context could get moved to another task.
> */
> static struct perf_event_context *
> -perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
> +perf_lock_task_context(struct task_struct *task, unsigned long *flags)
> {
> struct perf_event_context *ctx;
>
> @@ -1379,7 +1349,7 @@ perf_lock_task_context(struct task_struc
> */
> local_irq_save(*flags);
> rcu_read_lock();
> - ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
> + ctx = rcu_dereference(task->perf_event_ctxp);
> if (ctx) {
> /*
> * If this context is a clone of another, it might
> @@ -1392,7 +1362,7 @@ perf_lock_task_context(struct task_struc
> * can't get swapped on us any more.
> */
> raw_spin_lock(&ctx->lock);
> - if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
> + if (ctx != rcu_dereference(task->perf_event_ctxp)) {
> raw_spin_unlock(&ctx->lock);
> rcu_read_unlock();
> local_irq_restore(*flags);
> @@ -1419,12 +1389,12 @@ perf_lock_task_context(struct task_struc
> * reference count so that the context can't get freed.
> */
> static struct perf_event_context *
> -perf_pin_task_context(struct task_struct *task, int ctxn)
> +perf_pin_task_context(struct task_struct *task)
> {
> struct perf_event_context *ctx;
> unsigned long flags;
>
> - ctx = perf_lock_task_context(task, ctxn, &flags);
> + ctx = perf_lock_task_context(task, &flags);
> if (ctx) {
> ++ctx->pin_count;
> raw_spin_unlock_irqrestore(&ctx->lock, flags);
> @@ -1528,6 +1498,11 @@ perf_event_groups_less(struct perf_event
> if (left->cpu > right->cpu)
> return false;
>
> + if (left->pmu_ctx->pmu < right->pmu_ctx->pmu)
> + return true;
> + if (left->pmu_ctx->pmu > right->pmu_ctx->pmu)
> + return false;
> +
> if (left->group_index < right->group_index)
> return true;
> if (left->group_index > right->group_index)
> @@ -1610,7 +1585,7 @@ del_event_from_groups(struct perf_event
> * Get the leftmost event in the @cpu subtree.
> */
> static struct perf_event *
> -perf_event_groups_first(struct perf_event_groups *groups, int cpu)
> +perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu)
> {
> struct perf_event *node_event = NULL, *match = NULL;
> struct rb_node *node = groups->tree.rb_node;
> @@ -1623,8 +1598,19 @@ perf_event_groups_first(struct perf_even
> } else if (cpu > node_event->cpu) {
> node = node->rb_right;
> } else {
> - match = node_event;
> - node = node->rb_left;
> + if (pmu) {
> + if (pmu < node_event->pmu_ctx->pmu) {
> + node = node->rb_left;
> + } else if (pmu > node_event->pmu_ctx->pmu) {
> + node = node->rb_right;
> + } else {
> + match = node_event;
> + node = node->rb_left;
> + }
> + } else {
> + match = node_event;
> + node = node->rb_left;
> + }
> }
> }
>
> @@ -1635,13 +1621,17 @@ perf_event_groups_first(struct perf_even
> * Like rb_entry_next_safe() for the @cpu subtree.
> */
> static struct perf_event *
> -perf_event_groups_next(struct perf_event *event)
> +perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
> {
> struct perf_event *next;
>
> next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
> - if (next && next->cpu == event->cpu)
> + if (next && next->cpu == event->cpu) {
> + if (pmu && next->pmu_ctx->pmu != pmu)
> + return NULL;
> +
> return next;
> + }
>
> return NULL;
> }
> @@ -1687,6 +1677,8 @@ list_add_event(struct perf_event *event,
> ctx->nr_stat++;
>
> ctx->generation++;
> +
> + event->pmu_ctx->nr_events++;
> }
>
> /*
> @@ -1883,6 +1875,8 @@ list_del_event(struct perf_event *event,
> perf_event_set_state(event, PERF_EVENT_STATE_OFF);
>
> ctx->generation++;
> +
> + event->pmu_ctx->nr_events--;
> }
>
> static void perf_group_detach(struct perf_event *event)
> @@ -1926,8 +1920,9 @@ static void perf_group_detach(struct per
> add_event_to_groups(sibling, event->ctx);
>
> if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
> + struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
> struct list_head *list = sibling->attr.pinned ?
> - &ctx->pinned_active : &ctx->flexible_active;
> + &pmu_ctx->pinned_active : &pmu_ctx->flexible_active;
>
> list_add_tail(&sibling->active_list, list);
> }
> @@ -1983,12 +1978,14 @@ event_filter_match(struct perf_event *ev
> }
>
> static void
> -event_sched_out(struct perf_event *event,
> - struct perf_cpu_context *cpuctx,
> - struct perf_event_context *ctx)
> +event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
> {
> + struct perf_event_pmu_context *epc = event->pmu_ctx;
> + struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
> enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
>
> + // XXX cpc serialization, probably per-cpu IRQ disabled
> +
> WARN_ON_ONCE(event->ctx != ctx);
> lockdep_assert_held(&ctx->lock);
>
> @@ -2014,41 +2011,35 @@ event_sched_out(struct perf_event *event
> perf_event_set_state(event, state);
>
> if (!is_software_event(event))
> - cpuctx->active_oncpu--;
> + cpc->active_oncpu--;
> if (!--ctx->nr_active)
> - perf_event_ctx_deactivate(ctx);
> + ;
> + event->pmu_ctx->nr_active--;
> if (event->attr.freq && event->attr.sample_freq)
> ctx->nr_freq--;
> - if (event->attr.exclusive || !cpuctx->active_oncpu)
> - cpuctx->exclusive = 0;
> + if (event->attr.exclusive || !cpc->active_oncpu)
> + cpc->exclusive = 0;
>
> perf_pmu_enable(event->pmu);
> }
>
> static void
> -group_sched_out(struct perf_event *group_event,
> - struct perf_cpu_context *cpuctx,
> - struct perf_event_context *ctx)
> +group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
> {
> struct perf_event *event;
>
> if (group_event->state != PERF_EVENT_STATE_ACTIVE)
> return;
>
> - perf_pmu_disable(ctx->pmu);
> + perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
>
> - event_sched_out(group_event, cpuctx, ctx);
> + event_sched_out(group_event, ctx);
>
> /*
> * Schedule out siblings (if any):
> */
> for_each_sibling_event(event, group_event)
> - event_sched_out(event, cpuctx, ctx);
> -
> - perf_pmu_enable(ctx->pmu);
> -
> - if (group_event->attr.exclusive)
> - cpuctx->exclusive = 0;
> + event_sched_out(event, ctx);
> }
>
> #define DETACH_GROUP 0x01UL
> @@ -2072,7 +2063,7 @@ __perf_remove_from_context(struct perf_e
> update_cgrp_time_from_cpuctx(cpuctx);
> }
>
> - event_sched_out(event, cpuctx, ctx);
> + event_sched_out(event, ctx);
> if (flags & DETACH_GROUP)
> perf_group_detach(event);
> list_del_event(event, ctx);
> @@ -2139,12 +2130,16 @@ static void __perf_event_disable(struct
> update_cgrp_time_from_event(event);
> }
>
> + perf_pmu_disable(event->pmu_ctx->pmu);
> +
> if (event == event->group_leader)
> - group_sched_out(event, cpuctx, ctx);
> + group_sched_out(event, ctx);
> else
> - event_sched_out(event, cpuctx, ctx);
> + event_sched_out(event, ctx);
>
> perf_event_set_state(event, PERF_EVENT_STATE_OFF);
> +
> + perf_pmu_enable(event->pmu_ctx->pmu);
> }
>
> /*
> @@ -2240,10 +2235,10 @@ static void perf_log_throttle(struct per
> static void perf_log_itrace_start(struct perf_event *event);
>
> static int
> -event_sched_in(struct perf_event *event,
> - struct perf_cpu_context *cpuctx,
> - struct perf_event_context *ctx)
> +event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
> {
> + struct perf_event_pmu_context *epc = event->pmu_ctx;
> + struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
> int ret = 0;
>
> lockdep_assert_held(&ctx->lock);
> @@ -2284,14 +2279,15 @@ event_sched_in(struct perf_event *event,
> }
>
> if (!is_software_event(event))
> - cpuctx->active_oncpu++;
> + cpc->active_oncpu++;
> if (!ctx->nr_active++)
> - perf_event_ctx_activate(ctx);
> + ;
> + event->pmu_ctx->nr_active++;
> if (event->attr.freq && event->attr.sample_freq)
> ctx->nr_freq++;
>
> if (event->attr.exclusive)
> - cpuctx->exclusive = 1;
> + cpc->exclusive = 1;
>
> out:
> perf_pmu_enable(event->pmu);
> @@ -2300,21 +2296,19 @@ event_sched_in(struct perf_event *event,
> }
>
> static int
> -group_sched_in(struct perf_event *group_event,
> - struct perf_cpu_context *cpuctx,
> - struct perf_event_context *ctx)
> +group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
> {
> struct perf_event *event, *partial_group = NULL;
> - struct pmu *pmu = ctx->pmu;
> + struct pmu *pmu = group_event->pmu_ctx->pmu;
>
> if (group_event->state == PERF_EVENT_STATE_OFF)
> return 0;
>
> pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
>
> - if (event_sched_in(group_event, cpuctx, ctx)) {
> + if (event_sched_in(group_event, ctx)) {
> pmu->cancel_txn(pmu);
> - perf_mux_hrtimer_restart(cpuctx);
> + perf_mux_hrtimer_restart(this_cpu_ptr(pmu->cpu_pmu_context));
> return -EAGAIN;
> }
>
> @@ -2322,7 +2316,7 @@ group_sched_in(struct perf_event *group_
> * Schedule in siblings as one group (if any):
> */
> for_each_sibling_event(event, group_event) {
> - if (event_sched_in(event, cpuctx, ctx)) {
> + if (event_sched_in(event, ctx)) {
> partial_group = event;
> goto group_error;
> }
> @@ -2341,13 +2335,13 @@ group_sched_in(struct perf_event *group_
> if (event == partial_group)
> break;
>
> - event_sched_out(event, cpuctx, ctx);
> + event_sched_out(event, ctx);
> }
> - event_sched_out(group_event, cpuctx, ctx);
> + event_sched_out(group_event, ctx);
>
> pmu->cancel_txn(pmu);
>
> - perf_mux_hrtimer_restart(cpuctx);
> + perf_mux_hrtimer_restart(this_cpu_ptr(pmu->cpu_pmu_context));
>
> return -EAGAIN;
> }
> @@ -2355,10 +2349,11 @@ group_sched_in(struct perf_event *group_
> /*
> * Work out whether we can put this event group on the CPU now.
> */
> -static int group_can_go_on(struct perf_event *event,
> - struct perf_cpu_context *cpuctx,
> - int can_add_hw)
> +static int group_can_go_on(struct perf_event *event, int can_add_hw)
> {
> + struct perf_event_pmu_context *epc = event->pmu_ctx;
> + struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
> +
> /*
> * Groups consisting entirely of software events can always go on.
> */
> @@ -2368,13 +2363,13 @@ static int group_can_go_on(struct perf_e
> * If an exclusive group is already on, no other hardware
> * events can go on.
> */
> - if (cpuctx->exclusive)
> + if (cpc->exclusive)
> return 0;
> /*
> * If this group is exclusive and there are already
> * events on the CPU, it can't go on.
> */
> - if (event->attr.exclusive && cpuctx->active_oncpu)
> + if (event->attr.exclusive && cpc->active_oncpu)
> return 0;
> /*
> * Otherwise, try to add it if all previous groups were able
> @@ -2391,37 +2386,36 @@ static void add_event_to_ctx(struct perf
> }
>
> static void ctx_sched_out(struct perf_event_context *ctx,
> - struct perf_cpu_context *cpuctx,
> enum event_type_t event_type);
> static void
> ctx_sched_in(struct perf_event_context *ctx,
> - struct perf_cpu_context *cpuctx,
> enum event_type_t event_type,
> struct task_struct *task);
>
> -static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
> - struct perf_event_context *ctx,
> +static void task_ctx_sched_out(struct perf_event_context *ctx,
> enum event_type_t event_type)
> {
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> +
> if (!cpuctx->task_ctx)
> return;
>
> if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
> return;
>
> - ctx_sched_out(ctx, cpuctx, event_type);
> + ctx_sched_out(ctx, event_type);
> }
>
> static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
> struct perf_event_context *ctx,
> struct task_struct *task)
> {
> - cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
> + ctx_sched_in(&cpuctx->ctx, EVENT_PINNED, task);
> if (ctx)
> - ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
> - cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
> + ctx_sched_in(ctx, EVENT_PINNED, task);
> + ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE, task);
> if (ctx)
> - ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
> + ctx_sched_in(ctx, EVENT_FLEXIBLE, task);
> }
>
> /*
> @@ -2438,12 +2432,12 @@ static void perf_event_sched_in(struct p
> * This can be called after a batch operation on task events, in which case
> * event_type is a bit mask of the types of events involved. For CPU events,
> * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
> + *
> */
> static void ctx_resched(struct perf_cpu_context *cpuctx,
> struct perf_event_context *task_ctx,
> enum event_type_t event_type)
> {
> - enum event_type_t ctx_event_type;
> bool cpu_event = !!(event_type & EVENT_CPU);
>
> /*
> @@ -2453,11 +2447,13 @@ static void ctx_resched(struct perf_cpu_
> if (event_type & EVENT_PINNED)
> event_type |= EVENT_FLEXIBLE;
>
> - ctx_event_type = event_type & EVENT_ALL;
> + event_type &= EVENT_ALL;
>
> - perf_pmu_disable(cpuctx->ctx.pmu);
> - if (task_ctx)
> - task_ctx_sched_out(cpuctx, task_ctx, event_type);
> + perf_ctx_disable(&cpuctx->ctx);
> + if (task_ctx) {
> + perf_ctx_disable(task_ctx);
> + task_ctx_sched_out(task_ctx, event_type);
> + }
>
> /*
> * Decide which cpu ctx groups to schedule out based on the types
> @@ -2467,12 +2463,15 @@ static void ctx_resched(struct perf_cpu_
> * - otherwise, do nothing more.
> */
> if (cpu_event)
> - cpu_ctx_sched_out(cpuctx, ctx_event_type);
> - else if (ctx_event_type & EVENT_PINNED)
> - cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
> + ctx_sched_out(&cpuctx->ctx, event_type);
> + else if (event_type & EVENT_PINNED)
> + ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
>
> perf_event_sched_in(cpuctx, task_ctx, current);
> - perf_pmu_enable(cpuctx->ctx.pmu);
> +
> + perf_ctx_enable(&cpuctx->ctx);
> + if (task_ctx)
> + perf_ctx_enable(task_ctx);
> }
>
> /*
> @@ -2485,7 +2484,7 @@ static int __perf_install_in_context(vo
> {
> struct perf_event *event = info;
> struct perf_event_context *ctx = event->ctx;
> - struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> struct perf_event_context *task_ctx = cpuctx->task_ctx;
> bool reprogram = true;
> int ret = 0;
> @@ -2527,7 +2526,7 @@ static int __perf_install_in_context(vo
> #endif
>
> if (reprogram) {
> - ctx_sched_out(ctx, cpuctx, EVENT_TIME);
> + ctx_sched_out(ctx, EVENT_TIME);
> add_event_to_ctx(event, ctx);
> ctx_resched(cpuctx, task_ctx, get_event_type(event));
> } else {
> @@ -2648,7 +2647,7 @@ static void __perf_event_enable(struct p
> return;
>
> if (ctx->is_active)
> - ctx_sched_out(ctx, cpuctx, EVENT_TIME);
> + ctx_sched_out(ctx, EVENT_TIME);
>
> perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
>
> @@ -2656,7 +2655,7 @@ static void __perf_event_enable(struct p
> return;
>
> if (!event_filter_match(event)) {
> - ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
> + ctx_sched_in(ctx, EVENT_TIME, current);
> return;
> }
>
> @@ -2665,7 +2664,7 @@ static void __perf_event_enable(struct p
> * then don't put it on unless the group is on.
> */
> if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
> - ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
> + ctx_sched_in(ctx, EVENT_TIME, current);
> return;
> }
>
> @@ -2889,11 +2888,46 @@ static int perf_event_modify_attr(struct
> }
> }
>
> -static void ctx_sched_out(struct perf_event_context *ctx,
> - struct perf_cpu_context *cpuctx,
> - enum event_type_t event_type)
> +static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
> + enum event_type_t event_type)
> {
> + struct perf_event_context *ctx = pmu_ctx->ctx;
> struct perf_event *event, *tmp;
> + struct pmu *pmu = pmu_ctx->pmu;
> +
> + if (ctx->task && !ctx->is_active) {
> + struct perf_cpu_pmu_context *cpc;
> +
> + cpc = this_cpu_ptr(pmu->cpu_pmu_context);
> + WARN_ON_ONCE(cpc->task_epc != pmu_ctx);
> + cpc->task_epc = NULL;
> + }
> +
> + if (!event_type)
> + return;
> +
> + perf_pmu_disable(pmu);
> + if (event_type & EVENT_PINNED) {
> + list_for_each_entry_safe(event, tmp,
> + &pmu_ctx->pinned_active,
> + active_list)
> + group_sched_out(event, ctx);
> + }
> +
> + if (event_type & EVENT_FLEXIBLE) {
> + list_for_each_entry_safe(event, tmp,
> + &pmu_ctx->flexible_active,
> + active_list)
> + group_sched_out(event, ctx);
> + }
> + perf_pmu_enable(pmu);
> +}
> +
> +static void
> +ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
> +{
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> + struct perf_event_pmu_context *pmu_ctx;
> int is_active = ctx->is_active;
>
> lockdep_assert_held(&ctx->lock);
> @@ -2936,20 +2970,8 @@ static void ctx_sched_out(struct perf_ev
>
> is_active ^= ctx->is_active; /* changed bits */
>
> - if (!ctx->nr_active || !(is_active & EVENT_ALL))
> - return;
> -
> - perf_pmu_disable(ctx->pmu);
> - if (is_active & EVENT_PINNED) {
> - list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
> - group_sched_out(event, cpuctx, ctx);
> - }
> -
> - if (is_active & EVENT_FLEXIBLE) {
> - list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
> - group_sched_out(event, cpuctx, ctx);
> - }
> - perf_pmu_enable(ctx->pmu);
> + list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
> + __pmu_ctx_sched_out(pmu_ctx, is_active);
> }
>
> /*
> @@ -3054,10 +3076,34 @@ static void perf_event_sync_stat(struct
> }
> }
>
> -static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
> - struct task_struct *next)
> +static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
> + struct perf_event_context *next_ctx)
> +{
> + struct perf_event_pmu_context *prev_epc, *next_epc;
> +
> + if (!prev_ctx->nr_task_data)
> + return;
> +
> + prev_epc = list_first_entry(&prev_ctx->pmu_ctx_list,
> + struct perf_event_pmu_context,
> + pmu_ctx_entry);
> + next_epc = list_first_entry(&next_ctx->pmu_ctx_list,
> + struct perf_event_pmu_context,
> + pmu_ctx_entry);
> +
> + while (&prev_epc->pmu_ctx_entry != &prev_ctx->pmu_ctx_list &&
> + &next_epc->pmu_ctx_entry != &next_ctx->pmu_ctx_list) {
> +
> + WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu);
> +
> + swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
> + }
> +}
> +
> +static void
> +perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
> {
> - struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
> + struct perf_event_context *ctx = task->perf_event_ctxp;
> struct perf_event_context *next_ctx;
> struct perf_event_context *parent, *next_parent;
> struct perf_cpu_context *cpuctx;
> @@ -3066,12 +3112,12 @@ static void perf_event_context_sched_out
> if (likely(!ctx))
> return;
>
> - cpuctx = __get_cpu_context(ctx);
> + cpuctx = this_cpu_ptr(&cpu_context);
> if (!cpuctx->task_ctx)
> return;
>
> rcu_read_lock();
> - next_ctx = next->perf_event_ctxp[ctxn];
> + next_ctx = rcu_dereference(next->perf_event_ctxp);
> if (!next_ctx)
> goto unlock;
>
> @@ -3098,7 +3144,7 @@ static void perf_event_context_sched_out
> WRITE_ONCE(ctx->task, next);
> WRITE_ONCE(next_ctx->task, task);
>
> - swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
> + perf_event_swap_task_ctx_data(ctx, next_ctx);
>
> /*
> * RCU_INIT_POINTER here is safe because we've not
> @@ -3107,8 +3153,8 @@ static void perf_event_context_sched_out
> * since those values are always verified under
> * ctx->lock which we're now holding.
> */
> - RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
> - RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
> + RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
> + RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
>
> do_switch = 0;
>
> @@ -3122,31 +3168,34 @@ static void perf_event_context_sched_out
>
> if (do_switch) {
> raw_spin_lock(&ctx->lock);
> - task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
> + task_ctx_sched_out(ctx, EVENT_ALL);
> raw_spin_unlock(&ctx->lock);
> }
> }
>
> static DEFINE_PER_CPU(struct list_head, sched_cb_list);
> +static DEFINE_PER_CPU(int, perf_sched_cb_usages);
>
> void perf_sched_cb_dec(struct pmu *pmu)
> {
> - struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
> + struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
>
> this_cpu_dec(perf_sched_cb_usages);
> + barrier();
>
> - if (!--cpuctx->sched_cb_usage)
> - list_del(&cpuctx->sched_cb_entry);
> + if (!--cpc->sched_cb_usage)
> + list_del(&cpc->sched_cb_entry);
> }
>
>
> void perf_sched_cb_inc(struct pmu *pmu)
> {
> - struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
> + struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
>
> - if (!cpuctx->sched_cb_usage++)
> - list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
> + if (!cpc->sched_cb_usage++)
> + list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
>
> + barrier();
> this_cpu_inc(perf_sched_cb_usages);
> }
>
> @@ -3162,22 +3211,24 @@ static void perf_pmu_sched_task(struct t
> struct task_struct *next,
> bool sched_in)
> {
> - struct perf_cpu_context *cpuctx;
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> + struct perf_cpu_pmu_context *cpc;
> struct pmu *pmu;
>
> if (prev == next)
> return;
>
> - list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
> - pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
> + list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
> + pmu = cpc->epc.pmu;
>
> + /* software PMUs will not have sched_task */
> if (WARN_ON_ONCE(!pmu->sched_task))
> continue;
>
> perf_ctx_lock(cpuctx, cpuctx->task_ctx);
> perf_pmu_disable(pmu);
>
> - pmu->sched_task(cpuctx->task_ctx, sched_in);
> + pmu->sched_task(cpc->task_epc, sched_in);
>
> perf_pmu_enable(pmu);
> perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
> @@ -3187,9 +3238,6 @@ static void perf_pmu_sched_task(struct t
> static void perf_event_switch(struct task_struct *task,
> struct task_struct *next_prev, bool sched_in);
>
> -#define for_each_task_context_nr(ctxn) \
> - for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
> -
> /*
> * Called from scheduler to remove the events of the current task,
> * with interrupts disabled.
> @@ -3204,16 +3252,13 @@ static void perf_event_switch(struct tas
> void __perf_event_task_sched_out(struct task_struct *task,
> struct task_struct *next)
> {
> - int ctxn;
> -
> if (__this_cpu_read(perf_sched_cb_usages))
> perf_pmu_sched_task(task, next, false);
>
> if (atomic_read(&nr_switch_events))
> perf_event_switch(task, next, false);
>
> - for_each_task_context_nr(ctxn)
> - perf_event_context_sched_out(task, ctxn, next);
> + perf_event_context_sched_out(task, next);
>
> /*
> * if cgroup events exist on this CPU, then we need
> @@ -3224,27 +3269,19 @@ void __perf_event_task_sched_out(struct
> perf_cgroup_sched_out(task, next);
> }
>
> -/*
> - * Called with IRQs disabled
> - */
> -static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
> - enum event_type_t event_type)
> -{
> - ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
> -}
> -
> -static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
> - int (*func)(struct perf_event *, void *), void *data)
> +static int
> +visit_groups_merge(struct perf_event_groups *groups, int cpu, struct pmu *pmu,
> + int (*func)(struct perf_event *, void *), void *data)
> {
> struct perf_event **evt, *evt1, *evt2;
> int ret;
>
> - evt1 = perf_event_groups_first(groups, -1);
> - evt2 = perf_event_groups_first(groups, cpu);
> + evt1 = perf_event_groups_first(groups, -1, pmu);
> + evt2 = perf_event_groups_first(groups, cpu, pmu);
>
> while (evt1 || evt2) {
> if (evt1 && evt2) {
> - if (evt1->group_index < evt2->group_index)
> + if (perf_event_groups_less(evt1, evt2))
> evt = &evt1;
> else
> evt = &evt2;
> @@ -3258,7 +3295,7 @@ static int visit_groups_merge(struct per
> if (ret)
> return ret;
>
> - *evt = perf_event_groups_next(*evt);
> + *evt = perf_event_groups_next(*evt, pmu);
> }
>
> return 0;
> @@ -3266,91 +3303,106 @@ static int visit_groups_merge(struct per
>
> struct sched_in_data {
> struct perf_event_context *ctx;
> - struct perf_cpu_context *cpuctx;
> + struct perf_event_pmu_context *epc;
> int can_add_hw;
> +
> + int pinned; /* set for pinned semantics */
> + int busy; /* set to terminate on busy */
> };
>
> -static int pinned_sched_in(struct perf_event *event, void *data)
> +static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
> {
> - struct sched_in_data *sid = data;
> + struct perf_cpu_pmu_context *cpc;
>
> - if (event->state <= PERF_EVENT_STATE_OFF)
> - return 0;
> -
> - if (!event_filter_match(event))
> - return 0;
> -
> - if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
> - if (!group_sched_in(event, sid->cpuctx, sid->ctx))
> - list_add_tail(&event->active_list, &sid->ctx->pinned_active);
> - }
> -
> - /*
> - * If this pinned group hasn't been scheduled,
> - * put it in error state.
> - */
> - if (event->state == PERF_EVENT_STATE_INACTIVE)
> - perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
> + if (!pmu_ctx->ctx->task)
> + return;
>
> - return 0;
> + cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
> + WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
> + cpc->task_epc = pmu_ctx;
> }
>
> -static int flexible_sched_in(struct perf_event *event, void *data)
> +static int merge_sched_in(struct perf_event *event, void *data)
> {
> struct sched_in_data *sid = data;
>
> + if (sid->epc != event->pmu_ctx) {
> + sid->epc = event->pmu_ctx;
> + sid->can_add_hw = 1;
> + __link_epc(event->pmu_ctx);
> +
> + perf_assert_pmu_disabled(sid->epc->pmu);
> + }
> +
> if (event->state <= PERF_EVENT_STATE_OFF)
> return 0;
>
> if (!event_filter_match(event))
> return 0;
>
> - if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
> - if (!group_sched_in(event, sid->cpuctx, sid->ctx))
> - list_add_tail(&event->active_list, &sid->ctx->flexible_active);
> - else
> + if (group_can_go_on(event, sid->can_add_hw)) {
> + if (!group_sched_in(event, sid->ctx)) {
> + struct list_head *list;
> +
> + if (sid->pinned)
> + list = &sid->epc->pinned_active;
> + else
> + list = &sid->epc->flexible_active;
> +
> + list_add_tail(&event->active_list, list);
> + }
> + }
> +
> + if (event->state == PERF_EVENT_STATE_INACTIVE) {
> + if (sid->pinned) {
> + /*
> + * If this pinned group hasn't been scheduled,
> + * put it in error state.
> + */
> + perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
> + } else {
> sid->can_add_hw = 0;
> + return sid->busy;
> + }
> }
>
> return 0;
> }
>
> static void
> -ctx_pinned_sched_in(struct perf_event_context *ctx,
> - struct perf_cpu_context *cpuctx)
> +ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
> {
> struct sched_in_data sid = {
> .ctx = ctx,
> - .cpuctx = cpuctx,
> - .can_add_hw = 1,
> + .pinned = 1,
> };
>
> - visit_groups_merge(&ctx->pinned_groups,
> - smp_processor_id(),
> - pinned_sched_in, &sid);
> + visit_groups_merge(&ctx->pinned_groups, smp_processor_id(), pmu,
> + merge_sched_in, &sid);
> }
>
> static void
> -ctx_flexible_sched_in(struct perf_event_context *ctx,
> - struct perf_cpu_context *cpuctx)
> +ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
> {
> struct sched_in_data sid = {
> .ctx = ctx,
> - .cpuctx = cpuctx,
> - .can_add_hw = 1,
> + .busy = pmu ? -EBUSY : 0,
> };
>
> - visit_groups_merge(&ctx->flexible_groups,
> - smp_processor_id(),
> - flexible_sched_in, &sid);
> + visit_groups_merge(&ctx->flexible_groups, smp_processor_id(), pmu,
> + merge_sched_in, &sid);
> +}
> +
> +static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
> +{
> + ctx_flexible_sched_in(ctx, pmu);
> }
>
> static void
> -ctx_sched_in(struct perf_event_context *ctx,
> - struct perf_cpu_context *cpuctx,
> - enum event_type_t event_type,
> +ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type,
> struct task_struct *task)
> {
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> int is_active = ctx->is_active;
> u64 now;
>
> @@ -3373,6 +3425,7 @@ ctx_sched_in(struct perf_event_context *
> /* start ctx time */
> now = perf_clock();
> ctx->timestamp = now;
> + // XXX ctx->task =? task
> perf_cgroup_set_timestamp(task, ctx);
> }
>
> @@ -3381,30 +3434,25 @@ ctx_sched_in(struct perf_event_context *
> * in order to give them the best chance of going on.
> */
> if (is_active & EVENT_PINNED)
> - ctx_pinned_sched_in(ctx, cpuctx);
> + ctx_pinned_sched_in(ctx, NULL);
>
> /* Then walk through the lower prio flexible groups */
> if (is_active & EVENT_FLEXIBLE)
> - ctx_flexible_sched_in(ctx, cpuctx);
> + ctx_flexible_sched_in(ctx, NULL);
> }
>
> -static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
> - enum event_type_t event_type,
> - struct task_struct *task)
> +static void perf_event_context_sched_in(struct task_struct *task)
> {
> - struct perf_event_context *ctx = &cpuctx->ctx;
> -
> - ctx_sched_in(ctx, cpuctx, event_type, task);
> -}
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> + struct perf_event_context *ctx;
>
> -static void perf_event_context_sched_in(struct perf_event_context *ctx,
> - struct task_struct *task)
> -{
> - struct perf_cpu_context *cpuctx;
> + rcu_read_lock();
> + ctx = rcu_dereference(task->perf_event_ctxp);
> + if (!ctx)
> + goto rcu_unlock;
>
> - cpuctx = __get_cpu_context(ctx);
> if (cpuctx->task_ctx == ctx)
> - return;
> + goto rcu_unlock;
>
> perf_ctx_lock(cpuctx, ctx);
> /*
> @@ -3414,7 +3462,7 @@ static void perf_event_context_sched_in(
> if (!ctx->nr_events)
> goto unlock;
>
> - perf_pmu_disable(ctx->pmu);
> + perf_ctx_disable(ctx);
> /*
> * We want to keep the following priority order:
> * cpu pinned (that don't need to move), task pinned,
> @@ -3423,13 +3471,21 @@ static void perf_event_context_sched_in(
> * However, if task's ctx is not carrying any pinned
> * events, no need to flip the cpuctx's events around.
> */
> - if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
> - cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
> + if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
> + perf_ctx_disable(&cpuctx->ctx);
> + ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
> + }
> +
> perf_event_sched_in(cpuctx, ctx, task);
> - perf_pmu_enable(ctx->pmu);
> +
> + if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
> + perf_ctx_enable(&cpuctx->ctx);
> + perf_ctx_enable(ctx);
>
> unlock:
> perf_ctx_unlock(cpuctx, ctx);
> +rcu_unlock:
> + rcu_read_unlock();
> }
>
> /*
> @@ -3446,9 +3502,6 @@ static void perf_event_context_sched_in(
> void __perf_event_task_sched_in(struct task_struct *prev,
> struct task_struct *task)
> {
> - struct perf_event_context *ctx;
> - int ctxn;
> -
> /*
> * If cgroup events exist on this CPU, then we need to check if we have
> * to switch in PMU state; cgroup event are system-wide mode only.
> @@ -3459,13 +3512,7 @@ void __perf_event_task_sched_in(struct t
> if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
> perf_cgroup_sched_in(prev, task);
>
> - for_each_task_context_nr(ctxn) {
> - ctx = task->perf_event_ctxp[ctxn];
> - if (likely(!ctx))
> - continue;
> -
> - perf_event_context_sched_in(ctx, task);
> - }
> + perf_event_context_sched_in(task);
>
> if (atomic_read(&nr_switch_events))
> perf_event_switch(task, prev, true);
> @@ -3584,8 +3631,8 @@ static void perf_adjust_period(struct pe
> * events. At the same time, make sure, having freq events does not change
> * the rate of unthrottling as that would introduce bias.
> */
> -static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
> - int needs_unthr)
> +static void
> +perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
> {
> struct perf_event *event;
> struct hw_perf_event *hwc;
> @@ -3597,16 +3644,16 @@ static void perf_adjust_freq_unthr_conte
> * - context have events in frequency mode (needs freq adjust)
> * - there are events to unthrottle on this cpu
> */
> - if (!(ctx->nr_freq || needs_unthr))
> + if (!(ctx->nr_freq || unthrottle))
> return;
>
> raw_spin_lock(&ctx->lock);
> - perf_pmu_disable(ctx->pmu);
>
> list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
> if (event->state != PERF_EVENT_STATE_ACTIVE)
> continue;
>
> + // XXX use visit thingy to avoid the -1,cpu match
> if (!event_filter_match(event))
> continue;
>
> @@ -3647,7 +3694,6 @@ static void perf_adjust_freq_unthr_conte
> perf_pmu_enable(event->pmu);
> }
>
> - perf_pmu_enable(ctx->pmu);
> raw_spin_unlock(&ctx->lock);
> }
>
> @@ -3668,71 +3714,97 @@ static void rotate_ctx(struct perf_event
> }
>
> static inline struct perf_event *
> -ctx_first_active(struct perf_event_context *ctx)
> +ctx_first_active(struct perf_event_pmu_context *pmu_ctx)
> {
> - return list_first_entry_or_null(&ctx->flexible_active,
> + return list_first_entry_or_null(&pmu_ctx->flexible_active,
> struct perf_event, active_list);
> }
>
> -static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
> +/*
> + * XXX somewhat completely buggered; this is in cpu_pmu_context, but we need
> + * event_pmu_context for rotations. We also need event_pmu_context specific
> + * scheduling routines. ARGH
> + *
> + * - fixed the cpu_pmu_context vs event_pmu_context thingy
> + * (cpu_pmu_context embeds an event_pmu_context)
> + *
> + * - need nr_events/nr_active in epc to do per epc rotation
> + * (done)
> + *
> + * - need cpu and task pmu ctx together...
> + * (cpc->task_epc)
> + */
> +static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
> {
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> + struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
> struct perf_event *cpu_event = NULL, *task_event = NULL;
> bool cpu_rotate = false, task_rotate = false;
> struct perf_event_context *ctx = NULL;
> + struct pmu *pmu;
>
> /*
> * Since we run this from IRQ context, nobody can install new
> * events, thus the event count values are stable.
> */
>
> - if (cpuctx->ctx.nr_events) {
> - if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
> - cpu_rotate = true;
> - }
> + cpu_epc = &cpc->epc;
> + pmu = cpu_epc->pmu;
>
> - ctx = cpuctx->task_ctx;
> - if (ctx && ctx->nr_events) {
> - if (ctx->nr_events != ctx->nr_active)
> + if (cpu_epc->nr_events && cpu_epc->nr_events != cpu_epc->nr_active)
> + cpu_rotate = true;
> +
> + task_epc = cpc->task_epc;
> + if (task_epc) {
> + WARN_ON_ONCE(task_epc->pmu != pmu);
> + if (task_epc->nr_events && task_epc->nr_events != task_epc->nr_active)
> task_rotate = true;
> }
>
> if (!(cpu_rotate || task_rotate))
> return false;
>
> - perf_ctx_lock(cpuctx, cpuctx->task_ctx);
> - perf_pmu_disable(cpuctx->ctx.pmu);
> + perf_ctx_lock(cpuctx, ctx);
> + perf_pmu_disable(pmu);
>
> if (task_rotate)
> - task_event = ctx_first_active(ctx);
> + task_event = ctx_first_active(task_epc);
> +
> if (cpu_rotate)
> - cpu_event = ctx_first_active(&cpuctx->ctx);
> + cpu_event = ctx_first_active(cpu_epc);
>
> /*
> * As per the order given at ctx_resched() first 'pop' task flexible
> * and then, if needed CPU flexible.
> */
> - if (task_event || (ctx && cpu_event))
> - ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
> - if (cpu_event)
> - cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
> + if (task_event || (task_epc && cpu_event)) {
> + update_context_time(ctx);
> + __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
> + }
> +
> + if (cpu_event) {
> + update_context_time(&cpuctx->ctx);
> + __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
> + rotate_ctx(&cpuctx->ctx, cpu_event);
> + __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
> + }
>
> if (task_event)
> rotate_ctx(ctx, task_event);
> - if (cpu_event)
> - rotate_ctx(&cpuctx->ctx, cpu_event);
>
> - perf_event_sched_in(cpuctx, ctx, current);
> + if (task_event || (task_epc && cpu_event))
> + __pmu_ctx_sched_in(ctx, pmu);
>
> - perf_pmu_enable(cpuctx->ctx.pmu);
> - perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
> + perf_pmu_enable(pmu);
> + perf_ctx_unlock(cpuctx, ctx);
>
> return true;
> }
>
> void perf_event_task_tick(void)
> {
> - struct list_head *head = this_cpu_ptr(&active_ctx_list);
> - struct perf_event_context *ctx, *tmp;
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> + struct perf_event_context *ctx;
> int throttled;
>
> lockdep_assert_irqs_disabled();
> @@ -3741,8 +3813,13 @@ void perf_event_task_tick(void)
> throttled = __this_cpu_xchg(perf_throttled_count, 0);
> tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
>
> - list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
> - perf_adjust_freq_unthr_context(ctx, throttled);
> + perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
> +
> + rcu_read_lock();
> + ctx = rcu_dereference(current->perf_event_ctxp);
> + if (ctx)
> + perf_adjust_freq_unthr_context(ctx, !!throttled);
> + rcu_read_unlock();
> }
>
> static int event_enable_on_exec(struct perf_event *event,
> @@ -3764,9 +3841,9 @@ static int event_enable_on_exec(struct p
> * Enable all of a task's events that have been marked enable-on-exec.
> * This expects task == current.
> */
> -static void perf_event_enable_on_exec(int ctxn)
> +static void perf_event_enable_on_exec(struct perf_event_context *ctx)
> {
> - struct perf_event_context *ctx, *clone_ctx = NULL;
> + struct perf_event_context *clone_ctx = NULL;
> enum event_type_t event_type = 0;
> struct perf_cpu_context *cpuctx;
> struct perf_event *event;
> @@ -3774,13 +3851,16 @@ static void perf_event_enable_on_exec(in
> int enabled = 0;
>
> local_irq_save(flags);
> - ctx = current->perf_event_ctxp[ctxn];
> - if (!ctx || !ctx->nr_events)
> + if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
> goto out;
>
> - cpuctx = __get_cpu_context(ctx);
> + if (!ctx->nr_events)
> + goto out;
> +
> + cpuctx = this_cpu_ptr(&cpu_context);
> perf_ctx_lock(cpuctx, ctx);
> - ctx_sched_out(ctx, cpuctx, EVENT_TIME);
> + ctx_sched_out(ctx, EVENT_TIME);
> +
> list_for_each_entry(event, &ctx->event_list, event_entry) {
> enabled |= event_enable_on_exec(event, ctx);
> event_type |= get_event_type(event);
> @@ -3793,7 +3873,7 @@ static void perf_event_enable_on_exec(in
> clone_ctx = unclone_ctx(ctx);
> ctx_resched(cpuctx, ctx, event_type);
> } else {
> - ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
> + ctx_sched_in(ctx, EVENT_TIME, current);
> }
> perf_ctx_unlock(cpuctx, ctx);
>
> @@ -3835,7 +3915,7 @@ static void __perf_event_read(void *info
> struct perf_read_data *data = info;
> struct perf_event *sub, *event = data->event;
> struct perf_event_context *ctx = event->ctx;
> - struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> struct pmu *pmu = event->pmu;
>
> /*
> @@ -4050,17 +4130,25 @@ static void __perf_event_init_context(st
> {
> raw_spin_lock_init(&ctx->lock);
> mutex_init(&ctx->mutex);
> - INIT_LIST_HEAD(&ctx->active_ctx_list);
> + INIT_LIST_HEAD(&ctx->pmu_ctx_list);
> perf_event_groups_init(&ctx->pinned_groups);
> perf_event_groups_init(&ctx->flexible_groups);
> INIT_LIST_HEAD(&ctx->event_list);
> - INIT_LIST_HEAD(&ctx->pinned_active);
> - INIT_LIST_HEAD(&ctx->flexible_active);
> atomic_set(&ctx->refcount, 1);
> }
>
> +static void
> +__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
> +{
> + epc->pmu = pmu;
> + INIT_LIST_HEAD(&epc->pmu_ctx_entry);
> + INIT_LIST_HEAD(&epc->pinned_active);
> + INIT_LIST_HEAD(&epc->flexible_active);
> + atomic_set(&epc->refcount, 1);
> +}
> +
> static struct perf_event_context *
> -alloc_perf_context(struct pmu *pmu, struct task_struct *task)
> +alloc_perf_context(struct task_struct *task)
> {
> struct perf_event_context *ctx;
>
> @@ -4073,7 +4161,6 @@ alloc_perf_context(struct pmu *pmu, stru
> ctx->task = task;
> get_task_struct(task);
> }
> - ctx->pmu = pmu;
>
> return ctx;
> }
> @@ -4102,22 +4189,19 @@ find_lively_task_by_vpid(pid_t vpid)
> * Returns a matching context with refcount and pincount.
> */
> static struct perf_event_context *
> -find_get_context(struct pmu *pmu, struct task_struct *task,
> - struct perf_event *event)
> +find_get_context(struct task_struct *task, struct perf_event *event)
> {
> struct perf_event_context *ctx, *clone_ctx = NULL;
> struct perf_cpu_context *cpuctx;
> - void *task_ctx_data = NULL;
> unsigned long flags;
> - int ctxn, err;
> - int cpu = event->cpu;
> + int err;
>
> if (!task) {
> /* Must be root to operate on a CPU event: */
> if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
> return ERR_PTR(-EACCES);
>
> - cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
> + cpuctx = per_cpu_ptr(&cpu_context, event->cpu);
> ctx = &cpuctx->ctx;
> get_ctx(ctx);
> ++ctx->pin_count;
> @@ -4126,43 +4210,22 @@ find_get_context(struct pmu *pmu, struct
> }
>
> err = -EINVAL;
> - ctxn = pmu->task_ctx_nr;
> - if (ctxn < 0)
> - goto errout;
> -
> - if (event->attach_state & PERF_ATTACH_TASK_DATA) {
> - task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
> - if (!task_ctx_data) {
> - err = -ENOMEM;
> - goto errout;
> - }
> - }
> -
> retry:
> - ctx = perf_lock_task_context(task, ctxn, &flags);
> + ctx = perf_lock_task_context(task, &flags);
> if (ctx) {
> clone_ctx = unclone_ctx(ctx);
> ++ctx->pin_count;
>
> - if (task_ctx_data && !ctx->task_ctx_data) {
> - ctx->task_ctx_data = task_ctx_data;
> - task_ctx_data = NULL;
> - }
> raw_spin_unlock_irqrestore(&ctx->lock, flags);
>
> if (clone_ctx)
> put_ctx(clone_ctx);
> } else {
> - ctx = alloc_perf_context(pmu, task);
> + ctx = alloc_perf_context(task);
> err = -ENOMEM;
> if (!ctx)
> goto errout;
>
> - if (task_ctx_data) {
> - ctx->task_ctx_data = task_ctx_data;
> - task_ctx_data = NULL;
> - }
> -
> err = 0;
> mutex_lock(&task->perf_event_mutex);
> /*
> @@ -4171,12 +4234,12 @@ find_get_context(struct pmu *pmu, struct
> */
> if (task->flags & PF_EXITING)
> err = -ESRCH;
> - else if (task->perf_event_ctxp[ctxn])
> + else if (task->perf_event_ctxp)
> err = -EAGAIN;
> else {
> get_ctx(ctx);
> ++ctx->pin_count;
> - rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
> + rcu_assign_pointer(task->perf_event_ctxp, ctx);
> }
> mutex_unlock(&task->perf_event_mutex);
>
> @@ -4189,14 +4252,117 @@ find_get_context(struct pmu *pmu, struct
> }
> }
>
> - kfree(task_ctx_data);
> return ctx;
>
> errout:
> - kfree(task_ctx_data);
> return ERR_PTR(err);
> }
>
> +struct perf_event_pmu_context *
> +find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
> + struct perf_event *event)
> +{
> + struct perf_event_pmu_context *new = NULL, *epc;
> + void *task_ctx_data = NULL;
> +
> + if (!ctx->task) {
> + struct perf_cpu_pmu_context *cpc;
> +
> + cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
> + epc = &cpc->epc;
> +
> + if (!epc->ctx) {
> + atomic_set(&epc->refcount, 1);
> + epc->embedded = 1;
> + raw_spin_lock_irq(&ctx->lock);
> + list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
> + epc->ctx = ctx;
> + raw_spin_unlock_irq(&ctx->lock);
> + } else {
> + WARN_ON_ONCE(epc->ctx != ctx);
> + atomic_inc(&epc->refcount);
> + }
> +
> + return epc;
> + }
> +
> + new = kzalloc(sizeof(*epc), GFP_KERNEL);
> + if (!new)
> + return ERR_PTR(-ENOMEM);
> +
> + if (event->attach_state & PERF_ATTACH_TASK_DATA) {
> + task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
> + if (!task_ctx_data) {
> + kfree(new);
> + return ERR_PTR(-ENOMEM);
> + }
> + }
> +
> + __perf_init_event_pmu_context(new, pmu);
> +
> + raw_spin_lock_irq(&ctx->lock);
> + list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
> + if (epc->pmu == pmu) {
> + WARN_ON_ONCE(epc->ctx != ctx);
> + atomic_inc(&epc->refcount);
> + goto found_epc;
> + }
> + }
> +
> + epc = new;
> + new = NULL;
> +
> + list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
> + epc->ctx = ctx;
> +
> +found_epc:
> + if (task_ctx_data && !epc->task_ctx_data) {
> + epc->task_ctx_data = task_ctx_data;
> + task_ctx_data = NULL;
> + ctx->nr_task_data++;
> + }
> + raw_spin_unlock_irq(&ctx->lock);
> +
> + kfree(task_ctx_data);
> + kfree(new);
> +
> + return epc;
> +}
> +
> +static void get_pmu_ctx(struct perf_event_pmu_context *epc)
> +{
> + WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
> +}
> +
> +static void put_pmu_ctx(struct perf_event_pmu_context *epc)
> +{
> + unsigned long flags;
> +
> + if (!atomic_dec_and_test(&epc->refcount))
> + return;
> +
> + if (epc->ctx) {
> + struct perf_event_context *ctx = epc->ctx;
> +
> + // XXX ctx->mutex
> +
> + WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
> + raw_spin_lock_irqsave(&ctx->lock, flags);
> + list_del_init(&epc->pmu_ctx_entry);
> + epc->ctx = NULL;
> + raw_spin_unlock_irqrestore(&ctx->lock, flags);
> + }
> +
> + WARN_ON_ONCE(!list_empty(&epc->pinned_active));
> + WARN_ON_ONCE(!list_empty(&epc->flexible_active));
> +
> + if (epc->embedded)
> + return;
> +
> + kfree(epc->task_ctx_data);
> + kfree(epc);
> +}
> +
> static void perf_event_free_filter(struct perf_event *event);
> static void perf_event_free_bpf_prog(struct perf_event *event);
>
> @@ -4445,6 +4611,9 @@ static void _free_event(struct perf_even
> if (event->destroy)
> event->destroy(event);
>
> + if (event->pmu_ctx)
> + put_pmu_ctx(event->pmu_ctx);
> +
> if (event->ctx)
> put_ctx(event->ctx);
>
> @@ -4943,7 +5112,7 @@ static void __perf_event_period(struct p
>
> active = (event->state == PERF_EVENT_STATE_ACTIVE);
> if (active) {
> - perf_pmu_disable(ctx->pmu);
> + perf_pmu_disable(event->pmu);
> /*
> * We could be throttled; unthrottle now to avoid the tick
> * trying to unthrottle while we already re-started the event.
> @@ -4959,7 +5128,7 @@ static void __perf_event_period(struct p
>
> if (active) {
> event->pmu->start(event, PERF_EF_RELOAD);
> - perf_pmu_enable(ctx->pmu);
> + perf_pmu_enable(event->pmu);
> }
> }
>
> @@ -6634,7 +6803,6 @@ perf_iterate_sb(perf_iterate_f output, v
> struct perf_event_context *task_ctx)
> {
> struct perf_event_context *ctx;
> - int ctxn;
>
> rcu_read_lock();
> preempt_disable();
> @@ -6651,11 +6819,9 @@ perf_iterate_sb(perf_iterate_f output, v
>
> perf_iterate_sb_cpu(output, data);
>
> - for_each_task_context_nr(ctxn) {
> - ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
> - if (ctx)
> - perf_iterate_ctx(ctx, output, data, false);
> - }
> + ctx = rcu_dereference(current->perf_event_ctxp);
> + if (ctx)
> + perf_iterate_ctx(ctx, output, data, false);
> done:
> preempt_enable();
> rcu_read_unlock();
> @@ -6696,18 +6862,12 @@ static void perf_event_addr_filters_exec
> void perf_event_exec(void)
> {
> struct perf_event_context *ctx;
> - int ctxn;
>
> rcu_read_lock();
> - for_each_task_context_nr(ctxn) {
> - ctx = current->perf_event_ctxp[ctxn];
> - if (!ctx)
> - continue;
> -
> - perf_event_enable_on_exec(ctxn);
> -
> - perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
> - true);
> + ctx = rcu_dereference(current->perf_event_ctxp);
> + if (ctx) {
> + perf_event_enable_on_exec(ctx);
> + perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
> }
> rcu_read_unlock();
> }
> @@ -6749,8 +6909,7 @@ static void __perf_event_output_stop(str
> static int __perf_pmu_output_stop(void *info)
> {
> struct perf_event *event = info;
> - struct pmu *pmu = event->pmu;
> - struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> struct remote_output ro = {
> .rb = event->rb,
> };
> @@ -7398,7 +7557,6 @@ static void __perf_addr_filters_adjust(s
> static void perf_addr_filters_adjust(struct vm_area_struct *vma)
> {
> struct perf_event_context *ctx;
> - int ctxn;
>
> /*
> * Data tracing isn't supported yet and as such there is no need
> @@ -7408,13 +7566,9 @@ static void perf_addr_filters_adjust(str
> return;
>
> rcu_read_lock();
> - for_each_task_context_nr(ctxn) {
> - ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
> - if (!ctx)
> - continue;
> -
> + ctx = rcu_dereference(current->perf_event_ctxp);
> + if (ctx)
> perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
> - }
> rcu_read_unlock();
> }
>
> @@ -8309,10 +8463,13 @@ void perf_tp_event(u16 event_type, u64 c
> struct trace_entry *entry = record;
>
> rcu_read_lock();
> - ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
> + ctx = rcu_dereference(task->perf_event_ctxp);
> if (!ctx)
> goto unlock;
>
> + // XXX iterate groups instead, we should be able to
> + // find the subtree for the perf_tracepoint pmu and CPU.
> +
> list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
> if (event->cpu != smp_processor_id())
> continue;
> @@ -9404,25 +9561,6 @@ static int perf_event_idx_default(struct
> return 0;
> }
>
> -/*
> - * Ensures all contexts with the same task_ctx_nr have the same
> - * pmu_cpu_context too.
> - */
> -static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
> -{
> - struct pmu *pmu;
> -
> - if (ctxn < 0)
> - return NULL;
> -
> - list_for_each_entry(pmu, &pmus, entry) {
> - if (pmu->task_ctx_nr == ctxn)
> - return pmu->pmu_cpu_context;
> - }
> -
> - return NULL;
> -}
> -
> static void free_pmu_context(struct pmu *pmu)
> {
> /*
> @@ -9433,7 +9571,7 @@ static void free_pmu_context(struct pmu
> if (pmu->task_ctx_nr > perf_invalid_context)
> return;
>
> - free_percpu(pmu->pmu_cpu_context);
> + free_percpu(pmu->cpu_pmu_context);
> }
>
> /*
> @@ -9497,12 +9635,12 @@ perf_event_mux_interval_ms_store(struct
> /* update all cpuctx for this PMU */
> cpus_read_lock();
> for_each_online_cpu(cpu) {
> - struct perf_cpu_context *cpuctx;
> - cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
> - cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
> + struct perf_cpu_pmu_context *cpc;
> + cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
> + cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
>
> cpu_function_call(cpu,
> - (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
> + (remote_function_f)perf_mux_hrtimer_restart, cpc);
> }
> cpus_read_unlock();
> mutex_unlock(&mux_interval_mutex);
> @@ -9602,44 +9740,19 @@ int perf_pmu_register(struct pmu *pmu, c
> }
>
> skip_type:
> - if (pmu->task_ctx_nr == perf_hw_context) {
> - static int hw_context_taken = 0;
> -
> - /*
> - * Other than systems with heterogeneous CPUs, it never makes
> - * sense for two PMUs to share perf_hw_context. PMUs which are
> - * uncore must use perf_invalid_context.
> - */
> - if (WARN_ON_ONCE(hw_context_taken &&
> - !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
> - pmu->task_ctx_nr = perf_invalid_context;
> -
> - hw_context_taken = 1;
> - }
> -
> - pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
> - if (pmu->pmu_cpu_context)
> - goto got_cpu_context;
> -
> ret = -ENOMEM;
> - pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
> - if (!pmu->pmu_cpu_context)
> + pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
> + if (!pmu->cpu_pmu_context)
> goto free_dev;
>
> for_each_possible_cpu(cpu) {
> - struct perf_cpu_context *cpuctx;
> + struct perf_cpu_pmu_context *cpc;
>
> - cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
> - __perf_event_init_context(&cpuctx->ctx);
> - lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
> - lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
> - cpuctx->ctx.pmu = pmu;
> - cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
> -
> - __perf_mux_hrtimer_init(cpuctx, cpu);
> + cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
> + __perf_init_event_pmu_context(&cpc->epc, pmu);
> + __perf_mux_hrtimer_init(cpc, cpu);
> }
>
> -got_cpu_context:
> if (!pmu->start_txn) {
> if (pmu->pmu_enable) {
> /*
> @@ -10349,37 +10462,6 @@ static int perf_event_set_clock(struct p
> return 0;
> }
>
> -/*
> - * Variation on perf_event_ctx_lock_nested(), except we take two context
> - * mutexes.
> - */
> -static struct perf_event_context *
> -__perf_event_ctx_lock_double(struct perf_event *group_leader,
> - struct perf_event_context *ctx)
> -{
> - struct perf_event_context *gctx;
> -
> -again:
> - rcu_read_lock();
> - gctx = READ_ONCE(group_leader->ctx);
> - if (!atomic_inc_not_zero(&gctx->refcount)) {
> - rcu_read_unlock();
> - goto again;
> - }
> - rcu_read_unlock();
> -
> - mutex_lock_double(&gctx->mutex, &ctx->mutex);
> -
> - if (group_leader->ctx != gctx) {
> - mutex_unlock(&ctx->mutex);
> - mutex_unlock(&gctx->mutex);
> - put_ctx(gctx);
> - goto again;
> - }
> -
> - return gctx;
> -}
> -
> /**
> * sys_perf_event_open - open a performance event, associate it to a task/cpu
> *
> @@ -10393,9 +10475,10 @@ SYSCALL_DEFINE5(perf_event_open,
> pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
> {
> struct perf_event *group_leader = NULL, *output_event = NULL;
> + struct perf_event_pmu_context *pmu_ctx;
> struct perf_event *event, *sibling;
> struct perf_event_attr attr;
> - struct perf_event_context *ctx, *uninitialized_var(gctx);
> + struct perf_event_context *ctx;
> struct file *event_file = NULL;
> struct fd group = {NULL, 0};
> struct task_struct *task = NULL;
> @@ -10506,6 +10589,8 @@ SYSCALL_DEFINE5(perf_event_open,
> goto err_cred;
> }
>
> + // XXX premature; what if this is allowed, but we get moved to a PMU
> + // that doesn't have this.
> if (is_sampling_event(event)) {
> if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
> err = -EOPNOTSUPP;
> @@ -10525,50 +10610,45 @@ SYSCALL_DEFINE5(perf_event_open,
> goto err_alloc;
> }
>
> + if (pmu->task_ctx_nr < 0 && task) {
> + err = -EINVAL;
> + goto err_alloc;
> + }
> +
> if (pmu->task_ctx_nr == perf_sw_context)
> event->event_caps |= PERF_EV_CAP_SOFTWARE;
>
> - if (group_leader) {
> - if (is_software_event(event) &&
> - !in_software_context(group_leader)) {
> - /*
> - * If the event is a sw event, but the group_leader
> - * is on hw context.
> - *
> - * Allow the addition of software events to hw
> - * groups, this is safe because software events
> - * never fail to schedule.
> - */
> - pmu = group_leader->ctx->pmu;
> - } else if (!is_software_event(event) &&
> - is_software_event(group_leader) &&
> - (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
> - /*
> - * In case the group is a pure software group, and we
> - * try to add a hardware event, move the whole group to
> - * the hardware context.
> - */
> - move_group = 1;
> - }
> - }
> -
> /*
> * Get the target context (task or percpu):
> */
> - ctx = find_get_context(pmu, task, event);
> + ctx = find_get_context(task, event);
> if (IS_ERR(ctx)) {
> err = PTR_ERR(ctx);
> goto err_alloc;
> }
>
> - if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
> - err = -EBUSY;
> - goto err_context;
> + mutex_lock(&ctx->mutex);
> +
> + if (ctx->task == TASK_TOMBSTONE) {
> + err = -ESRCH;
> + goto err_locked;
> + }
> +
> + if (!task) {
> + /*
> + * Check if the @cpu we're creating an event for is online.
> + *
> + * We use the perf_cpu_context::ctx::mutex to serialize against
> + * the hotplug notifiers. See perf_event_{init,exit}_cpu().
> + */
> + struct perf_cpu_context *cpuctx = per_cpu_ptr(&cpu_context, event->cpu);
> +
> + if (!cpuctx->online) {
> + err = -ENODEV;
> + goto err_locked;
> + }
> }
>
> - /*
> - * Look up the group leader (we will attach this event to it):
> - */
> if (group_leader) {
> err = -EINVAL;
>
> @@ -10577,11 +10657,11 @@ SYSCALL_DEFINE5(perf_event_open,
> * becoming part of another group-sibling):
> */
> if (group_leader->group_leader != group_leader)
> - goto err_context;
> + goto err_locked;
>
> /* All events in a group should have the same clock */
> if (group_leader->clock != event->clock)
> - goto err_context;
> + goto err_locked;
>
> /*
> * Make sure we're both events for the same CPU;
> @@ -10589,28 +10669,57 @@ SYSCALL_DEFINE5(perf_event_open,
> * you can never concurrently schedule them anyhow.
> */
> if (group_leader->cpu != event->cpu)
> - goto err_context;
> -
> - /*
> - * Make sure we're both on the same task, or both
> - * per-CPU events.
> - */
> - if (group_leader->ctx->task != ctx->task)
> - goto err_context;
> + goto err_locked;
>
> /*
> - * Do not allow to attach to a group in a different task
> - * or CPU context. If we're moving SW events, we'll fix
> - * this up later, so allow that.
> + * Make sure we're both on the same context; either task or cpu.
> */
> - if (!move_group && group_leader->ctx != ctx)
> - goto err_context;
> + if (group_leader->ctx != ctx)
> + goto err_locked;
>
> /*
> * Only a group leader can be exclusive or pinned
> */
> if (attr.exclusive || attr.pinned)
> - goto err_context;
> + goto err_locked;
> +
> + if (is_software_event(event) &&
> + !in_software_context(group_leader)) {
> + /*
> + * If the event is a sw event, but the group_leader
> + * is on hw context.
> + *
> + * Allow the addition of software events to hw
> + * groups, this is safe because software events
> + * never fail to schedule.
> + */
> + pmu = group_leader->pmu_ctx->pmu;
> + } else if (!is_software_event(event) &&
> + is_software_event(group_leader) &&
> + (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
> + /*
> + * In case the group is a pure software group, and we
> + * try to add a hardware event, move the whole group to
> + * the hardware context.
> + */
> + move_group = 1;
> + }
> + }
> +
> + /*
> + * Now that we're certain of the pmu; find the pmu_ctx.
> + */
> + pmu_ctx = find_get_pmu_context(pmu, ctx, event);
> + if (IS_ERR(pmu_ctx)) {
> + err = PTR_ERR(pmu_ctx);
> + goto err_locked;
> + }
> + event->pmu_ctx = pmu_ctx;
> +
> + // XXX think about exclusive
> + if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
> + err = -EBUSY;
> + goto err_context;
> }
>
> if (output_event) {
> @@ -10619,71 +10728,18 @@ SYSCALL_DEFINE5(perf_event_open,
> goto err_context;
> }
>
> - event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
> - f_flags);
> + event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
> if (IS_ERR(event_file)) {
> err = PTR_ERR(event_file);
> event_file = NULL;
> goto err_context;
> }
>
> - if (move_group) {
> - gctx = __perf_event_ctx_lock_double(group_leader, ctx);
> -
> - if (gctx->task == TASK_TOMBSTONE) {
> - err = -ESRCH;
> - goto err_locked;
> - }
> -
> - /*
> - * Check if we raced against another sys_perf_event_open() call
> - * moving the software group underneath us.
> - */
> - if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
> - /*
> - * If someone moved the group out from under us, check
> - * if this new event wound up on the same ctx, if so
> - * its the regular !move_group case, otherwise fail.
> - */
> - if (gctx != ctx) {
> - err = -EINVAL;
> - goto err_locked;
> - } else {
> - perf_event_ctx_unlock(group_leader, gctx);
> - move_group = 0;
> - }
> - }
> - } else {
> - mutex_lock(&ctx->mutex);
> - }
> -
> - if (ctx->task == TASK_TOMBSTONE) {
> - err = -ESRCH;
> - goto err_locked;
> - }
> -
> if (!perf_event_validate_size(event)) {
> err = -E2BIG;
> - goto err_locked;
> + goto err_file;
> }
>
> - if (!task) {
> - /*
> - * Check if the @cpu we're creating an event for is online.
> - *
> - * We use the perf_cpu_context::ctx::mutex to serialize against
> - * the hotplug notifiers. See perf_event_{init,exit}_cpu().
> - */
> - struct perf_cpu_context *cpuctx =
> - container_of(ctx, struct perf_cpu_context, ctx);
> -
> - if (!cpuctx->online) {
> - err = -ENODEV;
> - goto err_locked;
> - }
> - }
> -
> -
> /*
> * Must be under the same ctx::mutex as perf_install_in_context(),
> * because we need to serialize with concurrent event creation.
> @@ -10693,7 +10749,7 @@ SYSCALL_DEFINE5(perf_event_open,
> WARN_ON_ONCE(move_group);
>
> err = -EBUSY;
> - goto err_locked;
> + goto err_file;
> }
>
> WARN_ON_ONCE(ctx->parent_ctx);
> @@ -10704,25 +10760,15 @@ SYSCALL_DEFINE5(perf_event_open,
> */
>
> if (move_group) {
> - /*
> - * See perf_event_ctx_lock() for comments on the details
> - * of swizzling perf_event::ctx.
> - */
> perf_remove_from_context(group_leader, 0);
> - put_ctx(gctx);
> + put_pmu_ctx(group_leader->pmu_ctx);
>
> for_each_sibling_event(sibling, group_leader) {
> perf_remove_from_context(sibling, 0);
> - put_ctx(gctx);
> + put_pmu_ctx(sibling->pmu_ctx);
> }
>
> /*
> - * Wait for everybody to stop referencing the events through
> - * the old lists, before installing it on new lists.
> - */
> - synchronize_rcu();
> -
> - /*
> * Install the group siblings before the group leader.
> *
> * Because a group leader will try and install the entire group
> @@ -10733,9 +10779,10 @@ SYSCALL_DEFINE5(perf_event_open,
> * reachable through the group lists.
> */
> for_each_sibling_event(sibling, group_leader) {
> + sibling->pmu_ctx = pmu_ctx;
> + get_pmu_ctx(pmu_ctx);
> perf_event__state_init(sibling);
> perf_install_in_context(ctx, sibling, sibling->cpu);
> - get_ctx(ctx);
> }
>
> /*
> @@ -10743,9 +10790,10 @@ SYSCALL_DEFINE5(perf_event_open,
> * event. What we want here is event in the initial
> * startup state, ready to be add into new context.
> */
> + group_leader->pmu_ctx = pmu_ctx;
> + get_pmu_ctx(pmu_ctx);
> perf_event__state_init(group_leader);
> perf_install_in_context(ctx, group_leader, group_leader->cpu);
> - get_ctx(ctx);
> }
>
> /*
> @@ -10762,8 +10810,6 @@ SYSCALL_DEFINE5(perf_event_open,
> perf_install_in_context(ctx, event, event->cpu);
> perf_unpin_context(ctx);
>
> - if (move_group)
> - perf_event_ctx_unlock(group_leader, gctx);
> mutex_unlock(&ctx->mutex);
>
> if (task) {
> @@ -10785,13 +10831,12 @@ SYSCALL_DEFINE5(perf_event_open,
> fd_install(event_fd, event_file);
> return event_fd;
>
> -err_locked:
> - if (move_group)
> - perf_event_ctx_unlock(group_leader, gctx);
> - mutex_unlock(&ctx->mutex);
> -/* err_file: */
> +err_file:
> fput(event_file);
> err_context:
> + /* event->pmu_ctx freed by free_event() */
> +err_locked:
> + mutex_unlock(&ctx->mutex);
> perf_unpin_context(ctx);
> put_ctx(ctx);
> err_alloc:
> @@ -10827,8 +10872,10 @@ perf_event_create_kernel_counter(struct
> perf_overflow_handler_t overflow_handler,
> void *context)
> {
> + struct perf_event_pmu_context *pmu_ctx;
> struct perf_event_context *ctx;
> struct perf_event *event;
> + struct pmu *pmu;
> int err;
>
> /*
> @@ -10844,12 +10891,28 @@ perf_event_create_kernel_counter(struct
>
> /* Mark owner so we could distinguish it from user events. */
> event->owner = TASK_TOMBSTONE;
> + pmu = event->pmu;
> +
> + if (pmu->task_ctx_nr < 0 && task) {
> + err = -EINVAL;
> + goto err_alloc;
> + }
> +
> + if (pmu->task_ctx_nr == perf_sw_context)
> + event->event_caps |= PERF_EV_CAP_SOFTWARE;
>
> - ctx = find_get_context(event->pmu, task, event);
> + ctx = find_get_context(task, event);
> if (IS_ERR(ctx)) {
> err = PTR_ERR(ctx);
> - goto err_free;
> + goto err_alloc;
> + }
> +
> + pmu_ctx = find_get_pmu_context(pmu, ctx, event);
> + if (IS_ERR(pmu_ctx)) {
> + err = PTR_ERR(pmu_ctx);
> + goto err_ctx;
> }
> + event->pmu_ctx = pmu_ctx;
>
> WARN_ON_ONCE(ctx->parent_ctx);
> mutex_lock(&ctx->mutex);
> @@ -10886,9 +10949,10 @@ perf_event_create_kernel_counter(struct
>
> err_unlock:
> mutex_unlock(&ctx->mutex);
> +err_ctx:
> perf_unpin_context(ctx);
> put_ctx(ctx);
> -err_free:
> +err_alloc:
> free_event(event);
> err:
> return ERR_PTR(err);
> @@ -10897,6 +10961,7 @@ EXPORT_SYMBOL_GPL(perf_event_create_kern
>
> void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
> {
> +#if 0 // XXX buggered - cpu hotplug, who cares
> struct perf_event_context *src_ctx;
> struct perf_event_context *dst_ctx;
> struct perf_event *event, *tmp;
> @@ -10957,6 +11022,7 @@ void perf_pmu_migrate_context(struct pmu
> }
> mutex_unlock(&dst_ctx->mutex);
> mutex_unlock(&src_ctx->mutex);
> +#endif
> }
> EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
>
> @@ -11038,14 +11104,14 @@ perf_event_exit_event(struct perf_event
> put_event(parent_event);
> }
>
> -static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
> +static void perf_event_exit_task_context(struct task_struct *child)
> {
> struct perf_event_context *child_ctx, *clone_ctx = NULL;
> struct perf_event *child_event, *next;
>
> WARN_ON_ONCE(child != current);
>
> - child_ctx = perf_pin_task_context(child, ctxn);
> + child_ctx = perf_pin_task_context(child);
> if (!child_ctx)
> return;
>
> @@ -11067,13 +11133,13 @@ static void perf_event_exit_task_context
> * in.
> */
> raw_spin_lock_irq(&child_ctx->lock);
> - task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
> + task_ctx_sched_out(child_ctx, EVENT_ALL);
>
> /*
> * Now that the context is inactive, destroy the task <-> ctx relation
> * and mark the context dead.
> */
> - RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
> + RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
> put_ctx(child_ctx); /* cannot be last */
> WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
> put_task_struct(current); /* cannot be last */
> @@ -11108,7 +11174,6 @@ static void perf_event_exit_task_context
> void perf_event_exit_task(struct task_struct *child)
> {
> struct perf_event *event, *tmp;
> - int ctxn;
>
> mutex_lock(&child->perf_event_mutex);
> list_for_each_entry_safe(event, tmp, &child->perf_event_list,
> @@ -11124,8 +11189,7 @@ void perf_event_exit_task(struct task_st
> }
> mutex_unlock(&child->perf_event_mutex);
>
> - for_each_task_context_nr(ctxn)
> - perf_event_exit_task_context(child, ctxn);
> + perf_event_exit_task_context(child);
>
> /*
> * The perf_event_exit_task_context calls perf_event_task
> @@ -11168,40 +11232,34 @@ void perf_event_free_task(struct task_st
> {
> struct perf_event_context *ctx;
> struct perf_event *event, *tmp;
> - int ctxn;
>
> - for_each_task_context_nr(ctxn) {
> - ctx = task->perf_event_ctxp[ctxn];
> - if (!ctx)
> - continue;
> + ctx = rcu_dereference(task->perf_event_ctxp);
> + if (!ctx)
> + return;
>
> - mutex_lock(&ctx->mutex);
> - raw_spin_lock_irq(&ctx->lock);
> - /*
> - * Destroy the task <-> ctx relation and mark the context dead.
> - *
> - * This is important because even though the task hasn't been
> - * exposed yet the context has been (through child_list).
> - */
> - RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
> - WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
> - put_task_struct(task); /* cannot be last */
> - raw_spin_unlock_irq(&ctx->lock);
> + mutex_lock(&ctx->mutex);
> + raw_spin_lock_irq(&ctx->lock);
> + /*
> + * Destroy the task <-> ctx relation and mark the context dead.
> + *
> + * This is important because even though the task hasn't been
> + * exposed yet the context has been (through child_list).
> + */
> + RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
> + WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
> + put_task_struct(task); /* cannot be last */
> + raw_spin_unlock_irq(&ctx->lock);
>
> - list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
> - perf_free_event(event, ctx);
> + list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
> + perf_free_event(event, ctx);
>
> - mutex_unlock(&ctx->mutex);
> - put_ctx(ctx);
> - }
> + mutex_unlock(&ctx->mutex);
> + put_ctx(ctx);
> }
>
> void perf_event_delayed_put(struct task_struct *task)
> {
> - int ctxn;
> -
> - for_each_task_context_nr(ctxn)
> - WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
> + WARN_ON_ONCE(task->perf_event_ctxp);
> }
>
> struct file *perf_event_get(unsigned int fd)
> @@ -11253,6 +11311,7 @@ inherit_event(struct perf_event *parent_
> struct perf_event_context *child_ctx)
> {
> enum perf_event_state parent_state = parent_event->state;
> + struct perf_event_pmu_context *pmu_ctx;
> struct perf_event *child_event;
> unsigned long flags;
>
> @@ -11273,18 +11332,12 @@ inherit_event(struct perf_event *parent_
> if (IS_ERR(child_event))
> return child_event;
>
> -
> - if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
> - !child_ctx->task_ctx_data) {
> - struct pmu *pmu = child_event->pmu;
> -
> - child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
> - GFP_KERNEL);
> - if (!child_ctx->task_ctx_data) {
> - free_event(child_event);
> - return NULL;
> - }
> + pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
> + if (!pmu_ctx) {
> + free_event(child_event);
> + return NULL;
> }
> + child_event->pmu_ctx = pmu_ctx;
>
> /*
> * is_orphaned_event() and list_add_tail(&parent_event->child_list)
> @@ -11402,18 +11455,18 @@ static int inherit_group(struct perf_eve
> static int
> inherit_task_group(struct perf_event *event, struct task_struct *parent,
> struct perf_event_context *parent_ctx,
> - struct task_struct *child, int ctxn,
> + struct task_struct *child,
> int *inherited_all)
> {
> - int ret;
> struct perf_event_context *child_ctx;
> + int ret;
>
> if (!event->attr.inherit) {
> *inherited_all = 0;
> return 0;
> }
>
> - child_ctx = child->perf_event_ctxp[ctxn];
> + child_ctx = child->perf_event_ctxp;
> if (!child_ctx) {
> /*
> * This is executed from the parent task context, so
> @@ -11421,16 +11474,14 @@ inherit_task_group(struct perf_event *ev
> * First allocate and initialize a context for the
> * child.
> */
> - child_ctx = alloc_perf_context(parent_ctx->pmu, child);
> + child_ctx = alloc_perf_context(child);
> if (!child_ctx)
> return -ENOMEM;
>
> - child->perf_event_ctxp[ctxn] = child_ctx;
> + child->perf_event_ctxp = child_ctx;
> }
>
> - ret = inherit_group(event, parent, parent_ctx,
> - child, child_ctx);
> -
> + ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
> if (ret)
> *inherited_all = 0;
>
> @@ -11440,7 +11491,7 @@ inherit_task_group(struct perf_event *ev
> /*
> * Initialize the perf_event context in task_struct
> */
> -static int perf_event_init_context(struct task_struct *child, int ctxn)
> +static int perf_event_init_context(struct task_struct *child)
> {
> struct perf_event_context *child_ctx, *parent_ctx;
> struct perf_event_context *cloned_ctx;
> @@ -11450,14 +11501,14 @@ static int perf_event_init_context(struc
> unsigned long flags;
> int ret = 0;
>
> - if (likely(!parent->perf_event_ctxp[ctxn]))
> + if (likely(!parent->perf_event_ctxp))
> return 0;
>
> /*
> * If the parent's context is a clone, pin it so it won't get
> * swapped under us.
> */
> - parent_ctx = perf_pin_task_context(parent, ctxn);
> + parent_ctx = perf_pin_task_context(parent);
> if (!parent_ctx)
> return 0;
>
> @@ -11480,7 +11531,7 @@ static int perf_event_init_context(struc
> */
> perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
> ret = inherit_task_group(event, parent, parent_ctx,
> - child, ctxn, &inherited_all);
> + child, &inherited_all);
> if (ret)
> goto out_unlock;
> }
> @@ -11496,7 +11547,7 @@ static int perf_event_init_context(struc
>
> perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
> ret = inherit_task_group(event, parent, parent_ctx,
> - child, ctxn, &inherited_all);
> + child, &inherited_all);
> if (ret)
> goto out_unlock;
> }
> @@ -11504,7 +11555,7 @@ static int perf_event_init_context(struc
> raw_spin_lock_irqsave(&parent_ctx->lock, flags);
> parent_ctx->rotate_disable = 0;
>
> - child_ctx = child->perf_event_ctxp[ctxn];
> + child_ctx = child->perf_event_ctxp;
>
> if (child_ctx && inherited_all) {
> /*
> @@ -11540,18 +11591,16 @@ static int perf_event_init_context(struc
> */
> int perf_event_init_task(struct task_struct *child)
> {
> - int ctxn, ret;
> + int ret;
>
> - memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
> + child->perf_event_ctxp = NULL;
> mutex_init(&child->perf_event_mutex);
> INIT_LIST_HEAD(&child->perf_event_list);
>
> - for_each_task_context_nr(ctxn) {
> - ret = perf_event_init_context(child, ctxn);
> - if (ret) {
> - perf_event_free_task(child);
> - return ret;
> - }
> + ret = perf_event_init_context(child);
> + if (ret) {
> + perf_event_free_task(child);
> + return ret;
> }
>
> return 0;
> @@ -11560,6 +11609,7 @@ int perf_event_init_task(struct task_str
> static void __init perf_event_init_all_cpus(void)
> {
> struct swevent_htable *swhash;
> + struct perf_cpu_context *cpuctx;
> int cpu;
>
> zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
> @@ -11567,7 +11617,6 @@ static void __init perf_event_init_all_c
> for_each_possible_cpu(cpu) {
> swhash = &per_cpu(swevent_htable, cpu);
> mutex_init(&swhash->hlist_mutex);
> - INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
>
> INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
> raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
> @@ -11576,6 +11625,12 @@ static void __init perf_event_init_all_c
> INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
> #endif
> INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
> +
> + cpuctx = per_cpu_ptr(&cpu_context, cpu);
> + __perf_event_init_context(&cpuctx->ctx);
> + lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
> + lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
> + cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
> }
> }
>
> @@ -11597,12 +11652,12 @@ void perf_swevent_init_cpu(unsigned int
> #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
> static void __perf_event_exit_context(void *__info)
> {
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> struct perf_event_context *ctx = __info;
> - struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
> struct perf_event *event;
>
> raw_spin_lock(&ctx->lock);
> - ctx_sched_out(ctx, cpuctx, EVENT_TIME);
> + ctx_sched_out(ctx, EVENT_TIME);
> list_for_each_entry(event, &ctx->event_list, event_entry)
> __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
> raw_spin_unlock(&ctx->lock);
> @@ -11612,18 +11667,16 @@ static void perf_event_exit_cpu_context(
> {
> struct perf_cpu_context *cpuctx;
> struct perf_event_context *ctx;
> - struct pmu *pmu;
>
> + // XXX simplify cpuctx->online
> mutex_lock(&pmus_lock);
> - list_for_each_entry(pmu, &pmus, entry) {
> - cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
> - ctx = &cpuctx->ctx;
> + cpuctx = per_cpu_ptr(&cpu_context, cpu);
> + ctx = &cpuctx->ctx;
>
> - mutex_lock(&ctx->mutex);
> - smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
> - cpuctx->online = 0;
> - mutex_unlock(&ctx->mutex);
> - }
> + mutex_lock(&ctx->mutex);
> + smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
> + cpuctx->online = 0;
> + mutex_unlock(&ctx->mutex);
> cpumask_clear_cpu(cpu, perf_online_mask);
> mutex_unlock(&pmus_lock);
> }
> @@ -11637,20 +11690,17 @@ int perf_event_init_cpu(unsigned int cpu
> {
> struct perf_cpu_context *cpuctx;
> struct perf_event_context *ctx;
> - struct pmu *pmu;
>
> perf_swevent_init_cpu(cpu);
>
> mutex_lock(&pmus_lock);
> cpumask_set_cpu(cpu, perf_online_mask);
> - list_for_each_entry(pmu, &pmus, entry) {
> - cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
> - ctx = &cpuctx->ctx;
> + cpuctx = per_cpu_ptr(&cpu_context, cpu);
> + ctx = &cpuctx->ctx;
>
> - mutex_lock(&ctx->mutex);
> - cpuctx->online = 1;
> - mutex_unlock(&ctx->mutex);
> - }
> + mutex_lock(&ctx->mutex);
> + cpuctx->online = 1;
> + mutex_unlock(&ctx->mutex);
> mutex_unlock(&pmus_lock);
>
> return 0;
On Thu, Oct 11, 2018 at 07:50:23AM +0000, Song Liu wrote:
> Hi Peter,
>
> I am trying to understand this. Pardon me if any question is silly.
>
> I am not sure I fully understand the motivation here. I guess we
> see problem when there are two (or more) independent hardware PMUs
> per cpu? Then on a given cpu, there are two (or more)
> perf_cpu_context, but only one task context?
Right.
> If this is correct (I really doubt...), I guess perf_rotate_context()
> is the problem?
No, everything comes apart. Where would you put the events of the second
PMU?
The thing most often proposed it pretending the second PMU is a
'software' PMU and sticking the events on the software PMU context.
But because software PMUs must never fail to schedule an event, that
results in some quite horrible things -- including that we cannot RR the
events.
Similarly the big.little guys have the problem that the PMUs are not the
same between big and little cores, and they fudge something horrible. By
having clear ordering on PMU, that can be cleaned up too.
> And if this is still correct, this patch may not help,
> as we are doing rotation for each perf_cpu_pmu_context? (or rotation
> per perf_event_context is the next step?).
We do indeed to rotation per perf_cpu_pmu_context, however:
- perf_cpu_pmu_context embeds a cpu scope perf_event_pmu_context,
- perf_cpu_pmu_context tracks the currently associated task scope
perf_event_pmu_context.
So it can rotate all current events for a particular PMU.
> Or step back a little... I see two big changes:
>
> 1. struct perf_ctx_context is now per cpu (instead of per pmu per cpu);
> 2. one perf_event_ctxp per task_struct (instead of 2).
Correct, we reduce to 1 cpu context and 1 task context at all times.
This in fact simplifies quite a bit of things.
> I think #1 is a bigger change than #2. Is this correct?
They're the 'same' change. But yes the primary purpose was 2, but having
only a single cpu context is a direct consequence.
> Could you please help me understand it better?
I hope this helps to understand, please feel free to ask more.
Thanks Peter! These are really really helpful.
I am trying to think through the case of a group of two events on two
separate hardware PMUs. In current implementation, this will not trigger
move_group, so they will not be able to rotate together? And actually,
they may not be able to run at all? Maybe this case is never supported?
On the other hand, would something like this work:
perf_cpu_context <-[1:2]-> perf_event_context <-[1:n]-> perf_event
| |
`----[1:n]----> pmu <----- [1:n]----------'
1. Every cpu has only one perf_cpu_context. No perf_cpu_pmu_context.
2. perf_cpu_context has two perf_event_context, one for the cpu, the
other for the task.
3. Each perf_event_context has 3 perf_event_groups, pinned_groups,
flexible_groups, and software_groups (for sw event only groups).
4. All flexible_groups of the same cpu rotate a the same time. If
there are two hardware PMUs on the cpu, the rotation will look
like: 1) stop both PMUs; 2) rotate events; 3) start both PMUs.
I feel this will make the implementation simpler. Is it too broken in
some cases? Or did I miss anything obvious? One thing I noticed is
that we need to drop per PMU config perf_event_mux_interval_ms.
Please let me know whether this makes sense at all. I will read
more of current version in the meanwhile.
Thanks again,
Song
> On Oct 11, 2018, at 2:29 AM, Peter Zijlstra <[email protected]> wrote:
>
> On Thu, Oct 11, 2018 at 07:50:23AM +0000, Song Liu wrote:
>> Hi Peter,
>>
>> I am trying to understand this. Pardon me if any question is silly.
>>
>> I am not sure I fully understand the motivation here. I guess we
>> see problem when there are two (or more) independent hardware PMUs
>> per cpu? Then on a given cpu, there are two (or more)
>> perf_cpu_context, but only one task context?
>
> Right.
>
>> If this is correct (I really doubt...), I guess perf_rotate_context()
>> is the problem?
>
> No, everything comes apart. Where would you put the events of the second
> PMU?
>
> The thing most often proposed it pretending the second PMU is a
> 'software' PMU and sticking the events on the software PMU context.
>
> But because software PMUs must never fail to schedule an event, that
> results in some quite horrible things -- including that we cannot RR the
> events.
>
> Similarly the big.little guys have the problem that the PMUs are not the
> same between big and little cores, and they fudge something horrible. By
> having clear ordering on PMU, that can be cleaned up too.
>
>> And if this is still correct, this patch may not help,
>> as we are doing rotation for each perf_cpu_pmu_context? (or rotation
>> per perf_event_context is the next step?).
>
> We do indeed to rotation per perf_cpu_pmu_context, however:
>
> - perf_cpu_pmu_context embeds a cpu scope perf_event_pmu_context,
> - perf_cpu_pmu_context tracks the currently associated task scope
> perf_event_pmu_context.
>
> So it can rotate all current events for a particular PMU.
>
>> Or step back a little... I see two big changes:
>>
>> 1. struct perf_ctx_context is now per cpu (instead of per pmu per cpu);
>> 2. one perf_event_ctxp per task_struct (instead of 2).
>
> Correct, we reduce to 1 cpu context and 1 task context at all times.
> This in fact simplifies quite a bit of things.
>
>> I think #1 is a bigger change than #2. Is this correct?
>
> They're the 'same' change. But yes the primary purpose was 2, but having
> only a single cpu context is a direct consequence.
>
>> Could you please help me understand it better?
>
> I hope this helps to understand, please feel free to ask more.
Hi,
On 11.10.2018 12:29, Peter Zijlstra wrote:
> On Thu, Oct 11, 2018 at 07:50:23AM +0000, Song Liu wrote:
>> Hi Peter,
>>
>> I am trying to understand this. Pardon me if any question is silly.
>>
>> I am not sure I fully understand the motivation here. I guess we
>> see problem when there are two (or more) independent hardware PMUs
>> per cpu? Then on a given cpu, there are two (or more)
>> perf_cpu_context, but only one task context?
>
> Right.
>
>> If this is correct (I really doubt...), I guess perf_rotate_context()
>> is the problem?
>
> No, everything comes apart. Where would you put the events of the second
> PMU?
>
> The thing most often proposed it pretending the second PMU is a
> 'software' PMU and sticking the events on the software PMU context.
>
> But because software PMUs must never fail to schedule an event, that
> results in some quite horrible things -- including that we cannot RR the
> events.
>
> Similarly the big.little guys have the problem that the PMUs are not the
> same between big and little cores, and they fudge something horrible. By
> having clear ordering on PMU, that can be cleaned up too.
>
>> And if this is still correct, this patch may not help,
>> as we are doing rotation for each perf_cpu_pmu_context? (or rotation
>> per perf_event_context is the next step?).
>
> We do indeed to rotation per perf_cpu_pmu_context, however:
>
> - perf_cpu_pmu_context embeds a cpu scope perf_event_pmu_context,
> - perf_cpu_pmu_context tracks the currently associated task scope
> perf_event_pmu_context.
>
> So it can rotate all current events for a particular PMU.
>
>> Or step back a little... I see two big changes:
>>
>> 1. struct perf_ctx_context is now per cpu (instead of per pmu per cpu);
>> 2. one perf_event_ctxp per task_struct (instead of 2).
>
> Correct, we reduce to 1 cpu context and 1 task context at all times.
> This in fact simplifies quite a bit of things.
And what is currently missing is
some markup of the per cpu event list into per pmu sublists and
capability to rotate or not rotate the sublists independently,
right?
Thanks,
Alexey
>
>> I think #1 is a bigger change than #2. Is this correct?
>
> They're the 'same' change. But yes the primary purpose was 2, but having
> only a single cpu context is a direct consequence.
>
>> Could you please help me understand it better?
>
> I hope this helps to understand, please feel free to ask more.
>
Can we please not top-post?
On Thu, Oct 11, 2018 at 10:37:14PM +0000, Song Liu wrote:
> Thanks Peter! These are really really helpful.
>
> I am trying to think through the case of a group of two events on two
> separate hardware PMUs. In current implementation, this will not trigger
> move_group,
Right, currently this is disallowed (or should be, I'll need to double
check the code).
> so they will not be able to rotate together? And actually,
> they may not be able to run at all? Maybe this case is never supported?
Indeed, we do not allow mixing events of different PMUs, with the
explicit exception of software events. Since software events must always
schedule, they're allowed to be fitted into any group.
> On the other hand, would something like this work:
>
> perf_cpu_context <-[1:2]-> perf_event_context <-[1:n]-> perf_event
> | |
> `----[1:n]----> pmu <----- [1:n]----------'
>
> 1. Every cpu has only one perf_cpu_context. No perf_cpu_pmu_context.
The perf_event_pmu_context is currently needed to efficiently track
which events are active. And to determine if rotation is needed at all.
And the perf_cpu_pmu_context is needed because the rotation is per PMU
in ABI.
> 2. perf_cpu_context has two perf_event_context, one for the cpu, the
> other for the task.
That doesn't work (or I'm not understanding), tasks come and go on CPUs,
at best it has a reference to the current active task's context. But it
already had that, and it still does, see perf_cpu_context::task_ctx.
> 3. Each perf_event_context has 3 perf_event_groups, pinned_groups,
> flexible_groups, and software_groups (for sw event only groups).
So I'm thinking you want to split off the software groups because they
don't need rotation?
While doing this patch I noticed that we need to ignore attr.exclusive
for software events. Not sure that was intentional or not, but certainly
inconsistent.
> 4. All flexible_groups of the same cpu rotate a the same time. If
> there are two hardware PMUs on the cpu, the rotation will look
> like: 1) stop both PMUs; 2) rotate events; 3) start both PMUs.
ABI precludes that currently, we have per PMU rotation intervals exposed
in sysfs.
> I feel this will make the implementation simpler. Is it too broken in
> some cases? Or did I miss anything obvious? One thing I noticed is
> that we need to drop per PMU config perf_event_mux_interval_ms.
Right that. People added that for a reason (although it eludes me atm).
I don't think we can drop that easily.
On Fri, Oct 12, 2018 at 10:04:36AM +0300, Alexey Budankov wrote:
> On 11.10.2018 12:29, Peter Zijlstra wrote:
> > On Thu, Oct 11, 2018 at 07:50:23AM +0000, Song Liu wrote:
> >> Or step back a little... I see two big changes:
> >>
> >> 1. struct perf_ctx_context is now per cpu (instead of per pmu per cpu);
> >> 2. one perf_event_ctxp per task_struct (instead of 2).
> >
> > Correct, we reduce to 1 cpu context and 1 task context at all times.
> > This in fact simplifies quite a bit of things.
>
> And what is currently missing is
> some markup of the per cpu event list into per pmu sublists and
> capability to rotate or not rotate the sublists independently,
> right?
Yes, that is what the new perf_event_pmu_context is. That tracks the per
pmu sublist state.
On Fri, Oct 12, 2018 at 11:50:01AM +0200, Peter Zijlstra wrote:
>
> Can we please not top-post?
>
> On Thu, Oct 11, 2018 at 10:37:14PM +0000, Song Liu wrote:
> > Thanks Peter! These are really really helpful.
> >
> > I am trying to think through the case of a group of two events on two
> > separate hardware PMUs. In current implementation, this will not trigger
> > move_group,
>
> Right, currently this is disallowed (or should be, I'll need to double
> check the code).
>
> > so they will not be able to rotate together? And actually,
> > they may not be able to run at all? Maybe this case is never supported?
>
> Indeed, we do not allow mixing events of different PMUs, with the
> explicit exception of software events. Since software events must always
> schedule, they're allowed to be fitted into any group.
>
> > On the other hand, would something like this work:
> >
> > perf_cpu_context <-[1:2]-> perf_event_context <-[1:n]-> perf_event
> > | |
> > `----[1:n]----> pmu <----- [1:n]----------'
> >
> > 1. Every cpu has only one perf_cpu_context. No perf_cpu_pmu_context.
>
> The perf_event_pmu_context is currently needed to efficiently track
> which events are active. And to determine if rotation is needed at all.
>
> And the perf_cpu_pmu_context is needed because the rotation is per PMU
> in ABI.
>
> > 2. perf_cpu_context has two perf_event_context, one for the cpu, the
> > other for the task.
>
> That doesn't work (or I'm not understanding), tasks come and go on CPUs,
> at best it has a reference to the current active task's context. But it
> already had that, and it still does, see perf_cpu_context::task_ctx.
>
> > 3. Each perf_event_context has 3 perf_event_groups, pinned_groups,
> > flexible_groups, and software_groups (for sw event only groups).
>
> So I'm thinking you want to split off the software groups because they
> don't need rotation?
>
> While doing this patch I noticed that we need to ignore attr.exclusive
> for software events. Not sure that was intentional or not, but certainly
> inconsistent.
That sentence is confused; what I meant to say was that I noticed that
attr.exclusive for software events is currently confused.
> > 4. All flexible_groups of the same cpu rotate a the same time. If
> > there are two hardware PMUs on the cpu, the rotation will look
> > like: 1) stop both PMUs; 2) rotate events; 3) start both PMUs.
>
> ABI precludes that currently, we have per PMU rotation intervals exposed
> in sysfs.
>
> > I feel this will make the implementation simpler. Is it too broken in
> > some cases? Or did I miss anything obvious? One thing I noticed is
> > that we need to drop per PMU config perf_event_mux_interval_ms.
>
> Right that. People added that for a reason (although it eludes me atm).
> I don't think we can drop that easily.
> On Oct 12, 2018, at 2:50 AM, Peter Zijlstra <[email protected]> wrote:
>
>
> Can we please not top-post?
>
> On Thu, Oct 11, 2018 at 10:37:14PM +0000, Song Liu wrote:
>> Thanks Peter! These are really really helpful.
>>
>> I am trying to think through the case of a group of two events on two
>> separate hardware PMUs. In current implementation, this will not trigger
>> move_group,
>
> Right, currently this is disallowed (or should be, I'll need to double
> check the code).
>
>> so they will not be able to rotate together? And actually,
>> they may not be able to run at all? Maybe this case is never supported?
>
> Indeed, we do not allow mixing events of different PMUs, with the
> explicit exception of software events. Since software events must always
> schedule, they're allowed to be fitted into any group.
>
>> On the other hand, would something like this work:
>>
>> perf_cpu_context <-[1:2]-> perf_event_context <-[1:n]-> perf_event
>> | |
>> `----[1:n]----> pmu <----- [1:n]----------'
>>
After reading the code more, I think my idea in the figure above is
similar to this patch. The "pmu" in the figure is actually
perf_cpu_pmu_context. And I was thinking about something similar to
current pmu (not in the figure above).
I spent about two hours right here try to explain my idea. I ended
up delete everything I typed and agree almost all your design
decisions.
I just realized that, if we don't allow group of events on two
different hardware PMUs, the design of this patch works very well.
Rotation of multiple PMUs at the same time is not necessary.
The only suggestion I have right now is on which struct owns which
data:
1. perf_cpu_context owns two perf_event_context: ctx and *task_ctx.
This is the same as right now.
2. perf_event_context owns multiple perf_event_pmu_context:
One perf_event_pmu_context for software groups;
One perf_event_pmu_context for each hardware PMU.
3. perf_event_pmu_context owns RB tree of events. Since we don't
need rotation across multiple hardware PMUs, the rotation is
within same perf_event_pmu_context.
4. perf_cpu_context owns multiple perf_cpu_pmu_context:
One perf_cpu_pmu_context for each hardware PMU.
perf_cpu_pmu_context is tot needed for software only groups(?).
5. perf_cpu_pmu_context has two pointers of perf_event_pmu_context.
The following diff (on top of this patch) shows the idea above.
I don't think it changes any mechanism. But it feels simpler to me.
Thanks,
Song
diff --git i/include/linux/perf_event.h w/include/linux/perf_event.h
index 462315239f8f..b15e679d4802 100644
--- i/include/linux/perf_event.h
+++ w/include/linux/perf_event.h
@@ -762,10 +762,7 @@ struct perf_event_context {
struct mutex mutex;
struct list_head pmu_ctx_list;
-
- struct perf_event_groups pinned_groups;
- struct perf_event_groups flexible_groups;
- struct list_head event_list;
+ struct perf_event_pmu_context sw_ctx;
int nr_events;
int nr_active;
@@ -806,7 +803,7 @@ struct perf_event_context {
#define PERF_NR_CONTEXTS 4
struct perf_cpu_pmu_context {
- struct perf_event_pmu_context epc;
+ struct perf_event_pmu_context *epc; /* I am still debating this one */
struct perf_event_pmu_context *task_epc;
struct list_head sched_cb_entry;
@@ -827,6 +824,7 @@ struct perf_cpu_pmu_context {
struct perf_cpu_context {
struct perf_event_context ctx;
struct perf_event_context *task_ctx;
+ struct list_head list_of_perf_cpu_pmu_context; /* may be removed? */
#ifdef CONFIG_CGROUP_PERF
struct perf_cgroup *cgrp;
@@ -834,6 +832,10 @@ struct perf_cpu_context {
#endif
int online;
+
+ struct perf_event_groups pinned_groups;
+ struct perf_event_groups flexible_groups;
+ struct list_head event_list;
};
struct perf_output_handle {
Hi,
On 10.10.2018 13:45, Peter Zijlstra wrote:
> Hi all,
>
> There have been various issues and limitations with the way perf uses
> (task) contexts to track events. Most notable is the single hardware PMU
> task context, which has resulted in a number of yucky things (both
> proposed and merged).
>
> Notably:
>
> - HW breakpoint PMU
> - ARM big.little PMU
> - Intel Branch Monitoring PMU
>
> Since we now track the events in RB trees, we can 'simply' add a pmu
> order to them and have them grouped that way, reducing to a single
> context. Of course, reality never quite works out that simple, and below
> ends up adding an intermediate data structure to bridge the context ->
> pmu mapping.
>
> Something a little like:
>
> ,------------------------[1:n]---------------------.
> V V
> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> ^ ^ | |
> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>
> This patch builds (provided you disable CGROUP_PERF), boots and survives
> perf-top without the machine catching fire.
>
> There's still a fair bit of loose ends (look for XXX), but I think this
> is the direction we should be going.
>
> Comments?
>
> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
> ---
> arch/powerpc/perf/core-book3s.c | 4
> arch/x86/events/core.c | 4
> arch/x86/events/intel/core.c | 6
> arch/x86/events/intel/ds.c | 6
> arch/x86/events/intel/lbr.c | 16
> arch/x86/events/perf_event.h | 6
> include/linux/perf_event.h | 80 +-
> include/linux/sched.h | 2
> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
> 9 files changed, 815 insertions(+), 721 deletions(-)
Rewrite is impressive however it doesn't result in code base reduction as it is.
Nonetheless there is a clear demand for per pmu events groups tracking and rotation
in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
a supply thru groups ordering on RB-tree.
This might be driven into the kernel by some new Perf features that would base on
that RB-tree groups ordering or by refactoring of existing code but in the way it
would result in overall code base reduction thus lowering support cost.
Thanks,
Alexey
On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
> Hi,
>
> On 10.10.2018 13:45, Peter Zijlstra wrote:
> > Hi all,
> >
> > There have been various issues and limitations with the way perf uses
> > (task) contexts to track events. Most notable is the single hardware PMU
> > task context, which has resulted in a number of yucky things (both
> > proposed and merged).
> >
> > Notably:
> >
> > - HW breakpoint PMU
> > - ARM big.little PMU
> > - Intel Branch Monitoring PMU
> >
> > Since we now track the events in RB trees, we can 'simply' add a pmu
> > order to them and have them grouped that way, reducing to a single
> > context. Of course, reality never quite works out that simple, and below
> > ends up adding an intermediate data structure to bridge the context ->
> > pmu mapping.
> >
> > Something a little like:
> >
> > ,------------------------[1:n]---------------------.
> > V V
> > perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> > ^ ^ | |
> > `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
> >
> > This patch builds (provided you disable CGROUP_PERF), boots and survives
> > perf-top without the machine catching fire.
> >
> > There's still a fair bit of loose ends (look for XXX), but I think this
> > is the direction we should be going.
> >
> > Comments?
> >
> > Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
> > ---
> > arch/powerpc/perf/core-book3s.c | 4
> > arch/x86/events/core.c | 4
> > arch/x86/events/intel/core.c | 6
> > arch/x86/events/intel/ds.c | 6
> > arch/x86/events/intel/lbr.c | 16
> > arch/x86/events/perf_event.h | 6
> > include/linux/perf_event.h | 80 +-
> > include/linux/sched.h | 2
> > kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
> > 9 files changed, 815 insertions(+), 721 deletions(-)
>
> Rewrite is impressive however it doesn't result in code base reduction as it is.
Yeah.. that seems to be nature of these things ..
> Nonetheless there is a clear demand for per pmu events groups tracking and rotation
> in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
> a supply thru groups ordering on RB-tree.
>
> This might be driven into the kernel by some new Perf features that would base on
> that RB-tree groups ordering or by refactoring of existing code but in the way it
> would result in overall code base reduction thus lowering support cost.
If you have a concrete suggestion on how to reduce complexity? I tried,
but couldn't find any (without breaking something).
The active lists and pmu_ctx_list could arguably be replaced with
(slower) iteratons over the RB tree, but you'll still need the per pmu
nr_events/nr_active counts to determine if rotation is required at all.
And like you know, performance is quite important here too. I'd love to
reduce complexity while maintaining or improve performance, but that
rarely if ever happens :/
On Mon, Oct 15, 2018 at 10:34:48AM +0200, Peter Zijlstra wrote:
> On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
> > Rewrite is impressive however it doesn't result in code base reduction as it is.
>
> Yeah.. that seems to be nature of these things ..
Note that some things did get simpler; the whole move_group case in the
syscall simplified, as well as the whole online state tracking (which
isn't completed).
But yes, overall complexity did increase by the additional data
structures and their relations.
Hi,
On 15.10.2018 11:34, Peter Zijlstra wrote:
> On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
>> Hi,
>>
>> On 10.10.2018 13:45, Peter Zijlstra wrote:
>>> Hi all,
>>>
>>> There have been various issues and limitations with the way perf uses
>>> (task) contexts to track events. Most notable is the single hardware PMU
>>> task context, which has resulted in a number of yucky things (both
>>> proposed and merged).
>>>
>>> Notably:
>>>
>>> - HW breakpoint PMU
>>> - ARM big.little PMU
>>> - Intel Branch Monitoring PMU
>>>
>>> Since we now track the events in RB trees, we can 'simply' add a pmu
>>> order to them and have them grouped that way, reducing to a single
>>> context. Of course, reality never quite works out that simple, and below
>>> ends up adding an intermediate data structure to bridge the context ->
>>> pmu mapping.
>>>
>>> Something a little like:
>>>
>>> ,------------------------[1:n]---------------------.
>>> V V
>>> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
>>> ^ ^ | |
>>> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>>>
>>> This patch builds (provided you disable CGROUP_PERF), boots and survives
>>> perf-top without the machine catching fire.
>>>
>>> There's still a fair bit of loose ends (look for XXX), but I think this
>>> is the direction we should be going.
>>>
>>> Comments?
>>>
>>> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
>>> ---
>>> arch/powerpc/perf/core-book3s.c | 4
>>> arch/x86/events/core.c | 4
>>> arch/x86/events/intel/core.c | 6
>>> arch/x86/events/intel/ds.c | 6
>>> arch/x86/events/intel/lbr.c | 16
>>> arch/x86/events/perf_event.h | 6
>>> include/linux/perf_event.h | 80 +-
>>> include/linux/sched.h | 2
>>> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
>>> 9 files changed, 815 insertions(+), 721 deletions(-)
>>
>> Rewrite is impressive however it doesn't result in code base reduction as it is.
>
> Yeah.. that seems to be nature of these things ..
>
>> Nonetheless there is a clear demand for per pmu events groups tracking and rotation
>> in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
>> a supply thru groups ordering on RB-tree.
>>
>> This might be driven into the kernel by some new Perf features that would base on
>> that RB-tree groups ordering or by refactoring of existing code but in the way it
>> would result in overall code base reduction thus lowering support cost.
>
> If you have a concrete suggestion on how to reduce complexity? I tried,
> but couldn't find any (without breaking something).
Could some of those PMUs (HW breakpoints, ARM big.little, Intel LBRs)
or other Perf related code be adjusted now so that overall subsystem
code base would reduce?
Thanks,
Alexey
>
> The active lists and pmu_ctx_list could arguably be replaced with
> (slower) iteratons over the RB tree, but you'll still need the per pmu
> nr_events/nr_active counts to determine if rotation is required at all.
>
> And like you know, performance is quite important here too. I'd love to
> reduce complexity while maintaining or improve performance, but that
> rarely if ever happens :/
>
Hi,
On Mon, Oct 15, 2018 at 10:29 AM Alexey Budankov
<[email protected]> wrote:
>
>
> Hi,
> On 15.10.2018 11:34, Peter Zijlstra wrote:
> > On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
> >> Hi,
> >>
> >> On 10.10.2018 13:45, Peter Zijlstra wrote:
> >>> Hi all,
> >>>
> >>> There have been various issues and limitations with the way perf uses
> >>> (task) contexts to track events. Most notable is the single hardware PMU
> >>> task context, which has resulted in a number of yucky things (both
> >>> proposed and merged).
> >>>
> >>> Notably:
> >>>
> >>> - HW breakpoint PMU
> >>> - ARM big.little PMU
> >>> - Intel Branch Monitoring PMU
> >>>
> >>> Since we now track the events in RB trees, we can 'simply' add a pmu
> >>> order to them and have them grouped that way, reducing to a single
> >>> context. Of course, reality never quite works out that simple, and below
> >>> ends up adding an intermediate data structure to bridge the context ->
> >>> pmu mapping.
> >>>
> >>> Something a little like:
> >>>
> >>> ,------------------------[1:n]---------------------.
> >>> V V
> >>> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> >>> ^ ^ | |
> >>> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
> >>>
> >>> This patch builds (provided you disable CGROUP_PERF), boots and survives
> >>> perf-top without the machine catching fire.
> >>>
> >>> There's still a fair bit of loose ends (look for XXX), but I think this
> >>> is the direction we should be going.
> >>>
> >>> Comments?
> >>>
> >>> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
> >>> ---
> >>> arch/powerpc/perf/core-book3s.c | 4
> >>> arch/x86/events/core.c | 4
> >>> arch/x86/events/intel/core.c | 6
> >>> arch/x86/events/intel/ds.c | 6
> >>> arch/x86/events/intel/lbr.c | 16
> >>> arch/x86/events/perf_event.h | 6
> >>> include/linux/perf_event.h | 80 +-
> >>> include/linux/sched.h | 2
> >>> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
> >>> 9 files changed, 815 insertions(+), 721 deletions(-)
> >>
> >> Rewrite is impressive however it doesn't result in code base reduction as it is.
> >
> > Yeah.. that seems to be nature of these things ..
> >
> >> Nonetheless there is a clear demand for per pmu events groups tracking and rotation
> >> in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
> >> a supply thru groups ordering on RB-tree.
> >>
> >> This might be driven into the kernel by some new Perf features that would base on
> >> that RB-tree groups ordering or by refactoring of existing code but in the way it
> >> would result in overall code base reduction thus lowering support cost.
> >
> > If you have a concrete suggestion on how to reduce complexity? I tried,
> > but couldn't find any (without breaking something).
>
> Could some of those PMUs (HW breakpoints, ARM big.little, Intel LBRs)
> or other Perf related code be adjusted now so that overall subsystem
> code base would reduce?
>
I have always had a hard time understanding the role of all these structs in
the generic code. This is still very confusing and very hard to follow.
In my mind, you have per-task and per-cpu perf_events contexts.
And for each you can have multiple PMUs, some hw some sw.
Each PMU has its own list of events maintained in RB tree. There is
never any interactions between PMUs.
Maybe this is how this is done or proposed by your patches, but it
certainly is not
obvious.
Also the Intel LBR is not a PMU on is own. Maybe you are talking about
the BTS in
arch/x86/even/sintel/bts.c.
> >
> > The active lists and pmu_ctx_list could arguably be replaced with
> > (slower) iteratons over the RB tree, but you'll still need the per pmu
> > nr_events/nr_active counts to determine if rotation is required at all.
> >
> > And like you know, performance is quite important here too. I'd love to
> > reduce complexity while maintaining or improve performance, but that
> > rarely if ever happens :/
> >
> On Oct 15, 2018, at 1:34 AM, Peter Zijlstra <[email protected]> wrote:
>
> On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
>> Hi,
>>
>> On 10.10.2018 13:45, Peter Zijlstra wrote:
>>> Hi all,
>>>
>>> There have been various issues and limitations with the way perf uses
>>> (task) contexts to track events. Most notable is the single hardware PMU
>>> task context, which has resulted in a number of yucky things (both
>>> proposed and merged).
>>>
>>> Notably:
>>>
>>> - HW breakpoint PMU
>>> - ARM big.little PMU
>>> - Intel Branch Monitoring PMU
>>>
>>> Since we now track the events in RB trees, we can 'simply' add a pmu
>>> order to them and have them grouped that way, reducing to a single
>>> context. Of course, reality never quite works out that simple, and below
>>> ends up adding an intermediate data structure to bridge the context ->
>>> pmu mapping.
>>>
>>> Something a little like:
>>>
>>> ,------------------------[1:n]---------------------.
>>> V V
>>> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
>>> ^ ^ | |
>>> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>>>
>>> This patch builds (provided you disable CGROUP_PERF), boots and survives
>>> perf-top without the machine catching fire.
>>>
>>> There's still a fair bit of loose ends (look for XXX), but I think this
>>> is the direction we should be going.
>>>
>>> Comments?
>>>
>>> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
>>> ---
>>> arch/powerpc/perf/core-book3s.c | 4
>>> arch/x86/events/core.c | 4
>>> arch/x86/events/intel/core.c | 6
>>> arch/x86/events/intel/ds.c | 6
>>> arch/x86/events/intel/lbr.c | 16
>>> arch/x86/events/perf_event.h | 6
>>> include/linux/perf_event.h | 80 +-
>>> include/linux/sched.h | 2
>>> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
>>> 9 files changed, 815 insertions(+), 721 deletions(-)
>>
>> Rewrite is impressive however it doesn't result in code base reduction as it is.
>
> Yeah.. that seems to be nature of these things ..
>
>> Nonetheless there is a clear demand for per pmu events groups tracking and rotation
>> in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
>> a supply thru groups ordering on RB-tree.
>>
>> This might be driven into the kernel by some new Perf features that would base on
>> that RB-tree groups ordering or by refactoring of existing code but in the way it
>> would result in overall code base reduction thus lowering support cost.
>
> If you have a concrete suggestion on how to reduce complexity? I tried,
> but couldn't find any (without breaking something).
>
> The active lists and pmu_ctx_list could arguably be replaced with
> (slower) iteratons over the RB tree, but you'll still need the per pmu
> nr_events/nr_active counts to determine if rotation is required at all.
>
> And like you know, performance is quite important here too. I'd love to
> reduce complexity while maintaining or improve performance, but that
> rarely if ever happens :/
How about this:
1. Keep multiple perf_cpu_context per CPU, just like before this patch.
2. For perf_event_context, add PMU as an order for the RB tree.
3. (hw) pmu->perf_cpu_context->ctx only has events for this PMU (and sw
events moved to this context).
4. task->perf_event_ctxp has events for all PMUs.
With this path, we keep the existing perf_cpu_context/perf_event_context
logic as-is, which I think is simpler than the new logic (with extra
*_pmu_context). And it should also solve the problem.
Does this make sense? If this doesn't look too broken, I am happy to
draft RFC for it.
Thanks,
Song
Hi,
On 15.10.2018 21:31, Stephane Eranian wrote:
> Hi,
>
> On Mon, Oct 15, 2018 at 10:29 AM Alexey Budankov
> <[email protected]> wrote:
>>
>>
>> Hi,
>> On 15.10.2018 11:34, Peter Zijlstra wrote:
>>> On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
>>>> Hi,
>>>>
>>>> On 10.10.2018 13:45, Peter Zijlstra wrote:
>>>>> Hi all,
>>>>>
>>>>> There have been various issues and limitations with the way perf uses
>>>>> (task) contexts to track events. Most notable is the single hardware PMU
>>>>> task context, which has resulted in a number of yucky things (both
>>>>> proposed and merged).
>>>>>
>>>>> Notably:
>>>>>
>>>>> - HW breakpoint PMU
>>>>> - ARM big.little PMU
>>>>> - Intel Branch Monitoring PMU
>>>>>
>>>>> Since we now track the events in RB trees, we can 'simply' add a pmu
>>>>> order to them and have them grouped that way, reducing to a single
>>>>> context. Of course, reality never quite works out that simple, and below
>>>>> ends up adding an intermediate data structure to bridge the context ->
>>>>> pmu mapping.
>>>>>
>>>>> Something a little like:
>>>>>
>>>>> ,------------------------[1:n]---------------------.
>>>>> V V
>>>>> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
>>>>> ^ ^ | |
>>>>> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>>>>>
>>>>> This patch builds (provided you disable CGROUP_PERF), boots and survives
>>>>> perf-top without the machine catching fire.
>>>>>
>>>>> There's still a fair bit of loose ends (look for XXX), but I think this
>>>>> is the direction we should be going.
>>>>>
>>>>> Comments?
>>>>>
>>>>> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
>>>>> ---
>>>>> arch/powerpc/perf/core-book3s.c | 4
>>>>> arch/x86/events/core.c | 4
>>>>> arch/x86/events/intel/core.c | 6
>>>>> arch/x86/events/intel/ds.c | 6
>>>>> arch/x86/events/intel/lbr.c | 16
>>>>> arch/x86/events/perf_event.h | 6
>>>>> include/linux/perf_event.h | 80 +-
>>>>> include/linux/sched.h | 2
>>>>> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
>>>>> 9 files changed, 815 insertions(+), 721 deletions(-)
>>>>
>>>> Rewrite is impressive however it doesn't result in code base reduction as it is.
>>>
>>> Yeah.. that seems to be nature of these things ..
>>>
>>>> Nonetheless there is a clear demand for per pmu events groups tracking and rotation
>>>> in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
>>>> a supply thru groups ordering on RB-tree.
>>>>
>>>> This might be driven into the kernel by some new Perf features that would base on
>>>> that RB-tree groups ordering or by refactoring of existing code but in the way it
>>>> would result in overall code base reduction thus lowering support cost.
>>>
>>> If you have a concrete suggestion on how to reduce complexity? I tried,
>>> but couldn't find any (without breaking something).
>>
>> Could some of those PMUs (HW breakpoints, ARM big.little, Intel LBRs)
>> or other Perf related code be adjusted now so that overall subsystem
>> code base would reduce?
>>
> I have always had a hard time understanding the role of all these structs in
> the generic code. This is still very confusing and very hard to follow.
>
> In my mind, you have per-task and per-cpu perf_events contexts.
> And for each you can have multiple PMUs, some hw some sw.
> Each PMU has its own list of events maintained in RB tree. There is
> never any interactions between PMUs.
>
> Maybe this is how this is done or proposed by your patches, but it
> certainly is not
> obvious.
>
> Also the Intel LBR is not a PMU on is own. Maybe you are talking about
> the BTS in
> arch/x86/even/sintel/bts.c.
I am referring to Intel Branch Monitoring PMU mentioned in the description.
Thanks for correction.
- Alexey
>
>
>>>
>>> The active lists and pmu_ctx_list could arguably be replaced with
>>> (slower) iteratons over the RB tree, but you'll still need the per pmu
>>> nr_events/nr_active counts to determine if rotation is required at all.
>>>
>>> And like you know, performance is quite important here too. I'd love to
>>> reduce complexity while maintaining or improve performance, but that
>>> rarely if ever happens :/
>>>
>
On Mon, Oct 15, 2018 at 11:31:24AM -0700, Stephane Eranian wrote:
> I have always had a hard time understanding the role of all these
> structs in the generic code. This is still very confusing and very
> hard to follow.
>
> In my mind, you have per-task and per-cpu perf_events contexts. And
> for each you can have multiple PMUs, some hw some sw. Each PMU has
> its own list of events maintained in RB tree. There is never any
> interactions between PMUs.
That is more or less how it was. We have per PMU task or CPU contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu <--'
v ^
perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of events
for that PMU. The task related perf_event_context's have a pointer back
to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to that
PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc..
Each perf_event is then associated with its PMU and one
perf_event_context.
> Maybe this is how this is done or proposed by your patches, but it
> certainly is not obvious.
No, my patch somewhat completely wrecks the above; and reduces to a
single task context and a single CPU context.
There were a number of problems with the above. One is that task-array
of pointer, which limited the number of task contexts we could have.
Now, we could've easily changed that to a list and called it a day.
That is not in fact a horribly difficult patch. If you combine that with
a patch that actually freed task context's when they go empty, that
might actually work.
But there are a number of other considerations that resulted in the
patch as presented:
- there is a bunch of per context state that is simply duplicated
between contexts, like for instance the time keeping. There is no
point in tracking the time for 'n' per task/cpu contexts when in fact
they're all the same.
- on context switch we have to iterate all these 'n' contexts and
switch them one by one. Instead of just switching one context and
calling it a day.
- for big.little we'd end up with 2 per-task contexts and only ever use
1 at any one time, which increases 'n' in the above cases for no
purpose.
- the actual per-pmu-per-context state is very small (as I think Alexey
already implied).
- a single context simplifies a bunch of things; including the
move_group case (we no longer have to adjust perf_event::ctx) and the
cpu-online tests and the ctx locking and it removes a bunch of
context lists (like active_ctx_list).
So a single context is what I went with. That all results in:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------------' | |
| `--> perf_event_pmu_context
| ^ ^
| | |
| ,-----' v
| | perf_cpu_pmu_context
| | ^
| | |
v v v
perf_event ---> pmu
Because while the per-pmu-per-context state is small, it does exists,
this gives rise to perf_event_pmu_context. It tracks nr_events and
nr_active, which is used to (quickly) tell if rotation is required (it
is possible to reduce this state I think, but I've not yet gotten it
down to 0). It also tracks which events are actually active; iterating a
list is cheaper than finding them all in the RB-tree.
It also contains the task_ctx_data thing for LBR, which is a PMU
specific extra data thingy.
We then also keep a list of (active) perf_event_pmu_context in
perf_event_context, such that we can quickly find which PMUs are in fact
involved with the context. This simplifies context scheduling a little.
We then also need per-pmu-per-cpu state, which gives rise to
perf_cpu_pmu_context, and that mostly includes bits to drive the event
rotation, which per ABI is per PMU, but it also includes bits to do
perf_event_attr::exclusive scheduling, which is also naturally
per-pmu-per-cpu.
And yes, the above looks more complicated, but at the same time, a bunch
of things did get simplified. Maybe once the dust settles someone can
turn this here email into a sensible comment or something ;-)
> Also the Intel LBR is not a PMU on is own. Maybe you are talking about
> the BTS in arch/x86/even/sintel/bts.c.
This thing:
https://lkml.kernel.org/r/[email protected]
On Sat, Oct 13, 2018 at 08:31:37AM +0000, Song Liu wrote:
> The only suggestion I have right now is on which struct owns which
> data:
>
> 1. perf_cpu_context owns two perf_event_context: ctx and *task_ctx.
> This is the same as right now.
> 2. perf_event_context owns multiple perf_event_pmu_context:
> One perf_event_pmu_context for software groups;
> One perf_event_pmu_context for each hardware PMU.
It does now already, right? Through the pmu_ctx_list we can, given an
perf_event_context, find all associated perf_event_pmu_context's.
> 3. perf_event_pmu_context owns RB tree of events. Since we don't
> need rotation across multiple hardware PMUs, the rotation is
> within same perf_event_pmu_context.
By keeping the RB trees in perf_event_context, we get bigger trees,
which is more efficient (log(n+m) < log(n) + log(m))
Also, specifically, it means we only need a single merge sort /
iteration to schedule in a full context, instead of (again) doing 'n' of
them.
Also, given a context and a pmu, it is cheaper for finding the relevant
events; this is needed for big.little for instance. Something the
proposed patch doesn't fully flesh out.
> 4. perf_cpu_context owns multiple perf_cpu_pmu_context:
> One perf_cpu_pmu_context for each hardware PMU.
What would we need that relation for?
> perf_cpu_pmu_context is tot needed for software only groups(?).
Yes, that is a very good question; it mostly centers around what we want
to do with perf_event_attr::exclusive for software events -- which is
currently dodgy at best.
Also, allocating the structure and keeping it around is probably less
code than explicitly not doing it.
> 5. perf_cpu_pmu_context has two pointers of perf_event_pmu_context.
Instead of embedding the thing? Yeah, not sure. Either way around we'd
not want to free the CPU perf_event_pmu_context that is associated with
the perf_cpu_pmu_context, and embedding it saves a pointer chase.
Not sure it actually makes a lot of difference either way around.
On Wed, Oct 10, 2018 at 12:45:59PM +0200, Peter Zijlstra wrote:
> Hi all,
>
> There have been various issues and limitations with the way perf uses
> (task) contexts to track events. Most notable is the single hardware PMU
> task context, which has resulted in a number of yucky things (both
> proposed and merged).
>
> Notably:
>
> - HW breakpoint PMU
> - ARM big.little PMU
> - Intel Branch Monitoring PMU
>
> Since we now track the events in RB trees, we can 'simply' add a pmu
> order to them and have them grouped that way, reducing to a single
> context. Of course, reality never quite works out that simple, and below
> ends up adding an intermediate data structure to bridge the context ->
> pmu mapping.
>
> Something a little like:
>
> ,------------------------[1:n]---------------------.
> V V
> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> ^ ^ | |
> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>
> This patch builds (provided you disable CGROUP_PERF), boots and survives
> perf-top without the machine catching fire.
>
> There's still a fair bit of loose ends (look for XXX), but I think this
> is the direction we should be going.
I think this is the right direction, as this is roughly what I suggested
before the RB-tree stuff. ;)
> Comments?
Vague things inline below.
> +/*
> + * ,------------------------[1:n]---------------------.
> + * V V
> + * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> + * ^ ^ | |
> + * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
> + *
> + *
> + * XXX destroy epc when empty
> + * refcount, !rcu
> + *
> + * XXX epc locking
> + *
> + * event->pmu_ctx ctx->mutex && inactive
> + * ctx->pmu_ctx_list ctx->mutex && ctx->lock
> + *
> + */
> +struct perf_event_pmu_context {
> + struct pmu *pmu;
> + struct perf_event_context *ctx;
> +
> + struct list_head pmu_ctx_entry;
> +
> + struct list_head pinned_active;
> + struct list_head flexible_active;
> +
> + unsigned int embedded : 1;
Is this just for lifetime management (i.e. not attempting to free the
embedded epc)?
Do we need a flag? Can't we have the pmu hold a ref on its embedded epc,
and init that at pmu init time?
> +
> + unsigned int nr_events;
> + unsigned int nr_active;
> +
> + atomic_t refcount; /* event <-> epc */
> +
> + void *task_ctx_data; /* pmu specific data */
> +};
>
> struct perf_event_groups {
> struct rb_root tree;
> @@ -710,7 +749,6 @@ struct perf_event_groups {
> * Used as a container for task events and CPU events as well:
> */
> struct perf_event_context {
> - struct pmu *pmu;
> /*
> * Protect the states of the events in the list,
> * nr_active, and the list:
> @@ -723,20 +761,21 @@ struct perf_event_context {
> */
> struct mutex mutex;
>
> - struct list_head active_ctx_list;
> + struct list_head pmu_ctx_list;
> +
> struct perf_event_groups pinned_groups;
> struct perf_event_groups flexible_groups;
> struct list_head event_list;
I think that the groups lists and event list should be in the
perf_event_pmu_context.
That would make scheduling and rotating events a per-pmu thing, as we
want, without complicating the RB tree logic or requiring additional
hooks.
That may make the move_group case more complicated, though.
... and maybe I've missed some other headache with that?
>
> - struct list_head pinned_active;
> - struct list_head flexible_active;
> -
> int nr_events;
> int nr_active;
> int is_active;
> +
> + int nr_task_data;
> int nr_stat;
> int nr_freq;
> int rotate_disable;
Likewise these all seem to be PMU-specific (though I guess we care about
them in the ctx-switch fast paths?).
> +
> atomic_t refcount;
> struct task_struct *task;
>
> @@ -757,7 +796,6 @@ struct perf_event_context {
> #ifdef CONFIG_CGROUP_PERF
> int nr_cgroups; /* cgroup evts */
> #endif
> - void *task_ctx_data; /* pmu specific data */
> struct rcu_head rcu_head;
> };
[...]
> @@ -1528,6 +1498,11 @@ perf_event_groups_less(struct perf_event
> if (left->cpu > right->cpu)
> return false;
>
> + if (left->pmu_ctx->pmu < right->pmu_ctx->pmu)
> + return true;
> + if (left->pmu_ctx->pmu > right->pmu_ctx->pmu)
> + return false;
> +
> if (left->group_index < right->group_index)
> return true;
> if (left->group_index > right->group_index)
> @@ -1610,7 +1585,7 @@ del_event_from_groups(struct perf_event
> * Get the leftmost event in the @cpu subtree.
> */
> static struct perf_event *
> -perf_event_groups_first(struct perf_event_groups *groups, int cpu)
> +perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu)
> {
> struct perf_event *node_event = NULL, *match = NULL;
> struct rb_node *node = groups->tree.rb_node;
> @@ -1623,8 +1598,19 @@ perf_event_groups_first(struct perf_even
> } else if (cpu > node_event->cpu) {
> node = node->rb_right;
> } else {
> - match = node_event;
> - node = node->rb_left;
> + if (pmu) {
> + if (pmu < node_event->pmu_ctx->pmu) {
> + node = node->rb_left;
> + } else if (pmu > node_event->pmu_ctx->pmu) {
> + node = node->rb_right;
> + } else {
> + match = node_event;
> + node = node->rb_left;
> + }
> + } else {
> + match = node_event;
> + node = node->rb_left;
> + }
> }
> }
>
> @@ -1635,13 +1621,17 @@ perf_event_groups_first(struct perf_even
> * Like rb_entry_next_safe() for the @cpu subtree.
> */
> static struct perf_event *
> -perf_event_groups_next(struct perf_event *event)
> +perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
> {
> struct perf_event *next;
>
> next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
> - if (next && next->cpu == event->cpu)
> + if (next && next->cpu == event->cpu) {
> + if (pmu && next->pmu_ctx->pmu != pmu)
> + return NULL;
> +
> return next;
> + }
>
> return NULL;
> }
This would be much nicer with a per-pmu event_list.
[...]
> + // XXX premature; what if this is allowed, but we get moved to a PMU
> + // that doesn't have this.
> if (is_sampling_event(event)) {
> if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
> err = -EOPNOTSUPP;
Ugh, could that happen for SW events moved into a HW context?
Thanks,
Mark.
> On Oct 16, 2018, at 2:50 AM, Peter Zijlstra <[email protected]> wrote:
>
> On Sat, Oct 13, 2018 at 08:31:37AM +0000, Song Liu wrote:
>
>> The only suggestion I have right now is on which struct owns which
>> data:
>>
>> 1. perf_cpu_context owns two perf_event_context: ctx and *task_ctx.
>> This is the same as right now.
>
>> 2. perf_event_context owns multiple perf_event_pmu_context:
>> One perf_event_pmu_context for software groups;
>> One perf_event_pmu_context for each hardware PMU.
>
> It does now already, right? Through the pmu_ctx_list we can, given an
> perf_event_context, find all associated perf_event_pmu_context's.
Yes, this is very similar to right now. It is related to #4, #5 below.
With current patch, perf_cpu_pmu_context is more like the "owner" of
the per CPU perf_event_pmu_context. I feel it is more natural that
perf_cpu_context is the owner of perf_event_pmu_context, while the
perf_cpu_pmu_context doesn't own anything.
Again, the difference to current patch is very small.
>
>> 3. perf_event_pmu_context owns RB tree of events. Since we don't
>> need rotation across multiple hardware PMUs, the rotation is
>> within same perf_event_pmu_context.
>
> By keeping the RB trees in perf_event_context, we get bigger trees,
> which is more efficient (log(n+m) < log(n) + log(m))
>
> Also, specifically, it means we only need a single merge sort /
> iteration to schedule in a full context, instead of (again) doing 'n' of
> them.
>
> Also, given a context and a pmu, it is cheaper for finding the relevant
> events; this is needed for big.little for instance. Something the
> proposed patch doesn't fully flesh out.
Would it be faster if we add a perf_event_pmu_context pointer to the
perf_event? I think a group on hw PMU-a should never know a group on
hw PMU-b. So some separation would make things simpler.
Thanks,
Song
On Tue, Oct 16, 2018 at 05:26:45PM +0100, Mark Rutland wrote:
> On Wed, Oct 10, 2018 at 12:45:59PM +0200, Peter Zijlstra wrote:
> > +struct perf_event_pmu_context {
> > + struct pmu *pmu;
> > + struct perf_event_context *ctx;
> > +
> > + struct list_head pmu_ctx_entry;
> > +
> > + struct list_head pinned_active;
> > + struct list_head flexible_active;
> > +
> > + unsigned int embedded : 1;
>
> Is this just for lifetime management (i.e. not attempting to free the
> embedded epc)?
IIRC, yes.
> Do we need a flag? Can't we have the pmu hold a ref on its embedded epc,
> and init that at pmu init time?
IIRC, we do two things when we hit 0, we remove the pmu_ctx_entry and we
free. I thing we still want to do the first, but want to avoid the
second.
> > @@ -723,20 +761,21 @@ struct perf_event_context {
> > */
> > struct mutex mutex;
> >
> > - struct list_head active_ctx_list;
> > + struct list_head pmu_ctx_list;
> > +
> > struct perf_event_groups pinned_groups;
> > struct perf_event_groups flexible_groups;
> > struct list_head event_list;
>
> I think that the groups lists and event list should be in the
> perf_event_pmu_context.
>
> That would make scheduling and rotating events a per-pmu thing, as we
> want, without complicating the RB tree logic or requiring additional
> hooks.
I didn't think that RB tree logic was particularly complicated.
> That may make the move_group case more complicated, though.
>
> ... and maybe I've missed some other headache with that?
move_group not I think, the locking is per perf_event_context, and
changing perf_event::ctx is tricky, but outside of that not so much.
> > - struct list_head pinned_active;
> > - struct list_head flexible_active;
> > -
> > int nr_events;
> > int nr_active;
> > int is_active;
> > +
> > + int nr_task_data;
> > int nr_stat;
> > int nr_freq;
> > int rotate_disable;
>
> Likewise these all seem to be PMU-specific (though I guess we care about
> them in the ctx-switch fast paths?).
nr_active and nr_events were also useful on a ctx wide basis IIRC, thw
nr_{stat,freq} thing are boolean gates, not sure we win much by breaking
that up into per-pmu.
The rotate_disable, yes, that should be per PMU I suppose.
> > @@ -1528,6 +1498,11 @@ perf_event_groups_less(struct perf_event
> > if (left->cpu > right->cpu)
> > return false;
> >
> > + if (left->pmu_ctx->pmu < right->pmu_ctx->pmu)
> > + return true;
> > + if (left->pmu_ctx->pmu > right->pmu_ctx->pmu)
> > + return false;
> > +
> > if (left->group_index < right->group_index)
> > return true;
> > if (left->group_index > right->group_index)
> > @@ -1610,7 +1585,7 @@ del_event_from_groups(struct perf_event
> > * Get the leftmost event in the @cpu subtree.
> > */
> > static struct perf_event *
> > -perf_event_groups_first(struct perf_event_groups *groups, int cpu)
> > +perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu)
> > {
> > struct perf_event *node_event = NULL, *match = NULL;
> > struct rb_node *node = groups->tree.rb_node;
> > @@ -1623,8 +1598,19 @@ perf_event_groups_first(struct perf_even
> > } else if (cpu > node_event->cpu) {
> > node = node->rb_right;
> > } else {
> > - match = node_event;
> > - node = node->rb_left;
> > + if (pmu) {
> > + if (pmu < node_event->pmu_ctx->pmu) {
> > + node = node->rb_left;
> > + } else if (pmu > node_event->pmu_ctx->pmu) {
> > + node = node->rb_right;
> > + } else {
> > + match = node_event;
> > + node = node->rb_left;
> > + }
> > + } else {
> > + match = node_event;
> > + node = node->rb_left;
> > + }
> > }
> > }
> >
> > @@ -1635,13 +1621,17 @@ perf_event_groups_first(struct perf_even
> > * Like rb_entry_next_safe() for the @cpu subtree.
> > */
> > static struct perf_event *
> > -perf_event_groups_next(struct perf_event *event)
> > +perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
> > {
> > struct perf_event *next;
> >
> > next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
> > - if (next && next->cpu == event->cpu)
> > + if (next && next->cpu == event->cpu) {
> > + if (pmu && next->pmu_ctx->pmu != pmu)
> > + return NULL;
> > +
> > return next;
> > + }
> >
> > return NULL;
> > }
>
> This would be much nicer with a per-pmu event_list.
So I was thinking we'd want to easily find the events for a particular
PMU, stuffing them into the perf_event_pmu_context makes that much
harder.
(also, there's an XXX in perf_tp_event() where this capability makes
sense)
In fact, I was planning on making it more complicated still :-) So that
we can optimize the case where merge_sched_in() has saturated a PMU, to
then quickly find the next PMU without having to iterate all
intermediate events.
See the below patch..
Also, a threaded RB tree might speed up the whole iteration. We could
finally bite the bullet and implement that in the generic RB tree code,
or just fake it (again) by adding an additional list.
> > + // XXX premature; what if this is allowed, but we get moved to a PMU
> > + // that doesn't have this.
> > if (is_sampling_event(event)) {
> > if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
> > err = -EOPNOTSUPP;
>
> Ugh, could that happen for SW events moved into a HW context?
I _think_ all SW events support sampling. And since we do not allow
changing anything but SW events, this might just work.
---
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -1585,7 +1585,7 @@ del_event_from_groups(struct perf_event
* Get the leftmost event in the @cpu subtree.
*/
static struct perf_event *
-perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu)
+perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct pmu *pmu, bool next)
{
struct perf_event *node_event = NULL, *match = NULL;
struct rb_node *node = groups->tree.rb_node;
@@ -1601,7 +1601,8 @@ perf_event_groups_first(struct perf_even
if (pmu) {
if (pmu < node_event->pmu_ctx->pmu) {
node = node->rb_left;
- } else if (pmu > node_event->pmu_ctx->pmu) {
+ } else if (pmu > node_event->pmu_ctx->pmu ||
+ (next && pmu == node_event->pmu_ctx->pmu)) {
node = node->rb_right;
} else {
match = node_event;
@@ -3274,10 +3275,12 @@ visit_groups_merge(struct perf_event_gro
int (*func)(struct perf_event *, void *), void *data)
{
struct perf_event **evt, *evt1, *evt2;
+ bool next = false;
int ret;
- evt1 = perf_event_groups_first(groups, -1, pmu);
- evt2 = perf_event_groups_first(groups, cpu, pmu);
+again:
+ evt1 = perf_event_groups_first(groups, -1, pmu, next);
+ evt2 = perf_event_groups_first(groups, cpu, pmu, next);
while (evt1 || evt2) {
if (evt1 && evt2) {
@@ -3292,9 +3295,15 @@ visit_groups_merge(struct perf_event_gro
}
ret = func(*evt, data);
- if (ret)
+ if (ret < 0)
return ret;
+ if (ret > 0) {
+ pmu = (*evt)->pmu_ctx->pmu;
+ next = true;
+ goto again;
+ }
+
*evt = perf_event_groups_next(*evt, pmu);
}
@@ -3386,7 +3395,7 @@ ctx_flexible_sched_in(struct perf_event_
{
struct sched_in_data sid = {
.ctx = ctx,
- .busy = pmu ? -EBUSY : 0,
+ .busy = pmu ? -EBUSY : 1,
};
visit_groups_merge(&ctx->flexible_groups, smp_processor_id(), pmu,
On Tue, Oct 16, 2018 at 04:34:05PM +0000, Song Liu wrote:
> >> 3. perf_event_pmu_context owns RB tree of events. Since we don't
> >> need rotation across multiple hardware PMUs, the rotation is
> >> within same perf_event_pmu_context.
> >
> > By keeping the RB trees in perf_event_context, we get bigger trees,
> > which is more efficient (log(n+m) < log(n) + log(m))
> >
> > Also, specifically, it means we only need a single merge sort /
> > iteration to schedule in a full context, instead of (again) doing 'n' of
> > them.
> >
> > Also, given a context and a pmu, it is cheaper for finding the relevant
> > events; this is needed for big.little for instance. Something the
> > proposed patch doesn't fully flesh out.
>
> Would it be faster if we add a perf_event_pmu_context pointer to the
> perf_event?
+ pmu_ctx = find_get_pmu_context(pmu, ctx, event);
+ if (IS_ERR(pmu_ctx)) {
+ err = PTR_ERR(pmu_ctx);
+ goto err_locked;
+ }
+ event->pmu_ctx = pmu_ctx;
Like that?
> On Oct 16, 2018, at 11:10 AM, Peter Zijlstra <[email protected]> wrote:
>
> On Tue, Oct 16, 2018 at 04:34:05PM +0000, Song Liu wrote:
>>>> 3. perf_event_pmu_context owns RB tree of events. Since we don't
>>>> need rotation across multiple hardware PMUs, the rotation is
>>>> within same perf_event_pmu_context.
>>>
>>> By keeping the RB trees in perf_event_context, we get bigger trees,
>>> which is more efficient (log(n+m) < log(n) + log(m))
>>>
>>> Also, specifically, it means we only need a single merge sort /
>>> iteration to schedule in a full context, instead of (again) doing 'n' of
>>> them.
>>>
>>> Also, given a context and a pmu, it is cheaper for finding the relevant
>>> events; this is needed for big.little for instance. Something the
>>> proposed patch doesn't fully flesh out.
>>
>> Would it be faster if we add a perf_event_pmu_context pointer to the
>> perf_event?
>
> + pmu_ctx = find_get_pmu_context(pmu, ctx, event);
> + if (IS_ERR(pmu_ctx)) {
> + err = PTR_ERR(pmu_ctx);
> + goto err_locked;
> + }
> + event->pmu_ctx = pmu_ctx;
>
> Like that?
Aha, we already have it. I misunderstood this one. Please ignore that.
Thanks,
Song
Hi Peter,
> On Oct 15, 2018, at 3:09 PM, Song Liu <[email protected]> wrote:
>
>
>
>> On Oct 15, 2018, at 1:34 AM, Peter Zijlstra <[email protected]> wrote:
>>
>> On Mon, Oct 15, 2018 at 10:26:06AM +0300, Alexey Budankov wrote:
>>> Hi,
>>>
>>> On 10.10.2018 13:45, Peter Zijlstra wrote:
>>>> Hi all,
>>>>
>>>> There have been various issues and limitations with the way perf uses
>>>> (task) contexts to track events. Most notable is the single hardware PMU
>>>> task context, which has resulted in a number of yucky things (both
>>>> proposed and merged).
>>>>
>>>> Notably:
>>>>
>>>> - HW breakpoint PMU
>>>> - ARM big.little PMU
>>>> - Intel Branch Monitoring PMU
>>>>
>>>> Since we now track the events in RB trees, we can 'simply' add a pmu
>>>> order to them and have them grouped that way, reducing to a single
>>>> context. Of course, reality never quite works out that simple, and below
>>>> ends up adding an intermediate data structure to bridge the context ->
>>>> pmu mapping.
>>>>
>>>> Something a little like:
>>>>
>>>> ,------------------------[1:n]---------------------.
>>>> V V
>>>> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
>>>> ^ ^ | |
>>>> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>>>>
>>>> This patch builds (provided you disable CGROUP_PERF), boots and survives
>>>> perf-top without the machine catching fire.
>>>>
>>>> There's still a fair bit of loose ends (look for XXX), but I think this
>>>> is the direction we should be going.
>>>>
>>>> Comments?
>>>>
>>>> Not-Quite-Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
>>>> ---
>>>> arch/powerpc/perf/core-book3s.c | 4
>>>> arch/x86/events/core.c | 4
>>>> arch/x86/events/intel/core.c | 6
>>>> arch/x86/events/intel/ds.c | 6
>>>> arch/x86/events/intel/lbr.c | 16
>>>> arch/x86/events/perf_event.h | 6
>>>> include/linux/perf_event.h | 80 +-
>>>> include/linux/sched.h | 2
>>>> kernel/events/core.c | 1412 ++++++++++++++++++++--------------------
>>>> 9 files changed, 815 insertions(+), 721 deletions(-)
>>>
>>> Rewrite is impressive however it doesn't result in code base reduction as it is.
>>
>> Yeah.. that seems to be nature of these things ..
>>
>>> Nonetheless there is a clear demand for per pmu events groups tracking and rotation
>>> in single cpu context (HW breakpoints, ARM big.little, Intel LBRs) and there is
>>> a supply thru groups ordering on RB-tree.
>>>
>>> This might be driven into the kernel by some new Perf features that would base on
>>> that RB-tree groups ordering or by refactoring of existing code but in the way it
>>> would result in overall code base reduction thus lowering support cost.
>>
>> If you have a concrete suggestion on how to reduce complexity? I tried,
>> but couldn't find any (without breaking something).
>>
>> The active lists and pmu_ctx_list could arguably be replaced with
>> (slower) iteratons over the RB tree, but you'll still need the per pmu
>> nr_events/nr_active counts to determine if rotation is required at all.
>>
>> And like you know, performance is quite important here too. I'd love to
>> reduce complexity while maintaining or improve performance, but that
>> rarely if ever happens :/
>
> How about this:
>
> 1. Keep multiple perf_cpu_context per CPU, just like before this patch.
>
> 2. For perf_event_context, add PMU as an order for the RB tree.
>
> 3. (hw) pmu->perf_cpu_context->ctx only has events for this PMU (and sw
> events moved to this context).
>
> 4. task->perf_event_ctxp has events for all PMUs.
>
> With this path, we keep the existing perf_cpu_context/perf_event_context
> logic as-is, which I think is simpler than the new logic (with extra
> *_pmu_context). And it should also solve the problem.
>
> Does this make sense? If this doesn't look too broken, I am happy to
> draft RFC for it.
>
I am not sure whether you missed this one, or found it totally insane.
Could you please share your comments on it? My gut feeling is that this
would be a simpler patch to solve the problem (two hw PMUs). (It might
be less efficient though).
Thanks,
Song
Hi,
On 10.10.2018 13:45, Peter Zijlstra wrote:
<SNIP>
> -static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
> +/*
> + * XXX somewhat completely buggered; this is in cpu_pmu_context, but we need
> + * event_pmu_context for rotations. We also need event_pmu_context specific
> + * scheduling routines. ARGH
> + *
> + * - fixed the cpu_pmu_context vs event_pmu_context thingy
> + * (cpu_pmu_context embeds an event_pmu_context)
> + *
> + * - need nr_events/nr_active in epc to do per epc rotation
> + * (done)
> + *
> + * - need cpu and task pmu ctx together...
> + * (cpc->task_epc)
> + */
> +static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
Since it reduces to single cpu context (and single task context) at all times,
ideally, it would probably be coded as simple as this:
perf_rotate_context()
{
cpu = this_cpu_ptr(&cpu_context)
for_every_pmu(pmu, cpu)
for_every_event_ctx(event_ctx, pmu)
rotate(event_ctx, pmu)
}
so rotate(event_ctx, pmu) would operate on common events objects semantics
and memory layout, and PMU specific code handle SW/HW programming differences.
Implementing that implies this data relations:
cpu (struct perf_cpu_context)
|
v
cpu_context ---> cpu_0->cpu_1->cpu_2->cpu_3
| | | |
v v v v
pmu0 (struct pmu) pmu00 pmu01 pmu02 pmu03
| | | |
v v v v
pmu1 pmu10 pmu11 pmu12 pmu13
| | | |
v v v v
pmu2 pmu20 pmu21 *pmu22* pmu23 <- pmu (struct perf_cpu_pmu_context)
event_ctx
|
v
*pmu22* (struct perf_cpu_pmu_context) -> ctx22_0 -> ctx22_1
| |
v v
event00 event01
| |
v v
*event10* event11 <- event
| |
v v
event20 event21
In new schema that would result in one more link on the right:
cpu_context[NR_CPUS]
|
v
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context -----,
^ | ^ ^ |
`---------------------------------' | | |
| `--> perf_event_pmu_context | <- link
| ^ ^ |
| | | |
| ,-----' v |
| | perf_cpu_pmu_context <-'
| | ^
| | |
v v v
perf_event ---> pmu[,cpu_pmu_ctx[NR_CPUS],]
Thanks,
Alexey
> {
> + struct perf_cpu_context *cpuctx = this_cpu_ptr(&cpu_context);
> + struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
> struct perf_event *cpu_event = NULL, *task_event = NULL;
> bool cpu_rotate = false, task_rotate = false;
> struct perf_event_context *ctx = NULL;
> + struct pmu *pmu;
>
> /*
> * Since we run this from IRQ context, nobody can install new
> * events, thus the event count values are stable.
> */
>
> - if (cpuctx->ctx.nr_events) {
> - if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
> - cpu_rotate = true;
> - }
> + cpu_epc = &cpc->epc;
> + pmu = cpu_epc->pmu;
>
> - ctx = cpuctx->task_ctx;
> - if (ctx && ctx->nr_events) {
> - if (ctx->nr_events != ctx->nr_active)
> + if (cpu_epc->nr_events && cpu_epc->nr_events != cpu_epc->nr_active)
> + cpu_rotate = true;
> +
> + task_epc = cpc->task_epc;
> + if (task_epc) {
> + WARN_ON_ONCE(task_epc->pmu != pmu);
> + if (task_epc->nr_events && task_epc->nr_events != task_epc->nr_active)
> task_rotate = true;
> }
>
> if (!(cpu_rotate || task_rotate))
> return false;
>
> - perf_ctx_lock(cpuctx, cpuctx->task_ctx);
> - perf_pmu_disable(cpuctx->ctx.pmu);
> + perf_ctx_lock(cpuctx, ctx);
> + perf_pmu_disable(pmu);
>
> if (task_rotate)
> - task_event = ctx_first_active(ctx);
> + task_event = ctx_first_active(task_epc);
> +
> if (cpu_rotate)
> - cpu_event = ctx_first_active(&cpuctx->ctx);
> + cpu_event = ctx_first_active(cpu_epc);
>
> /*
> * As per the order given at ctx_resched() first 'pop' task flexible
> * and then, if needed CPU flexible.
> */
> - if (task_event || (ctx && cpu_event))
> - ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
> - if (cpu_event)
> - cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
> + if (task_event || (task_epc && cpu_event)) {
> + update_context_time(ctx);
> + __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
> + }
> +
> + if (cpu_event) {
> + update_context_time(&cpuctx->ctx);
> + __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
> + rotate_ctx(&cpuctx->ctx, cpu_event);
> + __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
> + }
>
> if (task_event)
> rotate_ctx(ctx, task_event);
> - if (cpu_event)
> - rotate_ctx(&cpuctx->ctx, cpu_event);
>
> - perf_event_sched_in(cpuctx, ctx, current);
> + if (task_event || (task_epc && cpu_event))
> + __pmu_ctx_sched_in(ctx, pmu);
>
> - perf_pmu_enable(cpuctx->ctx.pmu);
> - perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
> + perf_pmu_enable(pmu);
> + perf_ctx_unlock(cpuctx, ctx);
>
> return true;
> }
On Tue, Oct 16, 2018 at 06:28:10PM +0000, Song Liu wrote:
> > How about this:
> >
> > 1. Keep multiple perf_cpu_context per CPU, just like before this patch.
> >
> > 2. For perf_event_context, add PMU as an order for the RB tree.
> >
> > 3. (hw) pmu->perf_cpu_context->ctx only has events for this PMU (and sw
> > events moved to this context).
> >
> > 4. task->perf_event_ctxp has events for all PMUs.
> >
> > With this path, we keep the existing perf_cpu_context/perf_event_context
> > logic as-is, which I think is simpler than the new logic (with extra
> > *_pmu_context). And it should also solve the problem.
> >
> > Does this make sense? If this doesn't look too broken, I am happy to
> > draft RFC for it.
> >
>
> I am not sure whether you missed this one, or found it totally insane.
> Could you please share your comments on it? My gut feeling is that this
> would be a simpler patch to solve the problem (two hw PMUs). (It might
> be less efficient though).
Ah, sorry, somehow this email got lost.
That makes task and cpu contexts wildly different, which will complicate
matters I feel.
Alexey Budankov <[email protected]> writes:
> Since it reduces to single cpu context (and single task context) at all times,
> ideally, it would probably be coded as simple as this:
>
> perf_rotate_context()
> {
> cpu = this_cpu_ptr(&cpu_context)
> for_every_pmu(pmu, cpu)
> for_every_event_ctx(event_ctx, pmu)
> rotate(event_ctx, pmu)
> }
>
> so rotate(event_ctx, pmu) would operate on common events objects semantics
> and memory layout, and PMU specific code handle SW/HW programming differences.
Ok, what's event_ctx and how does that simplify things?
Regards,
--
Alex
Hi Alex,
On 17.10.2018 18:01, Alexander Shishkin wrote:
> Alexey Budankov <[email protected]> writes:
>
>> Since it reduces to single cpu context (and single task context) at all times,
>> ideally, it would probably be coded as simple as this:
>>
>> perf_rotate_context()
>> {
>> cpu = this_cpu_ptr(&cpu_context)
>> for_every_pmu(pmu, cpu)
>> for_every_event_ctx(event_ctx, pmu)
>> rotate(event_ctx, pmu)
>> }
>>
>> so rotate(event_ctx, pmu) would operate on common events objects semantics
>> and memory layout, and PMU specific code handle SW/HW programming differences.
>
> Ok, what's event_ctx and how does that simplify things?
Currently, rotate_ctx() is called twice from perf_rotate_context()
for cpu and task contexts:
struct perf_cpu_context {
struct perf_event_context ctx;
struct perf_event_context *task_ctx;
If it would be implemented in a loop that could, probably, reduce
complexity of perf_rotate_context(), partly pushing the complexity
*down* to SW/HW pmu specific code and perf_rotate_context() would
become scalable for any number of contexts.
Thanks,
Alexey
>
> Regards,
> --
> Alex
>
On Wed, Oct 17, 2018 at 11:57:49AM +0300, Alexey Budankov wrote:
> Hi,
>
> On 10.10.2018 13:45, Peter Zijlstra wrote:
> <SNIP>
> > -static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
> > +/*
> > + * XXX somewhat completely buggered; this is in cpu_pmu_context, but we need
> > + * event_pmu_context for rotations. We also need event_pmu_context specific
> > + * scheduling routines. ARGH
> > + *
> > + * - fixed the cpu_pmu_context vs event_pmu_context thingy
> > + * (cpu_pmu_context embeds an event_pmu_context)
> > + *
> > + * - need nr_events/nr_active in epc to do per epc rotation
> > + * (done)
> > + *
> > + * - need cpu and task pmu ctx together...
> > + * (cpc->task_epc)
> > + */
> > +static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
>
> Since it reduces to single cpu context (and single task context) at all times,
> ideally, it would probably be coded as simple as this:
>
> perf_rotate_context()
> {
> cpu = this_cpu_ptr(&cpu_context)
> for_every_pmu(pmu, cpu)
Can't do that, because we have per PMU rotation periods..
> for_every_event_ctx(event_ctx, pmu)
> rotate(event_ctx, pmu)
> }
I'm also not sure I get the rest that follows... you only have to rotate
_one_ event per PMU.
I'll try and understand the rest of you email later; brain has checked
out for the day.
> On Oct 17, 2018, at 4:06 AM, Peter Zijlstra <[email protected]> wrote:
>
> On Tue, Oct 16, 2018 at 06:28:10PM +0000, Song Liu wrote:
>>> How about this:
>>>
>>> 1. Keep multiple perf_cpu_context per CPU, just like before this patch.
>>>
>>> 2. For perf_event_context, add PMU as an order for the RB tree.
>>>
>>> 3. (hw) pmu->perf_cpu_context->ctx only has events for this PMU (and sw
>>> events moved to this context).
>>>
>>> 4. task->perf_event_ctxp has events for all PMUs.
>>>
>>> With this path, we keep the existing perf_cpu_context/perf_event_context
>>> logic as-is, which I think is simpler than the new logic (with extra
>>> *_pmu_context). And it should also solve the problem.
>>>
>>> Does this make sense? If this doesn't look too broken, I am happy to
>>> draft RFC for it.
>>>
>>
>> I am not sure whether you missed this one, or found it totally insane.
>> Could you please share your comments on it? My gut feeling is that this
>> would be a simpler patch to solve the problem (two hw PMUs). (It might
>> be less efficient though).
>
> Ah, sorry, somehow this email got lost.
>
> That makes task and cpu contexts wildly different, which will complicate
> matters I feel.
>
I think we only need different logic when adding events to the task/cpu
contexts. The ctx_sched_in() and ctx_sched_out() will need some extra
logic to filter out events that are not being scheduled (don't schedule
events on PMU-a when rotating PMU-b). This logic will be the same for
task and cpu context. The difference is, the CPU context will not have
such events, because we never added such event to CPU context.
Does this make sense? I could try draft a RFC to see how difficult it is.
Thanks,
Song
On Wed, Oct 17, 2018 at 04:43:27PM +0000, Song Liu wrote:
> > That makes task and cpu contexts wildly different, which will complicate
> > matters I feel.
> >
>
> I think we only need different logic when adding events to the task/cpu
> contexts. The ctx_sched_in() and ctx_sched_out() will need some extra
> logic to filter out events that are not being scheduled (don't schedule
> events on PMU-a when rotating PMU-b). This logic will be the same for
> task and cpu context. The difference is, the CPU context will not have
> such events, because we never added such event to CPU context.
>
> Does this make sense? I could try draft a RFC to see how difficult it is.
I'm not sure it saves much, if we have multiple per-cpu contexts we get
to re-introduce the active_ctx_list and loose the simplification for the
online status.
Plus that fundamental assymetry -- which would bother my OCD forever
more :-)
On Wed, Oct 17, 2018 at 07:19:55PM +0200, Peter Zijlstra wrote:
> On Wed, Oct 17, 2018 at 04:43:27PM +0000, Song Liu wrote:
>
> > > That makes task and cpu contexts wildly different, which will complicate
> > > matters I feel.
> > >
> >
> > I think we only need different logic when adding events to the task/cpu
> > contexts. The ctx_sched_in() and ctx_sched_out() will need some extra
> > logic to filter out events that are not being scheduled (don't schedule
> > events on PMU-a when rotating PMU-b). This logic will be the same for
> > task and cpu context. The difference is, the CPU context will not have
> > such events, because we never added such event to CPU context.
> >
> > Does this make sense? I could try draft a RFC to see how difficult it is.
>
> I'm not sure it saves much, if we have multiple per-cpu contexts we get
> to re-introduce the active_ctx_list and loose the simplification for the
> online status.
>
> Plus that fundamental assymetry -- which would bother my OCD forever
> more :-)
Worse, the whole syscall that installs the events will come apart. The
locking for the two cases is different :/
> On Oct 17, 2018, at 11:33 AM, Peter Zijlstra <[email protected]> wrote:
>
> On Wed, Oct 17, 2018 at 07:19:55PM +0200, Peter Zijlstra wrote:
>> On Wed, Oct 17, 2018 at 04:43:27PM +0000, Song Liu wrote:
>>
>>>> That makes task and cpu contexts wildly different, which will complicate
>>>> matters I feel.
>>>>
>>>
>>> I think we only need different logic when adding events to the task/cpu
>>> contexts. The ctx_sched_in() and ctx_sched_out() will need some extra
>>> logic to filter out events that are not being scheduled (don't schedule
>>> events on PMU-a when rotating PMU-b). This logic will be the same for
>>> task and cpu context. The difference is, the CPU context will not have
>>> such events, because we never added such event to CPU context.
>>>
>>> Does this make sense? I could try draft a RFC to see how difficult it is.
>>
>> I'm not sure it saves much, if we have multiple per-cpu contexts we get
>> to re-introduce the active_ctx_list and loose the simplification for the
>> online status.
>>
>> Plus that fundamental assymetry -- which would bother my OCD forever
>> more :-)
>
> Worse, the whole syscall that installs the events will come apart. The
> locking for the two cases is different :/
I agree... I didn't get into details of locking. I just consider these all
as part of "adding event to context".
I believe this patch should give close to the optimal performance. However,
I do feel it makes the logic more complicate. Before this patch, perf_cpu_context
and perf_event_context don't need to know much about multiple PMUs. With
this patch, the two extra *_pmu_context are necessary for performance (and
maybe also for correctness).
If we take first a baby step, how about adding more perf_event_ctx to
task_struct->perf_event_ctxp? We need one sw perf_event_ctx and a few hw
perf_event_ctx (one for each hw PMU). (I haven't checked whether it is OK
to allocate these when attaching events). (And I guess you don't really
like this..)
On the other hand, this patch makes it possible to create groups of events
from different hw PMUs. I guess that will be useful.
Thanks,
Song
Hi,
On 17.10.2018 19:30, Peter Zijlstra wrote:
> On Wed, Oct 17, 2018 at 11:57:49AM +0300, Alexey Budankov wrote:
>> Hi,
>>
>> On 10.10.2018 13:45, Peter Zijlstra wrote:
>> <SNIP>
>>> -static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
>>> +/*
>>> + * XXX somewhat completely buggered; this is in cpu_pmu_context, but we need
>>> + * event_pmu_context for rotations. We also need event_pmu_context specific
>>> + * scheduling routines. ARGH
>>> + *
>>> + * - fixed the cpu_pmu_context vs event_pmu_context thingy
>>> + * (cpu_pmu_context embeds an event_pmu_context)
>>> + *
>>> + * - need nr_events/nr_active in epc to do per epc rotation
>>> + * (done)
>>> + *
>>> + * - need cpu and task pmu ctx together...
>>> + * (cpc->task_epc)
>>> + */
>>> +static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
>>
>> Since it reduces to single cpu context (and single task context) at all times,
>> ideally, it would probably be coded as simple as this:
>>
>> perf_rotate_context()
>> {
>> cpu = this_cpu_ptr(&cpu_context)
>> for_every_pmu(pmu, cpu)
>
> Can't do that, because we have per PMU rotation periods..
Well, yes, the callback is already called per-cpu per-pmu,
so then this simplifies a bit, like this:
perf_rotate_context(pmu, cpu)
{
for_every_event_ctx(event_ctx, pmu)
rotate(event_ctx, pmu)
}
event_ctx
|
v
pmu (struct perf_cpu_pmu_context) -> ctx__0 -> ctx__1
| |
v v
sched_out -> fgroup00 fgroup01 -> event001 -> event101 -> event201
| ^ | ^
v | v |
fgroup10 fgroup11
| | | |
v | v |
sched_in -> fgroup20 fgroup21
>
>> for_every_event_ctx(event_ctx, pmu)
>> rotate(event_ctx, pmu)
>> }
>
> I'm also not sure I get the rest that follows... you only have to rotate
> _one_ event per PMU.
Yes. One group per PMU. It could end up in several HW counters reprogramming.
Thanks,
Alexey
>
> I'll try and understand the rest of you email later; brain has checked
> out for the day.
>
Peter Zijlstra <[email protected]> writes:
> @@ -1926,8 +1920,9 @@ static void perf_group_detach(struct per
> add_event_to_groups(sibling, event->ctx);
>
> if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
> + struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
> struct list_head *list = sibling->attr.pinned ?
> - &ctx->pinned_active : &ctx->flexible_active;
> + &pmu_ctx->pinned_active : &pmu_ctx->flexible_active;
>
> list_add_tail(&sibling->active_list, list);
Ok, since I'm getting to the bottom of things: the event::active_list is
actually event::active_entry, which also does exist, but is not used
anywhere other than its initialization. Let's maybe get rid of the _list?
Regards,
--
Alex
Hi Peter,
> On Oct 10, 2018, at 3:45 AM, Peter Zijlstra <[email protected]> wrote:
>
> Hi all,
>
> There have been various issues and limitations with the way perf uses
> (task) contexts to track events. Most notable is the single hardware PMU
> task context, which has resulted in a number of yucky things (both
> proposed and merged).
>
> Notably:
>
> - HW breakpoint PMU
> - ARM big.little PMU
> - Intel Branch Monitoring PMU
>
> Since we now track the events in RB trees, we can 'simply' add a pmu
> order to them and have them grouped that way, reducing to a single
> context. Of course, reality never quite works out that simple, and below
> ends up adding an intermediate data structure to bridge the context ->
> pmu mapping.
>
> Something a little like:
>
> ,------------------------[1:n]---------------------.
> V V
> perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
> ^ ^ | |
> `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
>
> This patch builds (provided you disable CGROUP_PERF), boots and survives
> perf-top without the machine catching fire.
>
> There's still a fair bit of loose ends (look for XXX), but I think this
> is the direction we should be going.
>
> Comments?
This might be a little off topic...
What's you plan about this effort and the PMU sharing work
(https://lkml.org/lkml/2018/10/4/10)? Would PMU sharing work better/simpler
with this effort?
Thanks,
Song
On Tue, Oct 23, 2018 at 06:13:29AM +0000, Song Liu wrote:
> This might be a little off topic...
>
> What's you plan about this effort and the PMU sharing work
> (https://lkml.org/lkml/2018/10/4/10)? Would PMU sharing work better/simpler
> with this effort?
It is on my todo list to look at; sorry for being tardy :/
Peter Zijlstra <[email protected]> writes:
> + // XXX think about exclusive
> + if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
> + err = -EBUSY;
> + goto err_context;
> }
This used to be a problem, because group_leader could have caused
move_group, which could then potentially violate the
exclusive_event_installable() half way through installing siblings onto
the new context (gctx -> ctx). But, with the proposed new order, it's
the same context (ctx), but different epc, which is not a problem; any
potential violations would be caught by
if (!exclusive_event_installable(event, ctx))
that preceeds the move_group block.
It also makes sense that exclusive_event_installable() looks on
ctx->event_list and not epc lists for this exact reason.
In retrospect, we can probably also fix this better in the current code
like:
if (!exclusive_event_installable(event, ctx) ||
!exclusive_event_installable(event, gctx)) /* do -EBUSY */
and get rid of the above restriction to allow grouping "exclusive"
events.
Regards,
--
Alex