Received: by 2002:ac0:a5b6:0:0:0:0:0 with SMTP id m51-v6csp495205imm; Wed, 6 Jun 2018 00:52:40 -0700 (PDT) X-Google-Smtp-Source: ADUXVKL18vMi5TqBZxIAm2go6PBbP/picuW/swRQekH3gmL/2+fRD6oAqmu3FwZTlLRUsyRdgDWg X-Received: by 2002:a17:902:7b95:: with SMTP id w21-v6mr2141425pll.255.1528271560648; Wed, 06 Jun 2018 00:52:40 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1528271560; cv=none; d=google.com; s=arc-20160816; b=GHsD7Qf6pnNtAaw3AotUn33MewChsJob6p42kZhpjs1UvpJdTHWpTTN9g8vxbpMLTd 2y3QZY+QF8ownk7MCc6QkVZkvtZuyA3549I58Nl+m3sEBsjMractoFpqX660h6ry7NVu H/k30FW7YKXZsqFZMDtDk99jL2vTBUNlYfh9ZZBI3bcMQel9kTujcXrZNa2n2NKMaJeO uWuaRPwNnsj+rX/rUvaE7l0T1cv8JeOlb5LcmidXMzv7xDRRG4sBt97r530rLGpVWQEN vlLhx8QF5jNbN5IjLqhdunPdUQ6IA7171chNITRAbigKi6j21OxXpD3Qxseqbz8MISc2 /6zA== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:sender:spamdiagnosticmetadata :spamdiagnosticoutput:mime-version:references:in-reply-to:message-id :date:subject:cc:to:from:dkim-signature:arc-authentication-results; bh=z+JdrNjPL4uFVtl0XKfFsZQJ/ZQMDjRKpyJ7dzP8qzw=; b=ELGx8T6/qG7DWM6P8+6UDP2lBRjAslulmHsW96RIO50F4GS2U5hCkKb8mKd2FPlHgV 6P8blZVnfFAk98RTkySE27OJuvfnf/cpMYDXNtggQpVzN47QMyXUda9cywCSkg4GOtJM 6EVicz+k1/1/IfB7pyyNkfePB/NjDUoGa8ugIUOK00w5bLp/zBh3QTMcd6hu5E5/0oiM 9E/GNWQMj5xsj90N2ORoYft7B0bB8hDlLwETkBkAy/4/gk4tDs1S+uftM233w0H1GNfr DwNCbtkciwSs1y/ONwqYmZyZ5dceOk8kxHsYww7PvgbtskC8q8M10wykemztjVDtan5T eDXA== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@xilinx.onmicrosoft.com header.s=selector1-xilinx-com header.b=V6Xj+QsA; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Return-Path: Received: from vger.kernel.org (vger.kernel.org. [209.132.180.67]) by mx.google.com with ESMTP id d10-v6si12252461pgo.630.2018.06.06.00.52.26; Wed, 06 Jun 2018 00:52:40 -0700 (PDT) Received-SPF: pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) client-ip=209.132.180.67; Authentication-Results: mx.google.com; dkim=pass header.i=@xilinx.onmicrosoft.com header.s=selector1-xilinx-com header.b=V6Xj+QsA; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S932455AbeFFHvs (ORCPT + 99 others); Wed, 6 Jun 2018 03:51:48 -0400 Received: from mail-by2nam03on0060.outbound.protection.outlook.com ([104.47.42.60]:63424 "EHLO NAM03-BY2-obe.outbound.protection.outlook.com" rhost-flags-OK-OK-OK-FAIL) by vger.kernel.org with ESMTP id S932443AbeFFHvm (ORCPT ); Wed, 6 Jun 2018 03:51:42 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=xilinx.onmicrosoft.com; s=selector1-xilinx-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=z+JdrNjPL4uFVtl0XKfFsZQJ/ZQMDjRKpyJ7dzP8qzw=; b=V6Xj+QsAv7aW1xC7MkLfk1DKuCPyCFL7gfmX7dP18fP/36EHbOpN/6rzFy9qfk8mrSWowM4JCci9Klp6dH8pW3kHCc5vQ3MtqlIGiSnMRsKO66MZfJYIGSVa2Wo/rRs07KEk9xS27t4qA0v9QNRWc799EJ22Ko5RHTOEWfbJyuE= Received: from MWHPR02CA0045.namprd02.prod.outlook.com (2603:10b6:301:60::34) by BY2PR0201MB1495.namprd02.prod.outlook.com (2a01:111:e400:5327::28) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.820.11; Wed, 6 Jun 2018 07:51:37 +0000 Received: from SN1NAM02FT036.eop-nam02.prod.protection.outlook.com (2a01:111:f400:7e44::204) by MWHPR02CA0045.outlook.office365.com (2603:10b6:301:60::34) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384) id 15.20.841.14 via Frontend Transport; Wed, 6 Jun 2018 07:51:36 +0000 Authentication-Results: spf=pass (sender IP is 149.199.60.83) smtp.mailfrom=xilinx.com; gmail.com; dkim=none (message not signed) header.d=none;gmail.com; dmarc=bestguesspass action=none header.from=xilinx.com; Received-SPF: Pass (protection.outlook.com: domain of xilinx.com designates 149.199.60.83 as permitted sender) receiver=protection.outlook.com; client-ip=149.199.60.83; helo=xsj-pvapsmtpgw01; Received: from xsj-pvapsmtpgw01 (149.199.60.83) by SN1NAM02FT036.mail.protection.outlook.com (10.152.72.149) with Microsoft SMTP Server (version=TLS1_0, cipher=TLS_RSA_WITH_AES_256_CBC_SHA) id 15.20.841.10 via Frontend Transport; Wed, 6 Jun 2018 07:51:35 +0000 Received: from unknown-38-66.xilinx.com ([149.199.38.66] helo=xsj-pvapsmtp01) by xsj-pvapsmtpgw01 with esmtp (Exim 4.63) (envelope-from ) id 1fQTEE-0001LK-VU; Wed, 06 Jun 2018 00:51:34 -0700 Received: from [127.0.0.1] (helo=localhost) by xsj-pvapsmtp01 with smtp (Exim 4.63) (envelope-from ) id 1fQTE9-0003rA-SG; Wed, 06 Jun 2018 00:51:29 -0700 Received: from xsj-pvapsmtp01 (smtp.xilinx.com [149.199.38.66]) by xsj-smtp-dlp1.xlnx.xilinx.com (8.13.8/8.13.1) with ESMTP id w567pKFH008286; Wed, 6 Jun 2018 00:51:20 -0700 Received: from [172.23.37.108] (helo=xhdnagasure40.xilinx.com) by xsj-pvapsmtp01 with esmtp (Exim 4.63) (envelope-from ) id 1fQTDz-0003mN-Up; Wed, 06 Jun 2018 00:51:20 -0700 From: Naga Sureshkumar Relli To: , , , , , , , , , , , CC: , , , Naga Sureshkumar Relli Subject: [LINUX PATCH v9 4/4] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface Date: Wed, 6 Jun 2018 13:19:42 +0530 Message-ID: <1528271382-21690-5-git-send-email-naga.sureshkumar.relli@xilinx.com> X-Mailer: git-send-email 2.7.4 In-Reply-To: <1528271382-21690-1-git-send-email-naga.sureshkumar.relli@xilinx.com> References: <1528271382-21690-1-git-send-email-naga.sureshkumar.relli@xilinx.com> X-RCIS-Action: ALLOW X-TM-AS-Product-Ver: IMSS-7.1.0.1224-8.2.0.1013-23620.005 X-TM-AS-User-Approved-Sender: Yes;Yes X-EOPAttributedMessage: 0 X-MS-Office365-Filtering-HT: Tenant X-Forefront-Antispam-Report: CIP:149.199.60.83;IPV:NLI;CTRY:US;EFV:NLI;SFV:NSPM;SFS:(10009020)(39380400002)(39840400004)(346002)(376002)(396003)(2980300002)(438002)(189003)(199004)(7416002)(26005)(186003)(81156014)(81166006)(8676002)(5660300001)(486006)(50226002)(53946003)(106002)(36756003)(107886003)(336012)(106466001)(59450400001)(9786002)(426003)(356003)(575784001)(47776003)(48376002)(6666003)(63266004)(50466002)(4326008)(39060400002)(77096007)(2616005)(2201001)(476003)(110136005)(51416003)(76176011)(54906003)(316002)(446003)(36386004)(16586007)(126002)(8936002)(2906002)(305945005)(478600001)(11346002)(7696005)(921003)(107986001)(1121003)(217873001)(579004);DIR:OUT;SFP:1101;SCL:1;SRVR:BY2PR0201MB1495;H:xsj-pvapsmtpgw01;FPR:;SPF:Pass;LANG:en;PTR:unknown-60-83.xilinx.com;MX:1;A:1; X-Microsoft-Exchange-Diagnostics: 1;SN1NAM02FT036;1:R3uvXBHKWTcxgco2yM0YHwiu8YdwSKjMgP7EoDtr6jNHIKEsf9QO366L2PbDnrwLumQ6j5SYLmOTF425pfJIKyM3xtpIs+vSC6hHaDTthDT6ZF0yqUPlg8aKgk7VcJF6 MIME-Version: 1.0 Content-Type: text/plain X-MS-PublicTrafficType: Email X-Microsoft-Antispam: UriScan:;BCL:0;PCL:0;RULEID:(7020095)(4652020)(4534165)(4627221)(201703031133081)(201702281549075)(5600026)(4608076)(2017052603328)(7153060);SRVR:BY2PR0201MB1495; X-Microsoft-Exchange-Diagnostics: 1;BY2PR0201MB1495;3:Mjc/erDYrjeFVacpny8+c3MN4twkxitXpIZlcNfgUOZlHht6KPZsLHcApBiUQatGYwQ0BrnjQhVk0i+3/uKgAyjDHLGMkxhkoasrTt18HDte48sySkeuh+RVHLNtctXjJ5fT/d3DzN5lrEuGeXZv4aTZ6UKhFFI0SRHdKM5tufZTdiq+Vecu+CtYEGHos6aqbxnHTB2/1Am3KIenwfnN2WO8b8Sqiv1nIJNiARQIzoW5WR7whBzH73vAFKxT/KPCAZl/REpRUES58Rd22kvstz1GXKTUH7ng/517K/FohRueJLCf802Iyl6Cvk45oPHoW90KhmEE2MtrZXAsgQhHJ4ACRMdLpdtXiVhi3d0c0w8=;25:MRXIIP6QwqPhQOlY1zdSIf/hlXLuoSH76dSiQaAW5+5uYQzd3jodTmmi9j5pr6HABkmL1J3ylmOQFWDyungrwDqxaVsXnY2zRackY7I15v7SXVB60JDlvSRJDyq3DecOSmWgAjrAqI5z2fqYJALq/A3wZxt/s6LkGKaau4VRQr8qJs8EWYBBBZEwBzoTo+E4tJCYHqL6pBrENiJYB+yn2En/mAMRTR26j8wjQ1gAfkoAfmynvQ7LWxfgMK1Xl7b7oi8GKf4Z/hCehgB5A+bwd1SS/ZaBFtvBJz4/91tqC/ySySHXs8JHmD+tzdm9B7HDJXKD9PrHtwlwpPSTKKY2dA== X-MS-TrafficTypeDiagnostic: BY2PR0201MB1495: X-Microsoft-Exchange-Diagnostics: 1;BY2PR0201MB1495;31:lUVCu7r/CmhsFoUOjhnMLpfObYOJ1BfBQFGAFO6QFZz1hfXjn0DZ3FOyOootJ3h0LwRLacDtNuOVMZHr4Ncw6U6ht2OOcY31b3PRk5Tb4Ye7jCW5jpsRIV6Dj2H6+NDyUVVFQKTTEaFOAtYk5iVn6MpxgHcOGDUIzebR5iJDFw5NG6RujCFY8rVpQmImzwUf8O2mizAk8HjCODHDwL/dyeHWrUwCo31MGAU/PTdPhNo=;20:nnTxBiv2LK4GvQEz3mkH+P/ofDfHRe/hLpZUTmt2UmhlkIAkFeKaEmhziBXQvDQJ8ML2HvxhN1++nFAu0lWlApRufKdGI/UJBmMHVuTyJoWkHolYqQqLHcJGyCs9hIhIN9i7loS/miwRzAFoCNjhWMEWLgVR5GVVvZe1ceTOX50Z7NiJoDRgGghvu9ytsELpXAdvMFAZJjqjoG1FjgfCsga+KTxtXW80hl4ISY7drOpJI59VGY3qakUgg5v2ItX7b8swG/cIogof1q57voUEbaGyrGtEkuqB6VDK46wf9haJL2Ydc0B+zM1lPnYDmjEF1lFrOpkkh8gpT8WbAr7QyIXKS6BN6GbO6se7A3n+CyFtBsiAtZcQ+hgKG7nwoteXeCbPsuphxThTTBCPxh1QXzgcmfT24vejihbkDWoIB0okYp9RS/8nxVIl4k4Y2M2nV8IXNEZaolw92In7e2dGIzHIMwk2Ti95Ym+PepXYVm7Raz+5yyFkeVk3T9TaNhcn X-Auto-Response-Suppress: DR, RN, NRN, OOF, AutoReply X-Microsoft-Antispam-PRVS: X-Exchange-Antispam-Report-Test: UriScan:(192813158149592); X-MS-Exchange-SenderADCheck: 1 X-Exchange-Antispam-Report-CFA-Test: BCL:0;PCL:0;RULEID:(8211001083)(6040522)(2401047)(5005006)(8121501046)(3002001)(3231254)(944501410)(52105095)(10201501046)(93006095)(93004095)(6055026)(149027)(150027)(6041310)(20161123564045)(20161123558120)(20161123560045)(20161123562045)(201703131423095)(201702281528075)(20161123555045)(201703061421075)(201703061406153)(6072148)(201708071742011)(7699016);SRVR:BY2PR0201MB1495;BCL:0;PCL:0;RULEID:;SRVR:BY2PR0201MB1495; X-Microsoft-Exchange-Diagnostics: 1;BY2PR0201MB1495;4:tje8h1BxpWHIZ6vyJVhP89HREjLuS704/HKxQuVVwdpfK4gRyobZcLCo1It8/Vl++br7cnFDAVRg4tVCHzQ8OU/Fb572je8Xmt8wMv+XMXmJjPxB1lc8rJKfCaj0sfZB1gtQ3EkGJH7dzO6KZFSH4/PW7ooMLz8281GJFIboeFcXfWWkh4Ta3EyChvkinMDTVnzUnWlEHW1+Y4L6Zou5n5l55MCSi8p2gshqO09sF84CdXsnyDrnajT583Wh+reQ+eVDljTziiRzXqVzsRye/t3WXZXnx1JW40UIzUijM7bKLi5UGYR4W6kCFVx+ovMl X-Forefront-PRVS: 06952FC175 X-Microsoft-Exchange-Diagnostics: =?us-ascii?Q?1;BY2PR0201MB1495;23:1vvDfEXVfZddwQjGCSwjtcVzMwsSXbpHgVSYfEa?= =?us-ascii?Q?/fH3rUnil41z3qpESW+IjPhPQIuyq3DROMsQmfw3+Ile3JrFYy/aRIvI2/IW?= =?us-ascii?Q?ACZ7AcKVAG7UNWbntkwXN5fGbR4+/ZMmTHcwesyGk6sIwf3tFSPA4Wo1+j1d?= =?us-ascii?Q?lK5lZJVBKFGIJTZ6gUH43jD6qwZTGT2RZvInebdLqsmi9Rdgtgc9u2wTEk+I?= =?us-ascii?Q?tFXr8WQf2EtEwTnO7GMvSZCtWHXet6McCeclqVH4Yu4yTExYJRahcl1joqDN?= =?us-ascii?Q?HPJrHMc6s5Ob5F1otYvMMv1n9se3sFwwvqlfw6sYLxyjtd3OApnFxSr20C6j?= =?us-ascii?Q?p43K7AlEiWX+G2ajlhUKdu1z3sF+ijPk4X1aQZirDj4XrkB/jzCmlEz9RT8w?= =?us-ascii?Q?oI+IzFg0XLeAaYDmCIDjOQfc8YTfM6O1hvfyVW2duJRpvfpUEagEmcW5VGSc?= =?us-ascii?Q?19xDhiAvNE6CgpPtVFJSDCodr6R2UapOiy1S4Ah9yuvhrpeuq3ZFl4KLSAwq?= =?us-ascii?Q?Iq/phTYOsYs11ac4FXFElqFzcb35ylI2CWUTSntxkrJJcX/ouO82y14N0Cwc?= =?us-ascii?Q?pjNm8sZr16VIysPooi6AqFBvjxJIr9S7u7y6KX+hrsUVpVFPBLD4K3mAItBe?= =?us-ascii?Q?KkI/uIa70ef3HJmdmQfnQ+GmKo00Ud68QbIOMh7HH78IefX3+P+tlcQhsMZR?= =?us-ascii?Q?UusMSUNTep3NFV8yrTNKpyCSgobk16zwZ2JxlAZbosBR0pWJ2hjiWkGUQ9fY?= =?us-ascii?Q?NeWK2bIjC/4ejWFE1Szhg+cfo9bEolUZ0NTNRnBsgzySjEFwvSZLTZMJClVp?= =?us-ascii?Q?bZVYMG5VcqXMqQn6saUD+cuByDUHiPC42d9aXCNdpnCKQqh/8LQJWCipRQcM?= =?us-ascii?Q?LV72pWLX8yYcWc42BJEvsh8A1/hAz2ijATmsUoiKrN5vqs8plwrD2Gvm7VJH?= =?us-ascii?Q?5lHNyJottnB5pk8ZYa74LCFdJYgzKcihH2U6rlFJSEdA8XUvJetyYcAWI2lg?= =?us-ascii?Q?kKsXKIVgN/pBb4aq9adWVyeVXRI9ldEosbWzDA/oH2QXl6HRrTiY+DNI7Amu?= =?us-ascii?Q?g0QKwEEpA7rC/fumyzXMLtPYHwxkaohCW6ZyXiXF/3CnfmbGxKAXEJGNgeJK?= =?us-ascii?Q?24f1jTyWQbI8mz8wHQSsDT2hR0Bsl6zMv6MicpEnBZ4oHgoy491KCk+Cggm1?= =?us-ascii?Q?TX4QD5wO+vex38oNrxOrgV5ovPWCExdVtwAceD/ulncONMBGPM3FKOgsr1e5?= =?us-ascii?Q?LBpFr/+2TVD39xOWShrV/Qjk7Tm57m2SPzMJzT9tZjMUJa15lEugjlFt8dgc?= =?us-ascii?Q?hq5APJuLmFC6fBdWj3sTiV5iTomZSo6glyT9X9psbQSOp?= X-Microsoft-Antispam-Message-Info: UL9cfSWndXzNPYM3Y0ihUymD4vWL/dp9I2d2PY+9W2JIrVbXVto+k+XBfuStssmokV6QKGSXCwtHkpD/sigb8xl+zhSYZC+R29NdkT2aHPf8rhnhbusOAo9zNMivL6Ylyl3C2leNY3+W+ZInz29ErTSwsXE1VAep9no8BP/z6ylJVkpwz8vetaYyEyG+4s9M X-Microsoft-Exchange-Diagnostics: 1;BY2PR0201MB1495;6:WL3U0NenAj3ZEnL9a7wr71o4DouXOs4CZRVqqf2ggWr1WgQozrJV+m8vhGvFG1BgyrA03N3aluAh3KUybhdiP0TtoBvYz6dkq6WS0Rz3+StMoeG0HtD+29v63FVIlQzwnxslV5eFd0VlEC7sF4yFI/H+X2rEhOxdGhU2u+/eLru8U2bC/Yg5KeKZLtSxjCXh3QMZ2mm5sQE8UpK0/W7L4lT9uzBTE9sKlp+KD/fOjeUHFGe3zbS1fdLLQ9aAXYGeuoMGORH+OBKrEgmlzE3vRlheLcwCkVr1Rbz4p50iX2qOIdGNToJzdcwyj7MckqPgZZDC7aGG7vHFw6WLGdHWbFBy4p2CSGXPbsoU6VWx+SpTb+5XMZc5/hzGVGPWvM7QzPtWmuzXYT8wguEw/LssSzkOW0L2azV3craiabB7K3hm2BM7Ef/4i+qW6u46Xs9hYL1vAcCgzm8FlNHGv0o4lw==;5:cuDR1c/e/tr2NZpXPGWHuxetfE5ZCuhMSjXPrhP0FIF4aU6q2EmXh0vdk2CoVPru33vG7jUMxGechVNCmmbf1VQUdGNIqYDM26LtvQWocTDYRH6q2iWt/IYc6040GGBp57JLmeMBjAWhMbe+RK6l2nAsHEs4bo8OFYQhwT/Kn6U=;24:8yzW6pzIrNYMqUPiLfaXimpLVMMsrWDp+rB/5QgKLJAkVAk5yhcYCcZnsqXVRfuZ1zHPsVFTAlLeSvHsvpMWjtRXhVEHgIpgT9lo6ReN540= SpamDiagnosticOutput: 1:99 SpamDiagnosticMetadata: NSPM X-Microsoft-Exchange-Diagnostics: 1;BY2PR0201MB1495;7:kHCQdziVKNyFQrqAaV4IOHpRTJ5s3/axhA5L6dPNvWHAhOp3txXykzR9aUmI7f46sJhNpsx7DjM2bvt6FsS9r5Q3fmJX3Zc6EA7gcnxGENMiSUHX42G94wKX26pf6QflALw9GM22FK1ADV8osgg3dAjVRDbvZ22CkfcTiYaQNfViF9r6xb1mIE9VHs4Cf+yUx/TcACRmZ8YpsAv6Ujd2jnnFnr7Tg4ijkFbxvLnpMZR2BUS5wPGsXGPk5fJ7E52V X-MS-Office365-Filtering-Correlation-Id: 6c920560-bef0-497f-928b-08d5cb82546b X-OriginatorOrg: xilinx.com X-MS-Exchange-CrossTenant-OriginalArrivalTime: 06 Jun 2018 07:51:35.4378 (UTC) X-MS-Exchange-CrossTenant-Network-Message-Id: 6c920560-bef0-497f-928b-08d5cb82546b X-MS-Exchange-CrossTenant-Id: 657af505-d5df-48d0-8300-c31994686c5c X-MS-Exchange-CrossTenant-OriginalAttributedTenantConnectingIp: TenantId=657af505-d5df-48d0-8300-c31994686c5c;Ip=[149.199.60.83];Helo=[xsj-pvapsmtpgw01] X-MS-Exchange-CrossTenant-FromEntityHeader: HybridOnPrem X-MS-Exchange-Transport-CrossTenantHeadersStamped: BY2PR0201MB1495 Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Add driver for arm pl353 static memory controller nand interface with HW ECC support. This controller is used in xilinx zynq soc for interfacing the nand flash memory. Signed-off-by: Naga Sureshkumar Relli --- Changes in v9: - Addressed the below comments given by Miquel - instead of using pl353_nand_write32, use directly writel_relaxed - Fixed check patch warnings - Renamed write_buf/read_buf to write_data_op/read_data_op - use BIT macro instead of 1 << nr - Use NAND_ROW_ADDR_3 flag - Use nand_wait_ready() - Removed swecc functions - Use address cycles as per size, instead of reading it from Parameter page - Instead of writing too many patterns, use optional property Changes in v8: - Added exec_op() implementation - Fixed the below v7 review comments - removed mtd_info from pl353_nand_info struct - Corrected ecc layout offsets - Added on-die ecc support Changes in v7: - Currently not implemented the memclk rate adjustments. I will look into this later and once the basic driver is accepted. - Fixed GPL licence ident Changes in v6: - Fixed the checkpatch.pl reported warnings - Using the address cycles information from the onfi param page earlier it is hardcoded to 5 in driver Changes in v5: - Configure the nand timing parameters as per the onfi spec Changes in v4: - Updated the driver to sync with pl353_smc driver APIs Changes in v3: - implemented the proper error codes - further breakdown this patch to multiple sets - added the controller and driver details to Documentation section - updated the licenece to GPLv2 - reorganized the pl353_nand_ecc_init function Changes in v2: - use "depends on" rather than "select" option in kconfig - remove unused variable parts - remove dummy helper and use writel_relaxed directly --- drivers/mtd/nand/raw/Kconfig | 7 + drivers/mtd/nand/raw/Makefile | 3 + drivers/mtd/nand/raw/pl353_nand.c | 1236 +++++++++++++++++++++++++++++++++++++ 3 files changed, 1246 insertions(+) create mode 100644 drivers/mtd/nand/raw/pl353_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 6871ff0..1c5d528 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -530,4 +530,11 @@ config MTD_NAND_MTK Enables support for NAND controller on MTK SoCs. This controller is found on mt27xx, mt81xx, mt65xx SoCs. +config MTD_NAND_PL353 + tristate "ARM Pl353 NAND flash driver" + depends on MTD_NAND && ARM + depends on PL353_SMC + help + Enables support for PrimeCell Static Memory Controller PL353. + endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 165b7ef..6855a0d 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -56,7 +56,9 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o +CFLAGS_{nand_base.o} := -DDEBUG nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_amd.o nand-objs += nand_hynix.o @@ -64,3 +66,4 @@ nand-objs += nand_macronix.o nand-objs += nand_micron.o nand-objs += nand_samsung.o nand-objs += nand_toshiba.o + diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c new file mode 100644 index 0000000..a880eade --- /dev/null +++ b/drivers/mtd/nand/raw/pl353_nand.c @@ -0,0 +1,1236 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ARM PL353 NAND flash controller driver + * + * Copyright (C) 2017 Xilinx, Inc + * Author: Punnaiah chowdary kalluri + * Author: Naga Sureshkumar Relli + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define PL353_NAND_DRIVER_NAME "pl353-nand" + +/* NAND flash driver defines */ +#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */ +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */ +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ + +/* Flash memory controller operating parameters */ + +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \ + (0 << 5)) /* No Jumping */ + +/* AXI Address definitions */ +#define START_CMD_SHIFT 3 +#define END_CMD_SHIFT 11 +#define END_CMD_VALID_SHIFT 20 +#define ADDR_CYCLES_SHIFT 21 +#define CLEAR_CS_SHIFT 21 +#define ECC_LAST_SHIFT 10 +#define COMMAND_PHASE (0 << 19) +#define DATA_PHASE BIT(19) + +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ + +#define ONDIE_ECC_FEATURE_ADDR 0x90 +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 + +struct pl353_nfc_op { + u32 cmnds[4]; + u32 thirdrow; + u32 type; + u32 end_cmd; + u32 addrs; + bool wait; + u32 len; + u32 naddrs; + unsigned int data_instr_idx; + const struct nand_op_instr *data_instr; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + unsigned int data_delay_ns; + unsigned int cle_ale_delay_ns; + u32 addr5; + u32 addr6; +}; + +/** + * struct pl353_nand_info - Defines the NAND flash driver instance + * @chip: NAND chip information structure + * @nand_base: Virtual address of the NAND flash device + * @end_cmd_pending: End command is pending + * @end_cmd: End command + * @row_addr_cycles: Row address cycles + * @col_addr_cycles: Column address cycles + * @address: Page address + * @cmd_pending: More command is needed + */ +struct pl353_nand_info { + struct nand_chip chip; + void __iomem *nand_base; + unsigned long end_cmd_pending; + unsigned long end_cmd; + u8 addr_cycles; + u32 address; + u32 cmd_pending; + struct completion complete; +}; + +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = { + .ecc = pl353_ecc_ooblayout16_ecc, + .free = pl353_ecc_ooblayout16_free, +}; + +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 52; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 2; + oobregion->length = 50; + + return 0; +} + +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = { + .ecc = pl353_ecc_ooblayout64_ecc, + .free = pl353_ecc_ooblayout64_free, +}; + +/* Generic flash bbt decriptors */ +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/** + * pl353_nand_read_data_op - read chip data into buffer + * @chip: Pointer to the NAND chip info structure + * @in: Pointer to the buffer to store read data + * @len: Number of bytes to read + * Return: Always return zero + */ +static int pl353_nand_read_data_op(struct nand_chip *chip, + u8 *in, + unsigned int len) +{ + int i; + + if (IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) { + u32 *ptr = (u32 *)in; + + len /= 4; + for (i = 0; i < len; i++) + ptr[i] = readl(chip->IO_ADDR_R); + } else { + for (i = 0; i < len; i++) + in[i] = readb(chip->IO_ADDR_R); + } + + return 0; +} + +/** + * pl353_nand_write_buf - write buffer to chip + * @mtd: Pointer to the mtd info structure + * @buf: Pointer to the buffer to store write data + * @len: Number of bytes to write + */ +static void pl353_nand_write_data_op(struct mtd_info *mtd, const u8 *buf, + int len) +{ + int i; + struct nand_chip *chip = mtd_to_nand(mtd); + + if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) { + u32 *ptr = (u32 *)buf; + + len /= 4; + for (i = 0; i < len; i++) + writel(ptr[i], chip->IO_ADDR_W); + } else { + for (i = 0; i < len; i++) + writeb(buf[i], chip->IO_ADDR_W); + } +} + +/** + * pl353_nand_calculate_hwecc - Calculate Hardware ECC + * @mtd: Pointer to the mtd_info structure + * @data: Pointer to the page data + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored + * + * This function retrieves the Hardware ECC data from the controller and returns + * ECC data back to the MTD subsystem. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd, + const u8 *data, u8 *ecc) +{ + u32 ecc_value, ecc_status; + u8 ecc_reg, ecc_byte; + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; + /* Wait till the ECC operation is complete or timeout */ + do { + if (pl353_smc_ecc_is_busy()) + cpu_relax(); + else + break; + } while (!time_after_eq(jiffies, timeout)); + + if (time_after_eq(jiffies, timeout)) { + pr_err("%s timed out\n", __func__); + return -ETIMEDOUT; + } + + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { + /* Read ECC value for each block */ + ecc_value = pl353_smc_get_ecc_val(ecc_reg); + ecc_status = (ecc_value >> 24) & 0xFF; + /* ECC value valid */ + if (ecc_status & 0x40) { + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { + /* Copy ECC bytes to MTD buffer */ + *ecc = ~ecc_value & 0xFF; + ecc_value = ecc_value >> 8; + ecc++; + } + } else { + pr_warn("%s status failed\n", __func__); + return -1; + } + } + return 0; +} + +/** + * onehot - onehot function + * @value: Value to check for onehot + * + * This function checks whether a value is onehot or not. + * onehot is if and only if onebit is set. + * + * Return: 1 if it is onehot else 0 + */ +static int onehot(unsigned short value) +{ + return (value & (value - 1)) == 0; +} + +/** + * pl353_nand_correct_data - ECC correction function + * @mtd: Pointer to the mtd_info structure + * @buf: Pointer to the page data + * @read_ecc: Pointer to the ECC value read from spare data area + * @calc_ecc: Pointer to the calculated ECC value + * + * This function corrects the ECC single bit errors & detects 2-bit errors. + * + * Return: 0 if no ECC errors found + * 1 if single bit error found and corrected. + * -1 if multiple ECC errors found. + */ +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + unsigned char bit_addr; + unsigned int byte_addr; + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + /* no error */ + if (ecc_odd == 0 && ecc_even == 0) + return 0; + + if (ecc_odd == (~ecc_even & 0xfff)) { + /* bits [11:3] of error code is byte offset */ + byte_addr = (ecc_odd >> 3) & 0x1ff; + /* bits [2:0] of error code is bit offset */ + bit_addr = ecc_odd & 0x7; + /* Toggling error bit */ + buf[byte_addr] ^= (BIT(bit_addr)); + return 1; + } + /* one error in parity */ + if (onehot(ecc_odd | ecc_even) == 1) + return 1; + + /* Uncorrectable error */ + return -1; +} + +static int pl353_dev_timeout(struct mtd_info *mtd, struct nand_chip *chip) +{ + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; + + do { + if (chip->dev_ready(mtd)) + break; + cpu_relax(); + } while (!time_after_eq(jiffies, timeout)); + + if (time_after_eq(jiffies, timeout)) { + pr_err("%s timed out\n", __func__); + return -1; + } + + return 0; +} + +static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip, + int page, int column, int start_cmd, int end_cmd, + bool read) +{ + unsigned long data_phase_addr; + u32 end_cmd_valid = 0; + void __iomem *cmd_addr; + unsigned long cmd_phase_addr = 0, cmd_data = 0; + + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + + end_cmd_valid = read ? 1 : 0; + + cmd_phase_addr = (unsigned long __force)xnand->nand_base + + ((xnand->addr_cycles + << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (start_cmd << START_CMD_SHIFT)); + cmd_addr = (void __iomem * __force)cmd_phase_addr; + + /* Get the data phase address */ + data_phase_addr = (unsigned long __force)xnand->nand_base + + ((0x0 << CLEAR_CS_SHIFT) | + (0 << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT)); + + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + chip->IO_ADDR_W = chip->IO_ADDR_R; + if (chip->options & NAND_BUSWIDTH_16) + column /= 2; + cmd_data = column; + if (mtd->writesize > PL353_NAND_ECC_SIZE) { + cmd_data |= page << 16; + /* Another address cycle for devices > 128MiB */ + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(cmd_data, cmd_addr); + cmd_data = (page >> 16); + } + } else { + cmd_data |= page << 8; + } + + writel_relaxed(cmd_data, cmd_addr); +} + +/** + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + unsigned long data_phase_addr; + u8 *p; + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; + + chip->pagebuf = -1; + if (mtd->writesize < PL353_NAND_ECC_SIZE) + return 0; + + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + + ndelay(100); + pl353_dev_timeout(mtd, chip); + + p = chip->oob_poi; + pl353_nand_read_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr += nand_offset; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + return 0; +} + +/** + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @page: Page number to write + * + * Return: Zero on success and EIO on failure + */ +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + const u8 *buf = chip->oob_poi; + unsigned long data_phase_addr; + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; + u32 addrcycles = 0; + + chip->pagebuf = -1; + addrcycles = xnand->addr_cycles; + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + ndelay(100); + pl353_nand_write_data_op(mtd, buf, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH)); + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + data_phase_addr += nand_offset; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + pl353_nand_write_data_op(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH); + nand_wait_ready(mtd); + + return 0; +} + +/** + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + unsigned long data_phase_addr; + u8 *p; + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; + + pl353_nand_read_data_op(chip, buf, mtd->writesize); + p = chip->oob_poi; + pl353_nand_read_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr += nand_offset; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + return 0; +} + +/** + * pl353_nand_write_page_raw - [Intern] raw page write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to write + * + * Return: Always return zero + */ +static int pl353_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + unsigned long data_phase_addr; + u8 *p; + + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; + + pl353_nand_write_data_op(mtd, buf, mtd->writesize); + p = chip->oob_poi; + pl353_nand_write_data_op(mtd, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + data_phase_addr += nand_offset; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + + pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); + ndelay(100); + nand_wait_ready(mtd); + return 0; +} + +/** + * nand_write_page_hwecc - Hardware ECC based page write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to write + * + * This functions writes data and hardware generated ECC values in to the page. + * + * Return: Always return zero + */ +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + int eccsize = chip->ecc.size; + int eccsteps = chip->ecc.steps; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *oob_ptr; + const u8 *p = buf; + u32 ret; + unsigned long data_phase_addr; + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; + + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + ndelay(100); + for ( ; (eccsteps - 1); eccsteps--) { + pl353_nand_write_data_op(mtd, p, eccsize); + p += eccsize; + } + pl353_nand_write_data_op(mtd, p, + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + p = buf; + chip->ecc.calculate(mtd, p, &ecc_calc[0]); + + /* Wait for ECC to be calculated and read the error values */ + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, + 0, chip->ecc.total); + if (ret) + return ret; + /* Clear ECC last bit */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr -= nand_offset; + data_phase_addr &= ~PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + + /* Write the spare area with ECC bytes */ + oob_ptr = chip->oob_poi; + pl353_nand_write_data_op(mtd, oob_ptr, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH)); + + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + data_phase_addr += nand_offset; + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + pl353_nand_write_data_op(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); + + /* + * Apply this short delay always to ensure that we do wait tWB in any + * case on any machine. + */ + ndelay(100); + nand_wait_ready(mtd); + + return 0; +} + +/** + * pl353_nand_read_page_hwecc - Hardware ECC based page read function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the buffer to store read data + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * This functions reads data and checks the data integrity by comparing hardware + * generated ECC values and read ECC values from spare area. + * + * Return: 0 always and updates ECC operation status in to MTD structure + */ +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + int i, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + u8 *p = buf; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + u8 *oob_ptr; + u32 ret; + unsigned long data_phase_addr; + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; + + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + ndelay(100); + pl353_dev_timeout(mtd, chip); + + for ( ; (eccsteps - 1); eccsteps--) { + pl353_nand_read_data_op(chip, p, eccsize); + p += eccsize; + } + pl353_nand_read_data_op(chip, p, + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Read the calculated ECC value */ + p = buf; + chip->ecc.calculate(mtd, p, &ecc_calc[0]); + + /* Clear ECC last bit */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr -= nand_offset; + data_phase_addr &= ~PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + + /* Read the stored ECC value */ + oob_ptr = chip->oob_poi; + pl353_nand_read_data_op(chip, oob_ptr, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH)); + + /* de-assert chip select */ + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr += nand_offset; + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + /* Check ECC error for all blocks and correct if it is correctable */ + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + stat = chip->ecc.correct(mtd, p, &ecc[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/** + * pl353_nand_select_chip - Select the flash device + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * + * This function is empty as the NAND controller handles chip select line + * internally based on the chip address passed in command and data phase. + */ +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) +{ +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void pl353_nfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct pl353_nfc_op *nfc_op) +{ + const struct nand_op_instr *instr = NULL; + unsigned int op_id, offset, naddrs; + int i, len; + const u8 *addrs; + + memset(nfc_op, 0, sizeof(struct pl353_nfc_op)); + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + nfc_op->len = nand_subop_get_data_len(subop, op_id); + len = nand_subop_get_data_len(subop, op_id); + instr = &subop->instrs[op_id]; + if (subop->ninstrs == 1) + nfc_op->cmnds[0] = -1; + switch (instr->type) { + case NAND_OP_CMD_INSTR: + nfc_op->type = NAND_OP_CMD_INSTR; + if (op_id) + nfc_op->cmnds[1] = instr->ctx.cmd.opcode; + else + nfc_op->cmnds[0] = instr->ctx.cmd.opcode; + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + nfc_op->addrs = instr->ctx.addr.addrs[offset]; + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) { + nfc_op->addrs |= instr->ctx.addr.addrs[i] << + (8 * i); + } + + if (naddrs >= 5) + nfc_op->addr5 = addrs[4]; + if (naddrs >= 6) + nfc_op->addr6 = addrs[5]; + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop, + op_id); + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_IN_INSTR: + nfc_op->data_instr = instr; + nfc_op->type = NAND_OP_DATA_IN_INSTR; + nfc_op->data_instr_idx = op_id; + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_OUT_INSTR: + nfc_op->data_instr = instr; + nfc_op->type = NAND_OP_DATA_IN_INSTR; + nfc_op->data_instr_idx = op_id; + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op->rdy_delay_ns = instr->delay_ns; + nfc_op->wait = true; + break; + } + } +} + +static void cond_delay(unsigned int ns) +{ + if (!ns) + return; + + if (ns < 10000) + ndelay(ns); + else + udelay(DIV_ROUND_UP(ns, 1000)); +} + +/** + * pl353_nand_cmd_function - Send command to NAND device + * @chip: Pointer to the NAND chip info structure + * @subop: Pointer to array of instructions + * Return: Always return zero + */ +static int pl353_nand_cmd_function(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_op_instr *instr; + struct pl353_nfc_op nfc_op = {}; + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + void __iomem *cmd_addr; + unsigned long cmd_data = 0, end_cmd_valid = 0; + unsigned long cmd_phase_addr, data_phase_addr, end_cmd; + unsigned int op_id, len, offset; + bool reading; + + pl353_nfc_parse_instructions(chip, subop, &nfc_op); + instr = nfc_op.data_instr; + op_id = nfc_op.data_instr_idx; + len = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + if (nfc_op.cmnds[0] != -1) { + pl353_smc_clr_nand_int(); + /* Get the command phase address */ + if (nfc_op.cmnds[1] != 0) { + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN) + end_cmd_valid = 0; + else + end_cmd_valid = 1; + end_cmd = nfc_op.cmnds[1]; + } else { + end_cmd = 0x0; + } + cmd_phase_addr = (unsigned long __force)xnand->nand_base + + ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (nfc_op.cmnds[0] << START_CMD_SHIFT)); + + cmd_addr = (void __iomem * __force)cmd_phase_addr; + /* Get the data phase address */ + end_cmd_valid = 0; + + data_phase_addr = (unsigned long __force)xnand->nand_base + + ((0x0 << CLEAR_CS_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT)); + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; + chip->IO_ADDR_W = chip->IO_ADDR_R; + /* Command phase AXI Read & Write */ + if (nfc_op.naddrs >= 5) { + if (mtd->writesize > PL353_NAND_ECC_SIZE) { + cmd_data = nfc_op.addrs; + /* Another address cycle for devices > 128MiB */ + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(cmd_data, cmd_addr); + cmd_data = nfc_op.addr5; + if (nfc_op.naddrs >= 6) + cmd_data |= (nfc_op.addr6 << 8); + } + } + } else { + if (nfc_op.addrs != -1) { + int column = nfc_op.addrs; + /* + * Change read/write column, read id etc + * Adjust columns for 16 bit bus width + */ + if ((chip->options & NAND_BUSWIDTH_16) && + (nfc_op.cmnds[0] == NAND_CMD_READ0 || + nfc_op.cmnds[0] == NAND_CMD_SEQIN || + nfc_op.cmnds[0] == NAND_CMD_RNDOUT || + nfc_op.cmnds[0] == NAND_CMD_RNDIN)) { + column >>= 1; + } + cmd_data = column; + } + } + writel_relaxed(cmd_data, cmd_addr); + ndelay(100); + } + + cond_delay(nfc_op.cle_ale_delay_ns); + if (!nfc_op.data_instr) + return 0; + + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + udelay(1000); + + if (!reading) { + cond_delay(nfc_op.rdy_delay_ns); + + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN && + nfc_op.cmnds[1] == NAND_CMD_PAGEPROG) { + pl353_nand_write_page_raw(mtd, chip, + instr->ctx.data.buf.out, 0, + nfc_op.addrs); + } else { + pl353_nand_write_data_op(mtd, instr->ctx.data.buf.out, + len); + } + } + + else if (reading) { + cond_delay(nfc_op.rdy_delay_ns); + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len); + } + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER + (NAND_OP_PARSER_PATTERN + (pl353_nand_cmd_function, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), + NAND_OP_PARSER_PATTERN + (pl353_nand_cmd_function, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), + NAND_OP_PARSER_PATTERN + (pl353_nand_cmd_function, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN + (pl353_nand_cmd_function, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN + (pl353_nand_cmd_function, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + ); + +static int pl353_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, + op, check_only); +} + +/** + * pl353_nand_device_ready - Check device ready/busy line + * @mtd: Pointer to the mtd_info structure + * + * Return: 0 on busy or 1 on ready state + */ +static int pl353_nand_device_ready(struct mtd_info *mtd) +{ + if (pl353_smc_get_nand_int_status_raw()) { + pl353_smc_clr_nand_int(); + return 1; + } + + return 0; +} + +/** + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode + * @mtd: Pointer to the mtd_info structure + * @ecc: Pointer to ECC control structure + * @ecc_mode: ondie ecc status + * + * This function initializes the ecc block and functional pointers as per the + * ecc mode + */ +static void pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, + int ecc_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pl353_nand_info *xnand = + container_of(chip, struct pl353_nand_info, chip); + + + if (ecc_mode == NAND_ECC_ON_DIE) { + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); + /* + * On-Die ECC spare bytes offset 8 is used for ECC codes + * Use the BBT pattern descriptors + */ + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + bitmap_set(chip->parameters.get_feature_list, + ONFI_FEATURE_ON_DIE_ECC, ONFI_FEATURE_ON_DIE_ECC_EN); + bitmap_set(chip->parameters.set_feature_list, + ONFI_FEATURE_ON_DIE_ECC, ONFI_FEATURE_ON_DIE_ECC_EN); + } else { + ecc->read_oob = pl353_nand_read_oob; + ecc->write_oob = pl353_nand_write_oob; + + ecc->mode = NAND_ECC_HW; + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ + ecc->bytes = 3; + ecc->strength = 1; + ecc->calculate = pl353_nand_calculate_hwecc; + ecc->correct = pl353_nand_correct_data; + ecc->hwctl = NULL; + ecc->read_page = pl353_nand_read_page_hwecc; + ecc->size = PL353_NAND_ECC_SIZE; + ecc->write_page = pl353_nand_write_page_hwecc; + pl353_smc_set_ecc_pg_size(mtd->writesize); + switch (mtd->writesize) { + case SZ_512: + case SZ_1K: + case SZ_2K: + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); + break; + default: + /* + * The software ECC routines won't work with the + * SMC controller + */ + ecc->calculate = nand_calculate_ecc; + ecc->correct = nand_correct_data; + ecc->size = 256; + break; + } + if (mtd->writesize <= SZ_512) + xnand->addr_cycles = 1; + else + xnand->addr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + xnand->addr_cycles += 3; + else + xnand->addr_cycles += 2; + + if (mtd->oobsize == 16) + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops); + else if (mtd->oobsize == 64) + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops); + } +} + +/** + * pl353_nand_probe - Probe method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function initializes the driver data structures and the hardware. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_probe(struct platform_device *pdev) +{ + struct pl353_nand_info *xnand; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *res; + + xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL); + if (!xnand) + return -ENOMEM; + + /* Map physical address of NAND flash */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + xnand->nand_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(xnand->nand_base)) + return PTR_ERR(xnand->nand_base); + + nand_chip = &xnand->chip; + mtd = nand_to_mtd(nand_chip); + nand_chip->exec_op = pl353_nfc_exec_op; + nand_set_controller_data(nand_chip, xnand); + mtd->priv = nand_chip; + mtd->owner = THIS_MODULE; + mtd->name = PL353_NAND_DRIVER_NAME; + nand_set_flash_node(nand_chip, pdev->dev.of_node); + + /* Set address of NAND IO lines */ + nand_chip->IO_ADDR_R = xnand->nand_base; + nand_chip->IO_ADDR_W = xnand->nand_base; + /* Set the driver entry points for MTD */ + nand_chip->dev_ready = pl353_nand_device_ready; + nand_chip->select_chip = pl353_nand_select_chip; + /* If we don't set this delay driver sets 20us by default */ + nand_chip->chip_delay = 30; + + /* Set the device option and flash width */ + nand_chip->options = NAND_BUSWIDTH_AUTO; + nand_chip->bbt_options = NAND_BBT_USE_FLASH; + platform_set_drvdata(pdev, xnand); + + /* first scan to find the device and get the page size */ + if (nand_scan_ident(mtd, 1, NULL)) { + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n"); + return -ENXIO; + } + pl353_nand_ecc_init(mtd, &nand_chip->ecc, nand_chip->ecc.mode); + if (nand_chip->options & NAND_BUSWIDTH_16) + pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); + /* second phase scan */ + if (nand_scan_tail(mtd)) { + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n"); + return -ENXIO; + } + + mtd_device_register(mtd, NULL, 0); + + return 0; +} + +/** + * pl353_nand_remove - Remove method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function is called if the driver module is being unloaded. It frees all + * resources allocated to the device. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_remove(struct platform_device *pdev) +{ + struct pl353_nand_info *xnand = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&xnand->chip); + + /* Release resources, unregister device */ + nand_release(mtd); + + return 0; +} + +/* Match table for device tree binding */ +static const struct of_device_id pl353_nand_of_match[] = { + { .compatible = "arm,pl353-nand-r2p1" }, + {}, +}; +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); + +/* + * pl353_nand_driver - This structure defines the NAND subsystem platform driver + */ +static struct platform_driver pl353_nand_driver = { + .probe = pl353_nand_probe, + .remove = pl353_nand_remove, + .driver = { + .name = PL353_NAND_DRIVER_NAME, + .of_match_table = pl353_nand_of_match, + }, +}; + +module_platform_driver(pl353_nand_driver); + +MODULE_AUTHOR("Xilinx, Inc."); +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); +MODULE_LICENSE("GPL"); -- 2.7.4