Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1753387AbaAFJpq (ORCPT ); Mon, 6 Jan 2014 04:45:46 -0500 Received: from mail-ee0-f52.google.com ([74.125.83.52]:42550 "EHLO mail-ee0-f52.google.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751782AbaAFJpn convert rfc822-to-8bit (ORCPT ); Mon, 6 Jan 2014 04:45:43 -0500 Date: Mon, 6 Jan 2014 10:45:23 +0100 From: Andrea Mazzoleni To: NeilBrown Cc: Andrea Mazzoleni , linux-kernel@vger.kernel.org, linux-raid@vger.kernel.org, linux-btrfs@vger.kernel.org, clm@fb.com, jbacik@fb.com Subject: Re: [RFC] lib: raid: New RAID library supporting up to six parities Message-ID: <20140106094523.GA4602@gmail.com> References: <1388742436-3754-1-git-send-email-amadvance@gmail.com> <20140106111529.7bcff024@notabene.brown> MIME-Version: 1.0 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline Content-Transfer-Encoding: 8BIT In-Reply-To: <20140106111529.7bcff024@notabene.brown> User-Agent: Mutt/1.5.21 (2010-09-15) Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Hi Neil, Thanks for your feedback. In the meantime I went further in developing and I've just sent version 2 of the patch, that contains a preliminary btrfs modification to use the new interface. Please use this one for any kind of review because it contains a modification of the interface to match better the btrfs use. I'll now try to do something similar to the async_tx layer and to improve the code documentation as you recommended. Anyway, a good entry point to understand the code is to start from the include/linux/raid/raid.h file. It contains the functions that external modules should call with a complete description of them. There is raid_par() used to compute parity, and raid_rec() to recover damaged blocks. These two functions replace all the old xor_blocks and raid6 calls. And there is the raid_sort() you mention. It's an helper function that can be used to ensure that the blocks indexes are passed at the raid interface in proper order. In existing code I saw that the indexes are often sorted before calling raid6, with something like: if (faila > failb) { int tmp = failb; failb = faila; faila = tmp; } To do the same with up to six failures, it's now required some kind of sort function. Ciao, Andrea On 01/06, NeilBrown wrote: > On Fri, 3 Jan 2014 10:47:16 +0100 Andrea Mazzoleni > wrote: > > > This patch adds a new lib/raid directory, containing a new RAID support > > based on a Cauchy matrix working for up to six parities, and backward > > compatible with the existing RAID6 support. > > Hi Andrea, > thanks for this. I suspect it is probably a good idea to include this as we > are very likely to get multi-parity RAID at some stage and having this will > be a good first step. > I don't really feel motivated to review all this code though... I'm hoping > that someone(s) else might can could comment. > > Also, while there are some good comments in there, I feel there could be > more :-) > e.g: what function(s) do I actually call to create or check the extra parity > blocks? I'm sure I could find out by reading the code but I'd rather read > some documentation. > And what is "raid_sort()" all about ... I didn't expect to find a sort > function in there (that can sort an array of length up-to 6). > > Also though would ultimately need to be accessible via the 'async_tx' > interface so that hardware-offload could be supported. So I would need to > know that the design will fit nicely into that interface. > Providing the interface can certainly come later, but being sure that the > current code a good match would help now. > > So: anyone out there keen to review this code at give me a > Reviewed-by: > ?? > > Thanks, > NeilBrown > > > > > > > It was developed for kernel 3.13-rc4, but it should work with any other > > version because it's mostly formed of new files. The only modification > > is about adding a new CONFIG_RAID_CAUCHY option in the "lib" configuration > > section. > > > > The main interface is defined in include/linux/raid/raid.h and provides > > easy to use functions able to generate parities and to recover data. > > This interface is different than the one provided by the RAID6 library, > > because with more parities the number of recovering cases grows exponentially > > and it's not feasible to have a different function for each one. > > > > The library provides fast implementations using SSE2 and SSSE3 for x86/x64 > > and a portable C implementation working everythere. > > If the RAID6 library is enabled in the kernel, its functionality is also used > > to maintain the existing level of performance for the first two parities in > > all the supported architectures. > > > > At startup the module runs a very fast self test (about 1ms) to ensure that > > the used functions are correct. > > I verified that the module builds, loads and passes the self test in the x86, > > and x64 architectures. I expects no problems in other platforms, but at now > > they are not really tested. I only simulated similar conditions. > > > > In the lib/raid/test directory are present also some user mode test programs: > > selftest - Runs the same selftest executed at the module startup. > > fulltest - Runs a more extensive test that checks all the built-in functions. > > speetest - Runs a speed test in memory. > > > > As a reference, in my icore7 2.7GHz the speedtest program reports: > > > > ... > > Speed test using 16 data buffers of 4096 bytes, for a total of 64 KiB. > > Memory blocks have a displacement of 64 bytes to improve cache performance. > > The reported value is the aggregate bandwidth of all data blocks in MiB/s, > > not counting parity blocks. > > > > Memory write speed using the C memset() function: > > memset 33518 > > > > RAID functions used for computing the parity: > > int8 int32 int64 sse2 sse2e ssse3 ssse3e > > par1 11762 21450 44621 > > par2 3520 6176 18100 20338 > > par3 848 8009 9210 > > par4 659 6518 7303 > > par5 531 4931 5363 > > par6 430 4069 4471 > > > > RAID functions used for recovering: > > int8 ssse3 > > rec1 591 1126 > > rec2 272 456 > > rec3 80 305 > > rec4 49 216 > > rec5 34 151 > > ... > > > > Legend: > > parX functions to generate X parities > > recX functions to recover X data blocks > > int8 implemention based on 8 bits arithmetics > > int32 implemention based on 32 bits arithmetics > > int64 implemention based on 64 bits arithmetics > > sse2 implemention based on SSE2 > > sse2e implemention based on SSE2 with 16 registers (x64) > > ssse3 implemention based on SSSE3 > > ssse3e implemention based on SSSE3 with 16 registers (x64) > > > > Signed-off-by: Andrea Mazzoleni > > --- > > This a bunch of new code, and some context could help to understand what's > > going on. > > > > This is a port of the RAID engine that I'm currently using in my hobby project > > called SnapRAID. This project was initially based on the Linux RAID6 library, > > and then limited to support only two parities like the Linux kernel itself. > > > > How to extend the RAID6 logic to support more parities was not so obvious, > > and it was also a recurring argument in the linux-raid mailing list in the > > past years. Unfortunately, with no general solution ever proposed. > > > > It took some time, but finally I found a way to do it keeping backward > > compatibility with RAID6, using a specially built Cauchy matrix. > > > > After implementing this support for my hobby project I got this solution also > > discussed in the linux-raid/linux-btrfs mailing list in November in the thread > > "Triple parity and beyond": > > > > http://thread.gmane.org/gmane.comp.file-systems.btrfs/30159 > > > > This patch is the implementation of such discussion, done porting my existing > > code to the kernel environment. > > > > The code compiles without warnings with gcc -Wall -Wextra, with the clang > > analyzer, and it runs cleany with valgrind. > > The checkpatch.pl robot still report some issues. The errors are all false > > positives that I was not able to workaround. The remaining warnings are > > intentionally not fixed because that would make the code more difficult to read, > > or are others false positive. > > > > Please let me know what do you think. Any kind of feedback is welcome. > > > > Thanks, > > Andrea > > > > include/linux/raid/raid.h | 86 +++ > > lib/Kconfig | 12 + > > lib/Makefile | 1 + > > lib/raid/Makefile | 14 + > > lib/raid/cpu.h | 44 ++ > > lib/raid/gf.h | 109 ++++ > > lib/raid/int.c | 567 ++++++++++++++++ > > lib/raid/internal.h | 146 +++++ > > lib/raid/mktables.c | 338 ++++++++++ > > lib/raid/module.c | 437 +++++++++++++ > > lib/raid/raid.c | 425 ++++++++++++ > > lib/raid/sort.c | 72 +++ > > lib/raid/test/Makefile | 33 + > > lib/raid/test/combo.h | 155 +++++ > > lib/raid/test/fulltest.c | 76 +++ > > lib/raid/test/memory.c | 79 +++ > > lib/raid/test/memory.h | 74 +++ > > lib/raid/test/selftest.c | 41 ++ > > lib/raid/test/speedtest.c | 567 ++++++++++++++++ > > lib/raid/test/test.c | 314 +++++++++ > > lib/raid/test/test.h | 59 ++ > > lib/raid/test/usermode.h | 83 +++ > > lib/raid/test/xor.c | 41 ++ > > lib/raid/x86.c | 1569 +++++++++++++++++++++++++++++++++++++++++++++ > > 24 files changed, 5342 insertions(+) > > create mode 100644 include/linux/raid/raid.h > > create mode 100644 lib/raid/Makefile > > create mode 100644 lib/raid/cpu.h > > create mode 100644 lib/raid/gf.h > > create mode 100644 lib/raid/int.c > > create mode 100644 lib/raid/internal.h > > create mode 100644 lib/raid/mktables.c > > create mode 100644 lib/raid/module.c > > create mode 100644 lib/raid/raid.c > > create mode 100644 lib/raid/sort.c > > create mode 100644 lib/raid/test/Makefile > > create mode 100644 lib/raid/test/combo.h > > create mode 100644 lib/raid/test/fulltest.c > > create mode 100644 lib/raid/test/memory.c > > create mode 100644 lib/raid/test/memory.h > > create mode 100644 lib/raid/test/selftest.c > > create mode 100644 lib/raid/test/speedtest.c > > create mode 100644 lib/raid/test/test.c > > create mode 100644 lib/raid/test/test.h > > create mode 100644 lib/raid/test/usermode.h > > create mode 100644 lib/raid/test/xor.c > > create mode 100644 lib/raid/x86.c > > > > diff --git a/include/linux/raid/raid.h b/include/linux/raid/raid.h > > new file mode 100644 > > index 0000000..9b5e441 > > --- /dev/null > > +++ b/include/linux/raid/raid.h > > @@ -0,0 +1,86 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_H > > +#define __RAID_H > > + > > +#ifdef __KERNEL__ /* to build the user mode test */ > > +#include > > +#endif > > + > > +/** > > + * Max number of parity disks supported. > > + */ > > +#define RAID_PARITY_MAX 6 > > + > > +/** > > + * Maximum number of data disks supported. > > + */ > > +#define RAID_DATA_MAX 251 > > + > > +/** > > + * Computes the parity. > > + * > > + * @nd Number of data blocks. > > + * @np Number of parities blocks to compute. > > + * @size Size of the blocks pointed by @v. It must be a multipler of 64. > > + * @v Vector of pointers to the blocks of data and parity. > > + * It has (@nd + @np) elements. The starting elements are the blocks for > > + * data, following with the parity blocks. > > + * Each blocks has @size bytes. > > + */ > > +void raid_par(int nd, int np, size_t size, void **v); > > + > > +/** > > + * Recovers failures in data and parity blocks. > > + * > > + * All the data and parity blocks marked as bad in the @id and @ip vector > > + * are recovered and recomputed. > > + * > > + * The parities blocks to use for recovering are automatically selected from > > + * the ones NOT present in the @ip vector. > > + * > > + * Ensure to have @nrd + @nrp <= @np, otherwise recovering is not possible. > > + * > > + * @nrd Number of failed data blocks to recover. > > + * @id[] Vector of @nrd indexes of the data blocks to recover. > > + * The indexes start from 0. They must be in order. > > + * @nrp Number of failed parity blocks to recover. > > + * @ip[] Vector of @nrp indexes of the parity blocks to recover. > > + * The indexes start from 0. They must be in order. > > + * All the parities not specified here are assumed correct, and they are > > + * not recomputed. > > + * @nd Number of data blocks. > > + * @np Number of parity blocks. > > + * @size Size of the blocks pointed by @v. It must be a multipler of 64. > > + * @v Vector of pointers to the blocks of data and parity. > > + * It has (@nd + @np) elements. The starting elements are the blocks > > + * for data, following with the parity blocks. > > + * Each blocks has @size bytes. > > + */ > > +void raid_rec(int nrd, int *id, int nrp, int *ip, int nd, int np, size_t size, void **v); > > + > > +/** > > + * Sorts a small vector of integers. > > + * > > + * If you have block indexes not in order, you can use this function to sort > > + * them before callign raid_rec(). > > + * > > + * @n Number of integers. No more than RAID_PARITY_MAX. > > + * @v Vector of integers. > > + */ > > +void raid_sort(int n, int *v); > > + > > +#endif > > + > > diff --git a/lib/Kconfig b/lib/Kconfig > > index 991c98b..a77ffbe 100644 > > --- a/lib/Kconfig > > +++ b/lib/Kconfig > > @@ -10,6 +10,18 @@ menu "Library routines" > > config RAID6_PQ > > tristate > > > > +config RAID_CAUCHY > > + tristate "RAID Cauchy functions" > > + help > > + This option enables the RAID parity library based on a Cauchy matrix > > + that supports up to six parities, and it's compatible with the > > + existing RAID6 support. > > + This library provides optimized functions for architectures with > > + SSSE3 support. > > + If the RAID6 module is enabled, it's automatically used to > > + maintain the same performance level in all the architectures. > > + Module will be called raid_cauchy. > > + > > config BITREVERSE > > tristate > > > > diff --git a/lib/Makefile b/lib/Makefile > > index a459c31..8b76716 100644 > > --- a/lib/Makefile > > +++ b/lib/Makefile > > @@ -79,6 +79,7 @@ obj-$(CONFIG_LZ4HC_COMPRESS) += lz4/ > > obj-$(CONFIG_LZ4_DECOMPRESS) += lz4/ > > obj-$(CONFIG_XZ_DEC) += xz/ > > obj-$(CONFIG_RAID6_PQ) += raid6/ > > +obj-$(CONFIG_RAID_CAUCHY) += raid/ > > > > lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o > > lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o > > diff --git a/lib/raid/Makefile b/lib/raid/Makefile > > new file mode 100644 > > index 0000000..b8c1df5 > > --- /dev/null > > +++ b/lib/raid/Makefile > > @@ -0,0 +1,14 @@ > > +obj-$(CONFIG_RAID_CAUCHY) += raid_cauchy.o > > + > > +raid_cauchy-y += module.o raid.o tables.o int.o > > + > > +raid_cauchy-$(CONFIG_X86) += x86.o > > + > > +hostprogs-y += mktables > > + > > +quiet_cmd_mktable = TABLE $@ > > + cmd_mktable = $(obj)/mktables > $@ || ( rm -f $@ && exit 1 ) > > + > > +targets += tables.c > > +$(obj)/tables.c: $(obj)/mktables FORCE > > + $(call if_changed,mktable) > > diff --git a/lib/raid/cpu.h b/lib/raid/cpu.h > > new file mode 100644 > > index 0000000..3202fa9 > > --- /dev/null > > +++ b/lib/raid/cpu.h > > @@ -0,0 +1,44 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_CPU_H > > +#define __RAID_CPU_H > > + > > +#ifdef CONFIG_X86 > > +static inline int raid_cpu_has_sse2(void) > > +{ > > + return boot_cpu_has(X86_FEATURE_XMM2); > > +} > > + > > +static inline int raid_cpu_has_ssse3(void) > > +{ > > + /* checks also for SSE2 */ > > + /* likely it's implicit but it doesn't harm */ > > + return boot_cpu_has(X86_FEATURE_XMM2) > > + && boot_cpu_has(X86_FEATURE_SSSE3); > > +} > > + > > +static inline int raid_cpu_has_avx2(void) > > +{ > > + /* checks also for SSE2 and SSSE3 */ > > + /* likely it's implicit but it doesn't harm */ > > + return boot_cpu_has(X86_FEATURE_XMM2) > > + && boot_cpu_has(X86_FEATURE_SSSE3) > > + && boot_cpu_has(X86_FEATURE_AVX) > > + && boot_cpu_has(X86_FEATURE_AVX2); > > +} > > +#endif > > + > > +#endif > > + > > diff --git a/lib/raid/gf.h b/lib/raid/gf.h > > new file mode 100644 > > index 0000000..f444e63 > > --- /dev/null > > +++ b/lib/raid/gf.h > > @@ -0,0 +1,109 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_GF_H > > +#define __RAID_GF_H > > + > > +/* > > + * Galois field operations. > > + * > > + * Basic range checks are implemented using BUG_ON(). > > + */ > > + > > +/* > > + * GF a*b. > > + */ > > +static __always_inline uint8_t mul(uint8_t a, uint8_t b) > > +{ > > + return gfmul[a][b]; > > +} > > + > > +/* > > + * GF 1/a. > > + * Not defined for a == 0. > > + */ > > +static __always_inline uint8_t inv(uint8_t v) > > +{ > > + BUG_ON(v == 0); /* division by zero */ > > + > > + return gfinv[v]; > > +} > > + > > +/* > > + * GF 2^a. > > + */ > > +static __always_inline uint8_t pow2(int v) > > +{ > > + BUG_ON(v < 0 || v > 254); /* invalid exponent */ > > + > > + return gfexp[v]; > > +} > > + > > +/* > > + * Gets the multiplication table for a specified value. > > + */ > > +static __always_inline const uint8_t *table(uint8_t v) > > +{ > > + return gfmul[v]; > > +} > > + > > +/* > > + * Gets the generator matrix coefficient for parity 'p' and disk 'd'. > > + */ > > +static __always_inline uint8_t A(int p, int d) > > +{ > > + return gfgen[p][d]; > > +} > > + > > +/* > > + * Dereference as uint8_t > > + */ > > +#define v_8(p) (*(uint8_t *)&(p)) > > + > > +/* > > + * Dereference as uint32_t > > + */ > > +#define v_32(p) (*(uint32_t *)&(p)) > > + > > +/* > > + * Dereference as uint64_t > > + */ > > +#define v_64(p) (*(uint64_t *)&(p)) > > + > > +/* > > + * Multiply each byte of a uint32 by 2 in the GF(2^8). > > + */ > > +static __always_inline uint32_t x2_32(uint32_t v) > > +{ > > + uint32_t mask = v & 0x80808080U; > > + mask = (mask << 1) - (mask >> 7); > > + v = (v << 1) & 0xfefefefeU; > > + v ^= mask & 0x1d1d1d1dU; > > + return v; > > +} > > + > > +/* > > + * Multiply each byte of a uint64 by 2 in the GF(2^8). > > + */ > > +static __always_inline uint64_t x2_64(uint64_t v) > > +{ > > + uint64_t mask = v & 0x8080808080808080ULL; > > + mask = (mask << 1) - (mask >> 7); > > + v = (v << 1) & 0xfefefefefefefefeULL; > > + v ^= mask & 0x1d1d1d1d1d1d1d1dULL; > > + return v; > > +} > > + > > +#endif > > + > > diff --git a/lib/raid/int.c b/lib/raid/int.c > > new file mode 100644 > > index 0000000..cd1e147 > > --- /dev/null > > +++ b/lib/raid/int.c > > @@ -0,0 +1,567 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "gf.h" > > + > > +/* > > + * PAR1 (RAID5 with xor) 32bit C implementation > > + */ > > +void raid_par1_int32(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + int d, l; > > + size_t i; > > + > > + uint32_t p0; > > + uint32_t p1; > > + > > + l = nd - 1; > > + p = v[nd]; > > + > > + for (i = 0; i < size; i += 8) { > > + p0 = v_32(v[l][i]); > > + p1 = v_32(v[l][i+4]); > > + for (d = l-1; d >= 0; --d) { > > + p0 ^= v_32(v[d][i]); > > + p1 ^= v_32(v[d][i+4]); > > + } > > + v_32(p[i]) = p0; > > + v_32(p[i+4]) = p1; > > + } > > +} > > + > > +/* > > + * PAR1 (RAID5 with xor) 64bit C implementation > > + */ > > +void raid_par1_int64(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + int d, l; > > + size_t i; > > + > > + uint64_t p0; > > + uint64_t p1; > > + > > + l = nd - 1; > > + p = v[nd]; > > + > > + for (i = 0; i < size; i += 16) { > > + p0 = v_64(v[l][i]); > > + p1 = v_64(v[l][i+8]); > > + for (d = l-1; d >= 0; --d) { > > + p0 ^= v_64(v[d][i]); > > + p1 ^= v_64(v[d][i+8]); > > + } > > + v_64(p[i]) = p0; > > + v_64(p[i+8]) = p1; > > + } > > +} > > + > > +/* > > + * PAR2 (RAID6 with powers of 2) 32bit C implementation > > + */ > > +void raid_par2_int32(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + int d, l; > > + size_t i; > > + > > + uint32_t d0, q0, p0; > > + uint32_t d1, q1, p1; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + > > + for (i = 0; i < size; i += 8) { > > + q0 = p0 = v_32(v[l][i]); > > + q1 = p1 = v_32(v[l][i+4]); > > + for (d = l-1; d >= 0; --d) { > > + d0 = v_32(v[d][i]); > > + d1 = v_32(v[d][i+4]); > > + > > + p0 ^= d0; > > + p1 ^= d1; > > + > > + q0 = x2_32(q0); > > + q1 = x2_32(q1); > > + > > + q0 ^= d0; > > + q1 ^= d1; > > + } > > + v_32(p[i]) = p0; > > + v_32(p[i+4]) = p1; > > + v_32(q[i]) = q0; > > + v_32(q[i+4]) = q1; > > + } > > +} > > + > > +/* > > + * PAR2 (RAID6 with powers of 2) 64bit C implementation > > + */ > > +void raid_par2_int64(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + int d, l; > > + size_t i; > > + > > + uint64_t d0, q0, p0; > > + uint64_t d1, q1, p1; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + > > + for (i = 0; i < size; i += 16) { > > + q0 = p0 = v_64(v[l][i]); > > + q1 = p1 = v_64(v[l][i+8]); > > + for (d = l-1; d >= 0; --d) { > > + d0 = v_64(v[d][i]); > > + d1 = v_64(v[d][i+8]); > > + > > + p0 ^= d0; > > + p1 ^= d1; > > + > > + q0 = x2_64(q0); > > + q1 = x2_64(q1); > > + > > + q0 ^= d0; > > + q1 ^= d1; > > + } > > + v_64(p[i]) = p0; > > + v_64(p[i+8]) = p1; > > + v_64(q[i]) = q0; > > + v_64(q[i+8]) = q1; > > + } > > +} > > + > > +/* > > + * PAR3 (triple parity with Cauchy matrix) 8bit C implementation > > + * > > + * Note that instead of a generic multiplication table, likely resulting > > + * in multiple cache misses, a precomputed table could be used. > > + * But this is only a kind of reference function, and we are not really > > + * interested in speed. > > + */ > > +void raid_par3_int8(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + int d, l; > > + size_t i; > > + > > + uint8_t d0, r0, q0, p0; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + > > + for (i = 0; i < size; i += 1) { > > + p0 = q0 = r0 = 0; > > + for (d = l; d > 0; --d) { > > + d0 = v_8(v[d][i]); > > + > > + p0 ^= d0; > > + q0 ^= gfmul[d0][gfgen[1][d]]; > > + r0 ^= gfmul[d0][gfgen[2][d]]; > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + d0 = v_8(v[0][i]); > > + > > + p0 ^= d0; > > + q0 ^= d0; > > + r0 ^= d0; > > + > > + v_8(p[i]) = p0; > > + v_8(q[i]) = q0; > > + v_8(r[i]) = r0; > > + } > > +} > > + > > +/* > > + * PAR4 (quad parity with Cauchy matrix) 8bit C implementation > > + * > > + * Note that instead of a generic multiplication table, likely resulting > > + * in multiple cache misses, a precomputed table could be used. > > + * But this is only a kind of reference function, and we are not really > > + * interested in speed. > > + */ > > +void raid_par4_int8(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + int d, l; > > + size_t i; > > + > > + uint8_t d0, s0, r0, q0, p0; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + > > + for (i = 0; i < size; i += 1) { > > + p0 = q0 = r0 = s0 = 0; > > + for (d = l; d > 0; --d) { > > + d0 = v_8(v[d][i]); > > + > > + p0 ^= d0; > > + q0 ^= gfmul[d0][gfgen[1][d]]; > > + r0 ^= gfmul[d0][gfgen[2][d]]; > > + s0 ^= gfmul[d0][gfgen[3][d]]; > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + d0 = v_8(v[0][i]); > > + > > + p0 ^= d0; > > + q0 ^= d0; > > + r0 ^= d0; > > + s0 ^= d0; > > + > > + v_8(p[i]) = p0; > > + v_8(q[i]) = q0; > > + v_8(r[i]) = r0; > > + v_8(s[i]) = s0; > > + } > > +} > > + > > +/* > > + * PAR5 (penta parity with Cauchy matrix) 8bit C implementation > > + * > > + * Note that instead of a generic multiplication table, likely resulting > > + * in multiple cache misses, a precomputed table could be used. > > + * But this is only a kind of reference function, and we are not really > > + * interested in speed. > > + */ > > +void raid_par5_int8(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + uint8_t *t; > > + int d, l; > > + size_t i; > > + > > + uint8_t d0, t0, s0, r0, q0, p0; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + t = v[nd+4]; > > + > > + for (i = 0; i < size; i += 1) { > > + p0 = q0 = r0 = s0 = t0 = 0; > > + for (d = l; d > 0; --d) { > > + d0 = v_8(v[d][i]); > > + > > + p0 ^= d0; > > + q0 ^= gfmul[d0][gfgen[1][d]]; > > + r0 ^= gfmul[d0][gfgen[2][d]]; > > + s0 ^= gfmul[d0][gfgen[3][d]]; > > + t0 ^= gfmul[d0][gfgen[4][d]]; > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + d0 = v_8(v[0][i]); > > + > > + p0 ^= d0; > > + q0 ^= d0; > > + r0 ^= d0; > > + s0 ^= d0; > > + t0 ^= d0; > > + > > + v_8(p[i]) = p0; > > + v_8(q[i]) = q0; > > + v_8(r[i]) = r0; > > + v_8(s[i]) = s0; > > + v_8(t[i]) = t0; > > + } > > +} > > + > > +/* > > + * PAR6 (hexa parity with Cauchy matrix) 8bit C implementation > > + * > > + * Note that instead of a generic multiplication table, likely resulting > > + * in multiple cache misses, a precomputed table could be used. > > + * But this is only a kind of reference function, and we are not really > > + * interested in speed. > > + */ > > +void raid_par6_int8(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + uint8_t *t; > > + uint8_t *u; > > + int d, l; > > + size_t i; > > + > > + uint8_t d0, u0, t0, s0, r0, q0, p0; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + t = v[nd+4]; > > + u = v[nd+5]; > > + > > + for (i = 0; i < size; i += 1) { > > + p0 = q0 = r0 = s0 = t0 = u0 = 0; > > + for (d = l; d > 0; --d) { > > + d0 = v_8(v[d][i]); > > + > > + p0 ^= d0; > > + q0 ^= gfmul[d0][gfgen[1][d]]; > > + r0 ^= gfmul[d0][gfgen[2][d]]; > > + s0 ^= gfmul[d0][gfgen[3][d]]; > > + t0 ^= gfmul[d0][gfgen[4][d]]; > > + u0 ^= gfmul[d0][gfgen[5][d]]; > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + d0 = v_8(v[0][i]); > > + > > + p0 ^= d0; > > + q0 ^= d0; > > + r0 ^= d0; > > + s0 ^= d0; > > + t0 ^= d0; > > + u0 ^= d0; > > + > > + v_8(p[i]) = p0; > > + v_8(q[i]) = q0; > > + v_8(r[i]) = r0; > > + v_8(s[i]) = s0; > > + v_8(t[i]) = t0; > > + v_8(u[i]) = u0; > > + } > > +} > > + > > +/* > > + * Recover failure of one data block at index id[0] using parity at index > > + * ip[0] for any RAID level. > > + * > > + * Starting from the equation: > > + * > > + * Pd = A[ip[0],id[0]] * Dx > > + * > > + * and solving we get: > > + * > > + * Dx = A[ip[0],id[0]]^-1 * Pd > > + */ > > +void raid_rec1_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *pa; > > + const uint8_t *T; > > + uint8_t G; > > + uint8_t V; > > + size_t i; > > + > > + (void)nr; /* unused, it's always 1 */ > > + > > + /* if it's RAID5 uses the faster function */ > > + if (ip[0] == 0) { > > + raid_rec1_par1(id, nd, size, vv); > > + return; > > + } > > + > > +#ifdef RAID_USE_RAID6_PQ > > + /* if it's RAID6 recovering with Q uses the faster function */ > > + if (ip[0] == 1) { > > + raid6_datap_recov(nd + 2, size, id[0], vv); > > + return; > > + } > > +#endif > > + > > + /* setup the coefficients matrix */ > > + G = A(ip[0], id[0]); > > + > > + /* invert it to solve the system of linear equations */ > > + V = inv(G); > > + > > + /* get multiplication tables */ > > + T = table(V); > > + > > + /* compute delta parity */ > > + raid_delta_gen(1, id, ip, nd, size, vv); > > + > > + p = v[nd+ip[0]]; > > + pa = v[id[0]]; > > + > > + for (i = 0; i < size; ++i) { > > + /* delta */ > > + uint8_t Pd = p[i] ^ pa[i]; > > + > > + /* reconstruct */ > > + pa[i] = T[Pd]; > > + } > > +} > > + > > +/* > > + * Recover failure of two data blocks at indexes id[0],id[1] using parity at > > + * indexes ip[0],ip[1] for any RAID level. > > + * > > + * Starting from the equations: > > + * > > + * Pd = A[ip[0],id[0]] * Dx + A[ip[0],id[1]] * Dy > > + * Qd = A[ip[1],id[0]] * Dx + A[ip[1],id[1]] * Dy > > + * > > + * we solve inverting the coefficients matrix. > > + */ > > +void raid_rec2_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *pa; > > + uint8_t *q; > > + uint8_t *qa; > > + const int N = 2; > > + const uint8_t *T[N][N]; > > + uint8_t G[N*N]; > > + uint8_t V[N*N]; > > + size_t i; > > + int j, k; > > + > > + (void)nr; /* unused, it's always 2 */ > > + > > + /* if it's RAID6 recovering with P and Q uses the faster function */ > > + if (ip[0] == 0 && ip[1] == 1) { > > +#ifdef RAID_USE_RAID6_PQ > > + raid6_2data_recov(nd + 2, size, id[0], id[1], vv); > > +#else > > + raid_rec2_par2(id, ip, nd, size, vv); > > +#endif > > + return; > > + } > > + > > + /* setup the coefficients matrix */ > > + for (j = 0; j < N; ++j) > > + for (k = 0; k < N; ++k) > > + G[j*N+k] = A(ip[j], id[k]); > > + > > + /* invert it to solve the system of linear equations */ > > + raid_invert(G, V, N); > > + > > + /* get multiplication tables */ > > + for (j = 0; j < N; ++j) > > + for (k = 0; k < N; ++k) > > + T[j][k] = table(V[j*N+k]); > > + > > + /* compute delta parity */ > > + raid_delta_gen(2, id, ip, nd, size, vv); > > + > > + p = v[nd+ip[0]]; > > + q = v[nd+ip[1]]; > > + pa = v[id[0]]; > > + qa = v[id[1]]; > > + > > + for (i = 0; i < size; ++i) { > > + /* delta */ > > + uint8_t Pd = p[i] ^ pa[i]; > > + uint8_t Qd = q[i] ^ qa[i]; > > + > > + /* reconstruct */ > > + pa[i] = T[0][0][Pd] ^ T[0][1][Qd]; > > + qa[i] = T[1][0][Pd] ^ T[1][1][Qd]; > > + } > > +} > > + > > +/* > > + * Recover failure of N data blocks at indexes id[N] using parity at indexes > > + * ip[N] for any RAID level. > > + * > > + * Starting from the N equations, with 0<=i > + * > > + * PD[i] = sum(A[ip[i],id[j]] * D[i]) 0<=j > + * > > + * we solve inverting the coefficients matrix. > > + * > > + * Note that referring at previous equations you have: > > + * PD[0] = Pd, PD[1] = Qd, PD[2] = Rd, ... > > + * D[0] = Dx, D[1] = Dy, D[2] = Dz, ... > > + */ > > +void raid_recX_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p[RAID_PARITY_MAX]; > > + uint8_t *pa[RAID_PARITY_MAX]; > > + const uint8_t *T[RAID_PARITY_MAX][RAID_PARITY_MAX]; > > + uint8_t G[RAID_PARITY_MAX*RAID_PARITY_MAX]; > > + uint8_t V[RAID_PARITY_MAX*RAID_PARITY_MAX]; > > + size_t i; > > + int j, k; > > + > > + /* setup the coefficients matrix */ > > + for (j = 0; j < nr; ++j) > > + for (k = 0; k < nr; ++k) > > + G[j*nr+k] = A(ip[j], id[k]); > > + > > + /* invert it to solve the system of linear equations */ > > + raid_invert(G, V, nr); > > + > > + /* get multiplication tables */ > > + for (j = 0; j < nr; ++j) > > + for (k = 0; k < nr; ++k) > > + T[j][k] = table(V[j*nr+k]); > > + > > + /* compute delta parity */ > > + raid_delta_gen(nr, id, ip, nd, size, vv); > > + > > + for (j = 0; j < nr; ++j) { > > + p[j] = v[nd+ip[j]]; > > + pa[j] = v[id[j]]; > > + } > > + > > + for (i = 0; i < size; ++i) { > > + uint8_t PD[RAID_PARITY_MAX]; > > + > > + /* delta */ > > + for (j = 0; j < nr; ++j) > > + PD[j] = p[j][i] ^ pa[j][i]; > > + > > + /* reconstruct */ > > + for (j = 0; j < nr; ++j) { > > + uint8_t b = 0; > > + for (k = 0; k < nr; ++k) > > + b ^= T[j][k][PD[k]]; > > + pa[j][i] = b; > > + } > > + } > > +} > > + > > diff --git a/lib/raid/internal.h b/lib/raid/internal.h > > new file mode 100644 > > index 0000000..7d84458 > > --- /dev/null > > +++ b/lib/raid/internal.h > > @@ -0,0 +1,146 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_INTERNAL_H > > +#define __RAID_INTERNAL_H > > + > > +/* > > + * Includes anything required for compatibility. > > + */ > > +#ifdef __KERNEL__ /* to build the user mode test */ > > + > > +#include > > +#include /* for IS_* macros */ > > +#include /* for EXPORT_SYMBOL/EXPORT_SYMBOL_GPL */ > > +#include /* for BUG_ON */ > > +#include /* for __get_free_pages */ > > +#include /* for xor_blocks */ > > + > > +#ifdef CONFIG_X86 > > +#include /* for kernel_fpu_begin/end() */ > > +#endif > > + > > +/* if we can use the RAID6 library */ > > +#if IS_BUILTIN(CONFIG_RAID6_PQ) \ > > + || (IS_MODULE(CONFIG_RAID6_PQ) && IS_MODULE(CONFIG_RAID6_CAUCHY)) > > +#define RAID_USE_RAID6_PQ 1 > > +#include /* for tables/functions */ > > +#endif > > + > > +#else > > + > > +#include "test/usermode.h" > > + > > +#endif > > + > > +/* > > + * Include the main header. > > + */ > > +#include > > + > > +/* > > + * Internal functions. > > + * > > + * These are intented to provide access for testing. > > + */ > > +void raid_init(void); > > +int raid_selftest(void); > > +int raid_speedtest(void); > > +void raid_par_ref(int nd, int np, size_t size, void **vv); > > +void raid_invert(uint8_t *M, uint8_t *V, int n); > > +void raid_delta_gen(int nr, int *id, int *ip, int nd, size_t size, void **v); > > +void raid_rec1_par1(int *id, int nd, size_t size, void **v); > > +void raid_rec2_par2(int *id, int *ip, int nd, size_t size, void **vv); > > +void raid_par1_xorblocks(int nd, size_t size, void **v); > > +void raid_par1_int32(int nd, size_t size, void **vv); > > +void raid_par1_int64(int nd, size_t size, void **vv); > > +void raid_par1_sse2(int nd, size_t size, void **vv); > > +void raid_par2_raid6(int nd, size_t size, void **vv); > > +void raid_par2_int32(int nd, size_t size, void **vv); > > +void raid_par2_int64(int nd, size_t size, void **vv); > > +void raid_par2_sse2(int nd, size_t size, void **vv); > > +void raid_par2_sse2ext(int nd, size_t size, void **vv); > > +void raid_par3_int8(int nd, size_t size, void **vv); > > +void raid_par3_ssse3(int nd, size_t size, void **vv); > > +void raid_par3_ssse3ext(int nd, size_t size, void **vv); > > +void raid_par4_int8(int nd, size_t size, void **vv); > > +void raid_par4_ssse3(int nd, size_t size, void **vv); > > +void raid_par4_ssse3ext(int nd, size_t size, void **vv); > > +void raid_par5_int8(int nd, size_t size, void **vv); > > +void raid_par5_ssse3(int nd, size_t size, void **vv); > > +void raid_par5_ssse3ext(int nd, size_t size, void **vv); > > +void raid_par6_int8(int nd, size_t size, void **vv); > > +void raid_par6_ssse3(int nd, size_t size, void **vv); > > +void raid_par6_ssse3ext(int nd, size_t size, void **vv); > > +void raid_rec1_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv); > > +void raid_rec2_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv); > > +void raid_recX_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv); > > +void raid_rec1_ssse3(int nr, int *id, int *ip, int nd, size_t size, void **vv); > > +void raid_rec2_ssse3(int nr, int *id, int *ip, int nd, size_t size, void **vv); > > +void raid_recX_ssse3(int nr, int *id, int *ip, int nd, size_t size, void **vv); > > + > > +/* > > + * Internal forwarders. > > + */ > > +extern void (*raid_par_ptr[RAID_PARITY_MAX])( > > + int nd, size_t size, void **vv); > > +extern void (*raid_rec_ptr[RAID_PARITY_MAX])( > > + int nr, int *id, int *ip, int nd, size_t size, void **vv); > > + > > +/* > > + * Tables. > > + * > > + * Uses RAID6 tables if available, otherwise the ones in tables.c. > > + */ > > +#ifdef RAID_USE_RAID6_PQ > > +#define gfmul raid6_gfmul > > +#define gfinv raid6_gfinv > > +#define gfexp raid6_gfexp > > +#else > > +extern const uint8_t raid_gfmul[256][256] __aligned(256); > > +extern const uint8_t raid_gfexp[256] __aligned(256); > > +extern const uint8_t raid_gfinv[256] __aligned(256); > > +#define gfmul raid_gfmul > > +#define gfexp raid_gfexp > > +#define gfinv raid_gfinv > > +#endif > > + > > +extern const uint8_t raid_gfcauchy[6][256] __aligned(256); > > +extern const uint8_t raid_gfcauchypshufb[251][4][2][16] __aligned(256); > > +extern const uint8_t raid_gfmulpshufb[256][2][16] __aligned(256); > > +#define gfgen raid_gfcauchy > > +#define gfgenpshufb raid_gfcauchypshufb > > +#define gfmulpshufb raid_gfmulpshufb > > + > > +/* > > + * Assembler blocks. > > + */ > > +#ifdef __KERNEL__ /* to build the user mode test */ > > +#define asm_begin() \ > > + kernel_fpu_begin() > > + > > +#define asm_end() \ > > + do { \ > > + asm volatile("sfence" : : : "memory"); \ > > + kernel_fpu_end(); \ > > + } while (0) > > +#else > > +#define asm_begin() \ > > + do { } while (0) > > +#define asm_end() \ > > + asm volatile("sfence" : : : "memory") > > +#endif > > + > > +#endif > > + > > diff --git a/lib/raid/mktables.c b/lib/raid/mktables.c > > new file mode 100644 > > index 0000000..9c8e0e0 > > --- /dev/null > > +++ b/lib/raid/mktables.c > > @@ -0,0 +1,338 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include > > +#include > > + > > +/** > > + * Multiplication in GF(2^8). > > + */ > > +static uint8_t gfmul(uint8_t a, uint8_t b) > > +{ > > + uint8_t v; > > + > > + v = 0; > > + while (b) { > > + if ((b & 1) != 0) > > + v ^= a; > > + > > + if ((a & 0x80) != 0) { > > + a <<= 1; > > + a ^= 0x1d; > > + } else { > > + a <<= 1; > > + } > > + > > + b >>= 1; > > + } > > + > > + return v; > > +} > > + > > +/** > > + * Inversion table in GF(2^8). > > + */ > > +uint8_t gfinv[256]; > > + > > +/** > > + * Number of parity. > > + * This is the number of rows of the generation matrix. > > + */ > > +#define PARITY 6 > > + > > +/** > > + * Number of disks. > > + * This is the number of columns of the generation matrix. > > + */ > > +#define DISK (257-PARITY) > > + > > +/** > > + * Setup the Cauchy matrix used to generate the parity. > > + */ > > +static void set_cauchy(uint8_t *matrix) > > +{ > > + int i, j; > > + uint8_t inv_x, y; > > + > > + /* > > + * First row is formed by all 1. > > + * > > + * This is an Extended Cauchy matrix built from a Cauchy matrix > > + * adding the first row of all 1. > > + */ > > + for (i = 0; i < DISK; ++i) > > + matrix[0*DISK+i] = 1; > > + > > + /* > > + * Second row is formed by power of 2^i. > > + * > > + * This is the first row of the Cauchy matrix. > > + * > > + * Each element of the Cauchy matrix is in the form 1/(xi+yj) > > + * where all xi, and yj must be different. > > + * > > + * Choosing xi = 2^-i and y0 = 0, we obtain for the first row: > > + * > > + * 1/(xi+y0) = 1/(2^-i + 0) = 2^i > > + * > > + * with 2^-i != 0 for any i > > + */ > > + inv_x = 1; > > + for (i = 0; i < DISK; ++i) { > > + matrix[1*DISK+i] = inv_x; > > + inv_x = gfmul(2, inv_x); > > + } > > + > > + /* > > + * Next rows of the Cauchy matrix. > > + * > > + * Continue forming the Cauchy matrix with yj = 2^j obtaining : > > + * > > + * 1/(xi+yj) = 1/(2^-i + 2^j) > > + * > > + * with xi != yj for any i,j with i>=0,j>=1,i+j<255 > > + */ > > + y = 2; > > + for (j = 0; j < PARITY-2; ++j) { > > + inv_x = 1; > > + for (i = 0; i < DISK; ++i) { > > + uint8_t x = gfinv[inv_x]; > > + matrix[(j+2)*DISK+i] = gfinv[y ^ x]; > > + inv_x = gfmul(2, inv_x); > > + } > > + > > + y = gfmul(2, y); > > + } > > + > > + /* > > + * Adjusts the matrix multipling each row for > > + * the inverse of the first element in the row. > > + * > > + * This operation doesn't invalidate the property that all the square > > + * submatrices are not singular. > > + */ > > + for (j = 0; j < PARITY-2; ++j) { > > + uint8_t f = gfinv[matrix[(j+2)*DISK]]; > > + > > + for (i = 0; i < DISK; ++i) > > + matrix[(j+2)*DISK+i] = gfmul(matrix[(j+2)*DISK+i], f); > > + } > > +} > > + > > +/** > > + * Next power of 2. > > + */ > > +static unsigned np(unsigned v) > > +{ > > + --v; > > + v |= v >> 1; > > + v |= v >> 2; > > + v |= v >> 4; > > + v |= v >> 8; > > + v |= v >> 16; > > + ++v; > > + > > + return v; > > +} > > + > > +int main(void) > > +{ > > + uint8_t v; > > + int i, j, k, p; > > + uint8_t matrix[PARITY * 256]; > > + > > + printf("/*\n"); > > + printf(" * Copyright (C) 2013 Andrea Mazzoleni\n"); > > + printf(" *\n"); > > + printf(" * This program is free software: you can redistribute it and/or modify\n"); > > + printf(" * it under the terms of the GNU General Public License as published by\n"); > > + printf(" * the Free Software Foundation, either version 2 of the License, or\n"); > > + printf(" * (at your option) any later version.\n"); > > + printf(" *\n"); > > + printf(" * This program is distributed in the hope that it will be useful,\n"); > > + printf(" * but WITHOUT ANY WARRANTY; without even the implied warranty of\n"); > > + printf(" * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"); > > + printf(" * GNU General Public License for more details.\n"); > > + printf(" */\n"); > > + printf("\n"); > > + > > + printf("#include \"internal.h\"\n"); > > + printf("\n"); > > + > > + /* a*b */ > > + printf("#ifndef RAID_USE_RAID6_PQ\n"); > > + printf("const uint8_t __aligned(256) raid_gfmul[256][256] =\n"); > > + printf("{\n"); > > + for (i = 0; i < 256; ++i) { > > + printf("\t{\n"); > > + for (j = 0; j < 256; ++j) { > > + if (j % 8 == 0) > > + printf("\t\t"); > > + v = gfmul(i, j); > > + if (v == 1) > > + gfinv[i] = j; > > + printf("0x%02x,", (unsigned)v); > > + if (j % 8 == 7) > > + printf("\n"); > > + else > > + printf(" "); > > + } > > + printf("\t},\n"); > > + } > > + printf("};\n"); > > + printf("EXPORT_SYMBOL(raid_gfmul);\n"); > > + printf("#endif\n"); > > + printf("\n"); > > + > > + /* 2^a */ > > + printf("#ifndef RAID_USE_RAID6_PQ\n"); > > + printf("const uint8_t __aligned(256) raid_gfexp[256] =\n"); > > + printf("{\n"); > > + v = 1; > > + for (i = 0; i < 256; ++i) { > > + if (i % 8 == 0) > > + printf("\t"); > > + printf("0x%02x,", v); > > + v = gfmul(v, 2); > > + if (i % 8 == 7) > > + printf("\n"); > > + else > > + printf(" "); > > + } > > + printf("};\n"); > > + printf("EXPORT_SYMBOL(raid_gfexp);\n"); > > + printf("#endif\n"); > > + printf("\n"); > > + > > + /* 1/a */ > > + printf("#ifndef RAID_USE_RAID6_PQ\n"); > > + printf("const uint8_t __aligned(256) raid_gfinv[256] =\n"); > > + printf("{\n"); > > + printf("\t/* note that the first element is not significative */\n"); > > + for (i = 0; i < 256; ++i) { > > + if (i % 8 == 0) > > + printf("\t"); > > + if (i == 0) > > + v = 0; > > + else > > + v = gfinv[i]; > > + printf("0x%02x,", v); > > + if (i % 8 == 7) > > + printf("\n"); > > + else > > + printf(" "); > > + } > > + printf("};\n"); > > + printf("EXPORT_SYMBOL(raid_gfinv);\n"); > > + printf("#endif\n"); > > + printf("\n"); > > + > > + /* cauchy matrix */ > > + set_cauchy(matrix); > > + > > + printf("/**\n"); > > + printf(" * Cauchy matrix used to generate parity.\n"); > > + printf(" * This matrix is valid for up to %u parity with %u data disks.\n", PARITY, DISK); > > + printf(" *\n"); > > + for (p = 0; p < PARITY; ++p) { > > + printf(" * "); > > + for (i = 0; i < DISK; ++i) > > + printf("%02x ", matrix[p*DISK+i]); > > + printf("\n"); > > + } > > + printf(" */\n"); > > + printf("const uint8_t __aligned(256) raid_gfcauchy[%u][256] =\n", PARITY); > > + printf("{\n"); > > + for (p = 0; p < PARITY; ++p) { > > + printf("\t{\n"); > > + for (i = 0; i < DISK; ++i) { > > + if (i % 8 == 0) > > + printf("\t\t"); > > + printf("0x%02x,", matrix[p*DISK+i]); > > + if (i % 8 == 7) > > + printf("\n"); > > + else > > + printf(" "); > > + } > > + printf("\n\t},\n"); > > + } > > + printf("};\n"); > > + printf("EXPORT_SYMBOL(raid_gfcauchy);\n"); > > + printf("\n"); > > + > > + printf("#ifdef CONFIG_X86\n"); > > + printf("/**\n"); > > + printf(" * PSHUFB tables for the Cauchy matrix.\n"); > > + printf(" *\n"); > > + printf(" * Indexes are [DISK][PARITY - 2][LH].\n"); > > + printf(" * Where DISK is from 0 to %u, PARITY from 2 to %u, LH from 0 to 1.\n", DISK - 1, PARITY - 1); > > + printf(" */\n"); > > + printf("const uint8_t __aligned(256) raid_gfcauchypshufb[%u][%u][2][16] =\n", DISK, np(PARITY - 2)); > > + printf("{\n"); > > + for (i = 0; i < DISK; ++i) { > > + printf("\t{\n"); > > + for (p = 2; p < PARITY; ++p) { > > + printf("\t\t{\n"); > > + for (j = 0; j < 2; ++j) { > > + printf("\t\t\t{ "); > > + for (k = 0; k < 16; ++k) { > > + v = gfmul(matrix[p*DISK+i], k); > > + if (j == 1) > > + v = gfmul(v, 16); > > + printf("0x%02x", (unsigned)v); > > + if (k != 15) > > + printf(", "); > > + } > > + printf(" },\n"); > > + } > > + printf("\t\t},\n"); > > + } > > + printf("\t},\n"); > > + } > > + printf("};\n"); > > + printf("EXPORT_SYMBOL(raid_gfcauchypshufb);\n"); > > + printf("#endif\n\n"); > > + > > + printf("#ifdef CONFIG_X86\n"); > > + printf("/**\n"); > > + printf(" * PSHUFB tables for generic multiplication.\n"); > > + printf(" *\n"); > > + printf(" * Indexes are [MULTIPLER][LH].\n"); > > + printf(" * Where MULTIPLER is from 0 to 255, LH from 0 to 1.\n"); > > + printf(" */\n"); > > + printf("const uint8_t __aligned(256) raid_gfmulpshufb[256][2][16] =\n"); > > + printf("{\n"); > > + for (i = 0; i < 256; ++i) { > > + printf("\t{\n"); > > + for (j = 0; j < 2; ++j) { > > + printf("\t\t{ "); > > + for (k = 0; k < 16; ++k) { > > + v = gfmul(i, k); > > + if (j == 1) > > + v = gfmul(v, 16); > > + printf("0x%02x", (unsigned)v); > > + if (k != 15) > > + printf(", "); > > + } > > + printf(" },\n"); > > + } > > + printf("\t},\n"); > > + } > > + printf("};\n"); > > + printf("EXPORT_SYMBOL(raid_gfmulpshufb);\n"); > > + printf("#endif\n\n"); > > + > > + return 0; > > +} > > + > > diff --git a/lib/raid/module.c b/lib/raid/module.c > > new file mode 100644 > > index 0000000..3a4fba3 > > --- /dev/null > > +++ b/lib/raid/module.c > > @@ -0,0 +1,437 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "cpu.h" > > + > > +/* > > + * Initializes and selects the best algorithm. > > + */ > > +void raid_init(void) > > +{ > > + /* setup parity functions */ > > + if (sizeof(void *) == 8) { > > + raid_par_ptr[0] = raid_par1_int64; > > + raid_par_ptr[1] = raid_par2_int64; > > + } else { > > + raid_par_ptr[0] = raid_par1_int32; > > + raid_par_ptr[1] = raid_par2_int32; > > + } > > + raid_par_ptr[2] = raid_par3_int8; > > + raid_par_ptr[3] = raid_par4_int8; > > + raid_par_ptr[4] = raid_par5_int8; > > + raid_par_ptr[5] = raid_par6_int8; > > + > > + /* in kernel mode use the optimized xor_blocks() */ > > +#ifdef __KERNEL__ > > + raid_par_ptr[0] = raid_par1_xorblocks; > > +#endif > > + /* if RAID6 is present, use it */ > > +#ifdef RAID_USE_RAID6_PQ > > + raid_par_ptr[1] = raid_par2_raid6; > > +#endif > > + > > + /* optimized SSE2 functions */ > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + raid_par_ptr[0] = raid_par1_sse2; > > + raid_par_ptr[1] = raid_par2_sse2; > > +#ifdef CONFIG_X86_64 > > + raid_par_ptr[1] = raid_par2_sse2ext; > > +#endif > > + } > > +#endif > > + > > + /* optimized SSSE3 functions */ > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + raid_par_ptr[2] = raid_par3_ssse3; > > + raid_par_ptr[3] = raid_par4_ssse3; > > + raid_par_ptr[4] = raid_par5_ssse3; > > + raid_par_ptr[5] = raid_par6_ssse3; > > +#ifdef CONFIG_X86_64 > > + raid_par_ptr[2] = raid_par3_ssse3ext; > > + raid_par_ptr[3] = raid_par4_ssse3ext; > > + raid_par_ptr[4] = raid_par5_ssse3ext; > > + raid_par_ptr[5] = raid_par6_ssse3ext; > > +#endif > > + } > > +#endif > > + > > + /* setup recovering functions */ > > + raid_rec_ptr[0] = raid_rec1_int8; > > + raid_rec_ptr[1] = raid_rec2_int8; > > + raid_rec_ptr[2] = raid_recX_int8; > > + raid_rec_ptr[3] = raid_recX_int8; > > + raid_rec_ptr[4] = raid_recX_int8; > > + raid_rec_ptr[5] = raid_recX_int8; > > + > > + /* optimized SSSE3 functions */ > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + raid_rec_ptr[0] = raid_rec1_ssse3; > > + raid_rec_ptr[1] = raid_rec2_ssse3; > > + raid_rec_ptr[2] = raid_recX_ssse3; > > + raid_rec_ptr[3] = raid_recX_ssse3; > > + raid_rec_ptr[4] = raid_recX_ssse3; > > + raid_rec_ptr[5] = raid_recX_ssse3; > > + } > > +#endif > > +} > > + > > +/* > > + * Refence parity computation. > > + */ > > +void raid_par_ref(int nd, int np, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + size_t i; > > + > > + for (i = 0; i < size; ++i) { > > + uint8_t p[RAID_PARITY_MAX]; > > + int j, d; > > + > > + for (j = 0; j < np; ++j) > > + p[j] = 0; > > + > > + for (d = 0; d < nd; ++d) { > > + uint8_t b = v[d][i]; > > + > > + for (j = 0; j < np; ++j) > > + p[j] ^= gfmul[b][gfgen[j][d]]; > > + } > > + > > + for (j = 0; j < np; ++j) > > + v[nd + j][i] = p[j]; > > + } > > +} > > + > > +/* > > + * Size of the blocks to test. > > + */ > > +#define TEST_SIZE PAGE_SIZE > > + > > +/* > > + * Number of data blocks to test. > > + */ > > +#define TEST_COUNT (65536 / TEST_SIZE) > > + > > +/* > > + * Period for the speed test. > > + */ > > +#ifdef __KERNEL__ /* to build the user mode test */ > > +#define TEST_PERIOD 16 > > +#else > > +#define TEST_PERIOD 512 /* more time in usermode */ > > +#endif > > + > > +/* > > + * Parity generation test. > > + */ > > +static int raid_test_par(int nd, int np, size_t size, void **v, void **ref) > > +{ > > + int i; > > + void *t[TEST_COUNT + RAID_PARITY_MAX]; > > + > > + /* setup data */ > > + for (i = 0; i < nd; ++i) > > + t[i] = ref[i]; > > + > > + /* setup parity */ > > + for (i = 0; i < np; ++i) > > + t[nd+i] = v[nd+i]; > > + > > + raid_par(nd, np, size, t); > > + > > + /* compare parity */ > > + for (i = 0; i < np; ++i) { > > + if (memcmp(t[nd+i], ref[nd+i], size) != 0) { > > + pr_err("raid: Self test failed!\n"); > > + return -EINVAL; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/* > > + * Recovering test. > > + */ > > +static int raid_test_rec(int nrd, int *id, int nrp, int *ip, int nd, int np, size_t size, void **v, void **ref) > > +{ > > + int i, j; > > + void *t[TEST_COUNT + RAID_PARITY_MAX]; > > + > > + /* setup data */ > > + for (i = 0, j = 0; i < nd; ++i) { > > + if (j < nrd && id[j] == i) { > > + t[i] = v[i]; > > + ++j; > > + } else { > > + t[i] = ref[i]; > > + } > > + } > > + > > + /* setup parity */ > > + for (i = 0, j = 0; i < np; ++i) { > > + if (j < nrp && ip[j] == i) { > > + t[nd+i] = v[nd+i]; > > + ++j; > > + } else { > > + t[nd+i] = ref[nd+i]; > > + } > > + } > > + > > + raid_rec(nrd, id, nrp, ip, nd, np, size, t); > > + > > + /* compare all data and parity */ > > + for (i = 0; i < nd+np; ++i) { > > + if (t[i] != ref[i] && memcmp(t[i], ref[i], size) != 0) { > > + pr_err("raid: Self test failed!\n"); > > + return -EINVAL; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/* > > + * Basic functionality self test. > > + */ > > +int raid_selftest(void) > > +{ > > + const int nd = TEST_COUNT; > > + const size_t size = TEST_SIZE; > > + const int nv = nd + RAID_PARITY_MAX * 2; > > + int order; > > + uint8_t *pages; > > + void *v[nd + RAID_PARITY_MAX * 2]; > > + void *ref[nd + RAID_PARITY_MAX]; > > + int id[RAID_PARITY_MAX]; > > + int ip[RAID_PARITY_MAX]; > > + int i, np; > > + int ret = 0; > > + > > + /* ensure to have enough space for data */ > > + BUG_ON(nd * size > 65536); > > + > > + /* allocates pages for data and parity */ > > + order = get_order(nv * size); > > + pages = (void *)__get_free_pages(GFP_KERNEL, order); > > + if (!pages) { > > + pr_err("raid: No memory available.\n"); > > + return -ENOMEM; > > + } > > + > > + /* setup working vector */ > > + for (i = 0; i < nv; ++i) > > + v[i] = pages + size * i; > > + > > + /* use the multiplication table as data */ > > + for (i = 0; i < nd; ++i) > > + ref[i] = ((uint8_t *)gfmul) + size * i; > > + > > + /* setup reference parity */ > > + for (i = 0; i < RAID_PARITY_MAX; ++i) > > + ref[nd+i] = v[nd+RAID_PARITY_MAX+i]; > > + > > + /* compute reference parity */ > > + raid_par_ref(nd, RAID_PARITY_MAX, size, ref); > > + > > + /* test for each parity level */ > > + for (np = 1; np <= RAID_PARITY_MAX; ++np) { > > + /* test parity generation */ > > + ret = raid_test_par(nd, np, size, v, ref); > > + if (ret != 0) > > + goto bail; > > + > > + /* test recovering with full broken data disks */ > > + for (i = 0; i < np; ++i) > > + id[i] = nd - np + i; > > + > > + ret = raid_test_rec(np, id, 0, ip, nd, np, size, v, ref); > > + if (ret != 0) > > + goto bail; > > + > > + /* test recovering with half broken data and ending parity */ > > + for (i = 0; i < np / 2; ++i) > > + id[i] = i; > > + > > + for (i = 0; i < (np + 1) / 2; ++i) > > + ip[i] = np - np / 2 + i; > > + > > + ret = raid_test_rec(np / 2, id, np / 2, ip, nd, np, size, v, ref); > > + if (ret != 0) > > + goto bail; > > + > > + /* test recovering with half broken data and leading parity */ > > + for (i = 0; i < np / 2; ++i) > > + id[i] = i; > > + > > + for (i = 0; i < (np + 1) / 2; ++i) > > + ip[i] = i; > > + > > + ret = raid_test_rec(np / 2, id, np / 2, ip, nd, np, size, v, ref); > > + if (ret != 0) > > + goto bail; > > + } > > + > > +bail: > > + free_pages((unsigned long)pages, order); > > + > > + return ret; > > +} > > + > > +/* > > + * Test the speed of a single function. > > + */ > > +static void raid_test_speed( > > + void (*func)(int nd, size_t size, void **vv), > > + const char *tag, const char *imp, > > + void **vv) > > +{ > > + unsigned count; > > + unsigned long j_start, j_stop; > > + unsigned long speed; > > + > > + count = 0; > > + > > + preempt_disable(); > > + > > + j_start = jiffies; > > + while (jiffies == j_start) > > + cpu_relax(); > > + > > + j_start = jiffies; > > + j_stop = j_start + TEST_PERIOD; > > + while (time_before(jiffies, j_stop)) { > > + func(TEST_COUNT, TEST_SIZE, vv); > > + ++count; > > + } > > + > > + preempt_enable(); > > + > > + speed = count * HZ / (TEST_PERIOD * 1024 * 1024 / (TEST_SIZE * TEST_COUNT)); > > + > > + pr_info("raid: %-4s %-6s %5ld MB/s\n", tag, imp, speed); > > +} > > + > > +/* > > + * Basic speed test. > > + */ > > +int raid_speedtest(void) > > +{ > > + const int nd = TEST_COUNT; > > + const size_t size = TEST_SIZE; > > + int order; > > + uint8_t *pages; > > + void *v[nd + RAID_PARITY_MAX]; > > + int i; > > + > > + /* ensure to have enough space for data */ > > + BUG_ON(nd * size > 65536); > > + > > + /* allocates pages for parity */ > > + order = get_order(RAID_PARITY_MAX * size); > > + pages = (void *)__get_free_pages(GFP_KERNEL, order); > > + if (!pages) { > > + pr_err("raid: No memory available.\n"); > > + return -ENOMEM; > > + } > > + > > + /* use the multiplication table as data */ > > + for (i = 0; i < nd; ++i) > > + v[i] = ((uint8_t *)gfmul) + size * i; > > + > > + /* setup parity */ > > + for (i = 0; i < RAID_PARITY_MAX; ++i) > > + v[nd+i] = pages + size * i; > > + > > + raid_test_speed(raid_par1_int32, "par1", "int32", v); > > + raid_test_speed(raid_par2_int32, "par2", "int32", v); > > + raid_test_speed(raid_par1_int64, "par1", "int64", v); > > + raid_test_speed(raid_par2_int64, "par2", "int64", v); > > + raid_test_speed(raid_par3_int8, "par3", "int8", v); > > + raid_test_speed(raid_par4_int8, "par4", "int8", v); > > + raid_test_speed(raid_par5_int8, "par5", "int8", v); > > + raid_test_speed(raid_par6_int8, "par6", "int8", v); > > +#ifdef __KERNEL__ > > + raid_test_speed(raid_par1_xorblocks, "par1", "xor", v); > > +#endif > > +#ifdef RAID_USE_RAID6_PQ > > + raid_test_speed(raid_par2_raid6, "par2", "raid6", v); > > +#endif > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + raid_test_speed(raid_par1_sse2, "par1", "sse2", v); > > + raid_test_speed(raid_par2_sse2, "par2", "sse2", v); > > + } > > + if (raid_cpu_has_ssse3()) { > > + raid_test_speed(raid_par3_ssse3, "par3", "ssse3", v); > > + raid_test_speed(raid_par4_ssse3, "par4", "ssse3", v); > > + raid_test_speed(raid_par5_ssse3, "par5", "ssse3", v); > > + raid_test_speed(raid_par6_ssse3, "par6", "ssse3", v); > > +#ifdef CONFIG_X86_64 > > + raid_test_speed(raid_par2_sse2ext, "par2", "sse2e", v); > > + raid_test_speed(raid_par3_ssse3ext, "par3", "ssse3e", v); > > + raid_test_speed(raid_par4_ssse3ext, "par4", "ssse3e", v); > > + raid_test_speed(raid_par5_ssse3ext, "par5", "ssse3e", v); > > + raid_test_speed(raid_par6_ssse3ext, "par6", "ssse3e", v); > > +#endif > > + } > > +#endif > > + > > + free_pages((unsigned long)pages, order); > > + > > + return 0; > > +} > > + > > +#ifdef __KERNEL__ /* to build the user mode test */ > > +static int speedtest; > > + > > +int __init raid_cauchy_init(void) > > +{ > > + int ret; > > + > > + raid_init(); > > + > > + ret = raid_selftest(); > > + if (ret != 0) > > + return ret; > > + > > +#ifdef RAID_USE_RAID6_PQ > > + pr_info("raid: Self test passed (using raid6)\n"); > > +#else > > + pr_info("raid: Self test passed\n"); > > +#endif > > + > > + if (speedtest) > > + raid_speedtest(); > > + > > + return 0; > > +} > > + > > +static void raid_cauchy_exit(void) > > +{ > > +} > > + > > +subsys_initcall(raid_cauchy_init); > > +module_exit(raid_cauchy_exit); > > +module_param(speedtest, int, 0); > > +MODULE_PARM_DESC(speedtest, "Runs a startup speed test"); > > +MODULE_AUTHOR("Andrea Mazzoleni "); > > +MODULE_LICENSE("GPL"); > > +MODULE_DESCRIPTION("RAID Cauchy functions"); > > +#endif > > + > > diff --git a/lib/raid/raid.c b/lib/raid/raid.c > > new file mode 100644 > > index 0000000..918cb67 > > --- /dev/null > > +++ b/lib/raid/raid.c > > @@ -0,0 +1,425 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "gf.h" > > + > > +/* > > + * This is a RAID implementation working in the Galois Field GF(2^8) with > > + * the primitive polynomial x^8 + x^4 + x^3 + x^2 + 1 (285 decimal), and > > + * supporting up to six parity levels. > > + * > > + * For RAID5 and RAID6 it works as as described in the H. Peter Anvin's > > + * paper "The mathematics of RAID-6" [1]. Please refer to this paper for a > > + * complete explanation. > > + * > > + * To support triple parity, it was first evaluated and then dropped, an > > + * extension of the same approach, with additional parity coefficients set > > + * as powers of 2^-1, with equations: > > + * > > + * P = sum(Di) > > + * Q = sum(2^i * Di) > > + * R = sum(2^-i * Di) with 0<=i > + * > > + * This approach works well for triple parity and it's very efficient, > > + * because we can implement very fast parallel multiplications and > > + * divisions by 2 in GF(2^8). > > + * > > + * It's also similar at the approach used by ZFS RAIDZ3, with the > > + * difference that ZFS uses powers of 4 instead of 2^-1. > > + * > > + * Unfortunately it doesn't work beyond triple parity, because whatever > > + * value we choose to generate the power coefficients to compute other > > + * parities, the resulting equations are not solvable for some > > + * combinations of missing disks. > > + * > > + * This is expected, because the Vandermonde matrix used to compute the > > + * parity has no guarantee to have all submatrices not singular > > + * [2, Chap 11, Problem 7] and this is a requirement to have > > + * a MDS (Maximum Distance Separable) code [2, Chap 11, Theorem 8]. > > + * > > + * To overcome this limitation, we use a Cauchy matrix [3][4] to compute > > + * the parity. A Cauchy matrix has the property to have all the square > > + * submatrices not singular, resulting in always solvable equations, > > + * for any combination of missing disks. > > + * > > + * The problem of this approach is that it requires the use of > > + * generic multiplications, and not only by 2 or 2^-1, potentially > > + * affecting badly the performance. > > + * > > + * Hopefully there is a method to implement parallel multiplications > > + * using SSSE3 instructions [1][5]. Method competitive with the > > + * computation of triple parity using power coefficients. > > + * > > + * Another important property of the Cauchy matrix is that we can setup > > + * the first two rows with coeffients equal at the RAID5 and RAID6 approach > > + * decribed, resulting in a compatible extension, and requiring SSSE3 > > + * instructions only if triple parity or beyond is used. > > + * > > + * The matrix is also adjusted, multipling each row by a constant factor > > + * to make the first column of all 1, to optimize the computation for > > + * the first disk. > > + * > > + * This results in the matrix A[row,col] defined as: > > + * > > + * 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01... > > + * 01 02 04 08 10 20 40 80 1d 3a 74 e8 cd 87 13 26 4c 98 2d 5a b4 75... > > + * 01 f5 d2 c4 9a 71 f1 7f fc 87 c1 c6 19 2f 40 55 3d ba 53 04 9c 61... > > + * 01 bb a6 d7 c7 07 ce 82 4a 2f a5 9b b6 60 f1 ad e7 f4 06 d2 df 2e... > > + * 01 97 7f 9c 7c 18 bd a2 58 1a da 74 70 a3 e5 47 29 07 f5 80 23 e9... > > + * 01 2b 3f cf 73 2c d6 ed cb 74 15 78 8a c1 17 c9 89 68 21 ab 76 3b... > > + * > > + * This matrix supports 6 level of parity, one for each row, for up to 251 > > + * data disks, one for each column, with all the 377,342,351,231 square > > + * submatrices not singular, verified also with brute-force. > > + * > > + * This matrix can be extended to support any number of parities, just > > + * adding additional rows, and removing one column for each new row. > > + * (see mktables.c for more details in how the matrix is generated) > > + * > > + * In details, parity is computed as: > > + * > > + * P = sum(Di) > > + * Q = sum(2^i * Di) > > + * R = sum(A[2,i] * Di) > > + * S = sum(A[3,i] * Di) > > + * T = sum(A[4,i] * Di) > > + * U = sum(A[5,i] * Di) with 0<=i > + * > > + * To recover from a failure of six disks at indexes x,y,z,h,v,w, > > + * with 0<=x > + * disks as: > > + * > > + * Pa = sum(Di) > > + * Qa = sum(2^i * Di) > > + * Ra = sum(A[2,i] * Di) > > + * Sa = sum(A[3,i] * Di) > > + * Ta = sum(A[4,i] * Di) > > + * Ua = sum(A[5,i] * Di) with 0<=i > + * > > + * And if we define: > > + * > > + * Pd = Pa + P > > + * Qd = Qa + Q > > + * Rd = Ra + R > > + * Sd = Sa + S > > + * Td = Ta + T > > + * Ud = Ua + U > > + * > > + * we can sum these two sets of equations, obtaining: > > + * > > + * Pd = Dx + Dy + Dz + Dh + Dv + Dw > > + * Qd = 2^x * Dx + 2^y * Dy + 2^z * Dz + 2^h * Dh + 2^v * Dv + 2^w * Dw > > + * Rd = A[2,x] * Dx + A[2,y] * Dy + A[2,z] * Dz + A[2,h] * Dh + A[2,v] * Dv + A[2,w] * Dw > > + * Sd = A[3,x] * Dx + A[3,y] * Dy + A[3,z] * Dz + A[3,h] * Dh + A[3,v] * Dv + A[3,w] * Dw > > + * Td = A[4,x] * Dx + A[4,y] * Dy + A[4,z] * Dz + A[4,h] * Dh + A[4,v] * Dv + A[4,w] * Dw > > + * Ud = A[5,x] * Dx + A[5,y] * Dy + A[5,z] * Dz + A[5,h] * Dh + A[5,v] * Dv + A[5,w] * Dw > > + * > > + * A linear system always solvable because the coefficients matrix is > > + * always not singular due the properties of the matrix A[]. > > + * > > + * Resulting speed in x64, with 16 data disks, using a stripe of 4 KiB, > > + * for a Core i7-3740QM CPU @ 2.7GHz is: > > + * > > + * int8 int32 int64 sse2 sse2e ssse3 ssse3e > > + * par1 11469 21579 44743 > > + * par2 3474 6176 17930 20435 > > + * par3 850 7908 9069 > > + * par4 647 6357 7159 > > + * par5 527 5041 5412 > > + * par6 432 4094 4470 > > + * > > + * Values are in MiB/s of data processed, not counting generated parity. > > + * > > + * References: > > + * [1] Anvin, "The mathematics of RAID-6", 2004 > > + * [2] MacWilliams, Sloane, "The Theory of Error-Correcting Codes", 1977 > > + * [3] Blomer, "An XOR-Based Erasure-Resilient Coding Scheme", 1995 > > + * [4] Roth, "Introduction to Coding Theory", 2006 > > + * [5] Plank, "Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions", 2013 > > + */ > > + > > +#ifdef __KERNEL__ /* to build the user mode test */ > > +/** > > + * Buffer filled with 0 used in recovering. > > + */ > > +static uint8_t raid_zero_block[PAGE_SIZE] __aligned(256); > > +#else > > +extern uint8_t raid_zero_block[] __aligned(256); > > +#endif > > + > > +/* > > + * PAR1 (RAID5 with xor) implementation using the kernel xor_blocks() > > + * function. > > + */ > > +void raid_par1_xorblocks(int nd, size_t size, void **v) > > +{ > > + int i; > > + > > + /* copy the first block */ > > + memcpy(v[nd], v[0], size); > > + > > + i = 1; > > + while (i < nd) { > > + int run = nd - i; > > + > > + /* xor_blocks supports no more than MAX_XOR_BLOCKS blocks */ > > + if (run > MAX_XOR_BLOCKS) > > + run = MAX_XOR_BLOCKS; > > + > > + xor_blocks(run, size, v[nd], v + i); > > + > > + i += run; > > + } > > +} > > + > > +#ifdef RAID_USE_RAID6_PQ > > +/** > > + * PAR2 (RAID6 with powers of 2) implementation using raid6 library. > > + */ > > +void raid_par2_raid6(int nd, size_t size, void **vv) > > +{ > > + raid6_call.gen_syndrome(nd + 2, size, vv); > > +} > > +#endif > > + > > +/* internal forwarder */ > > +void (*raid_par_ptr[RAID_PARITY_MAX])(int nd, size_t size, void **vv); > > + > > +void raid_par(int nd, int np, size_t size, void **v) > > +{ > > + BUG_ON(np < 1 || np > RAID_PARITY_MAX); > > + BUG_ON(size % 64 != 0); > > + > > + raid_par_ptr[np - 1](nd, size, v); > > +} > > +EXPORT_SYMBOL_GPL(raid_par); > > + > > +/** > > + * Inverts the square matrix M of size nxn into V. > > + * We use Gauss elimination to invert. > > + */ > > +void raid_invert(uint8_t *M, uint8_t *V, int n) > > +{ > > + int i, j, k; > > + > > + /* set the identity matrix in V */ > > + for (i = 0; i < n; ++i) > > + for (j = 0; j < n; ++j) > > + V[i*n+j] = i == j; > > + > > + /* for each element in the diagonal */ > > + for (k = 0; k < n; ++k) { > > + uint8_t f; > > + > > + /* the diagonal element cannot be 0 because */ > > + /* we are inverting matrices with all the square submatrices */ > > + /* not singular */ > > + BUG_ON(M[k*n+k] == 0); > > + > > + /* make the diagonal element to be 1 */ > > + f = inv(M[k*n+k]); > > + for (j = 0; j < n; ++j) { > > + M[k*n+j] = mul(f, M[k*n+j]); > > + V[k*n+j] = mul(f, V[k*n+j]); > > + } > > + > > + /* make all the elements over and under the diagonal to be 0 */ > > + for (i = 0; i < n; ++i) { > > + if (i == k) > > + continue; > > + f = M[i*n+k]; > > + for (j = 0; j < n; ++j) { > > + M[i*n+j] ^= mul(f, M[k*n+j]); > > + V[i*n+j] ^= mul(f, V[k*n+j]); > > + } > > + } > > + } > > +} > > + > > +/** > > + * Computes the parity without the missing data blocks > > + * and store it in the buffers of such data blocks. > > + * > > + * This is the parity expressed as Pa,Qa,Ra,Sa,Ta,Ua > > + * in the equations. > > + * > > + * Note that all the other parities not in the ip[] vector > > + * are destroyed. > > + */ > > +void raid_delta_gen(int nr, int *id, int *ip, int nd, size_t size, void **v) > > +{ > > + void *p[RAID_PARITY_MAX]; > > + void *pa[RAID_PARITY_MAX]; > > + int i; > > + > > + for (i = 0; i < nr; ++i) { > > + /* keep a copy of the parity buffer */ > > + p[i] = v[nd+ip[i]]; > > + > > + /* buffer for missing data blocks */ > > + pa[i] = v[id[i]]; > > + > > + /* set at zero the missing data blocks */ > > + v[id[i]] = raid_zero_block; > > + > > + /* compute the parity over the missing data blocks */ > > + v[nd+ip[i]] = pa[i]; > > + } > > + > > + /* recompute the minimal parity required */ > > + raid_par(nd, ip[nr - 1] + 1, size, v); > > + > > + for (i = 0; i < nr; ++i) { > > + /* restore disk buffers as before */ > > + v[id[i]] = pa[i]; > > + > > + /* restore parity buffers as before */ > > + v[nd+ip[i]] = p[i]; > > + } > > +} > > + > > +/** > > + * Recover failure of one data block for PAR1. > > + * > > + * Starting from the equation: > > + * > > + * Pd = Dx > > + * > > + * and solving we get: > > + * > > + * Dx = Pd > > + */ > > +void raid_rec1_par1(int *id, int nd, size_t size, void **v) > > +{ > > + void *p; > > + void *pa; > > + > > + /* for PAR1 we can directly compute the missing block */ > > + /* and we don't need to use the zero buffer */ > > + p = v[nd]; > > + pa = v[id[0]]; > > + > > + /* use the parity as missing data block */ > > + v[id[0]] = p; > > + > > + /* compute the parity over the missing data block */ > > + v[nd] = pa; > > + > > + /* compute */ > > + raid_par(nd, 1, size, v); > > + > > + /* restore as before */ > > + v[id[0]] = pa; > > + v[nd] = p; > > +} > > + > > +/** > > + * Recover failure of two data blocks for PAR2. > > + * > > + * Starting from the equations: > > + * > > + * Pd = Dx + Dy > > + * Qd = 2^id[0] * Dx + 2^id[1] * Dy > > + * > > + * and solving we get: > > + * > > + * 1 2^(-id[0]) > > + * Dy = ------------------- * Pd + ------------------- * Qd > > + * 2^(id[1]-id[0]) + 1 2^(id[1]-id[0]) + 1 > > + * > > + * Dx = Dy + Pd > > + * > > + * with conditions: > > + * > > + * 2^id[0] != 0 > > + * 2^(id[1]-id[0]) + 1 != 0 > > + * > > + * That are always satisfied for any 0<=id[0] > + */ > > +void raid_rec2_par2(int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + size_t i; > > + uint8_t *p; > > + uint8_t *pa; > > + uint8_t *q; > > + uint8_t *qa; > > + const uint8_t *T[2]; > > + > > + /* get multiplication tables */ > > + T[0] = table(inv(pow2(id[1]-id[0]) ^ 1)); > > + T[1] = table(inv(pow2(id[0]) ^ pow2(id[1]))); > > + > > + /* compute delta parity */ > > + raid_delta_gen(2, id, ip, nd, size, vv); > > + > > + p = v[nd]; > > + q = v[nd+1]; > > + pa = v[id[0]]; > > + qa = v[id[1]]; > > + > > + for (i = 0; i < size; ++i) { > > + /* delta */ > > + uint8_t Pd = p[i] ^ pa[i]; > > + uint8_t Qd = q[i] ^ qa[i]; > > + > > + /* reconstruct */ > > + uint8_t Dy = T[0][Pd] ^ T[1][Qd]; > > + uint8_t Dx = Pd ^ Dy; > > + > > + /* set */ > > + pa[i] = Dx; > > + qa[i] = Dy; > > + } > > +} > > + > > +/* internal forwarder */ > > +void (*raid_rec_ptr[RAID_PARITY_MAX])( > > + int nr, int *id, int *ip, int nd, size_t size, void **vv); > > + > > +void raid_rec(int nrd, int *id, int nrp, int *ip, int nd, int np, size_t size, void **v) > > +{ > > + BUG_ON(nrd > nd); > > + BUG_ON(nrd + nrp > np); > > + BUG_ON(size % 64 != 0); > > + BUG_ON(size > PAGE_SIZE); > > + > > + /* if failed data is present */ > > + if (nrd != 0) { > > + int iu[RAID_PARITY_MAX]; > > + int i, j, k; > > + > > + /* setup the vector of parities to use */ > > + for (i = 0, j = 0, k = 0; i < np; ++i) { > > + if (j < nrp && ip[j] == i) { > > + /* this parity has to be recovered */ > > + ++j; > > + } else { > > + /* this parity is used for recovering */ > > + iu[k] = i; > > + ++k; > > + } > > + } > > + > > + /* recover the data, and limit the parity use to needed ones */ > > + raid_rec_ptr[nrd - 1](nrd, id, iu, nd, size, v); > > + } > > + > > + /* recompute all the parities up to the last bad one */ > > + if (nrp != 0) > > + raid_par(nd, ip[nrp - 1] + 1, size, v); > > +} > > +EXPORT_SYMBOL_GPL(raid_rec); > > + > > diff --git a/lib/raid/sort.c b/lib/raid/sort.c > > new file mode 100644 > > index 0000000..8afac72 > > --- /dev/null > > +++ b/lib/raid/sort.c > > @@ -0,0 +1,72 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > + > > +#define RAID_SWAP(a, b) \ > > + do { \ > > + if (v[a] > v[b]) { \ > > + int t = v[a]; \ > > + v[a] = v[b]; \ > > + v[b] = t; \ > > + } \ > > + } while (0) > > + > > +void raid_sort(int n, int *v) > > +{ > > + /* sorting networks generated with Batcher's Merge-Exchange */ > > + switch (n) { > > + case 2: > > + RAID_SWAP(0, 1); > > + break; > > + case 3: > > + RAID_SWAP(0, 2); > > + RAID_SWAP(0, 1); > > + RAID_SWAP(1, 2); > > + break; > > + case 4: > > + RAID_SWAP(0, 2); > > + RAID_SWAP(1, 3); > > + RAID_SWAP(0, 1); > > + RAID_SWAP(2, 3); > > + RAID_SWAP(1, 2); > > + break; > > + case 5: > > + RAID_SWAP(0, 4); > > + RAID_SWAP(0, 2); > > + RAID_SWAP(1, 3); > > + RAID_SWAP(2, 4); > > + RAID_SWAP(0, 1); > > + RAID_SWAP(2, 3); > > + RAID_SWAP(1, 4); > > + RAID_SWAP(1, 2); > > + RAID_SWAP(3, 4); > > + break; > > + case 6: > > + RAID_SWAP(0, 4); > > + RAID_SWAP(1, 5); > > + RAID_SWAP(0, 2); > > + RAID_SWAP(1, 3); > > + RAID_SWAP(2, 4); > > + RAID_SWAP(3, 5); > > + RAID_SWAP(0, 1); > > + RAID_SWAP(2, 3); > > + RAID_SWAP(4, 5); > > + RAID_SWAP(1, 4); > > + RAID_SWAP(1, 2); > > + RAID_SWAP(3, 4); > > + break; > > + } > > +} > > + > > diff --git a/lib/raid/test/Makefile b/lib/raid/test/Makefile > > new file mode 100644 > > index 0000000..04e8e1e > > --- /dev/null > > +++ b/lib/raid/test/Makefile > > @@ -0,0 +1,33 @@ > > +# > > +# This is a simple Makefile to test some of the RAID code > > +# from userspace. > > +# > > + > > +CC = gcc > > +CFLAGS = -I.. -I../../../include -Wall -Wextra -g -O2 > > +LD = ld > > +OBJS = raid.o int.o x86.o tables.o memory.o test.o sort.o module.o xor.o > > + > > +.c.o: > > + $(CC) $(CFLAGS) -c -o $@ $< > > + > > +%.c: ../%.c > > + cp -f $< $@ > > + > > +all: fulltest speedtest selftest > > + > > +fulltest: $(OBJS) fulltest.o > > + $(CC) $(CFLAGS) -o fulltest $^ > > + > > +speedtest: $(OBJS) speedtest.o > > + $(CC) $(CFLAGS) -o speedtest $^ > > + > > +selftest: $(OBJS) selftest.o > > + $(CC) $(CFLAGS) -o selftest $^ > > + > > +tables.c: mktables > > + ./mktables > tables.c > > + > > +clean: > > + rm -f *.o mktables.c mktables tables.c fulltest speedtest selftest > > + > > diff --git a/lib/raid/test/combo.h b/lib/raid/test/combo.h > > new file mode 100644 > > index 0000000..31530a2 > > --- /dev/null > > +++ b/lib/raid/test/combo.h > > @@ -0,0 +1,155 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_COMBO_H > > +#define __RAID_COMBO_H > > + > > +#include > > + > > +/** > > + * Get the first permutation with repetition of r of n elements. > > + * > > + * Typical use is with permutation_next() in the form : > > + * > > + * int i[R]; > > + * permutation_first(R, N, i); > > + * do { > > + * code using i[0], i[1], ..., i[R-1] > > + * } while (permutation_next(R, N, i)); > > + * > > + * It's equivalent at the code : > > + * > > + * for(i[0]=0;i[0] > + * for(i[1]=0;i[1] > + * ... > > + * for(i[R-2]=0;i[R-2] > + * for(i[R-1]=0;i[R-1] > + * code using i[0], i[1], ..., i[R-1] > > + */ > > +static inline void permutation_first(int r, int n, int *c) > > +{ > > + int i; > > + > > + (void)n; /* unused, but kept for clarity */ > > + assert(0 < r && r <= n); > > + > > + for (i = 0; i < r; ++i) > > + c[i] = 0; > > +} > > + > > +/** > > + * Get the next permutation with repetition of r of n elements. > > + * Return ==0 when finished. > > + */ > > +static inline int permutation_next(int r, int n, int *c) > > +{ > > + int i = r - 1; /* present position */ > > + > > +recurse: > > + /* next element at position i */ > > + ++c[i]; > > + > > + /* if the position has reached the max */ > > + if (c[i] >= n) { > > + > > + /* if we are at the first level, we have finished */ > > + if (i == 0) > > + return 0; > > + > > + /* increase the previous position */ > > + --i; > > + goto recurse; > > + } > > + > > + ++i; > > + > > + /* initialize all the next positions, if any */ > > + while (i < r) { > > + c[i] = 0; > > + ++i; > > + } > > + > > + return 1; > > +} > > + > > +/** > > + * Get the first combination without repetition of r of n elements. > > + * > > + * Typical use is with combination_next() in the form : > > + * > > + * int i[R]; > > + * combination_first(R, N, i); > > + * do { > > + * code using i[0], i[1], ..., i[R-1] > > + * } while (combination_next(R, N, i)); > > + * > > + * It's equivalent at the code : > > + * > > + * for(i[0]=0;i[0] > + * for(i[1]=i[0]+1;i[1] > + * ... > > + * for(i[R-2]=i[R-3]+1;i[R-2] > + * for(i[R-1]=i[R-2]+1;i[R-1] > + * code using i[0], i[1], ..., i[R-1] > > + */ > > +static inline void combination_first(int r, int n, int *c) > > +{ > > + int i; > > + > > + (void)n; /* unused, but kept for clarity */ > > + assert(0 < r && r <= n); > > + > > + for (i = 0; i < r; ++i) > > + c[i] = i; > > +} > > + > > +/** > > + * Get the next combination without repetition of r of n elements. > > + * Return ==0 when finished. > > + */ > > +static inline int combination_next(int r, int n, int *c) > > +{ > > + int i = r - 1; /* present position */ > > + int h = n; /* high limit for this position */ > > + > > +recurse: > > + /* next element at position i */ > > + ++c[i]; > > + > > + /* if the position has reached the max */ > > + if (c[i] >= h) { > > + > > + /* if we are at the first level, we have finished */ > > + if (i == 0) > > + return 0; > > + > > + /* increase the previous position */ > > + --i; > > + --h; > > + goto recurse; > > + } > > + > > + ++i; > > + > > + /* initialize all the next positions, if any */ > > + while (i < r) { > > + /* each position start at the next value of the previous one */ > > + c[i] = c[i-1] + 1; > > + ++i; > > + } > > + > > + return 1; > > +} > > +#endif > > + > > diff --git a/lib/raid/test/fulltest.c b/lib/raid/test/fulltest.c > > new file mode 100644 > > index 0000000..fa7c3dd > > --- /dev/null > > +++ b/lib/raid/test/fulltest.c > > @@ -0,0 +1,76 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "test.h" > > +#include "cpu.h" > > + > > +#include > > +#include > > + > > +/* > > + * Size of the blocks to test. > > + */ > > +#define TEST_SIZE 256 > > + > > +uint8_t raid_zero_block[TEST_SIZE] __aligned(256); > > + > > +int main(void) > > +{ > > + raid_init(); > > + > > + printf("RAID Cauchy test suite\n\n"); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) > > + printf("Including x86 SSE2 functions\n"); > > + if (raid_cpu_has_ssse3()) > > + printf("Including x86 SSSE3 functions\n"); > > +#endif > > +#ifdef CONFIG_X86_64 > > + printf("Including x64 extended SSE register set\n"); > > +#endif > > + > > + printf("\nPlease wait about 60 seconds...\n\n"); > > + > > + printf("Test sorting...\n"); > > + if (raid_test_sort() != 0) { > > + printf("FAILED!\n"); > > + exit(EXIT_FAILURE); > > + } > > + printf("Test combinations/permutations...\n"); > > + if (raid_test_combo() != 0) { > > + printf("FAILED!\n"); > > + exit(EXIT_FAILURE); > > + } > > + printf("Test parity generation with %u data disks...\n", RAID_DATA_MAX); > > + if (raid_test_par(RAID_DATA_MAX, TEST_SIZE) != 0) { > > + printf("FAILED!\n"); > > + exit(EXIT_FAILURE); > > + } > > + printf("Test parity generation with 1 data disk...\n"); > > + if (raid_test_par(1, TEST_SIZE) != 0) { > > + printf("FAILED!\n"); > > + exit(EXIT_FAILURE); > > + } > > + printf("Test recovering with all combinations of 32 data and 6 parity blocks...\n"); > > + if (raid_test_rec(32, TEST_SIZE) != 0) { > > + printf("FAILED!\n"); > > + exit(EXIT_FAILURE); > > + } > > + > > + printf("OK\n"); > > + return 0; > > +} > > + > > diff --git a/lib/raid/test/memory.c b/lib/raid/test/memory.c > > new file mode 100644 > > index 0000000..6807ee4 > > --- /dev/null > > +++ b/lib/raid/test/memory.c > > @@ -0,0 +1,79 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "memory.h" > > + > > +void *raid_malloc_align(size_t size, void **freeptr) > > +{ > > + unsigned char *ptr; > > + uintptr_t offset; > > + > > + ptr = malloc(size + RAID_MALLOC_ALIGN); > > + if (!ptr) > > + return 0; > > + > > + *freeptr = ptr; > > + > > + offset = ((uintptr_t)ptr) % RAID_MALLOC_ALIGN; > > + > > + if (offset != 0) > > + ptr += RAID_MALLOC_ALIGN - offset; > > + > > + return ptr; > > +} > > + > > +void **raid_malloc_vector(int nd, int n, size_t size, void **freeptr) > > +{ > > + void **v; > > + unsigned char *va; > > + int i; > > + > > + v = malloc(n * sizeof(void *)); > > + if (!v) > > + return 0; > > + > > + va = raid_malloc_align(n * (size + RAID_MALLOC_DISPLACEMENT), freeptr); > > + if (!va) { > > + free(v); > > + return 0; > > + } > > + > > + for (i = 0; i < n; ++i) { > > + v[i] = va; > > + va += size + RAID_MALLOC_DISPLACEMENT; > > + } > > + > > + /* reverse order of the data blocks */ > > + /* because they are usually accessed from the last one */ > > + for (i = 0; i < nd/2; ++i) { > > + void *ptr = v[i]; > > + v[i] = v[nd - 1 - i]; > > + v[nd - 1 - i] = ptr; > > + } > > + > > + return v; > > +} > > + > > +void raid_mrand_vector(int n, size_t size, void **vv) > > +{ > > + unsigned char **v = (unsigned char **)vv; > > + int i; > > + size_t j; > > + > > + for (i = 0; i < n; ++i) > > + for (j = 0; j < size; ++j) > > + v[i][j] = rand(); > > +} > > + > > diff --git a/lib/raid/test/memory.h b/lib/raid/test/memory.h > > new file mode 100644 > > index 0000000..b5c4e9a > > --- /dev/null > > +++ b/lib/raid/test/memory.h > > @@ -0,0 +1,74 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_MEMORY_H > > +#define __RAID_MEMORY_H > > + > > +/** > > + * Memory alignment provided by raid_malloc_align(). > > + * > > + * It should guarantee good cache performance everywhere. > > + */ > > +#define RAID_MALLOC_ALIGN 256 > > + > > +/** > > + * Memory displacement to avoid cache collisions on contiguous blocks, > > + * used by raid_malloc_vector(). > > + * > > + * When allocating a sequence of blocks with a size of power of 2, > > + * there is the risk that the start of each block is mapped into the same > > + * cache line or prefetching prediction, resulting in collisions if you > > + * access all the blocks in parallel, from the start to the end. > > + * > > + * The selected value was choosen empirically with some speed tests > > + * with 16 data buffers of 4 KB. > > + * > > + * These are the results with no displacement: > > + * > > + * int8 int32 int64 sse2 sse2e ssse3 ssse3e > > + * par1 6940 13971 29824 > > + * par2 2530 4675 14840 16485 > > + * par3 490 6859 7710 > > + * > > + * These are the results with displacement resulting in improvments > > + * in the order of 20% or more: > > + * > > + * int8 int32 int64 sse2 sse2e ssse3 ssse3e > > + * par1 11762 21450 44621 > > + * par2 3520 6176 18100 20338 > > + * par3 848 8009 9210 > > + * > > + */ > > +#define RAID_MALLOC_DISPLACEMENT 64 > > + > > +/** > > + * Aligned malloc. > > + */ > > +void *raid_malloc_align(size_t size, void **freeptr); > > + > > +/** > > + * Aligned vector allocation. > > + * Returns a vector of @n pointers, each one pointing to a block of > > + * the specified @size. > > + * The first @nd elements are reversed in order. > > + */ > > +void **raid_malloc_vector(int nd, int n, size_t size, void **freeptr); > > + > > +/** > > + * Fills the memory vector with random data. > > + */ > > +void raid_mrand_vector(int n, size_t size, void **vv); > > + > > +#endif > > + > > diff --git a/lib/raid/test/selftest.c b/lib/raid/test/selftest.c > > new file mode 100644 > > index 0000000..c10db29 > > --- /dev/null > > +++ b/lib/raid/test/selftest.c > > @@ -0,0 +1,41 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "cpu.h" > > + > > +#include > > +#include > > + > > +uint8_t raid_zero_block[PAGE_SIZE] __aligned(256); > > + > > +int main(void) > > +{ > > + raid_init(); > > + > > + printf("RAID Cauchy selftest\n\n"); > > + > > + printf("Self test...\n"); > > + if (raid_selftest() != 0) { > > + printf("FAILED!\n"); > > + exit(EXIT_FAILURE); > > + } > > + printf("OK\n\n"); > > + > > + printf("Speed test...\n"); > > + raid_speedtest(); > > + > > + return 0; > > +} > > + > > diff --git a/lib/raid/test/speedtest.c b/lib/raid/test/speedtest.c > > new file mode 100644 > > index 0000000..d3784c3 > > --- /dev/null > > +++ b/lib/raid/test/speedtest.c > > @@ -0,0 +1,567 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "memory.h" > > +#include "cpu.h" > > + > > +#include > > +#include > > +#include > > + > > +/* > > + * Size of the blocks to test. > > + */ > > +#define TEST_SIZE PAGE_SIZE > > + > > +/* > > + * Number of data blocks to test. > > + */ > > +#define TEST_COUNT (65536 / TEST_SIZE) > > + > > +uint8_t raid_zero_block[TEST_SIZE] __aligned(256); > > + > > +/** > > + * Differential us of two timeval. > > + */ > > +static int64_t diffgettimeofday(struct timeval *start, struct timeval *stop) > > +{ > > + int64_t d; > > + > > + d = 1000000LL * (stop->tv_sec - start->tv_sec); > > + d += stop->tv_usec - start->tv_usec; > > + > > + return d; > > +} > > + > > +/** > > + * Start time measurement. > > + */ > > +#define SPEED_START \ > > + count = 0; \ > > + gettimeofday(&start, 0); \ > > + do { \ > > + for (i = 0; i < delta; ++i) > > + > > +/** > > + * Stop time measurement. > > + */ > > +#define SPEED_STOP \ > > + count += delta; \ > > + gettimeofday(&stop, 0); \ > > + } while (diffgettimeofday(&start, &stop) < 1000000LL); \ > > + ds = size * (int64_t)count * nd; \ > > + dt = diffgettimeofday(&start, &stop); > > + > > +void speed(void) > > +{ > > + struct timeval start; > > + struct timeval stop; > > + int64_t ds; > > + int64_t dt; > > + int i, j; > > + int id[RAID_PARITY_MAX]; > > + int ip[RAID_PARITY_MAX]; > > + int count; > > + int delta = 10; > > + int size = TEST_SIZE; > > + int nd = TEST_COUNT; > > + int nv; > > + void *v_alloc; > > + void **v; > > + > > + nv = nd + RAID_PARITY_MAX; > > + > > + v = raid_malloc_vector(nd, nv, size, &v_alloc); > > + > > + /* initialize disks with fixed data */ > > + for (i = 0; i < nd; ++i) > > + memset(v[i], i, size); > > + > > + /* basic disks and parity mapping */ > > + for (i = 0; i < RAID_PARITY_MAX; ++i) { > > + id[i] = i; > > + ip[i] = i; > > + } > > + > > + printf("Speed test using %u data buffers of %u bytes, for a total of %u KiB.\n", nd, size, nd * size / 1024); > > + printf("Memory blocks have a displacement of %u bytes to improve cache performance.\n", RAID_MALLOC_DISPLACEMENT); > > + printf("The reported value is the aggregate bandwidth of all data blocks in MiB/s,\n"); > > + printf("not counting parity blocks.\n"); > > + printf("\n"); > > + > > + printf("Memory write speed using the C memset() function:\n"); > > + printf("%8s", "memset"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + memset(v[j], j, size); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + printf("\n"); > > + printf("\n"); > > + > > + /* RAID table */ > > + printf("RAID functions used for computing the parity:\n"); > > + printf("%8s", ""); > > + printf("%8s", "int8"); > > + printf("%8s", "int32"); > > + printf("%8s", "int64"); > > +#ifdef CONFIG_X86 > > + printf("%8s", "sse2"); > > +#ifdef CONFIG_X86_64 > > + printf("%8s", "sse2e"); > > +#endif > > + printf("%8s", "ssse3"); > > +#ifdef CONFIG_X86_64 > > + printf("%8s", "ssse3e"); > > +#endif > > +#endif > > + printf("\n"); > > + > > + /* PAR1 */ > > + printf("%8s", "par1"); > > + fflush(stdout); > > + > > + printf("%8s", ""); > > + > > + SPEED_START { > > + raid_par1_int32(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > + SPEED_START { > > + raid_par1_int64(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + SPEED_START { > > + raid_par1_sse2(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + } > > +#endif > > + printf("\n"); > > + > > + /* PAR2 */ > > + printf("%8s", "par2"); > > + fflush(stdout); > > + > > + printf("%8s", ""); > > + > > + SPEED_START { > > + raid_par2_int32(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > + SPEED_START { > > + raid_par2_int64(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + SPEED_START { > > + raid_par2_sse2(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86_64 > > + SPEED_START { > > + raid_par2_sse2ext(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > +#endif > > + } > > +#endif > > + printf("\n"); > > + > > + /* PAR3 */ > > + printf("%8s", "par3"); > > + fflush(stdout); > > + > > + SPEED_START { > > + raid_par3_int8(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > + printf("%8s", ""); > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86_64 > > + printf("%8s", ""); > > +#endif > > + } > > +#endif > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + raid_par3_ssse3(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86_64 > > + SPEED_START { > > + raid_par3_ssse3ext(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > +#endif > > + } > > +#endif > > + printf("\n"); > > + > > + /* PAR4 */ > > + printf("%8s", "par4"); > > + fflush(stdout); > > + > > + SPEED_START { > > + raid_par4_int8(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > + printf("%8s", ""); > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86_64 > > + printf("%8s", ""); > > +#endif > > + } > > +#endif > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + raid_par4_ssse3(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86_64 > > + SPEED_START { > > + raid_par4_ssse3ext(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > +#endif > > + } > > +#endif > > + printf("\n"); > > + > > + /* PAR5 */ > > + printf("%8s", "par5"); > > + fflush(stdout); > > + > > + SPEED_START { > > + raid_par5_int8(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > + printf("%8s", ""); > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86_64 > > + printf("%8s", ""); > > +#endif > > + } > > +#endif > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + raid_par5_ssse3(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86_64 > > + SPEED_START { > > + raid_par5_ssse3ext(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > +#endif > > + } > > +#endif > > + printf("\n"); > > + > > + /* PAR6 */ > > + printf("%8s", "par6"); > > + fflush(stdout); > > + > > + SPEED_START { > > + raid_par6_int8(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > + printf("%8s", ""); > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + printf("%8s", ""); > > + > > +#ifdef CONFIG_X86_64 > > + printf("%8s", ""); > > +#endif > > + } > > +#endif > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + raid_par6_ssse3(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86_64 > > + SPEED_START { > > + raid_par6_ssse3ext(nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > +#endif > > + } > > +#endif > > + printf("\n"); > > + printf("\n"); > > + > > + /* recover table */ > > + printf("RAID functions used for recovering:\n"); > > + printf("%8s", ""); > > + printf("%8s", "int8"); > > +#ifdef CONFIG_X86 > > + printf("%8s", "ssse3"); > > +#endif > > + printf("\n"); > > + > > + printf("%8s", "rec1"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + /* +1 to avoid PAR1 optimized case */ > > + raid_rec1_int8(1, id, ip + 1, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + /* +1 to avoid PAR1 optimized case */ > > + raid_rec1_ssse3(1, id, ip + 1, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + } > > +#endif > > + printf("\n"); > > + > > + printf("%8s", "rec2"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + /* +1 to avoid PAR2 optimized case */ > > + raid_rec2_int8(2, id, ip + 1, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + /* +1 to avoid PAR2 optimized case */ > > + raid_rec2_ssse3(2, id, ip + 1, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + } > > +#endif > > + printf("\n"); > > + > > + printf("%8s", "rec3"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_int8(3, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_ssse3(3, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + } > > +#endif > > + printf("\n"); > > + > > + printf("%8s", "rec4"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_int8(4, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_ssse3(4, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + } > > +#endif > > + printf("\n"); > > + > > + printf("%8s", "rec5"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_int8(5, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_ssse3(5, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + } > > +#endif > > + printf("\n"); > > + > > + printf("%8s", "rec6"); > > + fflush(stdout); > > + > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_int8(6, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + fflush(stdout); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + SPEED_START { > > + for (j = 0; j < nd; ++j) > > + raid_recX_ssse3(6, id, ip, nd, size, v); > > + } SPEED_STOP > > + > > + printf("%8"PRIu64, ds / dt); > > + } > > +#endif > > + printf("\n"); > > + printf("\n"); > > + > > + free(v_alloc); > > + free(v); > > +} > > + > > +int main(void) > > +{ > > + raid_init(); > > + > > + printf("RAID Cauchy speed test\n\n"); > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) > > + printf("Including x86 SSE2 functions\n"); > > + if (raid_cpu_has_ssse3()) > > + printf("Including x86 SSSE3 functions\n"); > > +#endif > > +#ifdef CONFIG_X86_64 > > + printf("Including x64 extended SSE register set\n"); > > +#endif > > + > > + printf("\nPlease wait about 30 seconds...\n\n"); > > + > > + speed(); > > + > > + return 0; > > +} > > + > > diff --git a/lib/raid/test/test.c b/lib/raid/test/test.c > > new file mode 100644 > > index 0000000..69deacb > > --- /dev/null > > +++ b/lib/raid/test/test.c > > @@ -0,0 +1,314 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "cpu.h" > > +#include "combo.h" > > +#include "memory.h" > > + > > +/** > > + * Binomial coefficient of n over r. > > + */ > > +static int ibc(int n, int r) > > +{ > > + if (r == 0 || n == r) > > + return 1; > > + else > > + return ibc(n - 1, r - 1) + ibc(n - 1, r); > > +} > > + > > +/** > > + * Power n ^ r; > > + */ > > +static int ipow(int n, int r) > > +{ > > + int v = 1; > > + while (r) { > > + v *= n; > > + --r; > > + } > > + return v; > > +} > > + > > +int raid_test_combo(void) > > +{ > > + int r; > > + int count; > > + int p[RAID_PARITY_MAX]; > > + > > + for (r = 1; r <= RAID_PARITY_MAX; ++r) { > > + /* count combination (r of RAID_PARITY_MAX) elements */ > > + count = 0; > > + combination_first(r, RAID_PARITY_MAX, p); > > + > > + do { > > + ++count; > > + } while (combination_next(r, RAID_PARITY_MAX, p)); > > + > > + if (count != ibc(RAID_PARITY_MAX, r)) > > + return -1; > > + } > > + > > + for (r = 1; r <= RAID_PARITY_MAX; ++r) { > > + /* count permutation (r of RAID_PARITY_MAX) elements */ > > + count = 0; > > + permutation_first(r, RAID_PARITY_MAX, p); > > + > > + do { > > + ++count; > > + } while (permutation_next(r, RAID_PARITY_MAX, p)); > > + > > + if (count != ipow(RAID_PARITY_MAX, r)) > > + return -1; > > + } > > + > > + return 0; > > +} > > + > > +int raid_test_sort(void) > > +{ > > + int p[RAID_PARITY_MAX]; > > + int r; > > + > > + for (r = 1; r <= RAID_PARITY_MAX; ++r) { > > + permutation_first(r, RAID_PARITY_MAX, p); > > + do { > > + int i[RAID_PARITY_MAX]; > > + int j; > > + > > + /* make a copy */ > > + for (j = 0; j < r; ++j) > > + i[j] = p[j]; > > + > > + raid_sort(r, i); > > + > > + /* check order */ > > + for (j = 1; j < r; ++j) > > + if (i[j-1] > i[j]) > > + return -1; > > + } while (permutation_next(r, RAID_PARITY_MAX, p)); > > + } > > + > > + return 0; > > +} > > + > > +int raid_test_rec(int nd, size_t size) > > +{ > > + void *v_alloc; > > + void **v; > > + void **data; > > + void **parity; > > + void **test; > > + void *data_save[RAID_PARITY_MAX]; > > + void *parity_save[RAID_PARITY_MAX]; > > + void *waste; > > + int nv; > > + int id[RAID_PARITY_MAX]; > > + int ip[RAID_PARITY_MAX]; > > + int i; > > + int j; > > + int nr; > > + void (*f[RAID_PARITY_MAX][4])( > > + int nr, int *id, int *ip, int nd, size_t size, void **vbuf); > > + int nf[RAID_PARITY_MAX]; > > + int np; > > + > > + np = RAID_PARITY_MAX; > > + > > + nv = nd + np * 2 + 1; > > + > > + v = raid_malloc_vector(nd, nv, size, &v_alloc); > > + if (!v) > > + return -1; > > + > > + data = v; > > + parity = v + nd; > > + test = v + nd + np; > > + > > + for (i = 0; i < np; ++i) > > + parity_save[i] = parity[i]; > > + > > + waste = v[nv-1]; > > + > > + /* fill data disk with random */ > > + raid_mrand_vector(nd, size, v); > > + > > + /* setup recov functions */ > > + for (i = 0; i < np; ++i) { > > + nf[i] = 0; > > + if (i == 0) { > > + f[i][nf[i]++] = raid_rec1_int8; > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) > > + f[i][nf[i]++] = raid_rec1_ssse3; > > +#endif > > + } else if (i == 1) { > > + f[i][nf[i]++] = raid_rec2_int8; > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) > > + f[i][nf[i]++] = raid_rec2_ssse3; > > +#endif > > + } else { > > + f[i][nf[i]++] = raid_recX_int8; > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) > > + f[i][nf[i]++] = raid_recX_ssse3; > > +#endif > > + } > > + } > > + > > + /* compute the parity */ > > + raid_par_ref(nd, np, size, v); > > + > > + /* set all the parity to the waste v */ > > + for (i = 0; i < np; ++i) > > + parity[i] = waste; > > + > > + /* all parity levels */ > > + for (nr = 1; nr <= np; ++nr) { > > + /* all combinations (nr of nd) disks */ > > + combination_first(nr, nd, id); > > + do { > > + /* all combinations (nr of np) parities */ > > + combination_first(nr, np, ip); > > + do { > > + /* for each recover function */ > > + for (j = 0; j < nf[nr-1]; ++j) { > > + /* set */ > > + for (i = 0; i < nr; ++i) { > > + /* remove the missing data */ > > + data_save[i] = data[id[i]]; > > + data[id[i]] = test[i]; > > + /* set the parity to use */ > > + parity[ip[i]] = parity_save[ip[i]]; > > + } > > + > > + /* recover */ > > + f[nr-1][j](nr, id, ip, nd, size, v); > > + > > + /* check */ > > + for (i = 0; i < nr; ++i) > > + if (memcmp(test[i], data_save[i], size) != 0) > > + goto bail; > > + > > + /* restore */ > > + for (i = 0; i < nr; ++i) { > > + /* restore the data */ > > + data[id[i]] = data_save[i]; > > + /* restore the parity */ > > + parity[ip[i]] = waste; > > + } > > + } > > + } while (combination_next(nr, np, ip)); > > + } while (combination_next(nr, nd, id)); > > + } > > + > > + free(v_alloc); > > + free(v); > > + return 0; > > + > > +bail: > > + free(v_alloc); > > + free(v); > > + return -1; > > +} > > + > > +int raid_test_par(int nd, size_t size) > > +{ > > + void *v_alloc; > > + void **v; > > + int nv; > > + int i, j; > > + void (*f[64])(int nd, size_t size, void **vbuf); > > + int nf; > > + int np; > > + > > + np = RAID_PARITY_MAX; > > + > > + nv = nd + np * 2; > > + > > + v = raid_malloc_vector(nd, nv, size, &v_alloc); > > + if (!v) > > + return -1; > > + > > + /* fill with random */ > > + raid_mrand_vector(nv, size, v); > > + > > + /* compute the parity */ > > + raid_par_ref(nd, np, size, v); > > + > > + /* copy in back buffers */ > > + for (i = 0; i < np; ++i) > > + memcpy(v[nd + np + i], v[nd + i], size); > > + > > + /* load all the available functions */ > > + nf = 0; > > + > > + f[nf++] = raid_par1_xorblocks; > > + f[nf++] = raid_par1_int32; > > + f[nf++] = raid_par1_int64; > > + f[nf++] = raid_par2_int32; > > + f[nf++] = raid_par2_int64; > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_sse2()) { > > + f[nf++] = raid_par1_sse2; > > + f[nf++] = raid_par2_sse2; > > +#ifdef CONFIG_X86_64 > > + f[nf++] = raid_par2_sse2ext; > > +#endif > > + } > > +#endif > > + > > + f[nf++] = raid_par3_int8; > > + f[nf++] = raid_par4_int8; > > + f[nf++] = raid_par5_int8; > > + f[nf++] = raid_par6_int8; > > + > > +#ifdef CONFIG_X86 > > + if (raid_cpu_has_ssse3()) { > > + f[nf++] = raid_par3_ssse3; > > + f[nf++] = raid_par4_ssse3; > > + f[nf++] = raid_par5_ssse3; > > + f[nf++] = raid_par6_ssse3; > > +#ifdef CONFIG_X86_64 > > + f[nf++] = raid_par3_ssse3ext; > > + f[nf++] = raid_par4_ssse3ext; > > + f[nf++] = raid_par5_ssse3ext; > > + f[nf++] = raid_par6_ssse3ext; > > +#endif > > + } > > +#endif > > + > > + /* check all the functions */ > > + for (j = 0; j < nf; ++j) { > > + /* compute parity */ > > + f[j](nd, size, v); > > + > > + /* check it */ > > + for (i = 0; i < np; ++i) > > + if (memcmp(v[nd + np + i], v[nd + i], size) != 0) > > + goto bail; > > + } > > + > > + free(v_alloc); > > + free(v); > > + return 0; > > + > > +bail: > > + free(v_alloc); > > + free(v); > > + return -1; > > +} > > + > > diff --git a/lib/raid/test/test.h b/lib/raid/test/test.h > > new file mode 100644 > > index 0000000..67684fe > > --- /dev/null > > +++ b/lib/raid/test/test.h > > @@ -0,0 +1,59 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_TEST_H > > +#define __RAID_TEST_H > > + > > +/** > > + * Tests sorting functions. > > + * > > + * Test raid_sort() with all the possible combinations of elements to sort. > > + * > > + * Returns 0 on success. > > + */ > > +int raid_test_sort(void); > > + > > +/** > > + * Tests combination functions. > > + * > > + * Tests combination_first() and combination_next() for all the parity levels. > > + * > > + * Returns 0 on success. > > + */ > > +int raid_test_combo(void); > > + > > +/** > > + * Tests recovering functions. > > + * > > + * All the recovering functions are tested with all the combinations > > + * of failing disks and recovering parities. > > + * > > + * Take care that the test time grows exponentially with the number of disks. > > + * > > + * Returns 0 on success. > > + */ > > +int raid_test_rec(int nd, size_t size); > > + > > +/** > > + * Tests parity generation functions. > > + * > > + * All the parity generation functions are tested with the specified > > + * number of disks. > > + * > > + * Returns 0 on success. > > + */ > > +int raid_test_par(int nd, size_t size); > > + > > +#endif > > + > > diff --git a/lib/raid/test/usermode.h b/lib/raid/test/usermode.h > > new file mode 100644 > > index 0000000..0f73cec > > --- /dev/null > > +++ b/lib/raid/test/usermode.h > > @@ -0,0 +1,83 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#ifndef __RAID_USERMODE_H > > +#define __RAID_USERMODE_H > > + > > +/* > > + * Compatibility layer for user mode applications. > > + */ > > +#include > > +#include > > +#include > > +#include > > +#include > > +#include > > +#include > > + > > +#define pr_err printf > > +#define pr_info printf > > +#define __aligned(a) __attribute__((aligned(a))) > > +#define PAGE_SIZE 4096 > > +#define EXPORT_SYMBOL_GPL(a) int dummy_##a > > +#define EXPORT_SYMBOL(a) int dummy_##a > > +#if defined(__i386__) > > +#define CONFIG_X86 1 > > +#define CONFIG_X86_32 1 > > +#endif > > +#if defined(__x86_64__) > > +#define CONFIG_X86 1 > > +#define CONFIG_X86_64 1 > > +#endif > > +#define BUG_ON(a) assert(!(a)) > > +#define MAX_XOR_BLOCKS 1 > > +void xor_blocks(unsigned int count, unsigned int bytes, void *dest, void **srcs); > > +#define GFP_KERNEL 0 > > +#define get_order(x) 5 > > +#define __get_free_pages(x, order) memalign(PAGE_SIZE, PAGE_SIZE * (1 << order)) > > +#define free_pages(x, order) free((void *)x) > > +#define preempt_disable() do { } while (0) > > +#define preempt_enable() do { } while (0) > > +#define cpu_relax() do { } while (0) > > +#define HZ 1000 > > +#define jiffies get_jiffies() > > +static inline unsigned long get_jiffies(void) > > +{ > > + struct timeval t; > > + gettimeofday(&t, 0); > > + return t.tv_sec * 1000 + t.tv_usec / 1000; > > +} > > +#define time_before(x, y) ((x) < (y)) > > + > > +#ifdef CONFIG_X86 > > +#define X86_FEATURE_XMM2 (0*32+26) > > +#define X86_FEATURE_SSSE3 (4*32+9) > > +#define X86_FEATURE_AVX (4*32+28) > > +#define X86_FEATURE_AVX2 (9*32+5) > > + > > +static inline int boot_cpu_has(int flag) > > +{ > > + uint32_t eax, ebx, ecx, edx; > > + > > + eax = (flag & 0x100) ? 7 : (flag & 0x20) ? 0x80000001 : 1; > > + ecx = 0; > > + > > + asm volatile("cpuid" : "+a" (eax), "=b" (ebx), "=d" (edx), "+c" (ecx)); > > + > > + return ((flag & 0x100 ? ebx : (flag & 0x80) ? ecx : edx) >> (flag & 31)) & 1; > > +} > > +#endif /* CONFIG_X86 */ > > + > > +#endif > > + > > diff --git a/lib/raid/test/xor.c b/lib/raid/test/xor.c > > new file mode 100644 > > index 0000000..2d68636 > > --- /dev/null > > +++ b/lib/raid/test/xor.c > > @@ -0,0 +1,41 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > + > > +/** > > + * Implementation of the kernel xor_blocks(). > > + */ > > +void xor_blocks(unsigned int count, unsigned int bytes, void *dest, void **srcs) > > +{ > > + uint32_t *p1 = dest; > > + uint32_t *p2 = srcs[0]; > > + long lines = bytes / (sizeof(uint32_t)) / 8; > > + > > + BUG_ON(count != 1); > > + > > + do { > > + p1[0] ^= p2[0]; > > + p1[1] ^= p2[1]; > > + p1[2] ^= p2[2]; > > + p1[3] ^= p2[3]; > > + p1[4] ^= p2[4]; > > + p1[5] ^= p2[5]; > > + p1[6] ^= p2[6]; > > + p1[7] ^= p2[7]; > > + p1 += 8; > > + p2 += 8; > > + } while (--lines > 0); > > +} > > + > > diff --git a/lib/raid/x86.c b/lib/raid/x86.c > > new file mode 100644 > > index 0000000..fac8a67 > > --- /dev/null > > +++ b/lib/raid/x86.c > > @@ -0,0 +1,1569 @@ > > +/* > > + * Copyright (C) 2013 Andrea Mazzoleni > > + * > > + * This program is free software: you can redistribute it and/or modify > > + * it under the terms of the GNU General Public License as published by > > + * the Free Software Foundation, either version 2 of the License, or > > + * (at your option) any later version. > > + * > > + * This program is distributed in the hope that it will be useful, > > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > + * GNU General Public License for more details. > > + */ > > + > > +#include "internal.h" > > +#include "gf.h" > > + > > +#ifdef CONFIG_X86 > > +/* > > + * PAR1 (RAID5 with xor) SSE2 implementation > > + * > > + * Note that we don't have the corresponding x64 sse2ext function using more > > + * registers because processing a block of 64 bytes already fills > > + * the typical cache block, and processing 128 bytes doesn't increase > > + * performance. > > + */ > > +void raid_par1_sse2(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + > > + asm_begin(); > > + > > + for (i = 0; i < size; i += 64) { > > + asm volatile("movdqa %0,%%xmm0" : : "m" (v[l][i])); > > + asm volatile("movdqa %0,%%xmm1" : : "m" (v[l][i+16])); > > + asm volatile("movdqa %0,%%xmm2" : : "m" (v[l][i+32])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (v[l][i+48])); > > + for (d = l-1; d >= 0; --d) { > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + asm volatile("movdqa %0,%%xmm5" : : "m" (v[d][i+16])); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (v[d][i+32])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (v[d][i+48])); > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + } > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (p[i+16])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (p[i+32])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (p[i+48])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +static const struct gfconst16 { > > + uint8_t poly[16]; > > + uint8_t low4[16]; > > +} gfconst16 __aligned(32) = { > > + { 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d, 0x1d }, > > + { 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f }, > > +}; > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * PAR2 (RAID6 with powers of 2) SSE2 implementation > > + */ > > +void raid_par2_sse2(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + > > + asm_begin(); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + > > + for (i = 0; i < size; i += 32) { > > + asm volatile("movdqa %0,%%xmm0" : : "m" (v[l][i])); > > + asm volatile("movdqa %0,%%xmm1" : : "m" (v[l][i+16])); > > + asm volatile("movdqa %xmm0,%xmm2"); > > + asm volatile("movdqa %xmm1,%xmm3"); > > + for (d = l-1; d >= 0; --d) { > > + asm volatile("pxor %xmm4,%xmm4"); > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm2,%xmm4"); > > + asm volatile("pcmpgtb %xmm3,%xmm5"); > > + asm volatile("paddb %xmm2,%xmm2"); > > + asm volatile("paddb %xmm3,%xmm3"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm5,%xmm3"); > > + > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + asm volatile("movdqa %0,%%xmm5" : : "m" (v[d][i+16])); > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm5,%xmm3"); > > + } > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (p[i+16])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (q[i+16])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86_64 > > +/* > > + * PAR2 (RAID6 with powers of 2) SSE2 implementation > > + * > > + * Note that it uses 16 registers, meaning that x64 is required. > > + */ > > +void raid_par2_sse2ext(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + > > + asm_begin(); > > + > > + asm volatile("movdqa %0,%%xmm15" : : "m" (gfconst16.poly[0])); > > + > > + for (i = 0; i < size; i += 64) { > > + asm volatile("movdqa %0,%%xmm0" : : "m" (v[l][i])); > > + asm volatile("movdqa %0,%%xmm1" : : "m" (v[l][i+16])); > > + asm volatile("movdqa %0,%%xmm2" : : "m" (v[l][i+32])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (v[l][i+48])); > > + asm volatile("movdqa %xmm0,%xmm4"); > > + asm volatile("movdqa %xmm1,%xmm5"); > > + asm volatile("movdqa %xmm2,%xmm6"); > > + asm volatile("movdqa %xmm3,%xmm7"); > > + for (d = l-1; d >= 0; --d) { > > + asm volatile("pxor %xmm8,%xmm8"); > > + asm volatile("pxor %xmm9,%xmm9"); > > + asm volatile("pxor %xmm10,%xmm10"); > > + asm volatile("pxor %xmm11,%xmm11"); > > + asm volatile("pcmpgtb %xmm4,%xmm8"); > > + asm volatile("pcmpgtb %xmm5,%xmm9"); > > + asm volatile("pcmpgtb %xmm6,%xmm10"); > > + asm volatile("pcmpgtb %xmm7,%xmm11"); > > + asm volatile("paddb %xmm4,%xmm4"); > > + asm volatile("paddb %xmm5,%xmm5"); > > + asm volatile("paddb %xmm6,%xmm6"); > > + asm volatile("paddb %xmm7,%xmm7"); > > + asm volatile("pand %xmm15,%xmm8"); > > + asm volatile("pand %xmm15,%xmm9"); > > + asm volatile("pand %xmm15,%xmm10"); > > + asm volatile("pand %xmm15,%xmm11"); > > + asm volatile("pxor %xmm8,%xmm4"); > > + asm volatile("pxor %xmm9,%xmm5"); > > + asm volatile("pxor %xmm10,%xmm6"); > > + asm volatile("pxor %xmm11,%xmm7"); > > + > > + asm volatile("movdqa %0,%%xmm8" : : "m" (v[d][i])); > > + asm volatile("movdqa %0,%%xmm9" : : "m" (v[d][i+16])); > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[d][i+32])); > > + asm volatile("movdqa %0,%%xmm11" : : "m" (v[d][i+48])); > > + asm volatile("pxor %xmm8,%xmm0"); > > + asm volatile("pxor %xmm9,%xmm1"); > > + asm volatile("pxor %xmm10,%xmm2"); > > + asm volatile("pxor %xmm11,%xmm3"); > > + asm volatile("pxor %xmm8,%xmm4"); > > + asm volatile("pxor %xmm9,%xmm5"); > > + asm volatile("pxor %xmm10,%xmm6"); > > + asm volatile("pxor %xmm11,%xmm7"); > > + } > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (p[i+16])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (p[i+32])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (p[i+48])); > > + asm volatile("movntdq %%xmm4,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm5,%0" : "=m" (q[i+16])); > > + asm volatile("movntdq %%xmm6,%0" : "=m" (q[i+32])); > > + asm volatile("movntdq %%xmm7,%0" : "=m" (q[i+48])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * PAR3 (triple parity with Cauchy matrix) SSSE3 implementation > > + */ > > +void raid_par3_ssse3(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 3; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + > > + for (i = 0; i < size; i += 16) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[l][i])); > > + > > + asm volatile("movdqa %xmm4,%xmm0"); > > + asm volatile("movdqa %xmm4,%xmm1"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm6"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm3,%xmm5"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("pshufb %xmm5,%xmm6"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[0][i])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm3,%xmm5"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (r[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86_64 > > +/* > > + * PAR3 (triple parity with Cauchy matrix) SSSE3 implementation > > + * > > + * Note that it uses 16 registers, meaning that x64 is required. > > + */ > > +void raid_par3_ssse3ext(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 3; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm11" : : "m" (gfconst16.low4[0])); > > + > > + for (i = 0; i < size; i += 32) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[l][i])); > > + asm volatile("movdqa %0,%%xmm12" : : "m" (v[l][i+16])); > > + > > + asm volatile("movdqa %xmm4,%xmm0"); > > + asm volatile("movdqa %xmm4,%xmm1"); > > + asm volatile("movdqa %xmm12,%xmm8"); > > + asm volatile("movdqa %xmm12,%xmm9"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("movdqa %xmm12,%xmm13"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("psrlw $4,%xmm13"); > > + asm volatile("pand %xmm11,%xmm4"); > > + asm volatile("pand %xmm11,%xmm12"); > > + asm volatile("pand %xmm11,%xmm5"); > > + asm volatile("pand %xmm11,%xmm13"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("movdqa %xmm2,%xmm10"); > > + asm volatile("movdqa %xmm7,%xmm15"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm12,%xmm10"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pshufb %xmm13,%xmm15"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + asm volatile("pxor %xmm15,%xmm10"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + asm volatile("movdqa %0,%%xmm12" : : "m" (v[d][i+16])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pxor %xmm13,%xmm13"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("pcmpgtb %xmm9,%xmm13"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("paddb %xmm9,%xmm9"); > > + asm volatile("pand %xmm3,%xmm5"); > > + asm volatile("pand %xmm3,%xmm13"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + asm volatile("pxor %xmm13,%xmm9"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm12,%xmm8"); > > + asm volatile("pxor %xmm12,%xmm9"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("movdqa %xmm12,%xmm13"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("psrlw $4,%xmm13"); > > + asm volatile("pand %xmm11,%xmm4"); > > + asm volatile("pand %xmm11,%xmm12"); > > + asm volatile("pand %xmm11,%xmm5"); > > + asm volatile("pand %xmm11,%xmm13"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("movdqa %xmm6,%xmm14"); > > + asm volatile("movdqa %xmm7,%xmm15"); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm12,%xmm14"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pshufb %xmm13,%xmm15"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("pxor %xmm14,%xmm10"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + asm volatile("pxor %xmm15,%xmm10"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[0][i])); > > + asm volatile("movdqa %0,%%xmm12" : : "m" (v[0][i+16])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pxor %xmm13,%xmm13"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("pcmpgtb %xmm9,%xmm13"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("paddb %xmm9,%xmm9"); > > + asm volatile("pand %xmm3,%xmm5"); > > + asm volatile("pand %xmm3,%xmm13"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + asm volatile("pxor %xmm13,%xmm9"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm12,%xmm8"); > > + asm volatile("pxor %xmm12,%xmm9"); > > + asm volatile("pxor %xmm12,%xmm10"); > > + > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm8,%0" : "=m" (p[i+16])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm9,%0" : "=m" (q[i+16])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm10,%0" : "=m" (r[i+16])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * PAR4 (quad parity with Cauchy matrix) SSSE3 implementation > > + */ > > +void raid_par4_ssse3(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 4; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + for (i = 0; i < size; i += 16) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[l][i])); > > + > > + asm volatile("movdqa %xmm4,%xmm0"); > > + asm volatile("movdqa %xmm4,%xmm1"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfgenpshufb[l][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][1][1][0])); > > + asm volatile("pshufb %xmm4,%xmm3"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][1][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm3"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[0][i])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm4,%xmm3"); > > + > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (s[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86_64 > > +/* > > + * PAR4 (quad parity with Cauchy matrix) SSSE3 implementation > > + * > > + * Note that it uses 16 registers, meaning that x64 is required. > > + */ > > +void raid_par4_ssse3ext(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 4; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + for (i = 0; i < size; i += 32) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm15" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[l][i])); > > + asm volatile("movdqa %0,%%xmm12" : : "m" (v[l][i+16])); > > + > > + asm volatile("movdqa %xmm4,%xmm0"); > > + asm volatile("movdqa %xmm4,%xmm1"); > > + asm volatile("movdqa %xmm12,%xmm8"); > > + asm volatile("movdqa %xmm12,%xmm9"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("movdqa %xmm12,%xmm13"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("psrlw $4,%xmm13"); > > + asm volatile("pand %xmm15,%xmm4"); > > + asm volatile("pand %xmm15,%xmm12"); > > + asm volatile("pand %xmm15,%xmm5"); > > + asm volatile("pand %xmm15,%xmm13"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("movdqa %xmm2,%xmm10"); > > + asm volatile("movdqa %xmm7,%xmm15"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm12,%xmm10"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pshufb %xmm13,%xmm15"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + asm volatile("pxor %xmm15,%xmm10"); > > + > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfgenpshufb[l][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][1][1][0])); > > + asm volatile("movdqa %xmm3,%xmm11"); > > + asm volatile("movdqa %xmm7,%xmm15"); > > + asm volatile("pshufb %xmm4,%xmm3"); > > + asm volatile("pshufb %xmm12,%xmm11"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pshufb %xmm13,%xmm15"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + asm volatile("pxor %xmm15,%xmm11"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm15" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + asm volatile("movdqa %0,%%xmm12" : : "m" (v[d][i+16])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pxor %xmm13,%xmm13"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("pcmpgtb %xmm9,%xmm13"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("paddb %xmm9,%xmm9"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pand %xmm7,%xmm13"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + asm volatile("pxor %xmm13,%xmm9"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm12,%xmm8"); > > + asm volatile("pxor %xmm12,%xmm9"); > > + > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("movdqa %xmm12,%xmm13"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("psrlw $4,%xmm13"); > > + asm volatile("pand %xmm15,%xmm4"); > > + asm volatile("pand %xmm15,%xmm12"); > > + asm volatile("pand %xmm15,%xmm5"); > > + asm volatile("pand %xmm15,%xmm13"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("movdqa %xmm6,%xmm14"); > > + asm volatile("movdqa %xmm7,%xmm15"); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm12,%xmm14"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pshufb %xmm13,%xmm15"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("pxor %xmm14,%xmm10"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + asm volatile("pxor %xmm15,%xmm10"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][1][1][0])); > > + asm volatile("movdqa %xmm6,%xmm14"); > > + asm volatile("movdqa %xmm7,%xmm15"); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm12,%xmm14"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pshufb %xmm13,%xmm15"); > > + asm volatile("pxor %xmm6,%xmm3"); > > + asm volatile("pxor %xmm14,%xmm11"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + asm volatile("pxor %xmm15,%xmm11"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm15" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[0][i])); > > + asm volatile("movdqa %0,%%xmm12" : : "m" (v[0][i+16])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pxor %xmm13,%xmm13"); > > + asm volatile("pcmpgtb %xmm1,%xmm5"); > > + asm volatile("pcmpgtb %xmm9,%xmm13"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("paddb %xmm9,%xmm9"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pand %xmm7,%xmm13"); > > + asm volatile("pxor %xmm5,%xmm1"); > > + asm volatile("pxor %xmm13,%xmm9"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm4,%xmm3"); > > + asm volatile("pxor %xmm12,%xmm8"); > > + asm volatile("pxor %xmm12,%xmm9"); > > + asm volatile("pxor %xmm12,%xmm10"); > > + asm volatile("pxor %xmm12,%xmm11"); > > + > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm8,%0" : "=m" (p[i+16])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm9,%0" : "=m" (q[i+16])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm10,%0" : "=m" (r[i+16])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (s[i])); > > + asm volatile("movntdq %%xmm11,%0" : "=m" (s[i+16])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * PAR5 (penta parity with Cauchy matrix) SSSE3 implementation > > + */ > > +void raid_par5_ssse3(int nd, size_t size, void **vv) > > +/* ensures that stack is aligned at 16 bytes because we allocate SSE registers in it */ > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + uint8_t *t; > > + int d, l; > > + size_t i; > > + uint8_t p0[16] __aligned(16); > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + t = v[nd+4]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 5; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + for (i = 0; i < size; i += 16) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[l][i])); > > + > > + asm volatile("movdqa %xmm4,%xmm0"); > > + asm volatile("movdqa %%xmm4,%0" : "=m" (p0[0])); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm1" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm1"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm1"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][1][1][0])); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfgenpshufb[l][2][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][2][1][0])); > > + asm volatile("pshufb %xmm4,%xmm3"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (p0[0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm0,%xmm5"); > > + asm volatile("paddb %xmm0,%xmm0"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pxor %xmm5,%xmm0"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm6"); > > + asm volatile("movdqa %%xmm6,%0" : "=m" (p0[0])); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm1"); > > + asm volatile("pxor %xmm7,%xmm1"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][1][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][2][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][2][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm3"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[0][i])); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (p0[0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + > > + asm volatile("pxor %xmm5,%xmm5"); > > + asm volatile("pcmpgtb %xmm0,%xmm5"); > > + asm volatile("paddb %xmm0,%xmm0"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pxor %xmm5,%xmm0"); > > + > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm4,%xmm3"); > > + asm volatile("pxor %xmm4,%xmm6"); > > + > > + asm volatile("movntdq %%xmm6,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm0,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (s[i])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (t[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86_64 > > +/* > > + * PAR5 (penta parity with Cauchy matrix) SSSE3 implementation > > + * > > + * Note that it uses 16 registers, meaning that x64 is required. > > + */ > > +void raid_par5_ssse3ext(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + uint8_t *t; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + t = v[nd+4]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 5; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + asm volatile("movdqa %0,%%xmm14" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm15" : : "m" (gfconst16.low4[0])); > > + > > + for (i = 0; i < size; i += 16) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[l][i])); > > + > > + asm volatile("movdqa %xmm10,%xmm0"); > > + asm volatile("movdqa %xmm10,%xmm1"); > > + > > + asm volatile("movdqa %xmm10,%xmm11"); > > + asm volatile("psrlw $4,%xmm11"); > > + asm volatile("pand %xmm15,%xmm10"); > > + asm volatile("pand %xmm15,%xmm11"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("pshufb %xmm10,%xmm2"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfgenpshufb[l][1][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][1][1][0])); > > + asm volatile("pshufb %xmm10,%xmm3"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm3"); > > + > > + asm volatile("movdqa %0,%%xmm4" : : "m" (gfgenpshufb[l][2][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][2][1][0])); > > + asm volatile("pshufb %xmm10,%xmm4"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm4"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[d][i])); > > + > > + asm volatile("pxor %xmm11,%xmm11"); > > + asm volatile("pcmpgtb %xmm1,%xmm11"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm14,%xmm11"); > > + asm volatile("pxor %xmm11,%xmm1"); > > + > > + asm volatile("pxor %xmm10,%xmm0"); > > + asm volatile("pxor %xmm10,%xmm1"); > > + > > + asm volatile("movdqa %xmm10,%xmm11"); > > + asm volatile("psrlw $4,%xmm11"); > > + asm volatile("pand %xmm15,%xmm10"); > > + asm volatile("pand %xmm15,%xmm11"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm2"); > > + asm volatile("pxor %xmm13,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][1][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][1][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm3"); > > + asm volatile("pxor %xmm13,%xmm3"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][2][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][2][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm4"); > > + asm volatile("pxor %xmm13,%xmm4"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[0][i])); > > + > > + asm volatile("pxor %xmm11,%xmm11"); > > + asm volatile("pcmpgtb %xmm1,%xmm11"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm14,%xmm11"); > > + asm volatile("pxor %xmm11,%xmm1"); > > + > > + asm volatile("pxor %xmm10,%xmm0"); > > + asm volatile("pxor %xmm10,%xmm1"); > > + asm volatile("pxor %xmm10,%xmm2"); > > + asm volatile("pxor %xmm10,%xmm3"); > > + asm volatile("pxor %xmm10,%xmm4"); > > + > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (s[i])); > > + asm volatile("movntdq %%xmm4,%0" : "=m" (t[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * PAR6 (hexa parity with Cauchy matrix) SSSE3 implementation > > + */ > > +void raid_par6_ssse3(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + uint8_t *t; > > + uint8_t *u; > > + int d, l; > > + size_t i; > > + uint8_t p0[16] __aligned(16); > > + uint8_t q0[16] __aligned(16); > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + t = v[nd+4]; > > + u = v[nd+5]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 6; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + for (i = 0; i < size; i += 16) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[l][i])); > > + > > + asm volatile("movdqa %%xmm4,%0" : "=m" (p0[0])); > > + asm volatile("movdqa %%xmm4,%0" : "=m" (q0[0])); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm0" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm0"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm0"); > > + > > + asm volatile("movdqa %0,%%xmm1" : : "m" (gfgenpshufb[l][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][1][1][0])); > > + asm volatile("pshufb %xmm4,%xmm1"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm1"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][2][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][2][1][0])); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfgenpshufb[l][3][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[l][3][1][0])); > > + asm volatile("pshufb %xmm4,%xmm3"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm5" : : "m" (p0[0])); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (q0[0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + > > + asm volatile("pxor %xmm4,%xmm4"); > > + asm volatile("pcmpgtb %xmm6,%xmm4"); > > + asm volatile("paddb %xmm6,%xmm6"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pxor %xmm4,%xmm6"); > > + > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[d][i])); > > + > > + asm volatile("pxor %xmm4,%xmm5"); > > + asm volatile("pxor %xmm4,%xmm6"); > > + asm volatile("movdqa %%xmm5,%0" : "=m" (p0[0])); > > + asm volatile("movdqa %%xmm6,%0" : "=m" (q0[0])); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm0"); > > + asm volatile("pxor %xmm7,%xmm0"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][1][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][1][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm1"); > > + asm volatile("pxor %xmm7,%xmm1"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][2][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][2][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm2"); > > + asm volatile("pxor %xmm7,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm6" : : "m" (gfgenpshufb[d][3][0][0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfgenpshufb[d][3][1][0])); > > + asm volatile("pshufb %xmm4,%xmm6"); > > + asm volatile("pshufb %xmm5,%xmm7"); > > + asm volatile("pxor %xmm6,%xmm3"); > > + asm volatile("pxor %xmm7,%xmm3"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm5" : : "m" (p0[0])); > > + asm volatile("movdqa %0,%%xmm6" : : "m" (q0[0])); > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.poly[0])); > > + > > + asm volatile("pxor %xmm4,%xmm4"); > > + asm volatile("pcmpgtb %xmm6,%xmm4"); > > + asm volatile("paddb %xmm6,%xmm6"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pxor %xmm4,%xmm6"); > > + > > + asm volatile("movdqa %0,%%xmm4" : : "m" (v[0][i])); > > + asm volatile("pxor %xmm4,%xmm0"); > > + asm volatile("pxor %xmm4,%xmm1"); > > + asm volatile("pxor %xmm4,%xmm2"); > > + asm volatile("pxor %xmm4,%xmm3"); > > + asm volatile("pxor %xmm4,%xmm5"); > > + asm volatile("pxor %xmm4,%xmm6"); > > + > > + asm volatile("movntdq %%xmm5,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm6,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm0,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (s[i])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (t[i])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (u[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86_64 > > +/* > > + * PAR6 (hexa parity with Cauchy matrix) SSSE3 implementation > > + * > > + * Note that it uses 16 registers, meaning that x64 is required. > > + */ > > +void raid_par6_ssse3ext(int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *q; > > + uint8_t *r; > > + uint8_t *s; > > + uint8_t *t; > > + uint8_t *u; > > + int d, l; > > + size_t i; > > + > > + l = nd - 1; > > + p = v[nd]; > > + q = v[nd+1]; > > + r = v[nd+2]; > > + s = v[nd+3]; > > + t = v[nd+4]; > > + u = v[nd+5]; > > + > > + /* special case with only one data disk */ > > + if (l == 0) { > > + for (i = 0; i < 6; ++i) > > + memcpy(v[1+i], v[0], size); > > + return; > > + } > > + > > + asm_begin(); > > + > > + /* generic case with at least two data disks */ > > + asm volatile("movdqa %0,%%xmm14" : : "m" (gfconst16.poly[0])); > > + asm volatile("movdqa %0,%%xmm15" : : "m" (gfconst16.low4[0])); > > + > > + for (i = 0; i < size; i += 16) { > > + /* last disk without the by two multiplication */ > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[l][i])); > > + > > + asm volatile("movdqa %xmm10,%xmm0"); > > + asm volatile("movdqa %xmm10,%xmm1"); > > + > > + asm volatile("movdqa %xmm10,%xmm11"); > > + asm volatile("psrlw $4,%xmm11"); > > + asm volatile("pand %xmm15,%xmm10"); > > + asm volatile("pand %xmm15,%xmm11"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfgenpshufb[l][0][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][0][1][0])); > > + asm volatile("pshufb %xmm10,%xmm2"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfgenpshufb[l][1][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][1][1][0])); > > + asm volatile("pshufb %xmm10,%xmm3"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm3"); > > + > > + asm volatile("movdqa %0,%%xmm4" : : "m" (gfgenpshufb[l][2][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][2][1][0])); > > + asm volatile("pshufb %xmm10,%xmm4"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm4"); > > + > > + asm volatile("movdqa %0,%%xmm5" : : "m" (gfgenpshufb[l][3][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[l][3][1][0])); > > + asm volatile("pshufb %xmm10,%xmm5"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm13,%xmm5"); > > + > > + /* intermediate disks */ > > + for (d = l-1; d > 0; --d) { > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[d][i])); > > + > > + asm volatile("pxor %xmm11,%xmm11"); > > + asm volatile("pcmpgtb %xmm1,%xmm11"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm14,%xmm11"); > > + asm volatile("pxor %xmm11,%xmm1"); > > + > > + asm volatile("pxor %xmm10,%xmm0"); > > + asm volatile("pxor %xmm10,%xmm1"); > > + > > + asm volatile("movdqa %xmm10,%xmm11"); > > + asm volatile("psrlw $4,%xmm11"); > > + asm volatile("pand %xmm15,%xmm10"); > > + asm volatile("pand %xmm15,%xmm11"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][0][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][0][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm2"); > > + asm volatile("pxor %xmm13,%xmm2"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][1][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][1][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm3"); > > + asm volatile("pxor %xmm13,%xmm3"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][2][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][2][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm4"); > > + asm volatile("pxor %xmm13,%xmm4"); > > + > > + asm volatile("movdqa %0,%%xmm12" : : "m" (gfgenpshufb[d][3][0][0])); > > + asm volatile("movdqa %0,%%xmm13" : : "m" (gfgenpshufb[d][3][1][0])); > > + asm volatile("pshufb %xmm10,%xmm12"); > > + asm volatile("pshufb %xmm11,%xmm13"); > > + asm volatile("pxor %xmm12,%xmm5"); > > + asm volatile("pxor %xmm13,%xmm5"); > > + } > > + > > + /* first disk with all coefficients at 1 */ > > + asm volatile("movdqa %0,%%xmm10" : : "m" (v[0][i])); > > + > > + asm volatile("pxor %xmm11,%xmm11"); > > + asm volatile("pcmpgtb %xmm1,%xmm11"); > > + asm volatile("paddb %xmm1,%xmm1"); > > + asm volatile("pand %xmm14,%xmm11"); > > + asm volatile("pxor %xmm11,%xmm1"); > > + > > + asm volatile("pxor %xmm10,%xmm0"); > > + asm volatile("pxor %xmm10,%xmm1"); > > + asm volatile("pxor %xmm10,%xmm2"); > > + asm volatile("pxor %xmm10,%xmm3"); > > + asm volatile("pxor %xmm10,%xmm4"); > > + asm volatile("pxor %xmm10,%xmm5"); > > + > > + asm volatile("movntdq %%xmm0,%0" : "=m" (p[i])); > > + asm volatile("movntdq %%xmm1,%0" : "=m" (q[i])); > > + asm volatile("movntdq %%xmm2,%0" : "=m" (r[i])); > > + asm volatile("movntdq %%xmm3,%0" : "=m" (s[i])); > > + asm volatile("movntdq %%xmm4,%0" : "=m" (t[i])); > > + asm volatile("movntdq %%xmm5,%0" : "=m" (u[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * RAID recovering for one disk SSSE3 implementation > > + */ > > +void raid_rec1_ssse3(int nr, int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + uint8_t *p; > > + uint8_t *pa; > > + uint8_t G; > > + uint8_t V; > > + size_t i; > > + > > + (void)nr; /* unused, it's always 1 */ > > + > > + /* if it's RAID5 uses the faster function */ > > + if (ip[0] == 0) { > > + raid_rec1_par1(id, nd, size, vv); > > + return; > > + } > > + > > +#ifdef RAID_USE_RAID6_PQ > > + /* if it's RAID6 recovering with Q uses the faster function */ > > + if (ip[0] == 1) { > > + raid6_datap_recov(nd + 2, size, id[0], vv); > > + return; > > + } > > +#endif > > + > > + /* setup the coefficients matrix */ > > + G = A(ip[0], id[0]); > > + > > + /* invert it to solve the system of linear equations */ > > + V = inv(G); > > + > > + /* compute delta parity */ > > + raid_delta_gen(1, id, ip, nd, size, vv); > > + > > + p = v[nd+ip[0]]; > > + pa = v[id[0]]; > > + > > + asm_begin(); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (gfmulpshufb[V][0][0])); > > + asm volatile("movdqa %0,%%xmm5" : : "m" (gfmulpshufb[V][1][0])); > > + > > + for (i = 0; i < size; i += 16) { > > + asm volatile("movdqa %0,%%xmm0" : : "m" (p[i])); > > + asm volatile("movdqa %0,%%xmm1" : : "m" (pa[i])); > > + asm volatile("movdqa %xmm4,%xmm2"); > > + asm volatile("movdqa %xmm5,%xmm3"); > > + asm volatile("pxor %xmm0,%xmm1"); > > + asm volatile("movdqa %xmm1,%xmm0"); > > + asm volatile("psrlw $4,%xmm1"); > > + asm volatile("pand %xmm7,%xmm0"); > > + asm volatile("pand %xmm7,%xmm1"); > > + asm volatile("pshufb %xmm0,%xmm2"); > > + asm volatile("pshufb %xmm1,%xmm3"); > > + asm volatile("pxor %xmm3,%xmm2"); > > + asm volatile("movdqa %%xmm2,%0" : "=m" (pa[i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * RAID recovering for two disks SSSE3 implementation > > + */ > > +void raid_rec2_ssse3(int nr, int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + const int N = 2; > > + uint8_t *p[N]; > > + uint8_t *pa[N]; > > + uint8_t G[N*N]; > > + uint8_t V[N*N]; > > + size_t i; > > + int j, k; > > + > > + (void)nr; /* unused, it's always 2 */ > > + > > +#ifdef RAID_USE_RAID6_PQ > > + /* if it's RAID6 recovering with P and Q uses the faster function */ > > + if (ip[0] == 0 && ip[1] == 1) { > > + raid6_2data_recov(nd + 2, size, id[0], id[1], vv); > > + return; > > + } > > +#endif > > + > > + /* setup the coefficients matrix */ > > + for (j = 0; j < N; ++j) > > + for (k = 0; k < N; ++k) > > + G[j*N+k] = A(ip[j], id[k]); > > + > > + /* invert it to solve the system of linear equations */ > > + raid_invert(G, V, N); > > + > > + /* compute delta parity */ > > + raid_delta_gen(N, id, ip, nd, size, vv); > > + > > + for (j = 0; j < N; ++j) { > > + p[j] = v[nd+ip[j]]; > > + pa[j] = v[id[j]]; > > + } > > + > > + asm_begin(); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + > > + for (i = 0; i < size; i += 16) { > > + asm volatile("movdqa %0,%%xmm0" : : "m" (p[0][i])); > > + asm volatile("movdqa %0,%%xmm2" : : "m" (pa[0][i])); > > + asm volatile("movdqa %0,%%xmm1" : : "m" (p[1][i])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (pa[1][i])); > > + asm volatile("pxor %xmm2,%xmm0"); > > + asm volatile("pxor %xmm3,%xmm1"); > > + > > + asm volatile("pxor %xmm6,%xmm6"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfmulpshufb[V[0]][0][0])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfmulpshufb[V[0]][1][0])); > > + asm volatile("movdqa %xmm0,%xmm4"); > > + asm volatile("movdqa %xmm0,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm3"); > > + asm volatile("pxor %xmm2,%xmm6"); > > + asm volatile("pxor %xmm3,%xmm6"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfmulpshufb[V[1]][0][0])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfmulpshufb[V[1]][1][0])); > > + asm volatile("movdqa %xmm1,%xmm4"); > > + asm volatile("movdqa %xmm1,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm3"); > > + asm volatile("pxor %xmm2,%xmm6"); > > + asm volatile("pxor %xmm3,%xmm6"); > > + > > + asm volatile("movdqa %%xmm6,%0" : "=m" (pa[0][i])); > > + > > + asm volatile("pxor %xmm6,%xmm6"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfmulpshufb[V[2]][0][0])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfmulpshufb[V[2]][1][0])); > > + asm volatile("movdqa %xmm0,%xmm4"); > > + asm volatile("movdqa %xmm0,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm3"); > > + asm volatile("pxor %xmm2,%xmm6"); > > + asm volatile("pxor %xmm3,%xmm6"); > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfmulpshufb[V[3]][0][0])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfmulpshufb[V[3]][1][0])); > > + asm volatile("movdqa %xmm1,%xmm4"); > > + asm volatile("movdqa %xmm1,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm3"); > > + asm volatile("pxor %xmm2,%xmm6"); > > + asm volatile("pxor %xmm3,%xmm6"); > > + > > + asm volatile("movdqa %%xmm6,%0" : "=m" (pa[1][i])); > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > > +#ifdef CONFIG_X86 > > +/* > > + * RAID recovering SSSE3 implementation > > + */ > > +void raid_recX_ssse3(int nr, int *id, int *ip, int nd, size_t size, void **vv) > > +{ > > + uint8_t **v = (uint8_t **)vv; > > + int N = nr; > > + uint8_t *p[RAID_PARITY_MAX]; > > + uint8_t *pa[RAID_PARITY_MAX]; > > + uint8_t G[RAID_PARITY_MAX*RAID_PARITY_MAX]; > > + uint8_t V[RAID_PARITY_MAX*RAID_PARITY_MAX]; > > + size_t i; > > + int j, k; > > + > > + /* setup the coefficients matrix */ > > + for (j = 0; j < N; ++j) > > + for (k = 0; k < N; ++k) > > + G[j*N+k] = A(ip[j], id[k]); > > + > > + /* invert it to solve the system of linear equations */ > > + raid_invert(G, V, N); > > + > > + /* compute delta parity */ > > + raid_delta_gen(N, id, ip, nd, size, vv); > > + > > + for (j = 0; j < N; ++j) { > > + p[j] = v[nd+ip[j]]; > > + pa[j] = v[id[j]]; > > + } > > + > > + asm_begin(); > > + > > + asm volatile("movdqa %0,%%xmm7" : : "m" (gfconst16.low4[0])); > > + > > + for (i = 0; i < size; i += 16) { > > + uint8_t PD[RAID_PARITY_MAX][16] __aligned(16); > > + > > + /* delta */ > > + for (j = 0; j < N; ++j) { > > + asm volatile("movdqa %0,%%xmm0" : : "m" (p[j][i])); > > + asm volatile("movdqa %0,%%xmm1" : : "m" (pa[j][i])); > > + asm volatile("pxor %xmm1,%xmm0"); > > + asm volatile("movdqa %%xmm0,%0" : "=m" (PD[j][0])); > > + } > > + > > + /* reconstruct */ > > + for (j = 0; j < N; ++j) { > > + asm volatile("pxor %xmm0,%xmm0"); > > + asm volatile("pxor %xmm1,%xmm1"); > > + > > + for (k = 0; k < N; ++k) { > > + uint8_t m = V[j*N+k]; > > + > > + asm volatile("movdqa %0,%%xmm2" : : "m" (gfmulpshufb[m][0][0])); > > + asm volatile("movdqa %0,%%xmm3" : : "m" (gfmulpshufb[m][1][0])); > > + asm volatile("movdqa %0,%%xmm4" : : "m" (PD[k][0])); > > + asm volatile("movdqa %xmm4,%xmm5"); > > + asm volatile("psrlw $4,%xmm5"); > > + asm volatile("pand %xmm7,%xmm4"); > > + asm volatile("pand %xmm7,%xmm5"); > > + asm volatile("pshufb %xmm4,%xmm2"); > > + asm volatile("pshufb %xmm5,%xmm3"); > > + asm volatile("pxor %xmm2,%xmm0"); > > + asm volatile("pxor %xmm3,%xmm1"); > > + } > > + > > + asm volatile("pxor %xmm1,%xmm0"); > > + asm volatile("movdqa %%xmm0,%0" : "=m" (pa[j][i])); > > + } > > + } > > + > > + asm_end(); > > +} > > +#endif > > + > -- Andrea Mazzoleni 935A 2D3C 5C70 BCD6 CB0C ED89 7C19 4321 6340 3F6D -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/