Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id ; Tue, 7 Jan 2003 11:48:01 -0500 Received: (majordomo@vger.kernel.org) by vger.kernel.org id ; Tue, 7 Jan 2003 11:48:01 -0500 Received: from pasmtp.tele.dk ([193.162.159.95]:40708 "EHLO pasmtp.tele.dk") by vger.kernel.org with ESMTP id ; Tue, 7 Jan 2003 11:47:48 -0500 Date: Tue, 7 Jan 2003 17:56:24 +0100 From: Sam Ravnborg To: "Randy.Dunlap" , Sam Ravnborg , linux-kernel@vger.kernel.org, Kai Germaschewski Subject: Re: [RFC] Documentation/kbuild/makefiles.txt Message-ID: <20030107165624.GA1222@mars.ravnborg.org> Mail-Followup-To: "Randy.Dunlap" , Sam Ravnborg , linux-kernel@vger.kernel.org, Kai Germaschewski References: <20030105215137.GA3659@mars.ravnborg.org> <20030106193651.GA1320@mars.ravnborg.org> Mime-Version: 1.0 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline In-Reply-To: <20030106193651.GA1320@mars.ravnborg.org> User-Agent: Mutt/1.4i Sender: linux-kernel-owner@vger.kernel.org X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 33423 Lines: 1002 Third version with input from Randy incorporated - thanks! Also added LDFLAGS_MODULE Sam Linux Kernel Makefiles This document describes the Linux kernel Makefiles. === Table of Contents === 1 Overview === 2 Who does what === 3 The kbuild Makefiles --- 3.1 Goal definitions --- 3.2 Built-in object goals - obj-y --- 3.3 Loadable module goals - obj-m --- 3.4 Objects which export symbols - export-objs --- 3.5 Library file goals - L_TARGET --- 3.6 Descending down in directories --- 3.7 Compilation flags --- 3.8 Command line dependency --- 3.9 Dependency tracking --- 3.10 Special Rules === 4 Host Program support --- 4.1 Simple Host Program --- 4.2 Composite Host Programs --- 4.3 Defining shared libraries --- 4.4 Using C++ for host programs --- 4.5 Controlling compiler options for host programs --- 4.6 When host programs are actually built === 5 Kbuild clean infrastructure === 6 Architecture Makefiles --- 6.1 Set variables to tweak the build to the architecture --- 6.2 Add prerequisites to prepare: --- 6.3 List directories to visit when descending --- 6.4 Architecture specific boot images --- 6.5 Building non-kbuild targets --- 6.6 Commands useful for building a boot image --- 6.7 Custom kbuild commands === 7 Kbuild Variables === 8 Makefile language === 9 Credits === 10 TODO === 1 Overview The Makefiles have five parts: Makefile the top Makefile. .config the kernel configuration file. arch/$(ARCH)/Makefile the arch Makefile. scripts/Makefile.* common rules etc. for all kbuild Makefiles. kbuild Makefiles there are about 500 of these. The top Makefile reads the .config file, which comes from the kernel configuration process. The top Makefile is responsible for building two major products: vmlinux (the resident kernel image) and modules (any module files). It builds these goals by recursively descending into the subdirectories of the kernel source tree. The list of subdirectories which are visited depends upon the kernel configuration. The top Makefile textually includes an arch Makefile with the name arch/$(ARCH)/Makefile. The arch Makefile supplies architecture-specific information to the top Makefile. Each subdirectory has a kbuild Makefile which carries out the commands passed down from above. The kbuild Makefile uses information from the .config file to construct various file lists used by kbuild to build any built-in or modular targets. scripts/Makefile.* contains all the definitions/rules etc. that are used to build the kernel based on the kbuild makefiles. === 2 Who does what People have four different relationships with the kernel Makefiles. *Users* are people who build kernels. These people type commands such as "make menuconfig" or "make". They usually do not read or edit any kernel Makefiles (or any other source files). *Normal developers* are people who work on features such as device drivers, file systems, and network protocols. These people need to maintain the kbuild Makefiles for the subsystem that they are working on. In order to do this effectively, they need some overall knowledge about the kernel Makefiles, plus detailed knowledge about the public interface for kbuild. *Arch developers* are people who work on an entire architecture, such as sparc or ia64. Arch developers need to know about the arch Makefile as well as kbuild Makefiles. *Kbuild developers* are people who work on the kernel build system itself. These people need to know about all aspects of the kernel Makefiles. This document is aimed towards normal developers and arch developers. === 3 The kbuild Makefiles Most Makefiles within the kernel are kbuild Makefiles that use the kbuild infrastructure. This chapter introduce the syntax used in the kbuild makefiles. Section 3.1 "Goal definitions" is a quick intro, further chapters provide more details, with real examples. --- 3.1 Goal definitions Goal definitions are the main part (heart) of the kbuild Makefile. These lines define the files to be built, any special compilation options, and any subdirectories to be entered recursively. The most simple kbuild makefile contains one line: Example: obj-y += foo.o This tell kbuild that there is one object in that directory named foo.o. foo.o will be build from foo.c or foo.S. If foo.o shall be built as a module, the variable obj-m is used. Therefore the following pattern is often used: Example: obj-$(CONFIG_FOO) += foo.o $(CONFIG_FOO) evaluates to either y (for built-in) or m (for module). If CONFIG_FOO is neither y nor m, then the file will not be compiled nor linked. --- 3.2 Built-in object goals - obj-y The kbuild Makefile specifies object files for vmlinux in the lists $(obj-y). These lists depend on the kernel configuration. Kbuild compiles all the $(obj-y) files. It then calls "$(LD) -r" to merge these files into one built-in.o file. built-in.o is later linked into vmlinux by the parent Makefile. The order of files in $(obj-y) is significant. Duplicates in the lists are allowed: the first instance will be linked into built-in.o and succeeding instances will be ignored. Link order is significant, because certain functions (module_init() / __initcall) will be called during boot in the order they appear. So keep in mind that changing the link order may e.g. change the order in which your SCSI controllers are detected, and thus you disks are renumbered. Example: #drivers/isdn/i4l/Makefile # Makefile for the kernel ISDN subsystem and device drivers. # Each configuration option enables a list of files. obj-$(CONFIG_ISDN) += isdn.o obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o --- 3.3 Loadable module goals - obj-m $(obj-m) specify object files which are built as loadable kernel modules. A module may be built from one source file or several source files. In the case of one source file, the kbuild makefile simply adds the file to $(obj-m). Example: #drivers/isdn/i4l/Makefile obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to 'm' If a kernel module is built from several source files, you specify that you want to build a module in the same way as above. Kbuild needs to know which the parts that you want to build your module from, so you have to tell it by setting an $(-objs) variable. Example: #drivers/isdn/i4l/Makefile obj-$(CONFIG_ISDN) += isdn.o isdn-objs := isdn_net_lib.o isdn_v110.o isdn_common.o In this example, the module name will be isdn.o. Kbuild will compile the objects listed in $(isdn-objs) and then run "$(LD) -r" on the list of these files to generate isdn.o. Kbuild recognises objects used for composite objects by the suffix -objs, and the suffix -y. This allows the Makefiles to use the value of a CONFIG_ symbol to determine if an object is part of a composite object. Example: #fs/ext2/Makefile obj-$(CONFIG_EXT2_FS) += ext2.o ext2-y := balloc.o bitmap.o ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o In this example xattr.o is only part of the composite object ext2.o, if $(CONFIG_EXT2_FS_XATTR) evaluates to 'y'. Note: Of course, when you are building objects into the kernel, the syntax above will also work. So, if you have CONFIG_EXT2_FS=y, kbuild will build an ext2.o file for you out of the individual parts and then link this into built-in.o, as you would expect. --- 3.4 Objects which export symbols - export-objs When using loadable modules, not every global symbol in the kernel / other modules is automatically available, only those explicitly exported are available for your module. To make a symbol available for use in modules, to "export" it, use the EXPORT_SYMBOL() directive in your source. In addition, you need to list all object files which export symbols (i.e. their source contains an EXPORT_SYMBOL() directive) in the Makefile variable $(export-objs). Example: #drivers/isdn/i4l/Makefile # Objects that export symbols. export-objs := isdn_common.o since isdn_common.c contains EXPORT_SYMBOL(register_isdn); which makes the function register_isdn available to low-level ISDN drivers. There exist a EXPORT_SYMBOL_GPL() variant with similar functionality, but more restrictive with what may use that symbol. The requirement to list the .o file in export-objs is the same. --- 3.5 Library file goals - L_TARGET Instead of building a built-in.o file, you may also build an archive which again contains objects listed in $(obj-y). This is normally not necessary and only used in lib/ and arch/$(ARCH)/lib directories. Only the name lib.a is allowed. Example: #arch/i386/lib/Makefile L_TARGET := lib.a obj-y := checksum.o delay.o This will create a library lib.a based on checksum.o and delay.o. --- 3.6 Descending down in directories A Makefile is only responsible for building objects in its own directory. Files in subdirectories should be taken care of by Makefiles in these subdirs. The build system will automatically invoke make recursively in subdirectories, provided you let it know of them. To do so obj-y and obj-m are used. ext2 lives in a separate directory, and the Makefile present in fs/ tells kbuild to descend down using the following assignment. Example: #fs/Makefile obj-$(CONfIG_EXT2_FS) += ext2/ If CONFIG_EXT2_FS is set to either 'y' (built-in) or 'm' (modular) the corresponding obj- variable will be set, and kbuild will descend down in the ext2 directory. Kbuild only uses this information to decide that it needs to visit the directory, it is the Makefile in the subdirectory that specifies what is modules and what is built-in. It is good practice to use a CONFIG_ variable when assigning directory names. This allows kbuild to totally skip the directory if the corresponding CONFIG_ option is neither 'y' nor 'm'. --- 3.7 Compilation flags EXTRA_CFLAGS, EXTRA_AFLAGS, EXTRA_LDFLAGS, EXTRA_ARFLAGS All the EXTRA_ variables apply only to the kbuild makefile where they are assigned. The EXTRA_ variables apply to all commands executed in the kbuild makefile. $(EXTRA_CFLAGS) specifies options for compiling C files with $(CC). Example: # drivers/sound/emu10k1/Makefile EXTRA_CFLAGS += -I$(obj) ifdef DEBUG EXTRA_CFLAGS += -DEMU10K1_DEBUG endif This variable is necessary because the top Makefile owns the variable $(CFLAGS) and uses it for compilation flags for the entire tree. $(EXTRA_AFLAGS) is a similar string for per-directory options when compiling assembly language source. Example: #arch/x86_64/kernel/Makefile EXTRA_AFLAGS := -traditional $(EXTRA_LDFLAGS) and $(EXTRA_ARFLAGS) are similar strings for per-directory options to $(LD) and $(AR). Example: #arch/m68k/fpsp040/Makefile EXTRA_LDFLAGS := -x CFLAGS_$@, AFLAGS_$@ CFLAGS_$@ and AFLAGS_$@ only apply to commands in current kbuild makefile. $(CFLAGS_$@) specifies per-file options for $(CC). The $@ part has a literal value which specifies the file that it is for. Example: # drivers/scsi/Makefile CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \ -DGDTH_STATISTICS CFLAGS_seagate.o = -DARBITRATE -DPARITY -DSEAGATE_USE_ASM These three lines specify compilation flags for aha152x.o, gdth.o, and seagate.o $(AFLAGS_$@) is a similar feature for source files in assembly languages. Example: # arch/arm/kernel/Makefile AFLAGS_head-armv.o := -DTEXTADDR=$(TEXTADDR) -traditional AFLAGS_head-armo.o := -DTEXTADDR=$(TEXTADDR) -traditional --- 3.9 Dependency tracking Kbuild track dependencies on the following: 1) All prerequisite files (both *.c and *.h) 2) CONFIG_ options used in all prerequisite files 3) Command-line used to compile target Thus, if you change an option to $(CC) all affected files will be re-compiled. --- 3.10 Special Rules Special rules are used when the kbuild infrastructure does not provide the required support. A typical example is header files generated during the build process. Another example is the architecture specific Makefiles which needs special rules to prepare boot images etc. Special rules are written as normal Make rules. Kbuild is not executing in the directory where the Makefile is located, so all special rules shall provide a relative path to prerequisite files and target files. Two variables are used when defining special rules: $(src) $(src) is a relative path which points to the directory where the Makefile is located. Always use $(src) when referring to files located in the src tree. $(obj) $(obj) is a relative path which points to the directory where the target is saved. Always use $(obj) when referring to generated files. Example: #drivers/scsi/Makefile $(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl $(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl This is a special rule, following the normal syntax required by make. The target file depends on two prerequisite files. References to the target file are prefixed with $(obj), references to prerequisites are referenced with $(src) (because they are not generated files). === 4 Host Program support Kbuild supports building executables on the host for use during the compilation stage. Two steps are required in order to use a host executable. The first step is to tell kbuild that a host program exists. This is done utilising the variable host-prog. The second step is to add an explicit dependency to the executable. This can be done in two ways. Either add the dependency in a rule, or utilise the variable build-targets. Both possibilities are described in the following. --- 4.1 Simple Host Program In some cases there is a need to compile and run a program on the computer where the build is running. The following line tells kbuild that the program bin2hex shall be built on the build host. Example: host-progs := bin2hex Kbuild assumes in the above example that bin2hex is made from a single c-source file named bin2hex.c located in the same directory as the Makefile. --- 4.2 Composite Host Programs Host programs can be made up based on composite objects. The syntax used to define composite objetcs for host programs is similar to the syntax used for kernel objects. $(-objs) list all objects used to link the final executable. Example: #scripts/lxdialog/Makefile host-progs := lxdialog hex2bin-objs := checklist.o lxdialog.o Objects with extension .o are compiled from the corresponding .c files. In the above example checklist.c is compiled to checklist.o and lxdialog.c is compiled to lxdialog.o. Finally the two .o files are linked to the executable, lxdialog. Note: The syntax -y is not permitted for host-programs. --- 4.3 Defining shared libraries Objects with extension .so is considered shared libraries, and will be compiled as position independent objects. Kbuild provides support for shared libraries, but the usage shall be restricted. In the following example the libkconfig.so shared library is used to link the executable conf. Example: #scripts/kconfig/Makefile host-progs := conf conf-objs := conf.o libkconfig.so libkconfig-objs := expr.o type.o Shared libraries always require a corresponding -objs line, and in the example above the shared library libkconfig is composed by the two objects expr.o and type.o. expr.o and type.o will be built as position independent code and linked as a shared library libkconfig.so. C++ is not supported for shared libraries. --- 4.4 Using C++ for host programs kbuild offers support for host programs written in C++. This was introduced solely to support kconfig, and is not recommended for general use. Example: #scripts/kconfig/Makefile host-progs := qconf qconf-cxxobjs := qconf.o In the example above the executable is composed of the C++ file qconf.cc - identified by $(qconf-cxxobjs). If qconf is composed by a mixture of .c and .cc files, then an additional line can be used to identify this. Example: #scripts/kconfig/Makefile host-progs := qconf qconf-cxxobjs := qconf.o qconf-objs := check.o --- 4.5 Controlling compiler options for host programs When compiling host programs, it is possible to set specific flags. The programs will always be compiled utilising $(HOSTCC) passed the options specified in $(HOSTCFLAGS). To set flags that will take effect for all host programs created in that Makefile use the variable HOST_EXTRACFLAGS. Example: #scripts/lxdialog/Makefile HOST_EXTRACFLAGS += -I/usr/include/ncurses To set specific flags for a single file the following construction is used: Example: #arch/ppc64/boot/Makefile HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE) It is also possible to specify additional options to the linker. Example: #scripts/kconfig/Makefile HOSTLOADLIBES_qconf := -L$(QTDIR)/lib When linking qconf it will be passed the extra option "-L$(QTDIR)/lib". --- 4.6 When host programs are actually built Kbuild will only build host-programs when they are referenced as a prerequisite. This is possible in two ways: (1) List the prerequisite explicit in a special rule. Example: #drivers/pci/Makefile host-progs := gen-devlist $(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist ( cd $(obj); ./gen-devlist ) < $< The target $(obj)/devlist.h will not be build before $(obj)/gen-devlist is updated. Note that references to the host programs in special rules must be prefixed with $(obj). (2) Use $(build-targets) When there is no suitable special rule, and the host program shall be built when a makefile is entered, the $(build-targets) variable shall be used. Example: #scripts/lxdialog/Makefile host-progs := lxdialog build-targets := $(host-progs) This will tell kbuild to build lxdialog even if not referenced in any rule. === 5 Kbuild clean infrastructure "make clean" deletes most generated files in the src tree where the kernel is compiled. This includes generated files such as host programs. Kbuild knows targets listed in $(host-progs) and $(EXTRA_TARGETS) and they are all deleted during "make clean". Files matching the patterns "*.[oas]", "*.ko", plus some additional files generated by kbuild are deleted all over the kernel src tree when "make clean" is executed. Additional files can be specified by means of $(clean-files). Example: #drivers/pci/Makefile clean-files := devlist.h classlist.h When executing "make clean", the two files "devlist.h classlist.h" will be deleted. Kbuild knows that files specified by $(clean-files) are located in the same directory as the makefile. Usually kbuild descends down in subdirectories due to "obj-* := dir/", but in the architecture makefiles where the kbuild infrastructure is not sufficent this sometimes needs to be explicit. Example: #arch/i386/boot/Makefile subdir- := compressed/ The above assignment instructs kbuild to descend down in the directory compressed/ when "make clean" is executed. To support the clean infrastructure in the Makefiles that builds the final bootimage there is an optional target named archclean: Example: #arch/i386/Makefile archclean: $(Q)$(MAKE) $(clean)=arch/i386/boot When "make clean" is executed, make will descend down in arch/i386/boot, and clean as usual. The Makefile located in arch/i386/boot/ may use the subdir- trick to descend further down. Note 1: arch/$(ARCH)/Makefile cannot use "subdir-", because that file is included in the top level makefile, and the kbuild infrastructure is not operational at that point. Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will be visited during "make clean". === 6 Architecture Makefiles The top level Makefile sets up the environment and does the preparation, before starting to descend down in the individual directories. The top level makefile contains the generic part, whereas the arch/$(ARCH)/Makefile contains what is required to set-up kbuild to the said architecture. To do so arch/$(ARCH)/Makefile sets a number of variables, and defines a few targets. When kbuild executes the following steps are followed (roughly): 1) Configuration of the kernel => produced .config 2) Store kernel version in include/linux/version.h 3) Symlink include/asm to include/asm-$(ARCH) 4) Updating all other prerequisites to the target prepare: - Additional prerequisites are specified in arch/$(ARCH)/Makefile 5) Recursively descend down in all directories listed in init-* core* drivers-* net-* libs-* and build all targets. - The value of the above variables are extended in arch/$(ARCH)/Makefile. 6) All object files are then linked and the resulting file vmlinux is located at the root of the src tree. The very first objects linked are listed in head-y, assigned by arch/$(ARCH)/Makefile. 7) Finally the architecture specific part does any required post processing and builds the final bootimage. - This includes building boot records - Preparing initrd images and the like --- 6.1 Set variables to tweak the build to the architecture LDFLAGS Generic $(LD) options Flags used for all invocations of the linker. Often specifying the emulation is sufficient. Example: #arch/s390/Makefile LDFLAGS := -m elf_s390 Note: EXTRA_LDFLAGS and LDFLAGS_$@ can be used to further customise the flags used. See chapter 7. LDFLAGS_MODULE Options for $(LD) when linking modules LDFLAGS_MODULE is used to set specific flags for $(LD) when linking the .ko files used for modules. Default is "-r", for relocatable output. LDFLAGS_vmlinux Options for $(LD) when linking vmlinux LDFLAGS_vmlinux is used to specify additional flags to pass to the linker when linking the final vmlinux. LDFLAGS_vmlinux uses the LDFLAGS_$@ support. Example: #arch/i386/Makefile LDFLAGS_vmlinux := -e stext LDFLAGS_BLOB Options for $(LD) when linking the initramfs blob The image used for initramfs is made during the build process. LDFLAGS_BLOB is used to specify additional flags to be used when creating the initramfs_data.o file. Example: #arch/i386/Makefile LDFLAGS_BLOB := --format binary --oformat elf32-i386 OBJCOPYFLAGS objcopy flags When $(call if_changed,objcopy) is used to translate a .o file, then the flags specified in OBJCOPYFLAGS will be used. $(call if_changed,objcopy) is often used to generate raw binaries on vmlinux. Example: #arch/s390/Makefile OBJCOPYFLAGS := -O binary #arch/s390/boot/Makefile $(obj)/image: vmlinux FORCE $(call if_changed,objcopy) In this example the binary $(obj)/image is a binary version of vmlinux. The usage of $(call if_changed,xxx) will be described later. AFLAGS $(AS) assembler flags Default value - see top level Makefile Append or modify as required per architecture. Example: #arch/sparc64/Makefile AFLAGS += -m64 -mcpu=ultrasparc CFLAGS $(CC) compiler flags Default value - see top level Makefile Append or modify as required per architecture. Often the CFLAGS variable depends on the configuration. Example: #arch/i386/Makefile cflags-$(CONFIG_M386) += -march=i386 CFLAGS += $(cflags-y) Many arch Makefiles dynamically run the target C compiler to probe supported options: #arch/i386/Makefile check_gcc = $(shell if $(CC) $(1) -S -o /dev/null -xc \ /dev/null\ > /dev/null 2>&1; then echo "$(1)"; \ else echo "$(2)"; fi) cflags-$(CONFIG_MCYRIXIII) += $(call check_gcc,\ -march=c3,-march=i486) CFLAGS += $(cflags-y) The above examples both utilise the trick that a config option expands to 'y' when selected. CFLAGS_KERNEL $(CC) options specific for built-in $(CFLAGS_KERNEL) contains extra C compiler flags used to compile resident kernel code. CFLAGS_MODULE $(CC) options specific for modules $(CFLAGS_MODULE) contains extra C compiler flags used to compile code for loadable kernel modules. --- 6.2 Add prerequisites to prepare: The prepare: rule is used to list prerequisites that needs to be built before starting to descend down in the subdirectories. This is usual header files containing assembler constants. Example: #arch/s390/Makefile prepare: include/asm-$(ARCH)/offsets.h In this example the file include/asm-$(ARCH)/offsets.h will be built before descending down in the subdirectories. See also chapter XXX-TODO that describe how kbuild supports generating offset header files. --- 6.3 List directories to visit when descending An arch Makefile cooperates with the top Makefile to define variables which specify how to build the vmlinux file. Note that there is no corresponding arch-specific section for modules; the module-building machinery is all architecture-independent. head-y, init-y, core-y, libs-y, drivers-y, net-y $(head-y) list objects to be linked first in vmlinux. $(libs-y) list directories where a libs.a archive can be located. The rest list directories where a built-in.o object file can be located. $(init-y) objects will be located after $(head-y). Then the rest follows in this order: $(core-y), $(libs-y), $(drivers-y) and $(net-y). The top level Makefile define values for all generic directories, and arch/$(ARCH)/Makefile only adds architecture specific directories. Example: #arch/sparc64/Makefile core-y += arch/sparc64/kernel/ libs-y += arch/sparc64/prom/ arch/sparc64/lib/ drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/ --- 6.4 Architecture specific boot images An arch Makefile specifies goals that take the vmlinux file, compress it, wrap it in bootstrapping code, and copy the resulting files somewhere. This includes various kinds of installation commands. The actual goals are not standardized across architectures. It is common to locate any additional processing in a boot/ directory below arch/$(ARCH)/. Kbuild does not provide any smart way to support building a target specified in boot/. Therefore arch/$(ARCH)/Makefile shall call make manually to build a target in boot/. The recommended approach is to include shortcuts in arch/$(ARCH)/Makefile, and use the full path when calling down into the arch/$(ARCH)/boot/Makefile. Example: #arch/i386/Makefile boot := arch/i386/boot bzImage: vmlinux $(Q)$(MAKE) $(build)=$(boot) $(boot)/$@ "$(Q)$(MAKE) $(build)=" is the recommended way to invoke make in a subdirectory. There are no rules for naming of the architecture specific targets, but executing "make help" will list all relevant targets. To support this $(archhelp) must be defined. Example: #arch/i386/Makefile define archhelp echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)' endef When make is executed without arguments, the first goal encountered will be built. In the top level Makefile the first goal present is all:. An architecture shall always per default build a bootable image. In "make help" the default goal is highlighted with a '*'. Add a new prerequisite to all: to select a default goal different from vmlinux. Example: #arch/i386/Makefile all: bzImage When "make" is executed without arguments, bzImage will be built. --- 6.5 Building non-kbuild targets EXTRA_TARGETS EXTRA_TARGETS specify additional targets created in current directory, in addition to any targets specified by obj-*. Listing all targets in EXTRA_TARGETS is required for three purposes: 1) Avoid that the target is linked in as part of built-in.o 2) Enable kbuild to check changes in command lines - When $(call if_changed,xxx) is used 3) kbuild knows what file to delete during "make clean" Example: #arch/i386/kernel/Makefile EXTRA_TARGETS := head.o init_task.o In this example EXTRA_TARGETS is used to list object files that shall be built, but shall not be linked as part of built-in.o. Example: #arch/i386/boot/Makefile EXTRA_TARGETS := vmlinux.bin bootsect bootsect.o In this example EXTRA_TARGETS is used to list all intermediate targets, and all final targets. The targets are added to EXTRA_TARGETS to enable 2) and 3) above. --- 6.6 Commands useful for building a boot image Kbuild provide a few macros that are useful when building a boot image. if_changed if_changed is the infrastructure used for the following commands. Usage: target: source(s) FORCE $(call if_changed,ld/objcopy/gzip) When the rule is evaluated it is checked to see if any files needs an update, or the commandline has changed since last invocation. The latter will force a rebuild if any options to the executable have changed. Any target that utilises if_changed must be listed in EXTRA_TARGETS, otherwise the command line check will fail, and the target will always be built. if_changed may be used in conjunction with custom commands as defined in 6.7 "Custom kbuild commands". Note: It is a typical mistake to forget the FORCE prerequisite. ld Link target. Often LDFLAGS_$@ is used to set specific options to ld. objcopy Copy binary. Uses OBJCOPYFLAGS usually specified in arch/$(ARCH)/Makefile. gzip Compress target. Use maximum compression to compress target. --- 6.7 Custom kbuild commands When kbuild is executing with KBUILD_VERBOSE=0 then only a shorthand of a command is normally displayed. To enable this behaviour for custom commands kbuild requires two variables to be set: quiet_cmd_ - what shall be echoed cmd_ - the command to execute Example: # quiet_cmd_image = BUILD $@ cmd_image = $(obj)/tools/build $(BUILDFLAGS) \ $(obj)/vmlinux.bin > $@ $(obj)/bzImage: $(obj)/vmlinux.bin $(obj)/tools/build FORCE $(call if_changed,image) @echo 'Kernel: $@ is ready' When updating the $(obj)/bzImage target the line: BUILD arch/i386/boot/bzImage will be displayed with "make KBUILD_VERBOSE=0". === 7 Kbuild Variables The top Makefile exports the following variables: VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION These variables define the current kernel version. A few arch Makefiles actually use these values directly; they should use $(KERNELRELEASE) instead. $(VERSION), $(PATCHLEVEL), and $(SUBLEVEL) define the basic three-part version number, such as "2", "4", and "0". These three values are always numeric. $(EXTRAVERSION) defines an even tinier sublevel for pre-patches or additional patches. It is usually some non-numeric string such as "-pre4", and is often blank. KERNELRELEASE $(KERNELRELEASE) is a single string such as "2.4.0-pre4", suitable for constructing installation directory names or showing in version strings. Some arch Makefiles use it for this purpose. ARCH This variable defines the target architecture, such as "i386", "arm", or "sparc". Some kbuild Makefiles test $(ARCH) to determine which files to compile. By default, the top Makefile sets $(ARCH) to be the same as the host system architecture. For a cross build, a user may override the value of $(ARCH) on the command line: make ARCH=m68k ... INSTALL_PATH This variable defines a place for the arch Makefiles to install the resident kernel image and System.map file. Use this for architecture specific install targets. INSTALL_MOD_PATH, MODLIB $(INSTALL_MOD_PATH) specifies a prefix to $(MODLIB) for module installation. This variable is not defined in the Makefile but may be passed in by the user if desired. $(MODLIB) specifies the directory for module installation. The top Makefile defines $(MODLIB) to $(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may override this value on the command line if desired. === 8 Makefile language The kernel Makefiles are designed to run with GNU Make. The Makefiles use only the documented features of GNU Make, but they do use many GNU extensions. GNU Make supports elementary list-processing functions. The kernel Makefiles use a novel style of list building and manipulation with few "if" statements. GNU Make has two assignment operators, ":=" and "=". ":=" performs immediate evaluation of the right-hand side and stores an actual string into the left-hand side. "=" is like a formula definition; it stores the right-hand side in an unevaluated form and then evaluates this form each time the left-hand side is used. There are some cases where "=" is appropriate. Usually, though, ":=" is the right choice. === 9 Credits Original version made by Michael Elizabeth Chastain, Updates by Kai Germaschewski Updates by Sam Ravnborg === 10 TODO - Describe how kbuild support shipped files with _shipped. - Generating offset header files. - Add more variables to section 7? - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/