Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S262103AbVATKPj (ORCPT ); Thu, 20 Jan 2005 05:15:39 -0500 Received: (majordomo@vger.kernel.org) by vger.kernel.org id S262104AbVATKPi (ORCPT ); Thu, 20 Jan 2005 05:15:38 -0500 Received: from holly.csn.ul.ie ([136.201.105.4]:16574 "EHLO holly.csn.ul.ie") by vger.kernel.org with ESMTP id S262103AbVATKNB (ORCPT ); Thu, 20 Jan 2005 05:13:01 -0500 To: akpm@osdl.org Subject: [PATCH] Avoiding fragmentation through different allocator Cc: linux-mm@kvack.org, linux-kernel@vger.kernel.org Message-Id: <20050120101300.26FA5E598@skynet.csn.ul.ie> Date: Thu, 20 Jan 2005 10:13:00 +0000 (GMT) From: mel@csn.ul.ie (Mel Gorman) Sender: linux-kernel-owner@vger.kernel.org X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 29589 Lines: 814 Changelog since V5 o Fixed up gcc-2.95 errors o Fixed up whitespace damage Changelog since V4 o No changes. Applies cleanly against 2.6.11-rc1 and 2.6.11-rc1-bk6. Applies with offsets to 2.6.11-rc1-mm1 Changelog since V3 o inlined get_pageblock_type() and set_pageblock_type() o set_pageblock_type() now takes a zone parameter to avoid a call to page_zone() o When taking from the global pool, do not scan all the low-order lists Changelog since V2 o Do not to interfere with the "min" decay o Update the __GFP_BITS_SHIFT properly. Old value broke fsync and probably anything to do with asynchronous IO Changelog since V1 o Update patch to 2.6.11-rc1 o Cleaned up bug where memory was wasted on a large bitmap o Remove code that needed the binary buddy bitmaps o Update flags to avoid colliding with __GFP_ZERO changes o Extended fallback_count bean counters to show the fallback count for each allocation type o In-code documentation Version 1 o Initial release against 2.6.9 This patch divides allocations into three different types of allocations; UserReclaimable - These are userspace pages that are easily reclaimable. Right now, all allocations of GFP_USER, GFP_HIGHUSER and disk buffers are in this category. These pages are trivially reclaimed by writing the page out to swap or syncing with backing storage KernelReclaimable - These are pages allocated by the kernel that are easily reclaimed. This is stuff like inode caches, dcache, buffer_heads etc. These type of pages potentially could be reclaimed by dumping the caches and reaping the slabs KernelNonReclaimable - These are pages that are allocated by the kernel that are not trivially reclaimed. For example, the memory allocated for a loaded module would be in this category. By default, allocations are considered to be of this type Instead of having one global MAX_ORDER-sized array of free lists, there are three, one for each type of allocation. Finally, there is a list of pages of size 2^MAX_ORDER which is a global pool of the largest pages the kernel deals with. Once a 2^MAX_ORDER block of pages it split for a type of allocation, it is added to the free-lists for that type, in effect reserving it. Hence, over time, pages of the different types can be clustered together. This means that if we wanted 2^MAX_ORDER number of pages, we could linearly scan a block of pages allocated for UserReclaimable and page each of them out. Fallback is used when there are no 2^MAX_ORDER pages available and there are no free pages of the desired type. The fallback lists were chosen in a way that keeps the most easily reclaimable pages together. Three benchmark results are included. The first is the output of portions of AIM9 for the vanilla allocator and the modified one; root@monocle:~# grep _test aim9-vanilla-120.txt 7 page_test 120.00 9508 79.23333 134696.67 System Allocations & Pages/second 8 brk_test 120.01 3401 28.33931 481768.19 System Memory Allocations/second 9 jmp_test 120.00 498718 4155.98333 4155983.33 Non-local gotos/second 10 signal_test 120.01 11768 98.05850 98058.50 Signal Traps/second 11 exec_test 120.04 1585 13.20393 66.02 Program Loads/second 12 fork_test 120.04 1979 16.48617 1648.62 Task Creations/second 13 link_test 120.01 11174 93.10891 5865.86 Link/Unlink Pairs/second root@monocle:~# grep _test aim9-mbuddyV3-120.txt 7 page_test 120.01 9660 80.49329 136838.60 System Allocations & Pages/second 8 brk_test 120.01 3409 28.40597 482901.42 System Memory Allocations/second 9 jmp_test 120.00 501533 4179.44167 4179441.67 Non-local gotos/second 10 signal_test 120.00 11677 97.30833 97308.33 Signal Traps/second 11 exec_test 120.05 1585 13.20283 66.01 Program Loads/second 12 fork_test 120.05 1889 15.73511 1573.51 Task Creations/second 13 link_test 120.01 11089 92.40063 5821.24 Link/Unlink Pairs/second They show that the allocator performs roughly similar to the standard allocator so there is negligible slowdown with the extra complexity. The second benchmark tested the CPU cache usage to make sure it was not getting clobbered. The test was to repeatadly render a large postcript file 10 times and get the average. The result is; ==> gsbench-2.6.11-rc1Standard.txt <== Average: 115.468 real, 115.092 user, 0.337 sys ==> gsbench-2.6.11-rc1MBuddy.txt <== Average: 115.47 real, 115.136 user, 0.338 sys So there are no adverse cache effects. The last test is to show that the allocator can satisfy more high-order allocations, especially under load, than the standard allocator. The test performs the following; 1. Start updatedb running in the background 2. Load kernel modules that tries to allocate high-order blocks on demand 3. Clean a kernel tree 4. Make 6 copies of the tree. As each copy finishes, a compile starts at -j4 5. Start compiling the primary tree 6. Sleep 3 minutes while the 7 trees are being compiled 7. Use the kernel module to attempt 160 times to allocate a 2^10 block of pages - note, it only attempts 160 times, no matter how often it succeeds - An allocation is attempted every 1/10th of a second The result of the allocations under load were; Vanilla 2.6.11-rc1 Attempted allocations: 160 Success allocs: 3 Failed allocs: 157 % Success: 1 2.6.11-rc1 with modified allocator Attempted allocations: 160 Success allocs: 81 Failed allocs: 79 % Success: 50 The results show that the modified allocator runs at least as fast as the normal allocator, has no adverse cache effects but is far less fragmented and able to satisfy high-order allocations. Signed-off-by: Mel Gorman diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/fs/buffer.c linux-2.6.11-rc1-mbuddy/fs/buffer.c --- linux-2.6.11-rc1-clean/fs/buffer.c 2005-01-12 04:01:23.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/fs/buffer.c 2005-01-20 09:43:46.000000000 +0000 @@ -1134,7 +1134,8 @@ grow_dev_page(struct block_device *bdev, struct page *page; struct buffer_head *bh; - page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); + page = find_or_create_page(inode->i_mapping, index, + GFP_NOFS | __GFP_USERRCLM); if (!page) return NULL; @@ -2997,7 +2998,8 @@ static void recalc_bh_state(void) struct buffer_head *alloc_buffer_head(int gfp_flags) { - struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); + struct buffer_head *ret = kmem_cache_alloc(bh_cachep, + gfp_flags|__GFP_KERNRCLM); if (ret) { preempt_disable(); __get_cpu_var(bh_accounting).nr++; diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/fs/dcache.c linux-2.6.11-rc1-mbuddy/fs/dcache.c --- linux-2.6.11-rc1-clean/fs/dcache.c 2005-01-12 04:00:09.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/fs/dcache.c 2005-01-20 09:43:46.000000000 +0000 @@ -715,7 +715,8 @@ struct dentry *d_alloc(struct dentry * p struct dentry *dentry; char *dname; - dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); + dentry = kmem_cache_alloc(dentry_cache, + GFP_KERNEL|__GFP_KERNRCLM); if (!dentry) return NULL; diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/fs/ext2/super.c linux-2.6.11-rc1-mbuddy/fs/ext2/super.c --- linux-2.6.11-rc1-clean/fs/ext2/super.c 2005-01-12 04:01:24.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/fs/ext2/super.c 2005-01-20 09:43:46.000000000 +0000 @@ -137,7 +137,7 @@ static kmem_cache_t * ext2_inode_cachep; static struct inode *ext2_alloc_inode(struct super_block *sb) { struct ext2_inode_info *ei; - ei = (struct ext2_inode_info *)kmem_cache_alloc(ext2_inode_cachep, SLAB_KERNEL); + ei = (struct ext2_inode_info *)kmem_cache_alloc(ext2_inode_cachep, SLAB_KERNEL|__GFP_KERNRCLM); if (!ei) return NULL; #ifdef CONFIG_EXT2_FS_POSIX_ACL diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/fs/ext3/super.c linux-2.6.11-rc1-mbuddy/fs/ext3/super.c --- linux-2.6.11-rc1-clean/fs/ext3/super.c 2005-01-12 04:02:11.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/fs/ext3/super.c 2005-01-20 09:43:46.000000000 +0000 @@ -434,7 +434,7 @@ static struct inode *ext3_alloc_inode(st { struct ext3_inode_info *ei; - ei = kmem_cache_alloc(ext3_inode_cachep, SLAB_NOFS); + ei = kmem_cache_alloc(ext3_inode_cachep, SLAB_NOFS|__GFP_KERNRCLM); if (!ei) return NULL; #ifdef CONFIG_EXT3_FS_POSIX_ACL diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/fs/ntfs/inode.c linux-2.6.11-rc1-mbuddy/fs/ntfs/inode.c --- linux-2.6.11-rc1-clean/fs/ntfs/inode.c 2005-01-12 04:01:45.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/fs/ntfs/inode.c 2005-01-20 09:43:46.000000000 +0000 @@ -318,7 +318,7 @@ struct inode *ntfs_alloc_big_inode(struc ntfs_debug("Entering."); ni = (ntfs_inode *)kmem_cache_alloc(ntfs_big_inode_cache, - SLAB_NOFS); + SLAB_NOFS|__GFP_KERNRCLM); if (likely(ni != NULL)) { ni->state = 0; return VFS_I(ni); @@ -343,7 +343,8 @@ static inline ntfs_inode *ntfs_alloc_ext ntfs_inode *ni; ntfs_debug("Entering."); - ni = (ntfs_inode *)kmem_cache_alloc(ntfs_inode_cache, SLAB_NOFS); + ni = (ntfs_inode *)kmem_cache_alloc(ntfs_inode_cache, + SLAB_NOFS|__GFP_KERNRCLM); if (likely(ni != NULL)) { ni->state = 0; return ni; diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/include/linux/gfp.h linux-2.6.11-rc1-mbuddy/include/linux/gfp.h --- linux-2.6.11-rc1-clean/include/linux/gfp.h 2005-01-12 04:00:35.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/include/linux/gfp.h 2005-01-20 09:43:46.000000000 +0000 @@ -38,21 +38,24 @@ struct vm_area_struct; #define __GFP_NO_GROW 0x2000 /* Slab internal usage */ #define __GFP_COMP 0x4000 /* Add compound page metadata */ #define __GFP_ZERO 0x8000 /* Return zeroed page on success */ +#define __GFP_KERNRCLM 0x10000 /* Kernel page that is easily reclaimable */ +#define __GFP_USERRCLM 0x20000 /* User is a userspace user */ -#define __GFP_BITS_SHIFT 16 /* Room for 16 __GFP_FOO bits */ +#define __GFP_BITS_SHIFT 18 /* Room for 18 __GFP_FOO bits */ #define __GFP_BITS_MASK ((1 << __GFP_BITS_SHIFT) - 1) /* if you forget to add the bitmask here kernel will crash, period */ #define GFP_LEVEL_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_FS| \ __GFP_COLD|__GFP_NOWARN|__GFP_REPEAT| \ - __GFP_NOFAIL|__GFP_NORETRY|__GFP_NO_GROW|__GFP_COMP) + __GFP_NOFAIL|__GFP_NORETRY|__GFP_NO_GROW|__GFP_COMP| \ + __GFP_USERRCLM|__GFP_KERNRCLM) #define GFP_ATOMIC (__GFP_HIGH) #define GFP_NOIO (__GFP_WAIT) #define GFP_NOFS (__GFP_WAIT | __GFP_IO) #define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS) -#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS) -#define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HIGHMEM) +#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_USERRCLM) +#define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HIGHMEM | __GFP_USERRCLM) /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some platforms, used as appropriate on others */ diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/include/linux/mmzone.h linux-2.6.11-rc1-mbuddy/include/linux/mmzone.h --- linux-2.6.11-rc1-clean/include/linux/mmzone.h 2005-01-12 04:01:17.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/include/linux/mmzone.h 2005-01-20 09:43:46.000000000 +0000 @@ -19,6 +19,10 @@ #else #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER #endif +#define ALLOC_TYPES 3 +#define ALLOC_KERNNORCLM 0 +#define ALLOC_KERNRCLM 1 +#define ALLOC_USERRCLM 2 struct free_area { struct list_head free_list; @@ -131,8 +135,37 @@ struct zone { * free areas of different sizes */ spinlock_t lock; - struct free_area free_area[MAX_ORDER]; + /* + * There are ALLOC_TYPE number of MAX_ORDER free lists. Once a + * MAX_ORDER block of pages has been split for an allocation type, + * the whole block is reserved for that type of allocation. The + * types are User Reclaimable, Kernel Reclaimable and Kernel + * Non-reclaimable. The objective is to reduce fragmentation + * overall + */ + struct free_area free_area_lists[ALLOC_TYPES][MAX_ORDER]; + + /* + * This is a list of page blocks of 2^MAX_ORDER. Once one of + * these are split, the buddy is added to the appropriate + * free_area_lists. When the buddies are later merged, they + * are placed back here + */ + struct free_area free_area_global; + + /* + * This map tracks what each 2^MAX_ORDER sized block has been used for. + * Each 2^MAX_ORDER block have pages has 2 bits in this map to remember + * what the block is for. When a page is freed, it's index within this + * bitmap is calculated using (address >> MAX_ORDER) * 2 . This means + * that pages will always be freed into the correct list in + * free_area_lists + * + * The bits are set when a 2^MAX_ORDER block of pages is split + */ + + unsigned long *free_area_usemap; ZONE_PADDING(_pad1_) diff -rup -X /usr/src/patchset-0.5/bin//dontdiff linux-2.6.11-rc1-clean/mm/page_alloc.c linux-2.6.11-rc1-mbuddy/mm/page_alloc.c --- linux-2.6.11-rc1-clean/mm/page_alloc.c 2005-01-12 04:00:02.000000000 +0000 +++ linux-2.6.11-rc1-mbuddy/mm/page_alloc.c 2005-01-20 09:50:22.000000000 +0000 @@ -46,9 +46,30 @@ unsigned long totalhigh_pages; long nr_swap_pages; int sysctl_lower_zone_protection = 0; +/* Bean counters for the per-type buddy allocator */ +int fallback_count[ALLOC_TYPES] = { 0, 0, 0}; +int global_steal=0; +int global_refill=0; +int kernnorclm_count=0; +int kernrclm_count=0; +int userrclm_count=0; + EXPORT_SYMBOL(totalram_pages); EXPORT_SYMBOL(nr_swap_pages); +/** + * The allocator tries to put allocations of the same type in the + * same 2^MAX_ORDER blocks of pages. When memory is low, this may + * not be possible so this describes what order they should fall + * back on + */ +int fallback_allocs[ALLOC_TYPES][ALLOC_TYPES] = { + { ALLOC_KERNNORCLM, ALLOC_KERNRCLM, ALLOC_USERRCLM }, + { ALLOC_KERNRCLM, ALLOC_KERNNORCLM, ALLOC_USERRCLM }, + { ALLOC_USERRCLM, ALLOC_KERNNORCLM, ALLOC_KERNRCLM } +}; + + /* * Used by page_zone() to look up the address of the struct zone whose * id is encoded in the upper bits of page->flags @@ -57,6 +78,7 @@ struct zone *zone_table[1 << (ZONES_SHIF EXPORT_SYMBOL(zone_table); static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; +static char *type_names[ALLOC_TYPES] = { "KernNoRclm", "KernRclm", "UserRclm"}; int min_free_kbytes = 1024; unsigned long __initdata nr_kernel_pages; @@ -103,6 +125,46 @@ static void bad_page(const char *functio tainted |= TAINT_BAD_PAGE; } +/* + * Return what type of use the 2^MAX_ORDER block of pages is in use for + * that the given page is part of + */ +static inline int get_pageblock_type(struct page *page) { + struct zone *zone = page_zone(page); + int bitidx = ((page - zone->zone_mem_map) >> MAX_ORDER) * 2; + + /* Bit 1 will be set if the block is kernel reclaimable */ + if (test_bit(bitidx,zone->free_area_usemap)) return ALLOC_KERNRCLM; + + /* Bit 2 will be set if the block is user reclaimable */ + if (test_bit(bitidx+1, zone->free_area_usemap)) return ALLOC_USERRCLM; + + return ALLOC_KERNNORCLM; +} + +static inline void set_pageblock_type(struct page *page, + struct zone *zone, int type) { + int bit1, bit2; + int bitidx = ((page - zone->zone_mem_map) >> MAX_ORDER) * 2; + bit1 = bit2 = 0; + + if (type == ALLOC_KERNRCLM) { + set_bit(bitidx, zone->free_area_usemap); + clear_bit(bitidx+1, zone->free_area_usemap); + return; + } + + if (type == ALLOC_USERRCLM) { + clear_bit(bitidx, zone->free_area_usemap); + set_bit(bitidx+1, zone->free_area_usemap); + return; + } + + clear_bit(bitidx, zone->free_area_usemap); + clear_bit(bitidx+1, zone->free_area_usemap); + +} + #ifndef CONFIG_HUGETLB_PAGE #define prep_compound_page(page, order) do { } while (0) #define destroy_compound_page(page, order) do { } while (0) @@ -231,6 +293,8 @@ static inline void __free_pages_bulk (st unsigned long page_idx; struct page *coalesced; int order_size = 1 << order; + struct free_area *area; + struct free_area *freelist; if (unlikely(order)) destroy_compound_page(page, order); @@ -240,9 +304,11 @@ static inline void __free_pages_bulk (st BUG_ON(page_idx & (order_size - 1)); BUG_ON(bad_range(zone, page)); + /* Select the areas to allocate based on the allocation type */ + freelist = zone->free_area_lists[get_pageblock_type(page)]; + zone->free_pages += order_size; while (order < MAX_ORDER-1) { - struct free_area *area; struct page *buddy; int buddy_idx; @@ -254,16 +320,29 @@ static inline void __free_pages_bulk (st break; /* Move the buddy up one level. */ list_del(&buddy->lru); - area = zone->free_area + order; + area = freelist + order; area->nr_free--; rmv_page_order(buddy); page_idx &= buddy_idx; order++; } + + /* + * If a MAX_ORDER block of pages is being freed, it is + * no longer reserved for a particular type of allocation + * so put it in the global list + */ + if (order >= MAX_ORDER-1) { + area = &(zone->free_area_global); + global_refill++; + } else { + area = freelist + order; + } + coalesced = base + page_idx; set_page_order(coalesced, order); - list_add(&coalesced->lru, &zone->free_area[order].free_list); - zone->free_area[order].nr_free++; + list_add(&coalesced->lru, &area->free_list); + area->nr_free++; } static inline void free_pages_check(const char *function, struct page *page) @@ -310,6 +389,7 @@ free_pages_bulk(struct zone *zone, int c zone->pages_scanned = 0; while (!list_empty(list) && count--) { page = list_entry(list->prev, struct page, lru); + /* have to delete it as __free_pages_bulk list manipulates */ list_del(&page->lru); __free_pages_bulk(page, base, zone, order); @@ -420,16 +500,43 @@ static void prep_new_page(struct page *p * Do the hard work of removing an element from the buddy allocator. * Call me with the zone->lock already held. */ -static struct page *__rmqueue(struct zone *zone, unsigned int order) +static struct page *__rmqueue(struct zone *zone, unsigned int order, int flags) { struct free_area * area; unsigned int current_order; struct page *page; + int global_split=0; + int *fallback_list; - for (current_order = order; current_order < MAX_ORDER; ++current_order) { - area = zone->free_area + current_order; - if (list_empty(&area->free_list)) + /* Select area to use based on gfp_flags */ + int alloctype; + int retry_count=0; + int startorder = order; + if (flags & __GFP_USERRCLM) { + alloctype = ALLOC_USERRCLM; + userrclm_count++; + } + else if (flags & __GFP_KERNRCLM) { + alloctype = ALLOC_KERNRCLM; + kernrclm_count++; + } else { + alloctype = ALLOC_KERNNORCLM; + kernnorclm_count++; + } + + /* Ok, pick the fallback order based on the type */ + fallback_list = fallback_allocs[alloctype]; + +retry: + alloctype = fallback_list[retry_count]; + area = zone->free_area_lists[alloctype] + startorder; + for (current_order = startorder; + current_order < MAX_ORDER; ++current_order) { + + if (list_empty(&area->free_list)) { + area++; continue; + } page = list_entry(area->free_list.next, struct page, lru); list_del(&page->lru); @@ -439,6 +546,36 @@ static struct page *__rmqueue(struct zon return expand(zone, page, order, current_order, area); } + /* Take from the global pool if this is the first attempt */ + if (!global_split && !list_empty(&(zone->free_area_global.free_list))){ + /* + * Remove a MAX_ORDER block from the global pool and add + * it to the list of desired alloc_type + */ + page = list_entry(zone->free_area_global.free_list.next, + struct page, lru); + list_del(&page->lru); + list_add(&page->lru, + &(zone->free_area_lists[alloctype][MAX_ORDER-1].free_list)); + global_steal++; + global_split=1; + + /* Mark this block of pages as for use with this alloc type */ + set_pageblock_type(page, zone, alloctype); + startorder = MAX_ORDER-1; + + goto retry; + } + + /* + * Here, the alloc type lists has been depleted as well as the global + * pool, so fallback + */ + retry_count++; + startorder=order; + fallback_count[alloctype]++; + if (retry_count != ALLOC_TYPES) goto retry; + return NULL; } @@ -448,7 +585,8 @@ static struct page *__rmqueue(struct zon * Returns the number of new pages which were placed at *list. */ static int rmqueue_bulk(struct zone *zone, unsigned int order, - unsigned long count, struct list_head *list) + unsigned long count, struct list_head *list, + int gfp_flags) { unsigned long flags; int i; @@ -457,7 +595,7 @@ static int rmqueue_bulk(struct zone *zon spin_lock_irqsave(&zone->lock, flags); for (i = 0; i < count; ++i) { - page = __rmqueue(zone, order); + page = __rmqueue(zone, order, gfp_flags); if (page == NULL) break; allocated++; @@ -493,7 +631,7 @@ static void __drain_pages(unsigned int c void mark_free_pages(struct zone *zone) { unsigned long zone_pfn, flags; - int order; + int order, type; struct list_head *curr; if (!zone->spanned_pages) @@ -503,14 +641,17 @@ void mark_free_pages(struct zone *zone) for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); - for (order = MAX_ORDER - 1; order >= 0; --order) - list_for_each(curr, &zone->free_area[order].free_list) { - unsigned long start_pfn, i; + for (type=0; type < ALLOC_TYPES; type++) { - start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); + for (order = MAX_ORDER - 1; order >= 0; --order) + list_for_each(curr, &zone->free_area_lists[type][order].free_list) { + unsigned long start_pfn, i; + + start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); - for (i=0; i < (1<lock, flags); } @@ -612,14 +753,15 @@ buffered_rmqueue(struct zone *zone, int struct page *page = NULL; int cold = !!(gfp_flags & __GFP_COLD); - if (order == 0) { + if (order == 0 && (gfp_flags & __GFP_USERRCLM)) { struct per_cpu_pages *pcp; pcp = &zone->pageset[get_cpu()].pcp[cold]; local_irq_save(flags); if (pcp->count <= pcp->low) pcp->count += rmqueue_bulk(zone, 0, - pcp->batch, &pcp->list); + pcp->batch, &pcp->list, + gfp_flags); if (pcp->count) { page = list_entry(pcp->list.next, struct page, lru); list_del(&page->lru); @@ -631,7 +773,7 @@ buffered_rmqueue(struct zone *zone, int if (page == NULL) { spin_lock_irqsave(&zone->lock, flags); - page = __rmqueue(zone, order); + page = __rmqueue(zone, order, gfp_flags); spin_unlock_irqrestore(&zone->lock, flags); } @@ -658,6 +800,7 @@ int zone_watermark_ok(struct zone *z, in { /* free_pages my go negative - that's OK */ long min = mark, free_pages = z->free_pages - (1 << order) + 1; + struct free_area *kernnorclm, *kernrclm, *userrclm; int o; if (gfp_high) @@ -667,9 +810,15 @@ int zone_watermark_ok(struct zone *z, in if (free_pages <= min + z->protection[alloc_type]) return 0; + kernnorclm = z->free_area_lists[ALLOC_KERNNORCLM]; + kernrclm = z->free_area_lists[ALLOC_KERNRCLM]; + userrclm = z->free_area_lists[ALLOC_USERRCLM]; for (o = 0; o < order; o++) { /* At the next order, this order's pages become unavailable */ - free_pages -= z->free_area[o].nr_free << o; + free_pages -= ( + kernnorclm[o].nr_free + + kernrclm[o].nr_free + + userrclm[o].nr_free) << o; /* Require fewer higher order pages to be free */ min >>= 1; @@ -1124,6 +1273,7 @@ void show_free_areas(void) unsigned long inactive; unsigned long free; struct zone *zone; + int type; for_each_zone(zone) { show_node(zone); @@ -1216,8 +1366,10 @@ void show_free_areas(void) spin_lock_irqsave(&zone->lock, flags); for (order = 0; order < MAX_ORDER; order++) { - nr = zone->free_area[order].nr_free; - total += nr << order; + for (type=0; type < ALLOC_TYPES; type++) { + nr = zone->free_area_lists[type][order].nr_free; + total += nr << order; + } printk("%lu*%lukB ", nr, K(1UL) << order); } spin_unlock_irqrestore(&zone->lock, flags); @@ -1515,10 +1667,22 @@ void zone_init_free_lists(struct pglist_ unsigned long size) { int order; - for (order = 0; order < MAX_ORDER ; order++) { - INIT_LIST_HEAD(&zone->free_area[order].free_list); - zone->free_area[order].nr_free = 0; + int type; + struct free_area *area; + + /* Initialse the three size ordered lists of free_areas */ + for (type=0; type < ALLOC_TYPES; type++) { + for (order = 0; order < MAX_ORDER; order++) { + area = zone->free_area_lists[type]; + + INIT_LIST_HEAD(&area[order].free_list); + area[order].nr_free = 0; + } } + + /* Initialise the global pool of 2^size pages */ + INIT_LIST_HEAD(&zone->free_area_global.free_list); + zone->free_area_global.nr_free=0; } #ifndef __HAVE_ARCH_MEMMAP_INIT @@ -1539,6 +1703,7 @@ static void __init free_area_init_core(s const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1); int cpu, nid = pgdat->node_id; unsigned long zone_start_pfn = pgdat->node_start_pfn; + unsigned long usemapsize; pgdat->nr_zones = 0; init_waitqueue_head(&pgdat->kswapd_wait); @@ -1637,6 +1802,22 @@ static void __init free_area_init_core(s zone_start_pfn += size; zone_init_free_lists(pgdat, zone, zone->spanned_pages); + + /* Calculate size of required bitmap */ + /* - Number of MAX_ORDER blocks in the zone */ + usemapsize = (size + (1 << MAX_ORDER)) >> MAX_ORDER; + + /* - Two bits to record what type of block it is */ + usemapsize = (usemapsize * 2 + 8) / 8; + + zone->free_area_usemap = + (unsigned long *)alloc_bootmem_node(pgdat, usemapsize); + + memset((unsigned long *)zone->free_area_usemap, + ALLOC_KERNNORCLM, usemapsize); + + printk(KERN_DEBUG " %s zone: %lu pages, %lu real pages, usemap size:%lu\n", + zone_names[j], size, realsize, usemapsize); } } @@ -1714,19 +1895,88 @@ static int frag_show(struct seq_file *m, struct zone *zone; struct zone *node_zones = pgdat->node_zones; unsigned long flags; - int order; + int order, type; + struct list_head *elem; + unsigned long nr_bufs = 0; + /* Show global fragmentation statistics */ for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { if (!zone->present_pages) continue; spin_lock_irqsave(&zone->lock, flags); - seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); - for (order = 0; order < MAX_ORDER; ++order) - seq_printf(m, "%6lu ", zone->free_area[order].nr_free); + seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); + for (order = 0; order < MAX_ORDER-1; ++order) { + nr_bufs = 0; + + for (type=0; type < ALLOC_TYPES; type++) { + list_for_each(elem, &(zone->free_area_lists[type][order].free_list)) + ++nr_bufs; + } + seq_printf(m, "%6lu ", nr_bufs); + } + + /* Scan global list */ + nr_bufs = 0; + list_for_each(elem, &(zone->free_area_global.free_list)) + ++nr_bufs; + seq_printf(m, "%6lu ", nr_bufs); + + spin_unlock_irqrestore(&zone->lock, flags); + seq_putc(m, '\n'); + } + + /* Show statistics for each allocation type */ + seq_printf(m, "\nPer-allocation-type statistics"); + for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { + if (!zone->present_pages) + continue; + + spin_lock_irqsave(&zone->lock, flags); + for (type=0; type < ALLOC_TYPES; type++) { + struct list_head *elem; + seq_printf(m, "\nNode %d, zone %8s, type %10s", + pgdat->node_id, zone->name, + type_names[type]); + for (order = 0; order < MAX_ORDER; ++order) { + nr_bufs = 0; + + list_for_each(elem, &(zone->free_area_lists[type][order].free_list)) + ++nr_bufs; + seq_printf(m, "%6lu ", nr_bufs); + } + } + + /* Scan global list */ + seq_printf(m, "\n"); + seq_printf(m, "Node %d, zone %8s, type %10s", + pgdat->node_id, zone->name, + "MAX_ORDER"); + nr_bufs = 0; + list_for_each(elem, &(zone->free_area_global.free_list)) + ++nr_bufs; + seq_printf(m, "%6lu ", nr_bufs); + spin_unlock_irqrestore(&zone->lock, flags); seq_putc(m, '\n'); } + + /* Show bean counters */ + seq_printf(m, "\nGlobal beancounters\n"); + seq_printf(m, "Global steals: %d\n", global_steal); + seq_printf(m, "Global refills: %d\n", global_refill); + seq_printf(m, "KernNoRclm allocs: %d\n", kernnorclm_count); + seq_printf(m, "KernRclm allocs: %d\n", kernrclm_count); + seq_printf(m, "UserRclm allocs: %d\n", userrclm_count); + seq_printf(m, "%-10s Fallback count: %d\n", type_names[0], + fallback_count[0]); + seq_printf(m, "%-10s Fallback count: %d\n", type_names[1], + fallback_count[1]); + seq_printf(m, "%-10s Fallback count: %d\n", type_names[2], + fallback_count[2]); + + + return 0; } - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/