Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1753871AbcDKJIj (ORCPT ); Mon, 11 Apr 2016 05:08:39 -0400 Received: from mail-lf0-f49.google.com ([209.85.215.49]:36232 "EHLO mail-lf0-f49.google.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751954AbcDKJIf (ORCPT ); Mon, 11 Apr 2016 05:08:35 -0400 MIME-Version: 1.0 In-Reply-To: <1460327765-18024-2-git-send-email-yuyang.du@intel.com> References: <1460327765-18024-1-git-send-email-yuyang.du@intel.com> <1460327765-18024-2-git-send-email-yuyang.du@intel.com> From: Vincent Guittot Date: Mon, 11 Apr 2016 11:08:13 +0200 Message-ID: Subject: Re: [PATCH 1/4] sched/fair: Optimize sum computation with a lookup table To: Yuyang Du Cc: Peter Zijlstra , Ingo Molnar , linux-kernel , Benjamin Segall , Paul Turner , Morten Rasmussen , Dietmar Eggemann , Juri Lelli Content-Type: text/plain; charset=UTF-8 Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 2433 Lines: 80 On 11 April 2016 at 00:36, Yuyang Du wrote: > __compute_runnable_contrib() uses a loop to compute sum, whereas a > table loopup can do it faster in a constant time. > > The following python script can be used to generate the constants: > > print " #: yN_inv yN_sum" > print "-----------------------" > y = (0.5)**(1/32.0) > x = 2**32 > xx = 1024 > for i in range(0, 32): > if i == 0: > x = x-1 > xx = xx*y > else: > x = x*y > xx = int(xx*y + 1024*y) > print "%2d: %#x %8d" % (i, int(x), int(xx)) > > print " #: sum_N32" > print "------------" > xxx = xx > for i in range(0, 11): > if i == 0: > xxx = xx > else: > xxx = xxx/2 + xx > print "%2d: %8d" % (i, xxx) > > Signed-off-by: Yuyang Du > Reviewed-by: Morten Rasmussen > --- > kernel/sched/fair.c | 20 ++++++++++++-------- > 1 file changed, 12 insertions(+), 8 deletions(-) > > diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c > index b8cc1c3..6e0eec0 100644 > --- a/kernel/sched/fair.c > +++ b/kernel/sched/fair.c > @@ -2603,6 +2603,15 @@ static const u32 runnable_avg_yN_sum[] = { > }; > > /* > + * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to > + * lower integers. > + */ > +static const u32 __accumulated_sum_N32[] = { > + 0, 23371, 35056, 40899, 43820, 45281, > + 46011, 46376, 46559, 46650, 46696, 46719, > +}; > + > +/* > * Approximate: > * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) > */ > @@ -2650,14 +2659,9 @@ static u32 __compute_runnable_contrib(u64 n) > else if (unlikely(n >= LOAD_AVG_MAX_N)) > return LOAD_AVG_MAX; > > - /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ > - do { > - contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ > - contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; > - > - n -= LOAD_AVG_PERIOD; > - } while (n > LOAD_AVG_PERIOD); > - > + /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ > + contrib = __accumulated_sum_N32[n>>5]; /* =n/LOAD_AVG_PERIOD */ > + n %= LOAD_AVG_PERIOD; > contrib = decay_load(contrib, n); > return contrib + runnable_avg_yN_sum[n]; > } FWIW, you can add my acked > -- > 2.1.4 >