Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1753435AbcDYFVM (ORCPT ); Mon, 25 Apr 2016 01:21:12 -0400 Received: from mail-pf0-f175.google.com ([209.85.192.175]:33981 "EHLO mail-pf0-f175.google.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751934AbcDYFVK (ORCPT ); Mon, 25 Apr 2016 01:21:10 -0400 From: js1304@gmail.com X-Google-Original-From: iamjoonsoo.kim@lge.com To: Andrew Morton Cc: Rik van Riel , Johannes Weiner , , Laura Abbott , Minchan Kim , Marek Szyprowski , Michal Nazarewicz , "Aneesh Kumar K.V" , Vlastimil Babka , linux-mm@kvack.org, linux-kernel@vger.kernel.org, Joonsoo Kim Subject: [PATCH v2 0/6] Introduce ZONE_CMA Date: Mon, 25 Apr 2016 14:21:04 +0900 Message-Id: <1461561670-28012-1-git-send-email-iamjoonsoo.kim@lge.com> X-Mailer: git-send-email 1.9.1 Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 7403 Lines: 162 From: Joonsoo Kim Hello, Changes from v1 o Separate some patches which deserve to submit independently o Modify description to reflect current kernel state (e.g. high-order watermark problem disappeared by Mel's work) o Don't increase SECTION_SIZE_BITS to make a room in page flags (detailed reason is on the patch that adds ZONE_CMA) o Adjust ZONE_CMA population code This series try to solve problems of current CMA implementation. CMA is introduced to provide physically contiguous pages at runtime without exclusive reserved memory area. But, current implementation works like as previous reserved memory approach, because freepages on CMA region are used only if there is no movable freepage. In other words, freepages on CMA region are only used as fallback. In that situation where freepages on CMA region are used as fallback, kswapd would be woken up easily since there is no unmovable and reclaimable freepage, too. If kswapd starts to reclaim memory, fallback allocation to MIGRATE_CMA doesn't occur any more since movable freepages are already refilled by kswapd and then most of freepage on CMA are left to be in free. This situation looks like exclusive reserved memory case. In my experiment, I found that if system memory has 1024 MB memory and 512 MB is reserved for CMA, kswapd is mostly woken up when roughly 512 MB free memory is left. Detailed reason is that for keeping enough free memory for unmovable and reclaimable allocation, kswapd uses below equation when calculating free memory and it easily go under the watermark. Free memory for unmovable and reclaimable = Free total - Free CMA pages This is derivated from the property of CMA freepage that CMA freepage can't be used for unmovable and reclaimable allocation. Anyway, in this case, kswapd are woken up when (FreeTotal - FreeCMA) is lower than low watermark and tries to make free memory until (FreeTotal - FreeCMA) is higher than high watermark. That results in that FreeTotal is moving around 512MB boundary consistently. It then means that we can't utilize full memory capacity. To fix this problem, I submitted some patches [1] about 10 months ago, but, found some more problems to be fixed before solving this problem. It requires many hooks in allocator hotpath so some developers doesn't like it. Instead, some of them suggest different approach [2] to fix all the problems related to CMA, that is, introducing a new zone to deal with free CMA pages. I agree that it is the best way to go so implement here. Although properties of ZONE_MOVABLE and ZONE_CMA is similar, I decide to add a new zone rather than piggyback on ZONE_MOVABLE since they have some differences. First, reserved CMA pages should not be offlined. If freepage for CMA is managed by ZONE_MOVABLE, we need to keep MIGRATE_CMA migratetype and insert many hooks on memory hotplug code to distiguish hotpluggable memory and reserved memory for CMA in the same zone. It would make memory hotplug code which is already complicated more complicated. Second, cma_alloc() can be called more frequently than memory hotplug operation and possibly we need to control allocation rate of ZONE_CMA to optimize latency in the future. In this case, separate zone approach is easy to modify. Third, I'd like to see statistics for CMA, separately. Sometimes, we need to debug why cma_alloc() is failed and separate statistics would be more helpful in this situtaion. Anyway, this patchset solves four problems related to CMA implementation. 1) Utilization problem As mentioned above, we can't utilize full memory capacity due to the limitation of CMA freepage and fallback policy. This patchset implements a new zone for CMA and uses it for GFP_HIGHUSER_MOVABLE request. This typed allocation is used for page cache and anonymous pages which occupies most of memory usage in normal case so we can utilize full memory capacity. Below is the experiment result about this problem. 8 CPUs, 1024 MB, VIRTUAL MACHINE make -j16 CMA reserve: 0 MB 512 MB Elapsed-time: 92.4 186.5 pswpin: 82 18647 pswpout: 160 69839 CMA reserve: 0 MB 512 MB Elapsed-time: 93.1 93.4 pswpin: 84 46 pswpout: 183 92 FYI, there is another attempt [3] trying to solve this problem in lkml. And, as far as I know, Qualcomm also has out-of-tree solution for this problem. 2) Reclaim problem Currently, there is no logic to distinguish CMA pages in reclaim path. If reclaim is initiated for unmovable and reclaimable allocation, reclaiming CMA pages doesn't help to satisfy the request and reclaiming CMA page is just waste. By managing CMA pages in the new zone, we can skip to reclaim ZONE_CMA completely if it is unnecessary. 3) Atomic allocation failure problem Kswapd isn't started to reclaim pages when allocation request is movable type and there is enough free page in the CMA region. After bunch of consecutive movable allocation requests, free pages in ordinary region (not CMA region) would be exhausted without waking up kswapd. At that time, if atomic unmovable allocation comes, it can't be successful since there is not enough page in ordinary region. This problem is reported by Aneesh [4] and can be solved by this patchset. 4) Inefficiently work of compaction Usual high-order allocation request is unmovable type and it cannot be serviced from CMA area. In compaction, migration scanner doesn't distinguish migratable pages on the CMA area and do migration. In this case, even if we make high-order page on that region, it cannot be used due to type mismatch. This patch will solve this problem by separating CMA pages from ordinary zones. I passed boot test on x86_64, x86_32, arm and arm64. I did some stress tests on x86_64 and x86_32 and there is no problem. Feel free to enjoy and please give me a feedback. :) This patchset is based on linux-next-20160413. Thanks. [1] https://lkml.org/lkml/2014/5/28/64 [2] https://lkml.org/lkml/2014/11/4/55 [3] https://lkml.org/lkml/2014/10/15/623 [4] http://www.spinics.net/lists/linux-mm/msg100562.html Joonsoo Kim (6): mm/page_alloc: recalculate some of zone threshold when on/offline memory mm/cma: introduce new zone, ZONE_CMA mm/cma: populate ZONE_CMA mm/cma: remove ALLOC_CMA mm/cma: remove MIGRATE_CMA mm/cma: remove per zone CMA stat arch/x86/mm/highmem_32.c | 8 ++ fs/proc/meminfo.c | 2 +- include/linux/cma.h | 6 + include/linux/gfp.h | 32 +++--- include/linux/memory_hotplug.h | 3 - include/linux/mempolicy.h | 2 +- include/linux/mmzone.h | 54 +++++---- include/linux/vm_event_item.h | 10 +- include/linux/vmstat.h | 8 -- include/trace/events/compaction.h | 10 +- kernel/power/snapshot.c | 8 ++ mm/cma.c | 58 +++++++++- mm/compaction.c | 10 +- mm/hugetlb.c | 2 +- mm/internal.h | 6 +- mm/memory_hotplug.c | 3 + mm/page_alloc.c | 236 ++++++++++++++++++++++---------------- mm/page_isolation.c | 5 +- mm/vmstat.c | 15 ++- 19 files changed, 303 insertions(+), 175 deletions(-) -- 1.9.1