Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1756014Ab3I3KPG (ORCPT ); Mon, 30 Sep 2013 06:15:06 -0400 Received: from youngberry.canonical.com ([91.189.89.112]:43838 "EHLO youngberry.canonical.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1755863Ab3I3KNn (ORCPT ); Mon, 30 Sep 2013 06:13:43 -0400 From: Luis Henriques To: linux-kernel@vger.kernel.org, stable@vger.kernel.org, kernel-team@lists.ubuntu.com Cc: Khalid Aziz , Pravin B Shelar , Christoph Lameter , Andrea Arcangeli , Johannes Weiner , Mel Gorman , Rik van Riel , Minchan Kim , Andi Kleen , Andrew Morton , Linus Torvalds , Luis Henriques Subject: [PATCH 092/104] mm: fix aio performance regression for database caused by THP Date: Mon, 30 Sep 2013 11:11:09 +0100 Message-Id: <1380535881-9239-93-git-send-email-luis.henriques@canonical.com> X-Mailer: git-send-email 1.8.3.2 In-Reply-To: <1380535881-9239-1-git-send-email-luis.henriques@canonical.com> References: <1380535881-9239-1-git-send-email-luis.henriques@canonical.com> X-Extended-Stable: 3.5 Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 6380 Lines: 186 3.5.7.22 -stable review patch. If anyone has any objections, please let me know. ------------------ From: Khalid Aziz commit 7cb2ef56e6a8b7b368b2e883a0a47d02fed66911 upstream. I am working with a tool that simulates oracle database I/O workload. This tool (orion to be specific - ) allocates hugetlbfs pages using shmget() with SHM_HUGETLB flag. It then does aio into these pages from flash disks using various common block sizes used by database. I am looking at performance with two of the most common block sizes - 1M and 64K. aio performance with these two block sizes plunged after Transparent HugePages was introduced in the kernel. Here are performance numbers: pre-THP 2.6.39 3.11-rc5 1M read 8384 MB/s 5629 MB/s 6501 MB/s 64K read 7867 MB/s 4576 MB/s 4251 MB/s I have narrowed the performance impact down to the overheads introduced by THP in __get_page_tail() and put_compound_page() routines. perf top shows >40% of cycles being spent in these two routines. Every time direct I/O to hugetlbfs pages starts, kernel calls get_page() to grab a reference to the pages and calls put_page() when I/O completes to put the reference away. THP introduced significant amount of locking overhead to get_page() and put_page() when dealing with compound pages because hugepages can be split underneath get_page() and put_page(). It added this overhead irrespective of whether it is dealing with hugetlbfs pages or transparent hugepages. This resulted in 20%-45% drop in aio performance when using hugetlbfs pages. Since hugetlbfs pages can not be split, there is no reason to go through all the locking overhead for these pages from what I can see. I added code to __get_page_tail() and put_compound_page() to bypass all the locking code when working with hugetlbfs pages. This improved performance significantly. Performance numbers with this patch: pre-THP 3.11-rc5 3.11-rc5 + Patch 1M read 8384 MB/s 6501 MB/s 8371 MB/s 64K read 7867 MB/s 4251 MB/s 6510 MB/s Performance with 64K read is still lower than what it was before THP, but still a 53% improvement. It does mean there is more work to be done but I will take a 53% improvement for now. Please take a look at the following patch and let me know if it looks reasonable. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Khalid Aziz Cc: Pravin B Shelar Cc: Christoph Lameter Cc: Andrea Arcangeli Cc: Johannes Weiner Cc: Mel Gorman Cc: Rik van Riel Cc: Minchan Kim Cc: Andi Kleen Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds [ luis: backported to 3.5: adjusted context ] Signed-off-by: Luis Henriques --- mm/swap.c | 77 ++++++++++++++++++++++++++++++++++++++++++--------------------- 1 file changed, 52 insertions(+), 25 deletions(-) diff --git a/mm/swap.c b/mm/swap.c index 4e7e2ec..0c833e8 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -30,6 +30,7 @@ #include #include #include +#include #include "internal.h" @@ -77,6 +78,19 @@ static void __put_compound_page(struct page *page) static void put_compound_page(struct page *page) { + /* + * hugetlbfs pages cannot be split from under us. If this is a + * hugetlbfs page, check refcount on head page and release the page if + * the refcount becomes zero. + */ + if (PageHuge(page)) { + page = compound_head(page); + if (put_page_testzero(page)) + __put_compound_page(page); + + return; + } + if (unlikely(PageTail(page))) { /* __split_huge_page_refcount can run under us */ struct page *page_head = compound_trans_head(page); @@ -180,38 +194,51 @@ bool __get_page_tail(struct page *page) * proper PT lock that already serializes against * split_huge_page(). */ - unsigned long flags; bool got = false; - struct page *page_head = compound_trans_head(page); + struct page *page_head; - if (likely(page != page_head && get_page_unless_zero(page_head))) { + /* + * If this is a hugetlbfs page it cannot be split under us. Simply + * increment refcount for the head page. + */ + if (PageHuge(page)) { + page_head = compound_head(page); + atomic_inc(&page_head->_count); + got = true; + } else { + unsigned long flags; + + page_head = compound_trans_head(page); + if (likely(page != page_head && + get_page_unless_zero(page_head))) { + + /* Ref to put_compound_page() comment. */ + if (PageSlab(page_head)) { + if (likely(PageTail(page))) { + __get_page_tail_foll(page, false); + return true; + } else { + put_page(page_head); + return false; + } + } - /* Ref to put_compound_page() comment. */ - if (PageSlab(page_head)) { + /* + * page_head wasn't a dangling pointer but it + * may not be a head page anymore by the time + * we obtain the lock. That is ok as long as it + * can't be freed from under us. + */ + flags = compound_lock_irqsave(page_head); + /* here __split_huge_page_refcount won't run anymore */ if (likely(PageTail(page))) { __get_page_tail_foll(page, false); - return true; - } else { - put_page(page_head); - return false; + got = true; } + compound_unlock_irqrestore(page_head, flags); + if (unlikely(!got)) + put_page(page_head); } - - /* - * page_head wasn't a dangling pointer but it - * may not be a head page anymore by the time - * we obtain the lock. That is ok as long as it - * can't be freed from under us. - */ - flags = compound_lock_irqsave(page_head); - /* here __split_huge_page_refcount won't run anymore */ - if (likely(PageTail(page))) { - __get_page_tail_foll(page, false); - got = true; - } - compound_unlock_irqrestore(page_head, flags); - if (unlikely(!got)) - put_page(page_head); } return got; } -- 1.8.3.2 -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/