Received: by 2002:ac0:a5a7:0:0:0:0:0 with SMTP id m36-v6csp4320412imm; Mon, 6 Aug 2018 22:42:42 -0700 (PDT) X-Google-Smtp-Source: AAOMgpez87Vk4CZregJsIFRhaCdVnhJIegH4FYoXJy+BL8I1IEcH7xpFQds6UTrOIeLJCzLivQlU X-Received: by 2002:a17:902:7b87:: with SMTP id w7-v6mr16790031pll.142.1533620562375; Mon, 06 Aug 2018 22:42:42 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1533620562; cv=none; d=google.com; s=arc-20160816; b=RbrH5cZpsvY7cq+PsCHce3a2ncDmEobxiqVaQ9uiQVnIW5RSvddbuO7EQvMCQrzz9v WoBYkKbJGuWCKB2o008obAD1EkL9evqmlhCgOsNsh8MA1BvtpVOVnpJH4/deDPpzsMZD yxxQ9OxigZIMWCGjRdCJmMDkf051hG5yIrtS5kMChJ6gfczY4wldS7v1nFKWMHSBPllU k8mJY+i95krQ9RqjJNq8cMaYdAq6E6ZNAHSGekLoksmGLrscvliFWRHD/y/ywANU4kJh E3UaJYZowjx5bd+qpqWFYFXO9Klm599zQCYXpyfK5q82fIG4Bu86Lo7zUxdKtbvrYlXn n0og== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:sender:spamdiagnosticmetadata :spamdiagnosticoutput:mime-version:message-id:date:subject:cc:to :from:dkim-signature:arc-authentication-results; bh=nv8ETuBzSqCBlzf9dB4eQ7gIKp5o2IwSfpNMLWrEG+U=; b=l537oNkwshY8nPOvo362+5JPLk3WKYJwrwdjKESmGkp7zJ/Coyj7jEQTA5aTerdUfP 3ExX+UCib34OexF/7ZjDWNTsbTq8OCKmeWiXaYxmZxPD2R4UH6cvicqKlkda+TZ/HIw4 as3Z71jOq8lery+qqc9LcP4eYICHNraPZHU2o6pM2gSU4RXZ/8WvpAGDd6UPhN5kw4f1 rY8dJ4O2wFgiMu66tvVS/I8QJ0IjsVWRgDC9pY4giF+NcJBOsGdzC1bsxoBDa0sWdyVC KWGY2fLRVdAnnBLD9V2I9vEen6KswUD0mR+IAmjbtEpQ5QaXIfrBwW1+uqzXchluw/YK oULg== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@xilinx.onmicrosoft.com header.s=selector1-xilinx-com header.b=v2jCFQBy; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Return-Path: Received: from vger.kernel.org (vger.kernel.org. [209.132.180.67]) by mx.google.com with ESMTP id c12-v6si510804pgd.359.2018.08.06.22.42.27; Mon, 06 Aug 2018 22:42:42 -0700 (PDT) Received-SPF: pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) client-ip=209.132.180.67; Authentication-Results: mx.google.com; dkim=pass header.i=@xilinx.onmicrosoft.com header.s=selector1-xilinx-com header.b=v2jCFQBy; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S2387437AbeHGHx0 (ORCPT + 99 others); Tue, 7 Aug 2018 03:53:26 -0400 Received: from mail-eopbgr720074.outbound.protection.outlook.com ([40.107.72.74]:33372 "EHLO NAM05-CO1-obe.outbound.protection.outlook.com" rhost-flags-OK-OK-OK-FAIL) by vger.kernel.org with ESMTP id S1727360AbeHGHx0 (ORCPT ); Tue, 7 Aug 2018 03:53:26 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=xilinx.onmicrosoft.com; s=selector1-xilinx-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=nv8ETuBzSqCBlzf9dB4eQ7gIKp5o2IwSfpNMLWrEG+U=; b=v2jCFQBy6Cp7uBkqsaUD1ciuDWjegJWLiei3oLPQIJWGYSb8yWSUYLLYGFxeGqpQYJPFs/Nih0clUvbr3hGsKwq1HmaLTbDZetQ6H/EithxiNc2ia2daT2dzjB7nXv1CN2QRRs4tJrPyqygMa7EBseMtj7MEp1gehmnhA5fCrHQ= Received: from BL0PR02CA0108.namprd02.prod.outlook.com (2603:10b6:208:51::49) by DM5PR0201MB3512.namprd02.prod.outlook.com (2603:10b6:4:77::12) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1017.15; Tue, 7 Aug 2018 05:40:35 +0000 Received: from CY1NAM02FT056.eop-nam02.prod.protection.outlook.com (2a01:111:f400:7e45::200) by BL0PR02CA0108.outlook.office365.com (2603:10b6:208:51::49) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384) id 15.20.1017.15 via Frontend Transport; Tue, 7 Aug 2018 05:40:35 +0000 Authentication-Results: spf=pass (sender IP is 149.199.60.83) smtp.mailfrom=xilinx.com; gmail.com; dkim=none (message not signed) header.d=none;gmail.com; dmarc=bestguesspass action=none header.from=xilinx.com; Received-SPF: Pass (protection.outlook.com: domain of xilinx.com designates 149.199.60.83 as permitted sender) receiver=protection.outlook.com; client-ip=149.199.60.83; helo=xsj-pvapsmtpgw01; Received: from xsj-pvapsmtpgw01 (149.199.60.83) by CY1NAM02FT056.mail.protection.outlook.com (10.152.74.160) with Microsoft SMTP Server (version=TLS1_0, cipher=TLS_RSA_WITH_AES_256_CBC_SHA) id 15.20.1038.3 via Frontend Transport; Tue, 7 Aug 2018 05:40:34 +0000 Received: from unknown-38-66.xilinx.com ([149.199.38.66] helo=xsj-pvapsmtp01) by xsj-pvapsmtpgw01 with esmtp (Exim 4.63) (envelope-from ) id 1fmujR-0002zR-HN; Mon, 06 Aug 2018 22:40:33 -0700 Received: from [127.0.0.1] (helo=localhost) by xsj-pvapsmtp01 with smtp (Exim 4.63) (envelope-from ) id 1fmujM-0002fT-Ep; Mon, 06 Aug 2018 22:40:28 -0700 Received: from xsj-pvapsmtp01 (xsj-smtp.xilinx.com [149.199.38.66]) by xsj-smtp-dlp2.xlnx.xilinx.com (8.13.8/8.13.1) with ESMTP id w775eOLm003166; Mon, 6 Aug 2018 22:40:24 -0700 Received: from [172.23.37.108] (helo=xhdnagasure40.xilinx.com) by xsj-pvapsmtp01 with esmtp (Exim 4.63) (envelope-from ) id 1fmujG-00021Z-Tv; Mon, 06 Aug 2018 22:40:24 -0700 From: Naga Sureshkumar Relli To: , , , , , , , , , , CC: , , , , Naga Sureshkumar Relli Subject: [LINUX PATCH v12] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface Date: Tue, 7 Aug 2018 11:10:14 +0530 Message-ID: <1533620414-3332-1-git-send-email-naga.sureshkumar.relli@xilinx.com> X-Mailer: git-send-email 2.7.4 X-RCIS-Action: ALLOW X-TM-AS-Product-Ver: IMSS-7.1.0.1224-8.2.0.1013-23620.005 X-TM-AS-User-Approved-Sender: Yes;Yes X-EOPAttributedMessage: 0 X-MS-Office365-Filtering-HT: Tenant X-Forefront-Antispam-Report: CIP:149.199.60.83;IPV:NLI;CTRY:US;EFV:NLI;SFV:NSPM;SFS:(10009020)(346002)(376002)(396003)(136003)(39860400002)(2980300002)(438002)(189003)(199004)(2201001)(5024004)(106466001)(4326008)(36756003)(107886003)(14444005)(476003)(16586007)(39060400002)(126002)(110136005)(54906003)(36386004)(316002)(77096007)(486006)(50466002)(356003)(186003)(51416003)(305945005)(26005)(2616005)(7696005)(217873002)(8676002)(2906002)(81156014)(63266004)(426003)(48376002)(106002)(53946003)(9786002)(47776003)(478600001)(5660300001)(8936002)(336012)(6666003)(7416002)(50226002)(81166006)(107986001)(921003)(1121003)(579004);DIR:OUT;SFP:1101;SCL:1;SRVR:DM5PR0201MB3512;H:xsj-pvapsmtpgw01;FPR:;SPF:Pass;LANG:en;PTR:unknown-60-83.xilinx.com;MX:1;A:1; X-Microsoft-Exchange-Diagnostics: 1;CY1NAM02FT056;1:VYvTN1ibKcGKe9ysY2BJ38sE/5X9/Ar40jsnApjP64ust9qBwWN2ozdh6nZfyF+AcXEVwhZ+KL+jOPCaeb2Cmnlh2SMhVBjeFftge6ubCq2aFj0TlmM3qOLFe9E26PPr MIME-Version: 1.0 Content-Type: text/plain X-MS-PublicTrafficType: Email X-MS-Office365-Filtering-Correlation-Id: 4b25fcb7-713a-42c3-2715-08d5fc284c5d X-Microsoft-Antispam: BCL:0;PCL:0;RULEID:(7020095)(4652040)(8989117)(4534165)(4627221)(201703031133081)(201702281549075)(8990107)(5600074)(711020)(4608076)(2017052603328)(7153060);SRVR:DM5PR0201MB3512; X-Microsoft-Exchange-Diagnostics: 1;DM5PR0201MB3512;3:h8YJ5KjejChIOqfndSiuIczY0QFGJEjDvR58Vv/BW1OyPu9whTrU0K2fmlhMpZdiNvXo5n/sgPC56X497A96Rp2LfReaF6y1rt9YkN+cLH4xFAUwB/LTLyYC+qyHq2hAiyar2qO1sk+81Nfxys4rF4ATDlpZFGR328PmG/cDlpqBy/wtwVIfFK1w46HtIKQBruioJa8f1dhgb1F+6nGgFJQi+VNOsYYo8rKXgrGG8kme4B/3zuIaXl5oyHsf6UXFcCnrUqDvHj7HUB0QKpnIXYco6C4S0RFdTOq27eUxy1EGEc+kJR3CFrNlX3ZfyFXNatqhHjUmeRdxL6k5+z0QavFu2OcI3thx2C5pUphEkEY=;25:SymuIIh6OGBxGYhS1QnxybV0+GvnFy8SaghPxAFVSPtWoMyhC8pb6l6eDpe6mHyN3TiUfLsYt83gxzPqRY84V252I9BcSJ0CD6jAzEhgZLCB70pdfQVRsvyGi69fyS0JyPdt/fseZ3KudscW1dNAo45Y8gMunRtk++nlYEUsUrQ30yZ8AvYncNW5GhSJUjn1xJtl1JdCWoc5ldBcoLK8w27ATDaE7jqGHRXHFVhJ45MDB8cEEzbed8/JI0bf3Ylq4xU8vcGXIvkJmBUdxddBkagh36Hu44JEtbqyV0uUUw5TKYXTchVpjehtpz9dlQfQ4gQfDtmyi/JRGLcuCPi49w== X-MS-TrafficTypeDiagnostic: DM5PR0201MB3512: X-Microsoft-Exchange-Diagnostics: 1;DM5PR0201MB3512;31:sqggi036arW+K0upOFssqlXNEWI3KTlrWmcDFeqPbNVKZw0oY6Zpp8bf67KeF8DOr5R+ZGGm0al0wMl+U2wj/ikPw59F/O5O86fkksOf6WoeyNo4xi937D0yNng1p85yyOneTNlDH3At8K5jkrzd9N+HMhxYrA9S79vWbRHbjbbMYVbSSIMf9sDOn5/9Srj05jhzvNNhrUvPsLo5pneVs1myfZ4NgfNzA+qZe3zve78=;20:baj8KI62P0U8p46051BZMP+zA08rrScA6TsBwNi8BdUaNOwUfmI9AMNbwcRUZDijwcDixpNhGG1baHG6EyQCKZPEhaCw3YJP4WofKaMsFVTIypxB0MIjUJi6dwOM1C8Zmu88o2I6NkXt3t/KfvDtr5n/jRIJP9b4yfp7DlRHTwO0UI8Rn+0lRKjJ0m4J5oKObOIYe/AjrJ/ipIaPPeAbV1EL8TE+BK+M/SvlJFjRqdTbTnViL0AoVLfGXnJFQK7N+0WMspDfyVdyEkfra89zYVauHfpn7TTwj+Fwn5UX4Ld6jZ9/pdkOcMaaVYqb3JJ/3bszHu7CBCbOlp16DRDfqg6Ow75zfNClVLKPAvHidWt9n/Uxh8qUaqGjEvRqn11YayQy6Gldplt/3LwxrQLQ3BpX51m1XESJayshxVa2GL/p4jMvY67PDsTLJa+GEKLvloVv76bzyzyL5vXriybLXVyidlEZ7RJhjXZ9Y+UXPAW//OpHAMs38Hhw8Lvvm5Uk X-Auto-Response-Suppress: DR, RN, NRN, OOF, AutoReply X-Microsoft-Antispam-PRVS: X-Exchange-Antispam-Report-Test: UriScan:(192813158149592); X-MS-Exchange-SenderADCheck: 1 X-Exchange-Antispam-Report-CFA-Test: BCL:0;PCL:0;RULEID:(8211001083)(6040522)(2401047)(8121501046)(5005006)(10201501046)(3002001)(3231311)(944501410)(52105095)(93006095)(93004095)(6055026)(149027)(150027)(6041310)(20161123560045)(20161123558120)(20161123564045)(201703131423095)(201702281528075)(20161123555045)(201703061421075)(201703061406153)(20161123562045)(6072148)(201708071742011)(7699016);SRVR:DM5PR0201MB3512;BCL:0;PCL:0;RULEID:;SRVR:DM5PR0201MB3512; X-Microsoft-Exchange-Diagnostics: 1;DM5PR0201MB3512;4:Nfldc+5UEixX5sfeZU6C3b+QYtFpzGOj3ODwG2FxN49zNvAYwuUG5Tmeaynta8d07Q6fCmR4hC5yph1/bJnpqOIiJT6rpRHf9cIxbQBqPO7AUcznrGYILbPY6FxfjjXgLXaG1WKhYjfhoUBHgvjdwlj8FKcj/YjmsSDwpaq2gahZCPmFgYEy62ZJM7C8wm5EWOWWDuZm6Xj38gTqK99aSukvryfcWmXW9rbRp0YXmYgPqv5LLpYs0/Mo1Jqdr83eIJbVLDuyVC3EGjjVW8XRSSH7irVkFiAANX0m6H/I3h4RKIPmXTEHiaeXgIKmfq0k X-Forefront-PRVS: 0757EEBDCA X-Microsoft-Exchange-Diagnostics: =?us-ascii?Q?1;DM5PR0201MB3512;23:BPRjdVnsRkTPJOdCP+ri0u02w9XO1wqneeiWrpJ?= =?us-ascii?Q?AZM/otoHYVGxAPkD4nGrvbMxBRFnMn4XpVT47wwjnn0LFVPz3lnRk+czaGo9?= =?us-ascii?Q?QfVMiu8qeX3adgWZwKZS+byLKVmpxgTr84sfXP+I1300ZplZKidfzqvjikSg?= =?us-ascii?Q?DKyEYPBnAG7rP+JUEquwL1lGVdP44q2BUCP6QF2geL1AusNkowlP7mzHqOU/?= =?us-ascii?Q?VDYFblOFnD6hhIsAPVFzD3SE/wIzaFvoMKpsUMXWcTuVGUkAtIWgwbVY5KOW?= =?us-ascii?Q?TZn6/HLeKqkapZ/gFUgNOg3HzHA0UN/pX+Rnaa4P1MKTqnFdpIw0sil+PnnJ?= =?us-ascii?Q?cVg9oNzVPpdI128dtMlht5JA0v5WQYzzv1PtkwRs1aiMhTVEGv2iPgIKS38u?= =?us-ascii?Q?gOspLDyyO0KK8Lni46QYaN0YD+ydHiK7JL0QInNI4S5p8Phz6IIXRp7pQtDf?= =?us-ascii?Q?2c9bNsqE9ZE6YOvnEbCyyavo7pzjmSgIiEWOxLcJN1f6MBETqAMFG3pEuwzu?= =?us-ascii?Q?ZofXCL9KJft9N047TH+ixtjosBe63Jwl3W+ewrpSto7ESPVDVnZALqH1Ci6S?= =?us-ascii?Q?tcELoE2Tg11ZDscvPorTOHrtgbRvlymgkFT+WzJihEmspWPrrgNiyXyt5aXH?= =?us-ascii?Q?VAQHg0H6SVtiQNW1ooy6C554IvTO+hngjtJJiwO5HuOqWaJ9rCnUM4IGC0dI?= =?us-ascii?Q?f5Ab8p0XbK7B+nnes0k1CT4mk13ndfD3ATPouAuGj7iAwJPSUyOB52VoOUtH?= =?us-ascii?Q?cu6cNBggn9f+49UJqr5gHtXQ295C7ovBLinapjB4LmNGmh1MRZx7Gq10TDDu?= =?us-ascii?Q?m92wgNAKyKa80q4/t7CF2YguIjyEnWU+0Wvjd+ZDjWz6NFfH05hl/DDpvmvb?= =?us-ascii?Q?vylXHMv1BjMeoSrylyeSQYepwMcTKtBFdQkAHsk8McxG3AWMiF2Lw+eih+Dj?= =?us-ascii?Q?bxklkPmLXTvLkelpBOe4ce2zme//KYkQ/4KecOEwJWlDPBIwZXoC1D0m42SH?= =?us-ascii?Q?ZyihFdvU9rVe8eB+NgsNdAtwtqu+ZJww1fhckrX3I9WXn+pSTyHG9knlxL3h?= =?us-ascii?Q?4dV4TDJLLY8plYnP58bSmrqTZL7i5yUw957itdV6qIUCNvcL3AmtTox3Fnib?= =?us-ascii?Q?CJhN7aX1fMNmzVMOzBGPPqw7J4xVGhlZrbFPX9qNRrT80BBhHaQ2GLBlnj6o?= =?us-ascii?Q?zR9lxYjiW0LGRMhWR+Z6zrBAqzB+txcv43VzlCTp/05bUpOKlFYXKwVb7PM8?= =?us-ascii?Q?CffDDvI3u8J5Lsi2eo3w=3D?= X-Microsoft-Antispam-Message-Info: cDKyG9rP9Ps3G/DFhsATJACDaoCBTjGqKdk6nFBpDybbXIP1R1lHYF6FU93FEsZ7NuBtEhqLTHfFtJJzUDsohZ84OBGI1sWPE6iAkrj12pikfO59fVwWPNX29DWLioD6+SreJAHVFhSj7c4UHFDJYTxP+ZB1ZfvhEb/g2kqYLgboMAEMEqF7jbB1gzJU5k5ZbTpgGoB/pFHNByp456oAwnf/Qy1dc9xPdhHfUALBmhaQ/49I8/wwKUiE0Dp4bxhgARw1KsKruAeQH1fJ90LEsQgAZr1HDPRA84UKTyvHjlyOMI738TsJAjCoYKWlXa9+b2VIRwAlHcvIUb/NUtTW/tYd7NpJzfIyfmEbfssC9E4= X-Microsoft-Exchange-Diagnostics: 1;DM5PR0201MB3512;6:MqSWiO/O7SbRTCD0fKUM1SBUHmEANr5f9zmr+yy9iEaylVwe6jQtDkjpkinWOmwpB2pYMx9ldqXJL6zsqj9Qb/5R4L6QrXPHukWLxGy1QS1/hms5Kh4nETfYdER6i6nEw8x8n5eusz8yo/PW6BGZsYH28Zqawp5384/t9fTGvbFjDfs2ajl+AYDGbcOd4y0g+liWaJlq27Xa8wkBjdnaxDmPyPTdu+MYb0vVn+WBr+Z5/HS/VFEy6lBqjDzOG1i8zXU6TWbTWfpFwNvQItToqzQWdBFQCqiKdbNTdNRTyyv+IvEUmZhgnOspVbCHA3h2EeINdtvxQnoBC8r/qArG58KvPvssYEK/DTXSfFBUWb/N8lusJ9JhBABxqwUij8VfPuVK6CKLX2rNFnoqmcOwzG66+C8sTDHe4p0KlsKBrPqjnWemdhZbFST/9qBvsIAjEk3c1asz8Kon62hC2+h+2w==;5:lNOkv/HRehc+ZYEL0nmCo5GPJOjE51+kmhQljqy6W649aCB44JLslqHe0od/cjYDUHFJogJCsxwl0EbdZpb642PKJZ0YeFT9m7eiRlVcui8OZQojskTcxCSNkhohPHjXG4DslzdmVY4nckaPIOoZ227ETNMv8k297hu3wyAGy6w=;7:YLGW/Clg+hT0F7cW44cunmDA1qlTuX7PoeinHy6Eu6laCMjH/Sfl5Hij3+5Kapsb/rLztYgzX02ppYU9tFXkXvzsoiPrXHY7gGA0tIAuAUXHwQMYSeeH9b5z7HTxZboKCeB1fS81ihVtXq0++TCxAjFz9ppCF64qn9Pd/o4Tkmr4g3QGMU414AMB41xVHsGtYc5qVjGD4DDGNjMckG7hBR2En4DXJCn48v4wCJoxiMVxkKW9XBmc5oBpfNuxcWnH SpamDiagnosticOutput: 1:99 SpamDiagnosticMetadata: NSPM X-OriginatorOrg: xilinx.com X-MS-Exchange-CrossTenant-OriginalArrivalTime: 07 Aug 2018 05:40:34.3013 (UTC) X-MS-Exchange-CrossTenant-Network-Message-Id: 4b25fcb7-713a-42c3-2715-08d5fc284c5d X-MS-Exchange-CrossTenant-Id: 657af505-d5df-48d0-8300-c31994686c5c X-MS-Exchange-CrossTenant-OriginalAttributedTenantConnectingIp: TenantId=657af505-d5df-48d0-8300-c31994686c5c;Ip=[149.199.60.83];Helo=[xsj-pvapsmtpgw01] X-MS-Exchange-CrossTenant-FromEntityHeader: HybridOnPrem X-MS-Exchange-Transport-CrossTenantHeadersStamped: DM5PR0201MB3512 Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Add driver for arm pl353 static memory controller nand interface with HW ECC support. This controller is used in Xilinx Zynq SoC for interfacing the NAND flash memory. Signed-off-by: Naga Sureshkumar Relli --- Changes in v12: - Rebased the driver on top of v4.19 nand tree - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops with ->attach_chip() and used nand_scan() instead. - Renamed pl353_nand_info structure to pl353_nand_controller - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr' - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc() - Defined new macro for max ECC blocks - Added return value check for ecc.calculate() - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd() - Added x16 bus-width support - The dependent driver pl353-smc is already reviewed and hence dropped the smc driver Changes in v11: - Removed Documentation patch and added the required info in driver as per Boris comments. - Removed unwanted variables from pl353_nand_info as per Miquel comments - Removed IO_ADDR_R/W. - Replaced onhot() with hweight32() - Defined macros for static values in function pl353_nand_correct_data() - Removed all unnecessary delays - Used nand_wait_ready() where ever is required - Modifed the pl353_setup_data_interface() logic as per Miquel comments. - Taken array instead of 7 values in pl353_setup_data_interface() and pass it to smc driver. - Added check to collect the return value of mtd_device_register(). Changes in 10: - Typos correction like nand to NAND and soc to SOC etc.. - Defined macros for the values in pl353_nand_calculate_hwecc() - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc() - Changed the return type form int to bool to the function onehot() - Removed udelay(1000) in pl353_cmd_function, as it is not required - Dropped ecc->hwctl = NULL in pl353_ecc_init() - Added an error message in pl353_ecc_init(), when there is no matching oobsize - Changed the variable from xnand to xnfc - Added logic to get mtd->name from DT, if it is specified in DT Changes in v9: - Addressed the below comments given by Miquel - instead of using pl353_nand_write32, use directly writel_relaxed - Fixed check patch warnings - Renamed write_buf/read_buf to write_data_op/read_data_op - use BIT macro instead of 1 << nr - Use NAND_ROW_ADDR_3 flag - Use nand_wait_ready() - Removed swecc functions - Use address cycles as per size, instead of reading it from Parameter page - Instead of writing too many patterns, use optional property Changes in v8: - Added exec_op() implementation - Fixed the below v7 review comments - removed mtd_info from pl353_nand_info struct - Corrected ecc layout offsets - Added on-die ecc support Changes in v7: - Currently not implemented the memclk rate adjustments. I will look into this later and once the basic driver is accepted. - Fixed GPL licence ident Changes in v6: - Fixed the checkpatch.pl reported warnings - Using the address cycles information from the onfi param page earlier it is hardcoded to 5 in driver Changes in v5: - Configure the nand timing parameters as per the onfi spec Changes in v4: - Updated the driver to sync with pl353_smc driver APIs Changes in v3: - implemented the proper error codes - further breakdown this patch to multiple sets - added the controller and driver details to Documentation section - updated the licenece to GPLv2 - reorganized the pl353_nand_ecc_init function Changes in v2: - use "depends on" rather than "select" option in kconfig - remove unused variable parts --- drivers/mtd/nand/raw/Kconfig | 8 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/pl353_nand.c | 1398 +++++++++++++++++++++++++++++++++++++ 3 files changed, 1407 insertions(+) create mode 100644 drivers/mtd/nand/raw/pl353_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index b6738ec..e87591e 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -560,4 +560,12 @@ config MTD_NAND_TEGRA is supported. Extra OOB bytes when using HW ECC are currently not supported. +config MTD_NAND_PL353 + tristate "ARM Pl353 NAND flash driver" + depends on MTD_NAND && ARM + depends on PL353_SMC + help + Enables support for PrimeCell Static Memory Controller PL353. + + endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index d5a5f98..dc5c332 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_amd.o diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c new file mode 100644 index 0000000..73c6655 --- /dev/null +++ b/drivers/mtd/nand/raw/pl353_nand.c @@ -0,0 +1,1398 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ARM PL353 NAND flash controller driver + * + * Copyright (C) 2017 Xilinx, Inc + * Author: Punnaiah chowdary kalluri + * Author: Naga Sureshkumar Relli + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define PL353_NAND_DRIVER_NAME "pl353-nand" + +/* NAND flash driver defines */ +#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */ +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */ +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ + +/* Flash memory controller operating parameters */ + +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \ + (0 << 5)) /* No Jumping */ + +/* AXI Address definitions */ +#define START_CMD_SHIFT 3 +#define END_CMD_SHIFT 11 +#define END_CMD_VALID_SHIFT 20 +#define ADDR_CYCLES_SHIFT 21 +#define CLEAR_CS_SHIFT 21 +#define ECC_LAST_SHIFT 10 +#define COMMAND_PHASE (0 << 19) +#define DATA_PHASE BIT(19) + +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ + +#define ONDIE_ECC_FEATURE_ADDR 0x90 +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 +#define PL353_NAND_ECC_VALID_SHIFT 24 +#define PL353_NAND_ECC_VALID_MASK 0x40 +#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF +#define PL353_ECC_BITS_BITOFF_MASK 0x7 +#define PL353_ECC_BIT_MASK 0xFFF +#define PL353_TREA_MAX_VALUE 1 +#define PL353_MAX_ECC_CHUNKS 4 +#define PL353_MAX_ECC_BYTES 3 + +struct pl353_nfc_op { + u32 cmnds[4]; + u32 end_cmd; + u32 addrs; + u32 len; + u32 naddrs; + u32 addr5; + u32 addr6; + unsigned int data_instr_idx; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + unsigned int cle_ale_delay_ns; + const struct nand_op_instr *data_instr; +}; + +/** + * struct pl353_nand_controller - Defines the NAND flash controller driver + * instance + * @chip: NAND chip information structure + * @dev: Parent device (used to print error messages) + * @regs: Virtual address of the NAND flash device + * @buf_addr: Virtual address of the NAND flash device for + * data read/writes + * @addr_cycles: Address cycles + * @mclk: Memory controller clock + * @buswidth: Bus width 8 or 16 + */ +struct pl353_nand_controller { + struct nand_chip chip; + struct device *dev; + void __iomem *regs; + void __iomem *buf_addr; + u8 addr_cycles; + struct clk *mclk; + u32 buswidth; +}; + +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = { + .ecc = pl353_ecc_ooblayout16_ecc, + .free = pl353_ecc_ooblayout16_free, +}; + +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 52; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 2; + oobregion->length = 50; + + return 0; +} + +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = { + .ecc = pl353_ecc_ooblayout64_ecc, + .free = pl353_ecc_ooblayout64_free, +}; + +/* Generic flash bbt decriptors */ +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +static void pl353_nfc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + + if (xnfc->buswidth == 8) + return; + + if (force_8bit) + pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8); + else + pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); +} + +/** + * pl353_nand_read_data_op - read chip data into buffer + * @chip: Pointer to the NAND chip info structure + * @in: Pointer to the buffer to store read data + * @len: Number of bytes to read + * @force_8bit: Force 8-bit bus access + * Return: Always return zero + */ +static int pl353_nand_read_data_op(struct nand_chip *chip, + u8 *in, + unsigned int len, bool force_8bit) +{ + int i; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + + if (force_8bit) + pl353_nfc_force_byte_access(chip, true); + + if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) || (!force_8bit)) { + u32 *ptr = (u32 *)in; + + len /= 4; + for (i = 0; i < len; i++) + ptr[i] = readl(xnfc->buf_addr); + } else { + for (i = 0; i < len; i++) + in[i] = readb(xnfc->buf_addr); + } + if (force_8bit) + pl353_nfc_force_byte_access(chip, false); + + return 0; +} + +/** + * pl353_nand_write_buf - write buffer to chip + * @mtd: Pointer to the mtd info structure + * @buf: Pointer to the buffer to store write data + * @len: Number of bytes to write + * @force_8bit: Force 8-bit bus access + */ +static void pl353_nand_write_data_op(struct mtd_info *mtd, const u8 *buf, + int len, bool force_8bit) +{ + int i; + struct nand_chip *chip = mtd_to_nand(mtd); + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + + if (force_8bit) + pl353_nfc_force_byte_access(chip, true); + + if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) || (!force_8bit)) { + u32 *ptr = (u32 *)buf; + + len /= 4; + for (i = 0; i < len; i++) + writel(ptr[i], xnfc->buf_addr); + } else { + for (i = 0; i < len; i++) + writeb(buf[i], xnfc->buf_addr); + } + if (force_8bit) + pl353_nfc_force_byte_access(chip, false); +} + +static int pl353_wait_for_ecc_done(void) +{ + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; + + do { + if (pl353_smc_ecc_is_busy()) + cpu_relax(); + else + break; + } while (!time_after_eq(jiffies, timeout)); + + if (time_after_eq(jiffies, timeout)) { + pr_err("%s timed out\n", __func__); + return -ETIMEDOUT; + } + + return 0; +} + +/** + * pl353_nand_calculate_hwecc - Calculate Hardware ECC + * @mtd: Pointer to the mtd_info structure + * @data: Pointer to the page data + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored + * + * This function retrieves the Hardware ECC data from the controller and returns + * ECC data back to the MTD subsystem. + * It operates on a number of 512 byte blocks of NAND memory and can be + * programmed to store the ECC codes after the data in memory. For writes, + * the ECC is written to the spare area of the page. For reads, the result of + * a block ECC check are made available to the device driver. + * + * ------------------------------------------------------------------------ + * | n * 512 blocks | extra | ecc | | + * | | block | codes | | + * ------------------------------------------------------------------------ + * + * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit + * detection. It starts when a valid read or write command with a 512 byte + * aligned address is detected on the memory interface. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd, + const u8 *data, u8 *ecc) +{ + u32 ecc_value; + u8 chunk, ecc_byte, ecc_status; + + for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) { + /* Read ECC value for each block */ + ecc_value = pl353_smc_get_ecc_val(chunk); + ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT); + + /* ECC value valid */ + if (ecc_status & PL353_NAND_ECC_VALID_MASK) { + for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES; + ecc_byte++) { + /* Copy ECC bytes to MTD buffer */ + *ecc = ~ecc_value & 0xFF; + ecc_value = ecc_value >> 8; + ecc++; + } + } else { + pr_warn("%s status failed\n", __func__); + return -1; + } + } + + return 0; +} + +/** + * pl353_nand_correct_data - ECC correction function + * @mtd: Pointer to the mtd_info structure + * @buf: Pointer to the page data + * @read_ecc: Pointer to the ECC value read from spare data area + * @calc_ecc: Pointer to the calculated ECC value + * + * This function corrects the ECC single bit errors & detects 2-bit errors. + * + * Return: 0 if no ECC errors found + * 1 if single bit error found and corrected. + * -1 if multiple uncorrectable ECC errors found. + */ +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + unsigned char bit_addr; + unsigned int byte_addr; + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & + PL353_ECC_BIT_MASK; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & + PL353_ECC_BIT_MASK; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & + PL353_ECC_BIT_MASK; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & + PL353_ECC_BIT_MASK; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + /* no error */ + if (!ecc_odd && !ecc_even) + return 0; + + if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) { + /* bits [11:3] of error code is byte offset */ + byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK; + /* bits [2:0] of error code is bit offset */ + bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK; + /* Toggling error bit */ + buf[byte_addr] ^= (BIT(bit_addr)); + return 1; + } + + /* one error in parity */ + if (hweight32(ecc_odd | ecc_even) == 1) + return 1; + + /* Uncorrectable error */ + return -1; +} + +static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip, + int page, int column, int start_cmd, int end_cmd, + bool read) +{ + unsigned long data_phase_addr; + u32 end_cmd_valid = 0; + unsigned long cmd_phase_addr = 0, cmd_phase_data = 0; + + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + + end_cmd_valid = read ? 1 : 0; + + cmd_phase_addr = (unsigned long __force)xnfc->regs + + ((xnfc->addr_cycles + << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (start_cmd << START_CMD_SHIFT)); + + /* Get the data phase address */ + data_phase_addr = (unsigned long __force)xnfc->regs + + ((0x0 << CLEAR_CS_SHIFT) | + (0 << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT)); + + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + + if (chip->options & NAND_BUSWIDTH_16) + column /= 2; + cmd_phase_data = column; + if (mtd->writesize > PL353_NAND_ECC_SIZE) { + cmd_phase_data |= page << 16; + /* Another address cycle for devices > 128MiB */ + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(cmd_phase_data, + (void __iomem * __force)cmd_phase_addr); + cmd_phase_data = (page >> 16); + } + } else { + cmd_phase_data |= page << 8; + } + + writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr); +} + +/** + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function + * @mtd: Pointer to the mtd_info structure + * @chip: Pointer to the nand_chip structure + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + unsigned long data_phase_addr; + u8 *p; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long nand_offset = (unsigned long __force)xnfc->regs; + + chip->pagebuf = -1; + if (mtd->writesize < PL353_NAND_ECC_SIZE) + return 0; + + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + + nand_wait_ready(mtd); + + p = chip->oob_poi; + pl353_nand_read_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + return 0; +} + +/** + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @page: Page number to write + * + * Return: Zero on success and EIO on failure + */ +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + const u8 *buf = chip->oob_poi; + unsigned long data_phase_addr; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long nand_offset = (unsigned long __force)xnfc->regs; + u32 addrcycles = 0; + + chip->pagebuf = -1; + addrcycles = xnfc->addr_cycles; + pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + + pl353_nand_write_data_op(mtd, buf, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + pl353_nand_write_data_op(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + nand_wait_ready(mtd); + + return 0; +} + +/** + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + unsigned long data_phase_addr; + u8 *p; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long nand_offset = (unsigned long __force)xnfc->regs; + + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + nand_wait_ready(mtd); + pl353_nand_read_data_op(chip, buf, mtd->writesize, false); + p = chip->oob_poi; + pl353_nand_read_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + return 0; +} + +/** + * pl353_nand_write_page_raw - [Intern] raw page write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to write + * + * Return: Always return zero + */ +static int pl353_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + unsigned long data_phase_addr; + u8 *p; + + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long nand_offset = (unsigned long __force)xnfc->regs; + + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + pl353_nand_write_data_op(mtd, buf, mtd->writesize, false); + p = chip->oob_poi; + pl353_nand_write_data_op(mtd, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + return 0; +} + +/** + * nand_write_page_hwecc - Hardware ECC based page write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to write + * + * This functions writes data and hardware generated ECC values in to the page. + * + * Return: Always return zero + */ +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + int eccsize = chip->ecc.size; + int eccsteps = chip->ecc.steps; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *oob_ptr; + const u8 *p = buf; + u32 ret; + unsigned long data_phase_addr; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long nand_offset = (unsigned long __force)xnfc->regs; + + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + + for ( ; (eccsteps - 1); eccsteps--) { + pl353_nand_write_data_op(mtd, p, eccsize, false); + p += eccsize; + } + pl353_nand_write_data_op(mtd, p, + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), + false); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + /* Wait till the ECC operation is complete or timeout */ + ret = pl353_wait_for_ecc_done(); + if (ret) + dev_err(xnfc->dev, "ECC Timeout\n"); + p = buf; + ret = chip->ecc.calculate(mtd, p, &ecc_calc[0]); + if (ret) + return ret; + + /* Wait for ECC to be calculated and read the error values */ + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, + 0, chip->ecc.total); + if (ret) + return ret; + /* Clear ECC last bit */ + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr &= ~PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + + /* Write the spare area with ECC bytes */ + oob_ptr = chip->oob_poi; + pl353_nand_write_data_op(mtd, oob_ptr, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + pl353_nand_write_data_op(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + nand_wait_ready(mtd); + + return 0; +} + +/** + * pl353_nand_read_page_hwecc - Hardware ECC based page read function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the buffer to store read data + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * This functions reads data and checks the data integrity by comparing + * hardware generated ECC values and read ECC values from spare area. + * There is a limitation in SMC controller, that we must set ECC LAST on + * last data phase access, to tell ECC block not to expect any data further. + * Ex: When number of ECC STEPS are 4, then till 3 we will write to flash + * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract + * 4bytes from page size, and will initiate a transfer. And the remaining 4 as + * one more transfer with ECC_LAST bit set in NAND data phase register to + * notify ECC block not to expect any more data. The last block should be align + * with end of 512 byte block. Because of this limitation, we are not using + * core routines. + * + * Return: 0 always and updates ECC operation status in to MTD structure + */ +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + int i, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + u8 *p = buf; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + u8 *oob_ptr; + u32 ret; + unsigned long data_phase_addr; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long nand_offset = (unsigned long __force)xnfc->regs; + + pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + nand_wait_ready(mtd); + + for ( ; (eccsteps - 1); eccsteps--) { + pl353_nand_read_data_op(chip, p, eccsize, false); + p += eccsize; + } + pl353_nand_read_data_op(chip, p, + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), + false); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + /* Wait till the ECC operation is complete or timeout */ + ret = pl353_wait_for_ecc_done(); + if (ret) + dev_err(xnfc->dev, "ECC Timeout\n"); + + /* Read the calculated ECC value */ + p = buf; + ret = chip->ecc.calculate(mtd, p, &ecc_calc[0]); + if (ret) + return ret; + + /* Clear ECC last bit */ + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr &= ~PL353_NAND_ECC_LAST; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + + /* Read the stored ECC value */ + oob_ptr = chip->oob_poi; + pl353_nand_read_data_op(chip, oob_ptr, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + + /* de-assert chip select */ + data_phase_addr = (unsigned long __force)xnfc->buf_addr; + data_phase_addr -= nand_offset; + data_phase_addr |= PL353_NAND_CLEAR_CS; + data_phase_addr += nand_offset; + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + /* Check ECC error for all blocks and correct if it is correctable */ + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + stat = chip->ecc.correct(mtd, p, &ecc[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/** + * pl353_nand_select_chip - Select the flash device + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * + * This function is empty as the NAND controller handles chip select line + * internally based on the chip address passed in command and data phase. + */ +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) +{ +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void pl353_nfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct pl353_nfc_op *nfc_op) +{ + const struct nand_op_instr *instr = NULL; + unsigned int op_id, offset, naddrs; + int i, len; + const u8 *addrs; + + memset(nfc_op, 0, sizeof(struct pl353_nfc_op)); + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + nfc_op->len = nand_subop_get_data_len(subop, op_id); + len = nand_subop_get_data_len(subop, op_id); + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (op_id) + nfc_op->cmnds[1] = instr->ctx.cmd.opcode; + else + nfc_op->cmnds[0] = instr->ctx.cmd.opcode; + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + nfc_op->addrs = instr->ctx.addr.addrs[offset]; + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) { + nfc_op->addrs |= instr->ctx.addr.addrs[i] << + (8 * i); + } + + if (naddrs >= 5) + nfc_op->addr5 = addrs[4]; + if (naddrs >= 6) + nfc_op->addr6 = addrs[5]; + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop, + op_id); + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_IN_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + break; + + case NAND_OP_DATA_OUT_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + break; + + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op->rdy_delay_ns = instr->delay_ns; + break; + } + } +} + +static void cond_delay(unsigned int ns) +{ + if (!ns) + return; + + if (ns < 10000) + ndelay(ns); + else + udelay(DIV_ROUND_UP(ns, 1000)); +} + +/** + * pl353_nand_exec_op_cmd - Send command to NAND device + * @chip: Pointer to the NAND chip info structure + * @subop: Pointer to array of instructions + * Return: Always return zero + */ +static int pl353_nand_exec_op_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_op_instr *instr; + struct pl353_nfc_op nfc_op = {}; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + unsigned long cmd_phase_data = 0, end_cmd_valid = 0; + unsigned long cmd_phase_addr, data_phase_addr, end_cmd; + unsigned int op_id, len, offset; + bool reading; + + pl353_nfc_parse_instructions(chip, subop, &nfc_op); + instr = nfc_op.data_instr; + op_id = nfc_op.data_instr_idx; + len = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + pl353_smc_clr_nand_int(); + /* Get the command phase address */ + if (nfc_op.cmnds[1] != 0) { + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN) + end_cmd_valid = 0; + else + end_cmd_valid = 1; + end_cmd = nfc_op.cmnds[1]; + } else { + end_cmd = 0x0; + } + + /* + * The SMC defines two phases of commands when transferring data to or + * from NAND flash. + * Command phase: Commands and optional address information are written + * to the NAND flash.The command and address can be associated with + * either a data phase operation to write to or read from the array, + * or a status/ID register transfer. + * Data phase: Data is either written to or read from the NAND flash. + * This data can be either data transferred to or from the array, + * or status/ID register information. + */ + cmd_phase_addr = (unsigned long __force)xnfc->regs + + ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (nfc_op.cmnds[0] << START_CMD_SHIFT)); + + /* Get the data phase address */ + end_cmd_valid = 0; + + data_phase_addr = (unsigned long __force)xnfc->regs + + ((0x0 << CLEAR_CS_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT)); + xnfc->buf_addr = (void __iomem * __force)data_phase_addr; + + /* Command phase AXI Read & Write */ + if (nfc_op.naddrs >= 5) { + if (mtd->writesize > PL353_NAND_ECC_SIZE) { + cmd_phase_data = nfc_op.addrs; + /* Another address cycle for devices > 128MiB */ + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(cmd_phase_data, + (void __iomem * __force) + cmd_phase_addr); + cmd_phase_data = nfc_op.addr5; + if (nfc_op.naddrs >= 6) + cmd_phase_data |= (nfc_op.addr6 << 8); + } + } + } else { + if (nfc_op.addrs != -1) { + int column = nfc_op.addrs; + /* + * Change read/write column, read id etc + * Adjust columns for 16 bit bus width + */ + if ((chip->options & NAND_BUSWIDTH_16) && + (nfc_op.cmnds[0] == NAND_CMD_READ0 || + nfc_op.cmnds[0] == NAND_CMD_SEQIN || + nfc_op.cmnds[0] == NAND_CMD_RNDOUT || + nfc_op.cmnds[0] == NAND_CMD_RNDIN)) { + column >>= 1; + } + cmd_phase_data = column; + } + } + writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr); + + if (!nfc_op.data_instr) { + if (nfc_op.rdy_timeout_ms) + nand_wait_ready(mtd); + return 0; + } + + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + if (!reading) { + pl353_nand_write_data_op(mtd, instr->ctx.data.buf.out, + len, instr->ctx.data.force_8bit); + if (nfc_op.rdy_timeout_ms) + nand_wait_ready(mtd); + cond_delay(nfc_op.rdy_delay_ns); + } + if (reading) { + cond_delay(nfc_op.rdy_delay_ns); + if (nfc_op.rdy_timeout_ms) + nand_wait_ready(mtd); + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len, + instr->ctx.data.force_8bit); + } + + return 0; +} + +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER + (NAND_OP_PARSER_PATTERN + (pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), + NAND_OP_PARSER_PATTERN + (pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), + NAND_OP_PARSER_PATTERN + (pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN + (pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN + (pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + ); + +static int pl353_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, + op, check_only); +} + +/** + * pl353_nand_device_ready - Check device ready/busy line + * @mtd: Pointer to the mtd_info structure + * + * Return: 0 on busy or 1 on ready state + */ +static int pl353_nand_device_ready(struct mtd_info *mtd) +{ + if (pl353_smc_get_nand_int_status_raw()) { + pl353_smc_clr_nand_int(); + return 1; + } + + return 0; +} + +/** + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode + * @mtd: Pointer to the mtd_info structure + * @ecc: Pointer to ECC control structure + * @ecc_mode: ondie ecc status + * + * This function initializes the ecc block and functional pointers as per the + * ecc mode + * + * Return: 0 on success or negative errno. + */ +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, + int ecc_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + int err = 0; + + ecc->write_page_raw = pl353_nand_write_page_raw; + ecc->read_page_raw = pl353_nand_read_page_raw; + ecc->read_oob = pl353_nand_read_oob; + ecc->write_oob = pl353_nand_write_oob; + + if (ecc_mode == NAND_ECC_ON_DIE) { + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); + /* + * On-Die ECC spare bytes offset 8 is used for ECC codes + * Use the BBT pattern descriptors + */ + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } else { + + ecc->mode = NAND_ECC_HW; + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ + ecc->bytes = 3; + ecc->strength = 1; + ecc->calculate = pl353_nand_calculate_hwecc; + ecc->correct = pl353_nand_correct_data; + ecc->read_page = pl353_nand_read_page_hwecc; + ecc->size = PL353_NAND_ECC_SIZE; + ecc->read_page = pl353_nand_read_page_hwecc; + ecc->write_page = pl353_nand_write_page_hwecc; + pl353_smc_set_ecc_pg_size(mtd->writesize); + switch (mtd->writesize) { + case SZ_512: + case SZ_1K: + case SZ_2K: + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); + break; + default: + ecc->calculate = nand_calculate_ecc; + ecc->correct = nand_correct_data; + ecc->size = 256; + break; + } + + if (mtd->oobsize == 16) { + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops); + } else if (mtd->oobsize == 64) { + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops); + } else { + err = -ENXIO; + dev_err(xnfc->dev, "Unsupported oob Layout\n"); + } + } + + return err; +} + +static int pl353_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + const struct nand_sdr_timings *sdr; + u32 timings[7], mckperiodps; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles. + */ + mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk); + mckperiodps *= 1000; + if (sdr->tRC_min <= 20000) + /* + * PL353 SMC needs one extra read cycle in SDR Mode 5 + * This is not written anywhere in the datasheet but + * the results observed during testing. + */ + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1; + else + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps); + + timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps); + /* + * For all SDR modes, PL353 SMC needs tREA max value as 1, + * Results observed during testing. + */ + timings[2] = PL353_TREA_MAX_VALUE; + timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps); + timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps); + timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps); + timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps); + pl353_smc_set_cycles(timings); + + return 0; +} + +static int pl353_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + u32 ret; + + if (chip->options & NAND_BUSWIDTH_16) + pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); + + if (mtd->writesize <= SZ_512) + xnfc->addr_cycles = 1; + else + xnfc->addr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + xnfc->addr_cycles += 3; + else + xnfc->addr_cycles += 2; + + ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode); + if (ret) { + dev_err(xnfc->dev, "ECC init failed\n"); + return ret; + } + + if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your NAND node, ie: + * + * label = "pl353-nand"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL, + "%s", PL353_NAND_DRIVER_NAME); + if (!mtd->name) { + dev_err(xnfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + return 0; + +} + +static const struct nand_controller_ops pl353_nand_controller_ops = { + .attach_chip = pl353_nand_attach_chip, +}; + +/** + * pl353_nand_probe - Probe method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function initializes the driver data structures and the hardware. + * The NAND driver has dependency with the pl353_smc memory controller + * driver for initializing the NAND timing parameters, bus width, ECC modes, + * control and status information. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_probe(struct platform_device *pdev) +{ + struct pl353_nand_controller *xnfc; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *res; + struct device_node *np, *dn; + u32 ret, val; + + xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL); + if (!xnfc) + return -ENOMEM; + xnfc->dev = &pdev->dev; + + /* Map physical address of NAND flash */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + xnfc->regs = devm_ioremap_resource(xnfc->dev, res); + if (IS_ERR(xnfc->regs)) + return PTR_ERR(xnfc->regs); + + chip = &xnfc->chip; + mtd = nand_to_mtd(chip); + chip->exec_op = pl353_nfc_exec_op; + nand_set_controller_data(chip, xnfc); + mtd->priv = chip; + mtd->owner = THIS_MODULE; + + nand_set_flash_node(chip, xnfc->dev->of_node); + + /* Set the driver entry points for MTD */ + chip->dev_ready = pl353_nand_device_ready; + chip->select_chip = pl353_nand_select_chip; + /* If we don't set this delay driver sets 20us by default */ + np = of_get_next_parent(xnfc->dev->of_node); + xnfc->mclk = of_clk_get(np, 0); + if (IS_ERR(xnfc->mclk)) { + dev_err(xnfc->dev, "Failed to retrieve MCK clk\n"); + return PTR_ERR(xnfc->mclk); + } + + dn = nand_get_flash_node(chip); + ret = of_property_read_u32(dn, "nand-bus-width", &val); + if (ret) + val = 8; + + xnfc->buswidth = val; + chip->chip_delay = 30; + /* Set the device option and flash width */ + chip->options = NAND_BUSWIDTH_AUTO; + chip->bbt_options = NAND_BBT_USE_FLASH; + platform_set_drvdata(pdev, xnfc); + chip->setup_data_interface = pl353_setup_data_interface; + chip->dummy_controller.ops = &pl353_nand_controller_ops; + ret = nand_scan(mtd, 1); + if (ret) { + dev_err(xnfc->dev, "could not scan the nand chip\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + return 0; +} + +/** + * pl353_nand_remove - Remove method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function is called if the driver module is being unloaded. It frees all + * resources allocated to the device. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_remove(struct platform_device *pdev) +{ + struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&xnfc->chip); + + /* Release resources, unregister device */ + nand_release(mtd); + + return 0; +} + +/* Match table for device tree binding */ +static const struct of_device_id pl353_nand_of_match[] = { + { .compatible = "arm,pl353-nand-r2p1" }, + {}, +}; +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); + +/* + * pl353_nand_driver - This structure defines the NAND subsystem platform driver + */ +static struct platform_driver pl353_nand_driver = { + .probe = pl353_nand_probe, + .remove = pl353_nand_remove, + .driver = { + .name = PL353_NAND_DRIVER_NAME, + .of_match_table = pl353_nand_of_match, + }, +}; + +module_platform_driver(pl353_nand_driver); + +MODULE_AUTHOR("Xilinx, Inc."); +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); +MODULE_LICENSE("GPL"); -- 2.7.4