Received: by 2002:ac0:a5b6:0:0:0:0:0 with SMTP id m51-v6csp20791imm; Thu, 7 Jun 2018 13:03:50 -0700 (PDT) X-Google-Smtp-Source: ADUXVKJK+sd+fLi3yx2pmjYzZcWV6C9JO6JUzQODnvq0CEpMr5kM4lhsXSgjjEIqwtJjf81KEHfJ X-Received: by 2002:a62:3fdd:: with SMTP id z90-v6mr3025969pfj.216.1528401830276; Thu, 07 Jun 2018 13:03:50 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1528401830; cv=none; d=google.com; s=arc-20160816; b=QtftiK59Y2TwliogQtO9ZO6Geg0zs5WvOashdIb6t5CZ/rdadl2gBtLXWWBPenWffF MZSOoSrv6fC3hJr1X/4p7+EZ4pLQXYmCC1vwbt5akt+RXScDPkge6WN/kIV3rWleUbfK ONmhDL8Q3PIblnFMmkFYiYBJt80WuUhdT+zFeNMDgXRz9esRRTNde737buhF91+9ESju /CPAjtRL51iqN9p9CV/krkHoYiZzGDuGJ++0DmozIxP/yP37ssMm09xuxhlNDFsqNJqQ kVAZPvR/721jSVkEqfOVf57GULYrAN6KyU3G4DVU6ghVKEyGrljgLUFthggaCfkoACGu vqfw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:sender:content-transfer-encoding:mime-version :organization:references:in-reply-to:message-id:subject:cc:to:from :date:arc-authentication-results; bh=JQIVFaUxVfCp4CkW3bPvKRYAAt0swrEjeGJQS51lvok=; b=nBf74FrPxeA4B144vDKV0WrHDljPwIqmp9txerr4FPgWFx9RrQkzCZB5oY7FkbHUp0 sxc4VrPj/IRO7rRAG8ZT2mDgjw1Jp7FH6fFToolqxpODtDWVVHraA+LcZS61gjRbDOHS GJOPMjYu+tjcqRNUzUWKb60x9US9O8C3YsMEC5Y0u1KcEF01SAJZ6B8G62xjIhQC4rKp 1bq+H/VgLLhDgktBlVYojavYlI+FVnwWYQOHI/DqfwULIjLj2QJszNns0VmPx6p8rkGw MvcynrkgRVRqfSqW5PHa7A55RaT3aFkJJ82kdQ2mz7KHbyEcrZa4qCi1AJFjuemYcD1F Q72A== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Return-Path: Received: from vger.kernel.org (vger.kernel.org. [209.132.180.67]) by mx.google.com with ESMTP id y73-v6si5101886pgd.223.2018.06.07.13.03.33; Thu, 07 Jun 2018 13:03:50 -0700 (PDT) Received-SPF: pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) client-ip=209.132.180.67; Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1753600AbeFGUAl convert rfc822-to-8bit (ORCPT + 99 others); Thu, 7 Jun 2018 16:00:41 -0400 Received: from mail.bootlin.com ([62.4.15.54]:54284 "EHLO mail.bootlin.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1752235AbeFGUAj (ORCPT ); Thu, 7 Jun 2018 16:00:39 -0400 Received: by mail.bootlin.com (Postfix, from userid 110) id 531162092B; Thu, 7 Jun 2018 22:00:37 +0200 (CEST) X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on mail.bootlin.com X-Spam-Level: X-Spam-Status: No, score=-1.0 required=5.0 tests=ALL_TRUSTED,SHORTCIRCUIT shortcircuit=ham autolearn=disabled version=3.4.0 Received: from xps13 (unknown [37.168.8.214]) by mail.bootlin.com (Postfix) with ESMTPSA id 098BC207B0; Thu, 7 Jun 2018 22:00:16 +0200 (CEST) Date: Thu, 7 Jun 2018 21:59:49 +0200 From: Miquel Raynal To: Naga Sureshkumar Relli Cc: , , , , , , , , , , , , , Subject: Re: [LINUX PATCH v9 4/4] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface Message-ID: <20180607215949.58e2d15d@xps13> In-Reply-To: <1528271382-21690-5-git-send-email-naga.sureshkumar.relli@xilinx.com> References: <1528271382-21690-1-git-send-email-naga.sureshkumar.relli@xilinx.com> <1528271382-21690-5-git-send-email-naga.sureshkumar.relli@xilinx.com> Organization: Bootlin X-Mailer: Claws Mail 3.15.0-dirty (GTK+ 2.24.31; x86_64-pc-linux-gnu) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8BIT Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Hi Naga, This is a partial review, enough for this version, see below. On Wed, 6 Jun 2018 13:19:42 +0530, Naga Sureshkumar Relli wrote: > Add driver for arm pl353 static memory controller nand interface with s/nand/NAND/ > HW ECC support. This controller is used in xilinx zynq soc for interfacing s/HW/hardware/ > the nand flash memory. > > Signed-off-by: Naga Sureshkumar Relli > --- > Changes in v9: > - Addressed the below comments given by Miquel > - instead of using pl353_nand_write32, use directly writel_relaxed > - Fixed check patch warnings > - Renamed write_buf/read_buf to write_data_op/read_data_op > - use BIT macro instead of 1 << nr > - Use NAND_ROW_ADDR_3 flag > - Use nand_wait_ready() > - Removed swecc functions > - Use address cycles as per size, instead of reading it from Parameter page > - Instead of writing too many patterns, use optional property > Changes in v8: > - Added exec_op() implementation > - Fixed the below v7 review comments > - removed mtd_info from pl353_nand_info struct > - Corrected ecc layout offsets > - Added on-die ecc support > Changes in v7: > - Currently not implemented the memclk rate adjustments. I will > look into this later and once the basic driver is accepted. > - Fixed GPL licence ident > Changes in v6: > - Fixed the checkpatch.pl reported warnings > - Using the address cycles information from the onfi param page > earlier it is hardcoded to 5 in driver > Changes in v5: > - Configure the nand timing parameters as per the onfi spec > Changes in v4: > - Updated the driver to sync with pl353_smc driver APIs > Changes in v3: > - implemented the proper error codes > - further breakdown this patch to multiple sets > - added the controller and driver details to Documentation section > - updated the licenece to GPLv2 > - reorganized the pl353_nand_ecc_init function > Changes in v2: > - use "depends on" rather than "select" option in kconfig > - remove unused variable parts > - remove dummy helper and use writel_relaxed directly > --- > > drivers/mtd/nand/raw/Kconfig | 7 + > drivers/mtd/nand/raw/Makefile | 3 + > drivers/mtd/nand/raw/pl353_nand.c | 1236 +++++++++++++++++++++++++++++++++++++ > 3 files changed, 1246 insertions(+) > create mode 100644 drivers/mtd/nand/raw/pl353_nand.c > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index 6871ff0..1c5d528 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -530,4 +530,11 @@ config MTD_NAND_MTK > Enables support for NAND controller on MTK SoCs. > This controller is found on mt27xx, mt81xx, mt65xx SoCs. > > +config MTD_NAND_PL353 > + tristate "ARM Pl353 NAND flash driver" > + depends on MTD_NAND && ARM > + depends on PL353_SMC > + help > + Enables support for PrimeCell Static Memory Controller PL353. > + > endif # MTD_NAND > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index 165b7ef..6855a0d 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -56,7 +56,9 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o > obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ > obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o > obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o > +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o > > +CFLAGS_{nand_base.o} := -DDEBUG Nope :) > nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o > nand-objs += nand_amd.o > nand-objs += nand_hynix.o > @@ -64,3 +66,4 @@ nand-objs += nand_macronix.o > nand-objs += nand_micron.o > nand-objs += nand_samsung.o > nand-objs += nand_toshiba.o > + Extra space here > diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c > new file mode 100644 > index 0000000..a880eade > --- /dev/null > +++ b/drivers/mtd/nand/raw/pl353_nand.c > @@ -0,0 +1,1236 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * ARM PL353 NAND flash controller driver > + * > + * Copyright (C) 2017 Xilinx, Inc > + * Author: Punnaiah chowdary kalluri > + * Author: Naga Sureshkumar Relli > + * > + */ > + > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > + > +#define PL353_NAND_DRIVER_NAME "pl353-nand" > + > +/* NAND flash driver defines */ > +#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */ > +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */ > +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ > + > +/* Flash memory controller operating parameters */ > + > +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \ > + (0 << 5)) /* No Jumping */ > + > +/* AXI Address definitions */ > +#define START_CMD_SHIFT 3 > +#define END_CMD_SHIFT 11 > +#define END_CMD_VALID_SHIFT 20 > +#define ADDR_CYCLES_SHIFT 21 > +#define CLEAR_CS_SHIFT 21 > +#define ECC_LAST_SHIFT 10 > +#define COMMAND_PHASE (0 << 19) > +#define DATA_PHASE BIT(19) > + > +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ > +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ > + > +#define ONDIE_ECC_FEATURE_ADDR 0x90 > +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) > +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) > +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 > + > +struct pl353_nfc_op { > + u32 cmnds[4]; > + u32 thirdrow; > + u32 type; > + u32 end_cmd; > + u32 addrs; > + bool wait; > + u32 len; > + u32 naddrs; > + unsigned int data_instr_idx; > + const struct nand_op_instr *data_instr; > + unsigned int rdy_timeout_ms; > + unsigned int rdy_delay_ns; > + unsigned int data_delay_ns; > + unsigned int cle_ale_delay_ns; > + u32 addr5; > + u32 addr6; > +}; > + > +/** > + * struct pl353_nand_info - Defines the NAND flash driver instance > + * @chip: NAND chip information structure > + * @nand_base: Virtual address of the NAND flash device > + * @end_cmd_pending: End command is pending > + * @end_cmd: End command > + * @row_addr_cycles: Row address cycles > + * @col_addr_cycles: Column address cycles > + * @address: Page address > + * @cmd_pending: More command is needed > + */ > +struct pl353_nand_info { > + struct nand_chip chip; > + void __iomem *nand_base; > + unsigned long end_cmd_pending; > + unsigned long end_cmd; > + u8 addr_cycles; > + u32 address; > + u32 cmd_pending; > + struct completion complete; > +}; > + > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + > + if (section >= chip->ecc.steps) > + return -ERANGE; > + > + oobregion->offset = (section * chip->ecc.bytes); > + oobregion->length = chip->ecc.bytes; > + > + return 0; > +} > + > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + > + if (section >= chip->ecc.steps) > + return -ERANGE; > + > + oobregion->offset = (section * chip->ecc.bytes) + 8; > + oobregion->length = 8; > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = { > + .ecc = pl353_ecc_ooblayout16_ecc, > + .free = pl353_ecc_ooblayout16_free, > +}; > + > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + > + if (section >= chip->ecc.steps) > + return -ERANGE; > + > + oobregion->offset = (section * chip->ecc.bytes) + 52; > + oobregion->length = chip->ecc.bytes; > + > + return 0; > +} > + > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + > + if (section) > + return -ERANGE; > + > + if (section >= chip->ecc.steps) > + return -ERANGE; > + > + oobregion->offset = (section * chip->ecc.bytes) + 2; > + oobregion->length = 50; > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = { > + .ecc = pl353_ecc_ooblayout64_ecc, > + .free = pl353_ecc_ooblayout64_free, > +}; > + > +/* Generic flash bbt decriptors */ > +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; > +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; > + > +static struct nand_bbt_descr bbt_main_descr = { > + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE > + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, > + .offs = 4, > + .len = 4, > + .veroffs = 20, > + .maxblocks = 4, > + .pattern = bbt_pattern > +}; > + > +static struct nand_bbt_descr bbt_mirror_descr = { > + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE > + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, > + .offs = 4, > + .len = 4, > + .veroffs = 20, > + .maxblocks = 4, > + .pattern = mirror_pattern > +}; > + > +/** > + * pl353_nand_read_data_op - read chip data into buffer > + * @chip: Pointer to the NAND chip info structure > + * @in: Pointer to the buffer to store read data > + * @len: Number of bytes to read > + * Return: Always return zero > + */ > +static int pl353_nand_read_data_op(struct nand_chip *chip, > + u8 *in, > + unsigned int len) > +{ > + int i; > + > + if (IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) && > + IS_ALIGNED(len, sizeof(uint32_t))) { > + u32 *ptr = (u32 *)in; > + > + len /= 4; > + for (i = 0; i < len; i++) > + ptr[i] = readl(chip->IO_ADDR_R); > + } else { > + for (i = 0; i < len; i++) > + in[i] = readb(chip->IO_ADDR_R); I'm not sure you need these IO_ADDR_R/W. Better not to use them in a new driver. > + } > + > + return 0; > +} > + > +/** > + * pl353_nand_write_buf - write buffer to chip > + * @mtd: Pointer to the mtd info structure > + * @buf: Pointer to the buffer to store write data > + * @len: Number of bytes to write > + */ > +static void pl353_nand_write_data_op(struct mtd_info *mtd, const u8 *buf, > + int len) > +{ > + int i; > + struct nand_chip *chip = mtd_to_nand(mtd); > + > + if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && > + IS_ALIGNED(len, sizeof(uint32_t))) { > + u32 *ptr = (u32 *)buf; > + > + len /= 4; > + for (i = 0; i < len; i++) > + writel(ptr[i], chip->IO_ADDR_W); > + } else { > + for (i = 0; i < len; i++) > + writeb(buf[i], chip->IO_ADDR_W); > + } > +} > + > +/** > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC > + * @mtd: Pointer to the mtd_info structure > + * @data: Pointer to the page data > + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored > + * > + * This function retrieves the Hardware ECC data from the controller and returns > + * ECC data back to the MTD subsystem. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd, > + const u8 *data, u8 *ecc) > +{ > + u32 ecc_value, ecc_status; > + u8 ecc_reg, ecc_byte; > + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; > + /* Wait till the ECC operation is complete or timeout */ > + do { > + if (pl353_smc_ecc_is_busy()) > + cpu_relax(); > + else > + break; > + } while (!time_after_eq(jiffies, timeout)); > + > + if (time_after_eq(jiffies, timeout)) { > + pr_err("%s timed out\n", __func__); > + return -ETIMEDOUT; > + } > + > + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { So here you hardcode the fact that there are 5 'blocks'. This is NAND chip dependent, right? > + /* Read ECC value for each block */ > + ecc_value = pl353_smc_get_ecc_val(ecc_reg); > + ecc_status = (ecc_value >> 24) & 0xFF; Please define all these values. Make ecc_status a byte if you always need it to be 8-bit. Then you can drop the & 0xFF. > + /* ECC value valid */ > + if (ecc_status & 0x40) { Please define this 0x40 > + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { > + /* Copy ECC bytes to MTD buffer */ > + *ecc = ~ecc_value & 0xFF; This is not a copy, you invert the bytes, I don't really know why. Perhaps a comment would be appreciated. > + ecc_value = ecc_value >> 8; > + ecc++; > + } > + } else { > + pr_warn("%s status failed\n", __func__); > + return -1; > + } > + } > + return 0; > +} > + > +/** > + * onehot - onehot function > + * @value: Value to check for onehot > + * > + * This function checks whether a value is onehot or not. > + * onehot is if and only if onebit is set. > + * > + * Return: 1 if it is onehot else 0 > + */ > +static int onehot(unsigned short value) Why not returning a boolean? > +{ > + return (value & (value - 1)) == 0; > +} > + > +/** > + * pl353_nand_correct_data - ECC correction function > + * @mtd: Pointer to the mtd_info structure > + * @buf: Pointer to the page data > + * @read_ecc: Pointer to the ECC value read from spare data area > + * @calc_ecc: Pointer to the calculated ECC value > + * > + * This function corrects the ECC single bit errors & detects 2-bit errors. > + * > + * Return: 0 if no ECC errors found > + * 1 if single bit error found and corrected. > + * -1 if multiple ECC errors found. "multiple uncorrectable ECC errors" > + */ > +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, > + unsigned char *read_ecc, > + unsigned char *calc_ecc) > +{ > + unsigned char bit_addr; > + unsigned int byte_addr; > + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; > + unsigned short calc_ecc_lower, calc_ecc_upper; > + > + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; > + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; > + > + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; > + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; > + > + ecc_odd = read_ecc_lower ^ calc_ecc_lower; > + ecc_even = read_ecc_upper ^ calc_ecc_upper; > + > + /* no error */ > + if (ecc_odd == 0 && ecc_even == 0) you can use "!ecc_odd && !ecc_even" > + return 0; > + > + if (ecc_odd == (~ecc_even & 0xfff)) { > + /* bits [11:3] of error code is byte offset */ > + byte_addr = (ecc_odd >> 3) & 0x1ff; > + /* bits [2:0] of error code is bit offset */ > + bit_addr = ecc_odd & 0x7; > + /* Toggling error bit */ > + buf[byte_addr] ^= (BIT(bit_addr)); > + return 1; > + } > + /* one error in parity */ > + if (onehot(ecc_odd | ecc_even) == 1) > + return 1; > + > + /* Uncorrectable error */ > + return -1; > +} > + > +static int pl353_dev_timeout(struct mtd_info *mtd, struct nand_chip *chip) > +{ > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > + > + do { > + if (chip->dev_ready(mtd)) > + break; > + cpu_relax(); > + } while (!time_after_eq(jiffies, timeout)); > + > + if (time_after_eq(jiffies, timeout)) { > + pr_err("%s timed out\n", __func__); > + return -1; > + } > + > + return 0; > +} > + > +static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip, > + int page, int column, int start_cmd, int end_cmd, > + bool read) > +{ > + unsigned long data_phase_addr; > + u32 end_cmd_valid = 0; > + void __iomem *cmd_addr; > + unsigned long cmd_phase_addr = 0, cmd_data = 0; > + > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + > + end_cmd_valid = read ? 1 : 0; > + > + cmd_phase_addr = (unsigned long __force)xnand->nand_base + > + ((xnand->addr_cycles > + << ADDR_CYCLES_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (COMMAND_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (start_cmd << START_CMD_SHIFT)); > + cmd_addr = (void __iomem * __force)cmd_phase_addr; > + > + /* Get the data phase address */ > + data_phase_addr = (unsigned long __force)xnand->nand_base + > + ((0x0 << CLEAR_CS_SHIFT) | > + (0 << END_CMD_VALID_SHIFT) | > + (DATA_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (0x0 << ECC_LAST_SHIFT)); > + > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + chip->IO_ADDR_W = chip->IO_ADDR_R; > + if (chip->options & NAND_BUSWIDTH_16) > + column /= 2; > + cmd_data = column; > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > + cmd_data |= page << 16; > + /* Another address cycle for devices > 128MiB */ > + if (chip->options & NAND_ROW_ADDR_3) { > + writel_relaxed(cmd_data, cmd_addr); > + cmd_data = (page >> 16); > + } > + } else { > + cmd_data |= page << 8; > + } > + > + writel_relaxed(cmd_data, cmd_addr); > +} > + > +/** > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @page: Page number to read > + * > + * Return: Always return zero > + */ > +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + unsigned long data_phase_addr; > + u8 *p; > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; > + > + chip->pagebuf = -1; > + if (mtd->writesize < PL353_NAND_ECC_SIZE) > + return 0; > + > + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0, > + NAND_CMD_READSTART, 1); > + > + ndelay(100); > + pl353_dev_timeout(mtd, chip); > + > + p = chip->oob_poi; > + pl353_nand_read_data_op(chip, p, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr += nand_offset; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + return 0; > +} > + > +/** > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @page: Page number to write > + * > + * Return: Zero on success and EIO on failure > + */ > +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + const u8 *buf = chip->oob_poi; > + unsigned long data_phase_addr; > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; > + u32 addrcycles = 0; > + > + chip->pagebuf = -1; > + addrcycles = xnand->addr_cycles; > + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN, > + NAND_CMD_PAGEPROG, 0); > + ndelay(100); > + pl353_nand_write_data_op(mtd, buf, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH)); > + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > + data_phase_addr += nand_offset; What you do here is unclear and suspect... > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + pl353_nand_write_data_op(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH); > + nand_wait_ready(mtd); > + > + return 0; > +} > + > +/** > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to read > + * > + * Return: Always return zero > + */ > +static int pl353_nand_read_page_raw(struct mtd_info *mtd, > + struct nand_chip *chip, > + u8 *buf, int oob_required, int page) > +{ > + unsigned long data_phase_addr; > + u8 *p; > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; > + > + pl353_nand_read_data_op(chip, buf, mtd->writesize); > + p = chip->oob_poi; > + pl353_nand_read_data_op(chip, p, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr += nand_offset; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + return 0; > +} > + > +/** > + * pl353_nand_write_page_raw - [Intern] raw page write function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to write > + * > + * Return: Always return zero > + */ > +static int pl353_nand_write_page_raw(struct mtd_info *mtd, > + struct nand_chip *chip, > + const u8 *buf, int oob_required, > + int page) > +{ > + unsigned long data_phase_addr; > + u8 *p; > + > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; > + > + pl353_nand_write_data_op(mtd, buf, mtd->writesize); > + p = chip->oob_poi; > + pl353_nand_write_data_op(mtd, p, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > + data_phase_addr += nand_offset; > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + > + pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + ndelay(100); > + nand_wait_ready(mtd); > + return 0; > +} > + > +/** > + * nand_write_page_hwecc - Hardware ECC based page write function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to write > + * > + * This functions writes data and hardware generated ECC values in to the page. > + * > + * Return: Always return zero > + */ > +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, > + struct nand_chip *chip, > + const u8 *buf, int oob_required, > + int page) > +{ > + int eccsize = chip->ecc.size; > + int eccsteps = chip->ecc.steps; > + u8 *ecc_calc = chip->ecc.calc_buf; > + u8 *oob_ptr; > + const u8 *p = buf; > + u32 ret; > + unsigned long data_phase_addr; > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; > + > + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN, > + NAND_CMD_PAGEPROG, 0); > + ndelay(100); > + for ( ; (eccsteps - 1); eccsteps--) { > + pl353_nand_write_data_op(mtd, p, eccsize); > + p += eccsize; > + } > + pl353_nand_write_data_op(mtd, p, > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Set ECC Last bit to 1 */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_ECC_LAST; > + data_phase_addr += nand_offset; > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + p = buf; > + chip->ecc.calculate(mtd, p, &ecc_calc[0]); > + > + /* Wait for ECC to be calculated and read the error values */ > + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, > + 0, chip->ecc.total); > + if (ret) > + return ret; Space > + /* Clear ECC last bit */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr -= nand_offset; > + data_phase_addr &= ~PL353_NAND_ECC_LAST; > + data_phase_addr += nand_offset; > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + > + /* Write the spare area with ECC bytes */ > + oob_ptr = chip->oob_poi; > + pl353_nand_write_data_op(mtd, oob_ptr, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH)); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > + data_phase_addr += nand_offset; > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + pl353_nand_write_data_op(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* > + * Apply this short delay always to ensure that we do wait tWB in any > + * case on any machine. > + */ > + ndelay(100); > + nand_wait_ready(mtd); > + > + return 0; > +} > + > +/** > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @buf: Pointer to the buffer to store read data > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to read > + * > + * This functions reads data and checks the data integrity by comparing hardware > + * generated ECC values and read ECC values from spare area. > + * > + * Return: 0 always and updates ECC operation status in to MTD structure > + */ > +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, > + struct nand_chip *chip, > + u8 *buf, int oob_required, int page) > +{ > + int i, stat, eccsize = chip->ecc.size; > + int eccbytes = chip->ecc.bytes; > + int eccsteps = chip->ecc.steps; > + u8 *p = buf; > + u8 *ecc_calc = chip->ecc.calc_buf; > + u8 *ecc = chip->ecc.code_buf; > + unsigned int max_bitflips = 0; > + u8 *oob_ptr; > + u32 ret; > + unsigned long data_phase_addr; > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + unsigned long nand_offset = (unsigned long __force)xnand->nand_base; > + > + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0, > + NAND_CMD_READSTART, 1); > + ndelay(100); > + pl353_dev_timeout(mtd, chip); > + > + for ( ; (eccsteps - 1); eccsteps--) { > + pl353_nand_read_data_op(chip, p, eccsize); > + p += eccsize; > + } > + pl353_nand_read_data_op(chip, p, > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Set ECC Last bit to 1 */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_ECC_LAST; > + data_phase_addr += nand_offset; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Read the calculated ECC value */ > + p = buf; > + chip->ecc.calculate(mtd, p, &ecc_calc[0]); > + > + /* Clear ECC last bit */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr -= nand_offset; > + data_phase_addr &= ~PL353_NAND_ECC_LAST; > + data_phase_addr += nand_offset; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + > + /* Read the stored ECC value */ > + oob_ptr = chip->oob_poi; > + pl353_nand_read_data_op(chip, oob_ptr, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH)); > + > + /* de-assert chip select */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr -= nand_offset; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr += nand_offset; Ok, now I am convinced this is not the right way. Please forget about chip->IO_ADDR_*. > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0, > + chip->ecc.total); > + if (ret) > + return ret; > + > + eccsteps = chip->ecc.steps; > + p = buf; > + > + /* Check ECC error for all blocks and correct if it is correctable */ > + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { > + stat = chip->ecc.correct(mtd, p, &ecc[i], &ecc_calc[i]); > + if (stat < 0) { > + mtd->ecc_stats.failed++; > + } else { > + mtd->ecc_stats.corrected += stat; > + max_bitflips = max_t(unsigned int, max_bitflips, stat); > + } > + } > + > + return max_bitflips; > +} > + > +/** > + * pl353_nand_select_chip - Select the flash device > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * > + * This function is empty as the NAND controller handles chip select line > + * internally based on the chip address passed in command and data phase. > + */ > +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) > +{ > +} > + > +/* NAND framework ->exec_op() hooks and related helpers */ > +static void pl353_nfc_parse_instructions(struct nand_chip *chip, > + const struct nand_subop *subop, > + struct pl353_nfc_op *nfc_op) > +{ > + const struct nand_op_instr *instr = NULL; > + unsigned int op_id, offset, naddrs; > + int i, len; > + const u8 *addrs; > + > + memset(nfc_op, 0, sizeof(struct pl353_nfc_op)); > + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > + nfc_op->len = nand_subop_get_data_len(subop, op_id); > + len = nand_subop_get_data_len(subop, op_id); > + instr = &subop->instrs[op_id]; > + if (subop->ninstrs == 1) > + nfc_op->cmnds[0] = -1; > + switch (instr->type) { > + case NAND_OP_CMD_INSTR: > + nfc_op->type = NAND_OP_CMD_INSTR; > + if (op_id) > + nfc_op->cmnds[1] = instr->ctx.cmd.opcode; > + else > + nfc_op->cmnds[0] = instr->ctx.cmd.opcode; > + nfc_op->cle_ale_delay_ns = instr->delay_ns; > + break; > + > + case NAND_OP_ADDR_INSTR: > + offset = nand_subop_get_addr_start_off(subop, op_id); > + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > + addrs = &instr->ctx.addr.addrs[offset]; > + nfc_op->addrs = instr->ctx.addr.addrs[offset]; > + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) { > + nfc_op->addrs |= instr->ctx.addr.addrs[i] << > + (8 * i); > + } > + > + if (naddrs >= 5) > + nfc_op->addr5 = addrs[4]; > + if (naddrs >= 6) > + nfc_op->addr6 = addrs[5]; > + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop, > + op_id); > + nfc_op->cle_ale_delay_ns = instr->delay_ns; > + break; > + > + case NAND_OP_DATA_IN_INSTR: > + nfc_op->data_instr = instr; > + nfc_op->type = NAND_OP_DATA_IN_INSTR; > + nfc_op->data_instr_idx = op_id; > + nfc_op->data_delay_ns = instr->delay_ns; > + break; > + > + case NAND_OP_DATA_OUT_INSTR: > + nfc_op->data_instr = instr; > + nfc_op->type = NAND_OP_DATA_IN_INSTR; > + nfc_op->data_instr_idx = op_id; > + nfc_op->data_delay_ns = instr->delay_ns; > + break; > + > + case NAND_OP_WAITRDY_INSTR: > + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; > + nfc_op->rdy_delay_ns = instr->delay_ns; > + nfc_op->wait = true; > + break; > + } > + } > +} > + > +static void cond_delay(unsigned int ns) > +{ > + if (!ns) > + return; > + > + if (ns < 10000) > + ndelay(ns); > + else > + udelay(DIV_ROUND_UP(ns, 1000)); > +} > + > +/** > + * pl353_nand_cmd_function - Send command to NAND device > + * @chip: Pointer to the NAND chip info structure > + * @subop: Pointer to array of instructions > + * Return: Always return zero > + */ > +static int pl353_nand_cmd_function(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + const struct nand_op_instr *instr; > + struct pl353_nfc_op nfc_op = {}; > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + void __iomem *cmd_addr; > + unsigned long cmd_data = 0, end_cmd_valid = 0; > + unsigned long cmd_phase_addr, data_phase_addr, end_cmd; > + unsigned int op_id, len, offset; > + bool reading; > + > + pl353_nfc_parse_instructions(chip, subop, &nfc_op); > + instr = nfc_op.data_instr; > + op_id = nfc_op.data_instr_idx; > + len = nand_subop_get_data_len(subop, op_id); > + offset = nand_subop_get_data_start_off(subop, op_id); > + > + if (nfc_op.cmnds[0] != -1) { > + pl353_smc_clr_nand_int(); > + /* Get the command phase address */ > + if (nfc_op.cmnds[1] != 0) { > + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN) > + end_cmd_valid = 0; > + else > + end_cmd_valid = 1; > + end_cmd = nfc_op.cmnds[1]; > + } else { > + end_cmd = 0x0; > + } > + cmd_phase_addr = (unsigned long __force)xnand->nand_base + > + ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (COMMAND_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (nfc_op.cmnds[0] << START_CMD_SHIFT)); > + > + cmd_addr = (void __iomem * __force)cmd_phase_addr; > + /* Get the data phase address */ > + end_cmd_valid = 0; > + > + data_phase_addr = (unsigned long __force)xnand->nand_base + > + ((0x0 << CLEAR_CS_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (DATA_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (0x0 << ECC_LAST_SHIFT)); > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + chip->IO_ADDR_W = chip->IO_ADDR_R; > + /* Command phase AXI Read & Write */ > + if (nfc_op.naddrs >= 5) { > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > + cmd_data = nfc_op.addrs; > + /* Another address cycle for devices > 128MiB */ > + if (chip->options & NAND_ROW_ADDR_3) { > + writel_relaxed(cmd_data, cmd_addr); > + cmd_data = nfc_op.addr5; > + if (nfc_op.naddrs >= 6) > + cmd_data |= (nfc_op.addr6 << 8); > + } > + } > + } else { > + if (nfc_op.addrs != -1) { > + int column = nfc_op.addrs; > + /* > + * Change read/write column, read id etc > + * Adjust columns for 16 bit bus width > + */ > + if ((chip->options & NAND_BUSWIDTH_16) && > + (nfc_op.cmnds[0] == NAND_CMD_READ0 || > + nfc_op.cmnds[0] == NAND_CMD_SEQIN || > + nfc_op.cmnds[0] == NAND_CMD_RNDOUT || > + nfc_op.cmnds[0] == NAND_CMD_RNDIN)) { > + column >>= 1; > + } > + cmd_data = column; > + } > + } > + writel_relaxed(cmd_data, cmd_addr); > + ndelay(100); > + } > + > + cond_delay(nfc_op.cle_ale_delay_ns); > + if (!nfc_op.data_instr) > + return 0; > + > + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); > + udelay(1000); What is this delay ? > + > + if (!reading) { > + cond_delay(nfc_op.rdy_delay_ns); > + > + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN && > + nfc_op.cmnds[1] == NAND_CMD_PAGEPROG) { > + pl353_nand_write_page_raw(mtd, chip, > + instr->ctx.data.buf.out, 0, > + nfc_op.addrs); > + } else { > + pl353_nand_write_data_op(mtd, instr->ctx.data.buf.out, > + len); > + } > + } > + > + else if (reading) { > + cond_delay(nfc_op.rdy_delay_ns); > + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len); > + } > + cond_delay(nfc_op.data_delay_ns); > + > + return 0; > +} > + > +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER > + (NAND_OP_PARSER_PATTERN > + (pl353_nand_cmd_function, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_cmd_function, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_cmd_function, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_cmd_function, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_cmd_function, > + NAND_OP_PARSER_PAT_CMD_ELEM(false)), > + ); > + > +static int pl353_nfc_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only) > +{ > + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, > + op, check_only); > +} > + > +/** > + * pl353_nand_device_ready - Check device ready/busy line > + * @mtd: Pointer to the mtd_info structure > + * > + * Return: 0 on busy or 1 on ready state > + */ > +static int pl353_nand_device_ready(struct mtd_info *mtd) > +{ > + if (pl353_smc_get_nand_int_status_raw()) { > + pl353_smc_clr_nand_int(); A clear is really needed here? > + return 1; > + } > + > + return 0; > +} > + > +/** > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode > + * @mtd: Pointer to the mtd_info structure > + * @ecc: Pointer to ECC control structure > + * @ecc_mode: ondie ecc status > + * > + * This function initializes the ecc block and functional pointers as per the > + * ecc mode > + */ > +static void pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, > + int ecc_mode) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct pl353_nand_info *xnand = > + container_of(chip, struct pl353_nand_info, chip); > + > + > + if (ecc_mode == NAND_ECC_ON_DIE) { > + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); > + /* > + * On-Die ECC spare bytes offset 8 is used for ECC codes > + * Use the BBT pattern descriptors > + */ > + chip->bbt_td = &bbt_main_descr; > + chip->bbt_md = &bbt_mirror_descr; > + bitmap_set(chip->parameters.get_feature_list, > + ONFI_FEATURE_ON_DIE_ECC, ONFI_FEATURE_ON_DIE_ECC_EN); > + bitmap_set(chip->parameters.set_feature_list, > + ONFI_FEATURE_ON_DIE_ECC, ONFI_FEATURE_ON_DIE_ECC_EN); > + } else { > + ecc->read_oob = pl353_nand_read_oob; > + ecc->write_oob = pl353_nand_write_oob; > + > + ecc->mode = NAND_ECC_HW; > + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ > + ecc->bytes = 3; > + ecc->strength = 1; > + ecc->calculate = pl353_nand_calculate_hwecc; I'm not sure you need this calculate()... > + ecc->correct = pl353_nand_correct_data; > + ecc->hwctl = NULL; You can drop the line. > + ecc->read_page = pl353_nand_read_page_hwecc; > + ecc->size = PL353_NAND_ECC_SIZE; > + ecc->write_page = pl353_nand_write_page_hwecc; > + pl353_smc_set_ecc_pg_size(mtd->writesize); > + switch (mtd->writesize) { > + case SZ_512: > + case SZ_1K: > + case SZ_2K: > + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); > + break; > + default: > + /* > + * The software ECC routines won't work with the > + * SMC controller > + */ > + ecc->calculate = nand_calculate_ecc; > + ecc->correct = nand_correct_data; > + ecc->size = 256; > + break; > + } > + if (mtd->writesize <= SZ_512) > + xnand->addr_cycles = 1; > + else > + xnand->addr_cycles = 2; > + > + if (chip->options & NAND_ROW_ADDR_3) > + xnand->addr_cycles += 3; > + else > + xnand->addr_cycles += 2; > + > + if (mtd->oobsize == 16) > + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops); > + else if (mtd->oobsize == 64) > + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops); else? > + } > +} > + > +/** > + * pl353_nand_probe - Probe method for the NAND driver > + * @pdev: Pointer to the platform_device structure > + * > + * This function initializes the driver data structures and the hardware. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_probe(struct platform_device *pdev) > +{ > + struct pl353_nand_info *xnand; xnand is a strange name, more and more because its a bout NAND controller data, not NAND chip. > + struct mtd_info *mtd; > + struct nand_chip *nand_chip; This one you can call it just "nand" or "chip". > + struct resource *res; > + > + xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL); > + if (!xnand) > + return -ENOMEM; > + > + /* Map physical address of NAND flash */ > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > + xnand->nand_base = devm_ioremap_resource(&pdev->dev, res); > + if (IS_ERR(xnand->nand_base)) > + return PTR_ERR(xnand->nand_base); > + > + nand_chip = &xnand->chip; > + mtd = nand_to_mtd(nand_chip); > + nand_chip->exec_op = pl353_nfc_exec_op; > + nand_set_controller_data(nand_chip, xnand); > + mtd->priv = nand_chip; > + mtd->owner = THIS_MODULE; > + mtd->name = PL353_NAND_DRIVER_NAME; A label property in the DT might overwrite this value. > + nand_set_flash_node(nand_chip, pdev->dev.of_node); > + > + /* Set address of NAND IO lines */ > + nand_chip->IO_ADDR_R = xnand->nand_base; > + nand_chip->IO_ADDR_W = xnand->nand_base; > + /* Set the driver entry points for MTD */ > + nand_chip->dev_ready = pl353_nand_device_ready; > + nand_chip->select_chip = pl353_nand_select_chip; > + /* If we don't set this delay driver sets 20us by default */ > + nand_chip->chip_delay = 30; And why 30 is better? I suppose you mean the core, not the driver. The driver is this file. > + > + /* Set the device option and flash width */ > + nand_chip->options = NAND_BUSWIDTH_AUTO; > + nand_chip->bbt_options = NAND_BBT_USE_FLASH; > + platform_set_drvdata(pdev, xnand); > + > + /* first scan to find the device and get the page size */ > + if (nand_scan_ident(mtd, 1, NULL)) { > + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n"); > + return -ENXIO; > + } > + pl353_nand_ecc_init(mtd, &nand_chip->ecc, nand_chip->ecc.mode); > + if (nand_chip->options & NAND_BUSWIDTH_16) > + pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); > + /* second phase scan */ > + if (nand_scan_tail(mtd)) { > + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n"); > + return -ENXIO; > + } > + > + mtd_device_register(mtd, NULL, 0); > + > + return 0; > +} > + > +/** > + * pl353_nand_remove - Remove method for the NAND driver > + * @pdev: Pointer to the platform_device structure > + * > + * This function is called if the driver module is being unloaded. It frees all > + * resources allocated to the device. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_remove(struct platform_device *pdev) > +{ > + struct pl353_nand_info *xnand = platform_get_drvdata(pdev); > + struct mtd_info *mtd = nand_to_mtd(&xnand->chip); > + > + /* Release resources, unregister device */ > + nand_release(mtd); > + > + return 0; > +} > + > +/* Match table for device tree binding */ > +static const struct of_device_id pl353_nand_of_match[] = { > + { .compatible = "arm,pl353-nand-r2p1" }, > + {}, > +}; > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); > + > +/* > + * pl353_nand_driver - This structure defines the NAND subsystem platform driver > + */ > +static struct platform_driver pl353_nand_driver = { > + .probe = pl353_nand_probe, > + .remove = pl353_nand_remove, > + .driver = { > + .name = PL353_NAND_DRIVER_NAME, > + .of_match_table = pl353_nand_of_match, > + }, > +}; > + > +module_platform_driver(pl353_nand_driver); > + > +MODULE_AUTHOR("Xilinx, Inc."); > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); > +MODULE_LICENSE("GPL"); Thanks, Miquèl -- Miquel Raynal, Bootlin (formerly Free Electrons) Embedded Linux and Kernel engineering https://bootlin.com