Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1751897AbcCXUWc (ORCPT ); Thu, 24 Mar 2016 16:22:32 -0400 Received: from mga02.intel.com ([134.134.136.20]:30530 "EHLO mga02.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751683AbcCXUWa (ORCPT ); Thu, 24 Mar 2016 16:22:30 -0400 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.24,386,1455004800"; d="scan'208";a="931160505" From: megha.dey@linux.intel.com To: herbert@gondor.apana.org.au, davem@davemloft.net Cc: linux-crypto@vger.kernel.org, linux-kernel@vger.kernel.org, tim.c.chen@linux.intel.com, fenghua.yu@intel.com, Megha Dey Subject: [PATCH 0/7] crypto: SHA256 multibuffer implementation Date: Thu, 24 Mar 2016 13:25:56 -0700 Message-Id: <1458851163-3448-1-git-send-email-megha.dey@linux.intel.com> X-Mailer: git-send-email 1.9.1 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 6340 Lines: 111 From: Megha Dey In this patch series, we introduce the multi-buffer crypto algorithm on x86_64 and apply it to SHA256 hash computation. The multi-buffer technique takes advantage of the 8 data lanes in the AVX2 registers and allows computation to be performed on data from multiple jobs in parallel. This allows us to parallelize computations when data inter-dependency in a single crypto job prevents us to fully parallelize our computations. The algorithm can be extended to other hashing and encryption schemes in the future. On multi-buffer SHA256 computation with AVX2, we see throughput increase up to 2.2x over the existing x86_64 single buffer AVX2 algorithm. The multi-buffer crypto algorithm is described in the following paper: Processing Multiple Buffers in Parallel to Increase Performance on IntelĀ® Architecture Processors http://www.intel.com/content/www/us/en/communications/communications-ia-multi-buffer-paper.html The outline of the algorithm is sketched below: Any driver requesting the crypto service will place an async crypto request on the workqueue. The multi-buffer crypto daemon will pull request from work queue and put each request in an empty data lane for multi-buffer crypto computation. When all the empty lanes are filled, computation will commence on the jobs in parallel and the job with the shortest remaining buffer will get completed and be returned. To prevent prolonged stall when there is no new jobs arriving, we will flush a crypto job if it has not been completed after a maximum allowable delay. To accommodate the fragmented nature of scatter-gather, we will keep submitting the next scatter-buffer fragment for a job for multi-buffer computation until a job is completed and no more buffer fragments remain. At that time we will pull a new job to fill the now empty data slot. We call a get_completed_job function to check whether there are other jobs that have been completed when we job when we have no new job arrival to prevent extraneous delay in returning any completed jobs. The multi-buffer algorithm should be used for cases where crypto jobs submissions are at a reasonable high rate. For low crypto job submission rate, this algorithm will not be beneficial. The reason is at low rate, we do not fill out the data lanes before the maximum allowable latency, we will be flushing the jobs instead of processing them with all the data lanes full. We will miss the benefit of parallel computation, and adding delay to the processing of the crypto job at the same time. Some tuning of the maximum latency parameter may be needed to get the best performance. Note that the tcrypt SHA256 speed test, we wait for a previous job to be completed before submitting a new job. Hence this is not a valid test for multi-buffer algorithm as it requires multiple outstanding jobs submitted to fill the all data lanes to be effective (i.e. 8 outstanding jobs for the AVX2 case). An updated version of the tcrypt test is also included which would contain a more appropriate test for this scenario. As this is the first algorithm in the kernel's SHA256 crypto library that we have tried to use multi-buffer optimizations, feedbacks and testings will be much appreciated. Megha Dey (7): crypto: sha1-mb - rename sha-mb to sha1-mb crypto: sha256-mb - SHA256 multibuffer job manager and glue code crypto: sha256-mb - Enable multibuffer support crypto: sha256-mb - submit/flush routines for AVX2 crypto: sha256-mb - Algorithm data structures crypto: sha256-mb - Crypto computation (x8 AVX2) crypto: tcrypt - Add speed tests for SHA multibuffer algorithms arch/x86/crypto/Makefile | 3 +- arch/x86/crypto/{sha-mb => sha1-mb}/Makefile | 0 arch/x86/crypto/{sha-mb => sha1-mb}/sha1_mb.c | 122 ++- .../{sha-mb/sha_mb_ctx.h => sha1-mb/sha1_mb_ctx.h} | 2 +- .../{sha-mb/sha_mb_mgr.h => sha1-mb/sha1_mb_mgr.h} | 0 .../{sha-mb => sha1-mb}/sha1_mb_mgr_datastruct.S | 0 .../{sha-mb => sha1-mb}/sha1_mb_mgr_flush_avx2.S | 0 .../{sha-mb => sha1-mb}/sha1_mb_mgr_init_avx2.c | 3 +- .../{sha-mb => sha1-mb}/sha1_mb_mgr_submit_avx2.S | 0 arch/x86/crypto/{sha-mb => sha1-mb}/sha1_x8_avx2.S | 0 arch/x86/crypto/sha256-mb/Makefile | 11 + arch/x86/crypto/sha256-mb/sha256_mb.c | 1013 ++++++++++++++++++++ arch/x86/crypto/sha256-mb/sha256_mb_ctx.h | 136 +++ arch/x86/crypto/sha256-mb/sha256_mb_mgr.h | 108 +++ .../crypto/sha256-mb/sha256_mb_mgr_datastruct.S | 303 ++++++ .../crypto/sha256-mb/sha256_mb_mgr_flush_avx2.S | 323 +++++++ .../x86/crypto/sha256-mb/sha256_mb_mgr_init_avx2.c | 65 ++ .../crypto/sha256-mb/sha256_mb_mgr_submit_avx2.S | 231 +++++ arch/x86/crypto/sha256-mb/sha256_x8_avx2.S | 579 +++++++++++ crypto/Kconfig | 16 + crypto/tcrypt.c | 122 +++ crypto/testmgr.c | 18 +- 22 files changed, 3008 insertions(+), 47 deletions(-) rename arch/x86/crypto/{sha-mb => sha1-mb}/Makefile (100%) rename arch/x86/crypto/{sha-mb => sha1-mb}/sha1_mb.c (89%) rename arch/x86/crypto/{sha-mb/sha_mb_ctx.h => sha1-mb/sha1_mb_ctx.h} (99%) rename arch/x86/crypto/{sha-mb/sha_mb_mgr.h => sha1-mb/sha1_mb_mgr.h} (100%) rename arch/x86/crypto/{sha-mb => sha1-mb}/sha1_mb_mgr_datastruct.S (100%) rename arch/x86/crypto/{sha-mb => sha1-mb}/sha1_mb_mgr_flush_avx2.S (100%) rename arch/x86/crypto/{sha-mb => sha1-mb}/sha1_mb_mgr_init_avx2.c (99%) rename arch/x86/crypto/{sha-mb => sha1-mb}/sha1_mb_mgr_submit_avx2.S (100%) rename arch/x86/crypto/{sha-mb => sha1-mb}/sha1_x8_avx2.S (100%) create mode 100644 arch/x86/crypto/sha256-mb/Makefile create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb.c create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb_ctx.h create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb_mgr.h create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb_mgr_datastruct.S create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb_mgr_flush_avx2.S create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb_mgr_init_avx2.c create mode 100644 arch/x86/crypto/sha256-mb/sha256_mb_mgr_submit_avx2.S create mode 100644 arch/x86/crypto/sha256-mb/sha256_x8_avx2.S -- 1.9.1