Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S261528AbVB1Aj5 (ORCPT ); Sun, 27 Feb 2005 19:39:57 -0500 Received: (majordomo@vger.kernel.org) by vger.kernel.org id S261525AbVB1Aj5 (ORCPT ); Sun, 27 Feb 2005 19:39:57 -0500 Received: from parcelfarce.linux.theplanet.co.uk ([195.92.249.252]:48271 "EHLO parcelfarce.linux.theplanet.co.uk") by vger.kernel.org with ESMTP id S261522AbVB1Afr (ORCPT ); Sun, 27 Feb 2005 19:35:47 -0500 Message-ID: <4222674A.9070403@pobox.com> Date: Sun, 27 Feb 2005 19:35:22 -0500 From: Jeff Garzik User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.3) Gecko/20040922 X-Accept-Language: en-us, en MIME-Version: 1.0 To: Wen Xiong CC: linux-kernel@vger.kernel.org, linux-serial@vger.kernel.org, Andrew Morton , Greg KH Subject: Re: [ patch 3/7] drivers/serial/jsm: new serial device driver References: <42225A37.6070105@us.ltcfwd.linux.ibm.com> In-Reply-To: <42225A37.6070105@us.ltcfwd.linux.ibm.com> Content-Type: text/plain; charset=us-ascii; format=flowed Content-Transfer-Encoding: 7bit Sender: linux-kernel-owner@vger.kernel.org X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 38196 Lines: 1379 Wen Xiong wrote: > +static inline void neo_set_rts_flow_control(struct channel_t *ch) > +{ > + uchar ier = readb(&ch->ch_neo_uart->ier); > + uchar efr = readb(&ch->ch_neo_uart->efr); Do not invent new types like "ushort" or "uchar". For situations where specific size is required, use a size-specific type: u8, u16, u32, etc. > +static inline void neo_set_ixon_flow_control(struct channel_t *ch) This function is vaguely large. Why is it inline? > +{ > + uchar ier = readb(&ch->ch_neo_uart->ier); > + uchar efr = readb(&ch->ch_neo_uart->efr); ditto the "don't invent non-standard types" comment. > +static inline void neo_set_ixoff_flow_control(struct channel_t *ch) why inline? > +{ > + uchar ier = readb(&ch->ch_neo_uart->ier); > + uchar efr = readb(&ch->ch_neo_uart->efr); non-standard types > +static inline void neo_set_no_input_flow_control(struct channel_t *ch) > +{ > + uchar ier = readb(&ch->ch_neo_uart->ier); > + uchar efr = readb(&ch->ch_neo_uart->efr); ditto > +static inline void neo_set_no_output_flow_control(struct channel_t *ch) > +{ > + uchar ier = readb(&ch->ch_neo_uart->ier); > + uchar efr = readb(&ch->ch_neo_uart->efr); ditto > +static void neo_copy_data_from_uart_to_queue(struct channel_t *ch) > +{ > + int qleft = 0; > + uchar linestatus = 0; > + uchar error_mask = 0; > + int n = 0; > + int total = 0; > + ushort head; > + ushort tail; non-standard types > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + /* cache head and tail of queue */ > + head = ch->ch_r_head & RQUEUEMASK; > + tail = ch->ch_r_tail & RQUEUEMASK; > + > + /* Get our cached LSR */ > + linestatus = ch->ch_cached_lsr; > + ch->ch_cached_lsr = 0; > + > + /* Store how much space we have left in the queue */ > + if ((qleft = tail - head - 1) < 0) > + qleft += RQUEUEMASK + 1; > + > + /* > + * If the UART is not in FIFO mode, force the FIFO copy to > + * NOT be run, by setting total to 0. > + * > + * On the other hand, if the UART IS in FIFO mode, then ask > + * the UART to give us an approximation of data it has RX'ed. > + */ > + if (!(ch->ch_flags & CH_FIFO_ENABLED)) > + total = 0; > + else { > + total = readb(&ch->ch_neo_uart->rfifo); > + > + /* > + * EXAR chip bug - RX FIFO COUNT - Fudge factor. > + * > + * This resolves a problem/bug with the Exar chip that sometimes > + * returns a bogus value in the rfifo register. > + * The count can be any where from 0-3 bytes "off". > + * Bizarre, but true. > + */ > + total -= 3; > + } > + > + /* > + * Finally, bound the copy to make sure we don't overflow > + * our own queue... > + * The byte by byte copy loop below this loop this will > + * deal with the queue overflow possibility. > + */ > + total = min(total, qleft); > + > + while (total > 0) { > + /* > + * Grab the linestatus register, we need to check > + * to see if there are any errors in the FIFO. > + */ > + linestatus = readb(&ch->ch_neo_uart->lsr); > + > + /* > + * Break out if there is a FIFO error somewhere. > + * This will allow us to go byte by byte down below, > + * finding the exact location of the error. > + */ > + if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) > + break; > + > + /* Make sure we don't go over the end of our queue */ > + n = min(((uint) total), (RQUEUESIZE - (uint) tail)); > + > + /* > + * Cut down n even further if needed, this is to fix > + * a problem with memcpy_fromio() with the Neo on the > + * IBM pSeries platform. > + * 15 bytes max appears to be the magic number. > + */ > + n = min((uint) n, (uint) 12); more non-standard types > + /* > + * Since we are grabbing the linestatus register, which > + * will reset some bits after our read, we need to ensure > + * we don't miss our TX FIFO emptys. > + */ > + if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + > + linestatus = 0; > + > + /* Copy data from uart to the queue */ > + memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); > + jsm_sniff_nowait_nolock(ch, "UART READ", ch->ch_rqueue + head, n); > + > + /* > + * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed > + * that all the data currently in the FIFO is free of > + * breaks and parity/frame/orun errors. > + */ > + memset(ch->ch_equeue + head, 0, n); > + > + /* Add to and flip head if needed */ > + head = (head + n) & RQUEUEMASK; > + total -= n; > + qleft -= n; > + ch->ch_rxcount += n; > + } > + > + /* > + * Create a mask to determine whether we should > + * insert the character (if any) into our queue. > + */ > + if (ch->ch_c_iflag & IGNBRK) > + error_mask |= UART_LSR_BI; > + > + /* > + * Now cleanup any leftover bytes still in the UART. > + * Also deal with any possible queue overflow here as well. > + */ > + while (1) { > + > + /* > + * Its possible we have a linestatus from the loop above > + * this, so we "OR" on any extra bits. > + */ > + linestatus |= readb(&ch->ch_neo_uart->lsr); > + > + /* > + * If the chip tells us there is no more data pending to > + * be read, we can then leave. > + * But before we do, cache the linestatus, just in case. > + */ > + if (!(linestatus & UART_LSR_DR)) { > + ch->ch_cached_lsr = linestatus; > + break; > + } > + > + /* No need to store this bit */ > + linestatus &= ~UART_LSR_DR; > + > + /* > + * Since we are grabbing the linestatus register, which > + * will reset some bits after our read, we need to ensure > + * we don't miss our TX FIFO emptys. > + */ > + if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { > + linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + } > + > + /* > + * Discard character if we are ignoring the error mask. > + */ > + if (linestatus & error_mask) { > + uchar discard; > + linestatus = 0; > + memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); > + continue; > + } > + > + /* > + * If our queue is full, we have no choice but to drop some data. > + * The assumption is that HWFLOW or SWFLOW should have stopped > + * things way way before we got to this point. > + * > + * I decided that I wanted to ditch the oldest data first, > + * I hope thats okay with everyone? Yes? Good. > + */ > + while (qleft < 1) { > + DPR_READ(("Queue full, dropping DATA:%x LSR:%x\n", > + ch->ch_rqueue[tail], ch->ch_equeue[tail])); > + > + ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; > + ch->ch_err_overrun++; > + qleft++; > + } > + > + memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); > + ch->ch_equeue[head] = (uchar) linestatus; > + jsm_sniff_nowait_nolock(ch, "UART READ", ch->ch_rqueue + head, 1); > + > + DPR_READ(("DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head])); > + > + /* Ditch any remaining linestatus value. */ > + linestatus = 0; > + > + /* Add to and flip head if needed */ > + head = (head + 1) & RQUEUEMASK; > + > + qleft--; > + ch->ch_rxcount++; > + } > + > + /* > + * Write new final heads to channel structure. > + */ > + ch->ch_r_head = head & RQUEUEMASK; > + ch->ch_e_head = head & EQUEUEMASK; > + jsm_input(ch); > +} > + > +static void neo_copy_data_from_queue_to_uart(struct channel_t *ch) > +{ > + ushort head; > + ushort tail; > + int n; > + int s; > + int qlen; > + uint len_written = 0; I'll stop mentioning non-standard types, though the code continues to use them. You get the picture. > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + /* No data to write to the UART */ > + if (ch->ch_w_tail == ch->ch_w_head) > + return; > + > + /* If port is "stopped", don't send any data to the UART */ > + if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) > + return; > + /* > + * If FIFOs are disabled. Send data directly to txrx register > + */ > + if (!(ch->ch_flags & CH_FIFO_ENABLED)) { > + uchar lsrbits = readb(&ch->ch_neo_uart->lsr); > + > + ch->ch_cached_lsr |= lsrbits; > + if (ch->ch_cached_lsr & UART_LSR_THRE) { > + ch->ch_cached_lsr &= ~(UART_LSR_THRE); > + > + writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx); > + DPR_WRITE(("Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head])); > + ch->ch_w_tail++; > + ch->ch_w_tail &= WQUEUEMASK; > + ch->ch_txcount++; > + } > + return; > + } > + > + /* > + * We have to do it this way, because of the EXAR TXFIFO count bug. > + */ > + if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) > + return; > + > + len_written = 0; > + n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; > + > + /* cache head and tail of queue */ > + head = ch->ch_w_head & WQUEUEMASK; > + tail = ch->ch_w_tail & WQUEUEMASK; > + qlen = (head - tail) & WQUEUEMASK; > + > + /* Find minimum of the FIFO space, versus queue length */ > + n = min(n, qlen); > + > + while (n > 0) { > + > + s = ((head >= tail) ? head : WQUEUESIZE) - tail; > + s = min(s, n); > + > + if (s <= 0) > + break; > + > + memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s); > + jsm_sniff_nowait_nolock(ch, "UART WRITE", ch->ch_wqueue + tail, s); > + > + /* Add and flip queue if needed */ > + tail = (tail + s) & WQUEUEMASK; > + n -= s; > + ch->ch_txcount += s; > + len_written += s; > + } > + > + /* Update the final tail */ > + ch->ch_w_tail = tail & WQUEUEMASK; > + > + if (len_written >= ch->ch_t_tlevel) > + ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + > + if (!jsm_tty_write(&ch->uart_port)) > + uart_write_wakeup(&ch->uart_port); > +} > + > +static void neo_parse_modem(struct channel_t *ch, uchar signals) > +{ > + volatile uchar msignals = signals; Maxim: "volatile indicates bugs". Don't use volatile, fix the code instead. > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + DPR_MSIGS(("neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals)); > + > + > + /* Scrub off lower bits. They signify delta's, which I don't care about */ > + msignals &= 0xf0; > + > + if (msignals & UART_MSR_DCD) > + ch->ch_mistat |= UART_MSR_DCD; > + else > + ch->ch_mistat &= ~UART_MSR_DCD; > + > + if (msignals & UART_MSR_DSR) > + ch->ch_mistat |= UART_MSR_DSR; > + else > + ch->ch_mistat &= ~UART_MSR_DSR; > + > + if (msignals & UART_MSR_RI) > + ch->ch_mistat |= UART_MSR_RI; > + else > + ch->ch_mistat &= ~UART_MSR_RI; > + > + if (msignals & UART_MSR_CTS) > + ch->ch_mistat |= UART_MSR_CTS; > + else > + ch->ch_mistat &= ~UART_MSR_CTS; > + > + DPR_MSIGS(("Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", > + ch->ch_portnum, > + !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), > + !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), > + !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), > + !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), > + !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), > + !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD))); > +} > + > +/* Make the UART raise any of the output signals we want up */ > +static void neo_assert_modem_signals(struct channel_t *ch) > +{ > + uchar out; > + > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + out = ch->ch_mostat; > + > + writeb(out, &ch->ch_neo_uart->mcr); > + > + /* Give time for the UART to actually raise/drop the signals */ > + udelay(10); PCI posting > +} > + > +/* > + * Flush the WRITE FIFO on the Neo. > + * > + * NOTE: Channel lock MUST be held before calling this function! > + */ > +static void neo_flush_uart_write(struct channel_t *ch) > +{ > + uchar tmp = 0; > + int i = 0; > + > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); > + > + for (i = 0; i < 10; i++) { > + > + /* Check to see if the UART feels it completely flushed the FIFO. */ > + tmp = readb(&ch->ch_neo_uart->isr_fcr); > + if (tmp & 4) { > + DPR_IOCTL(("Still flushing TX UART... i: %d\n", i)); > + udelay(10); > + } > + else > + break; > + } > + > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > +} > + > + > +/* > + * Flush the READ FIFO on the Neo. > + * > + * NOTE: Channel lock MUST be held before calling this function! > + */ > +static void neo_flush_uart_read(struct channel_t *ch) > +{ > + uchar tmp = 0; > + int i = 0; > + > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); > + > + for (i = 0; i < 10; i++) { > + > + /* Check to see if the UART feels it completely flushed the FIFO. */ > + tmp = readb(&ch->ch_neo_uart->isr_fcr); > + if (tmp & 2) { > + DPR_IOCTL(("Still flushing RX UART... i: %d\n", i)); > + udelay(10); > + } > + else > + break; > + } > +} > + > +/* > + * No locks are assumed to be held when calling this function. > + */ > +void neo_clear_break(struct channel_t *ch, int force) > +{ > + ulong lock_flags; > + > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + > + /* Turn break off, and unset some variables */ > + if (ch->ch_flags & CH_BREAK_SENDING) { > + uchar temp = readb(&ch->ch_neo_uart->lcr); > + writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); > + > + ch->ch_flags &= ~(CH_BREAK_SENDING); > + DPR_IOCTL((" clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies)); > + } > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > +} > + > +/* > + * Parse the ISR register. > + */ > +static inline void neo_parse_isr(struct board_t *brd, uint port) > +{ > + struct channel_t *ch; > + uchar isr; > + uchar cause; > + ulong lock_flags; > + > + if (!brd || brd->magic != JSM_BOARD_MAGIC) > + return; > + > + if (port > brd->maxports) > + return; > + > + ch = brd->channels[port]; > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + /* Here we try to figure out what caused the interrupt to happen */ > + while (1) { > + > + isr = readb(&ch->ch_neo_uart->isr_fcr); > + > + /* Bail if no pending interrupt */ > + if (isr & UART_IIR_NO_INT) { > + break; > + } > + > + /* > + * Yank off the upper 2 bits, which just show that the FIFO's are enabled. > + */ > + isr &= ~(UART_17158_IIR_FIFO_ENABLED); > + > + DPR_INTR(("%s:%d isr: %x\n", __FILE__, __LINE__, isr)); > + > + if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { > + /* Read data from uart -> queue */ > + neo_copy_data_from_uart_to_queue(ch); > + > + /* Call our tty layer to enforce queue flow control if needed. */ > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + jsm_check_queue_flow_control(ch); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + > + if (isr & UART_IIR_THRI) { > + /* Transfer data (if any) from Write Queue -> UART. */ > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + neo_copy_data_from_queue_to_uart(ch); > + } > + > + if (isr & UART_17158_IIR_XONXOFF) { > + cause = readb(&ch->ch_neo_uart->xoffchar1); > + > + DPR_INTR(("Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause)); > + > + /* > + * Since the UART detected either an XON or > + * XOFF match, we need to figure out which > + * one it was, so we can suspend or resume data flow. > + */ > + if (cause == UART_17158_XON_DETECT) { > + /* Is output stopped right now, if so, resume it */ > + if (brd->channels[port]->ch_flags & CH_STOP) { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_flags &= ~(CH_STOP); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + DPR_INTR(("Port %d. XON detected in incoming data\n", port)); > + } > + else if (cause == UART_17158_XOFF_DETECT) { > + if (!(brd->channels[port]->ch_flags & CH_STOP)) { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_flags |= CH_STOP; > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + DPR_INTR(("Setting CH_STOP\n")); > + } > + DPR_INTR(("Port: %d. XOFF detected in incoming data\n", port)); > + } > + } > + > + if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { > + /* > + * If we get here, this means the hardware is doing auto flow control. > + * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. > + */ > + cause = readb(&ch->ch_neo_uart->mcr); > + /* Which pin is doing auto flow? RTS or DTR? */ > + if ((cause & 0x4) == 0) { > + if (cause & UART_MCR_RTS) { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_mostat |= UART_MCR_RTS; > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + else { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_mostat &= ~(UART_MCR_RTS); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + } else { > + if (cause & UART_MCR_DTR) { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_mostat |= UART_MCR_DTR; > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + else { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_mostat &= ~(UART_MCR_DTR); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + } > + } The locking in this function is AWFUL. The worst case has you acquiring and releasing the same lock several times. > + /* Parse any modem signal changes */ > + DPR_INTR(("MOD_STAT: sending to parse_modem_sigs\n")); > + neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); > + } > +} > + > +static inline void neo_parse_lsr(struct board_t *brd, uint port) > +{ > + struct channel_t *ch; > + int linestatus; > + ulong lock_flags; > + > + if (!brd) > + return; > + > + if (brd->magic != JSM_BOARD_MAGIC) > + return; > + > + if (port > brd->maxports) > + return; > + > + ch = brd->channels[port]; > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + linestatus = readb(&ch->ch_neo_uart->lsr); > + > + DPR_INTR(("%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus)); > + > + ch->ch_cached_lsr |= linestatus; > + > + if (ch->ch_cached_lsr & UART_LSR_DR) { > + /* Read data from uart -> queue */ > + neo_copy_data_from_uart_to_queue(ch); > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + jsm_check_queue_flow_control(ch); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + } > + > + /* > + * This is a special flag. It indicates that at least 1 > + * RX error (parity, framing, or break) has happened. > + * Mark this in our struct, which will tell me that I have > + *to do the special RX+LSR read for this FIFO load. > + */ > + if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) > + DPR_INTR(("%s:%d Port: %d Got an RX error, need to parse LSR\n", > + __FILE__, __LINE__, port)); > + > + /* > + * The next 3 tests should *NOT* happen, as the above test > + * should encapsulate all 3... At least, thats what Exar says. > + */ > + > + if (linestatus & UART_LSR_PE) { > + ch->ch_err_parity++; > + DPR_INTR(("%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port)); > + } > + > + if (linestatus & UART_LSR_FE) { > + ch->ch_err_frame++; > + DPR_INTR(("%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port)); > + } > + > + if (linestatus & UART_LSR_BI) { > + ch->ch_err_break++; > + DPR_INTR(("%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port)); > + } > + > + if (linestatus & UART_LSR_OE) { > + /* > + * Rx Oruns. Exar says that an orun will NOT corrupt > + * the FIFO. It will just replace the holding register > + * with this new data byte. So basically just ignore this. > + * Probably we should eventually have an orun stat in our driver... > + */ > + ch->ch_err_overrun++; > + DPR_INTR(("%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port)); > + } > + > + if (linestatus & UART_LSR_THRE) { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + > + /* Transfer data (if any) from Write Queue -> UART. */ > + neo_copy_data_from_queue_to_uart(ch); > + } > + else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + > + /* Transfer data (if any) from Write Queue -> UART. */ > + neo_copy_data_from_queue_to_uart(ch); > + } > +} > + > +/* > + * neo_param() > + * Send any/all changes to the line to the UART. > + */ > +static void neo_param(struct channel_t *ch) > +{ > + uchar lcr = 0; > + uchar uart_lcr = 0; > + uchar ier = 0; > + uint baud = 9600; > + int quot = 0; > + struct board_t *bd; > + > + bd = ch->ch_bd; > + if (!bd || bd->magic != JSM_BOARD_MAGIC) > + return; > + > + /* > + * If baud rate is zero, flush queues, and set mval to drop DTR. > + */ > + if ((ch->ch_c_cflag & (CBAUD)) == 0) { > + ch->ch_r_head = ch->ch_r_tail = 0; > + ch->ch_e_head = ch->ch_e_tail = 0; > + ch->ch_w_head = ch->ch_w_tail = 0; > + > + neo_flush_uart_write(ch); > + neo_flush_uart_read(ch); > + > + ch->ch_flags |= (CH_BAUD0); > + ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); > + neo_assert_modem_signals(ch); > + ch->ch_old_baud = 0; > + return; > + > + } else if (ch->ch_custom_speed) { > + baud = ch->ch_custom_speed; > + if (ch->ch_flags & CH_BAUD0) > + ch->ch_flags &= ~(CH_BAUD0); > + } else { > + int iindex = 0; > + int jindex = 0; > + > + ulong bauds[4][16] = { > + { > + 0, 50, 75, 110, > + 134, 150, 200, 300, > + 600, 1200, 1800, 2400, > + 4800, 9600, 19200, 38400 }, > + { > + 0, 57600, 115200, 230400, > + 460800, 150, 200, 921600, > + 600, 1200, 1800, 2400, > + 4800, 9600, 19200, 38400 }, > + { > + 0, 57600, 76800, 115200, > + 131657, 153600, 230400, 460800, > + 921600, 1200, 1800, 2400, > + 4800, 9600, 19200, 38400 }, > + { > + 0, 57600, 115200, 230400, > + 460800, 150, 200, 921600, > + 600, 1200, 1800, 2400, > + 4800, 9600, 19200, 38400 } > + }; const > + if (!(ch->ch_tun.un_flags & UN_ISOPEN) ) > + baud = C_BAUD(ch->uart_port.info->tty) & 0xff; > + else > + baud = C_BAUD(ch->uart_port.info->tty) & 0xff; > + > + > + if (ch->ch_c_cflag & CBAUDEX) > + iindex = 1; > + > + jindex = baud; > + > + if ((iindex >= 0) && (iindex < 4) && (jindex >= 0) && (jindex < 16)) > + baud = bauds[iindex][jindex]; > + else { > + DPR_IOCTL(("baud indices were out of range (%d)(%d)", > + iindex, jindex)); > + baud = 0; > + } > + > + if (baud == 0) > + baud = 9600; > + > + if (ch->ch_flags & CH_BAUD0) { > + ch->ch_flags &= ~(CH_BAUD0); > + } > + } > + > + if (ch->ch_c_cflag & PARENB) > + lcr |= UART_LCR_PARITY; > + > + if (!(ch->ch_c_cflag & PARODD)) > + lcr |= UART_LCR_EPAR; > + > + /* > + * Not all platforms support mark/space parity, > + * so this will hide behind an ifdef. > + */ > +#ifdef CMSPAR > + if (ch->ch_c_cflag & CMSPAR) > + lcr |= UART_LCR_SPAR; > +#endif > + > + if (ch->ch_c_cflag & CSTOPB) > + lcr |= UART_LCR_STOP; > + > + switch (ch->ch_c_cflag & CSIZE) { > + case CS5: > + lcr |= UART_LCR_WLEN5; > + break; > + case CS6: > + lcr |= UART_LCR_WLEN6; > + break; > + case CS7: > + lcr |= UART_LCR_WLEN7; > + break; > + case CS8: > + default: > + lcr |= UART_LCR_WLEN8; > + break; > + } > + > + ier = readb(&ch->ch_neo_uart->ier); > + uart_lcr = readb(&ch->ch_neo_uart->lcr); > + > + if (baud == 0) > + baud = 9600; > + > + quot = ch->ch_bd->bd_dividend / baud; > + > + if (quot != 0) { > + ch->ch_old_baud = baud; > + writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); > + writeb((quot & 0xff), &ch->ch_neo_uart->txrx); > + writeb((quot >> 8), &ch->ch_neo_uart->ier); > + writeb(lcr, &ch->ch_neo_uart->lcr); > + } > + > + if (uart_lcr != lcr) > + writeb(lcr, &ch->ch_neo_uart->lcr); > + > + if (ch->ch_c_cflag & CREAD) > + ier |= (UART_IER_RDI | UART_IER_RLSI); > + > + ier |= (UART_IER_THRI | UART_IER_MSI); > + > + writeb(ier, &ch->ch_neo_uart->ier); > + > + /* Set new start/stop chars */ > + neo_set_new_start_stop_chars(ch); > + > + if (ch->ch_c_cflag & CRTSCTS) > + neo_set_cts_flow_control(ch); > + else if (ch->ch_c_iflag & IXON) { > + /* If start/stop is set to disable, then we should disable flow control */ > + if ((ch->ch_startc == _POSIX_VDISABLE) || (ch->ch_stopc == _POSIX_VDISABLE)) > + neo_set_no_output_flow_control(ch); > + else > + neo_set_ixon_flow_control(ch); > + } > + else > + neo_set_no_output_flow_control(ch); > + > + if (ch->ch_c_cflag & CRTSCTS) > + neo_set_rts_flow_control(ch); > + else if (ch->ch_c_iflag & IXOFF) { > + /* If start/stop is set to disable, then we should disable flow control */ > + if ((ch->ch_startc == _POSIX_VDISABLE) || (ch->ch_stopc == _POSIX_VDISABLE)) > + neo_set_no_input_flow_control(ch); > + else > + neo_set_ixoff_flow_control(ch); > + } > + else > + neo_set_no_input_flow_control(ch); > + /* > + * Adjust the RX FIFO Trigger level if baud is less than 9600. > + * Not exactly elegant, but this is needed because of the Exar chip's > + * delay on firing off the RX FIFO interrupt on slower baud rates. > + */ > + if (baud < 9600) { > + writeb(1, &ch->ch_neo_uart->rfifo); > + ch->ch_r_tlevel = 1; > + } > + > + neo_assert_modem_signals(ch); > + > + /* Get current status of the modem signals now */ > + neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); > + return; > +} > + > +/* > + * Our board poller function. > + */ > +static void neo_tasklet(unsigned long data) > +{ > + struct board_t *bd = (struct board_t *) data; > + struct channel_t *ch; > + ulong lock_flags; > + int i; > + int state = 0; > + int ports = 0; > + > + if (!bd || bd->magic != JSM_BOARD_MAGIC) { > + APR(("poll_tasklet() - NULL or bad bd.\n")); > + return; > + } > + > + /* Cache a couple board values */ > + spin_lock_irqsave(&bd->bd_lock, lock_flags); > + state = bd->state; > + ports = bd->nasync; > + spin_unlock_irqrestore(&bd->bd_lock, lock_flags); > + > + /* > + * Do NOT allow the interrupt routine to read the intr registers > + * Until we release this lock. > + */ > + spin_lock_irqsave(&bd->bd_intr_lock, lock_flags); > + > + /* > + * If board is ready, parse deeper to see if there is anything to do. > + */ > + if ((state == BOARD_READY) && (ports > 0)) { > + /* Loop on each port */ > + for (i = 0; i < ports; i++) { > + ch = bd->channels[i]; > + > + /* Just being careful... */ > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + continue; > + if (ch->ch_tun.un_flags != UN_ISOPEN) > + continue; > + > + /* > + * NOTE: Remember you CANNOT hold any channel > + * locks when calling the input routine. > + * > + * During input processing, its possible we > + * will call the Linux ld, which might in turn, > + * do a callback right back into us, resulting > + * in us trying to grab the channel lock twice! > + */ > + jsm_input(ch); > + > + /* > + * Channel lock is grabbed and then released > + * inside both of these routines, but neither > + * call anything else that could call back into us. > + */ > + neo_copy_data_from_queue_to_uart(ch); > + uart_write_wakeup(&ch->uart_port); > + > + /* > + * Call carrier carrier function, in case something > + * has changed. > + */ > + jsm_carrier(ch); > + } > + } > + > + /* Allow interrupt routine to access the interrupt register again */ > + spin_unlock_irqrestore(&bd->bd_intr_lock, lock_flags); > +} > + > +/* > + * jsm_neo_intr() > + * > + * Neo specific interrupt handler. > + */ > +static JSM_IRQRETURN_TYPE neo_intr(int irq, void *voidbrd, struct pt_regs *regs) do not define a non-standard JSM_IRQRETURN_TYPE > + struct board_t *brd = (struct board_t *) voidbrd; > + struct channel_t *ch; > + int port = 0; > + int type = 0; > + int current_port; > + u32 tmp; > + u32 uart_poll; > + unsigned long lock_flags; > + unsigned long lock_flags2; > + > + if (!brd) { > + APR(("Received interrupt (%d) with null board associated\n", irq)); > + JSM_IRQ_RETURN(IRQ_NONE); > + } eliminate 'if' test that will never succeed > + /* > + * Check to make sure its for us. > + */ > + if (brd->magic != JSM_BOARD_MAGIC) { > + APR(("Received interrupt (%d) with a board pointer that wasn't ours!\n", irq)); > + JSM_IRQ_RETURN(IRQ_NONE); > + } ditto Also, do not define non-standard JSM_IRQ_RETURN() > + brd->intr_count++; > + > + /* Lock out the slow poller from running on this board. */ > + spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); > + > + /* > + * Read in "extended" IRQ information from the 32bit Neo register. > + * Bits 0-7: What port triggered the interrupt. > + * Bits 8-31: Each 3bits indicate what type of interrupt occurred. > + */ > + uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); > + > + DPR_INTR(("%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll)); > + > + /* > + * If 0, no interrupts pending. > + * This can happen if the IRQ is shared among a couple Neo/Classic boards. > + */ Incorrect comment. The irq can be shared with boards your driver will never touch. > + if (!uart_poll) { > + DPR_INTR(("Kernel interrupted to me, but no pending interrupts...\n")); > + spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); > + JSM_IRQ_RETURN(IRQ_NONE); > + } > + > + /* At this point, we have at least SOMETHING to service, dig further... */ > + > + current_port = 0; > + > + /* Loop on each port */ > + while ((uart_poll & 0xff) != 0) { infinite loop if hardware is unplugged, or on hardware fault. > + tmp = uart_poll; > + > + /* Check current port to see if it has interrupt pending */ > + if ((tmp & jsm_offset_table[current_port]) != 0) { > + port = current_port; > + type = tmp >> (8 + (port * 3)); > + type &= 0x7; > + } else { > + current_port++; > + continue; > + } > + > + DPR_INTR(("%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type)); > + > + /* Remove this port + type from uart_poll */ > + uart_poll &= ~(jsm_offset_table[port]); > + > + if (!type) { > + /* If no type, just ignore it, and move onto next port */ > + DPR_INTR(("Interrupt with no type! port: %d\n", port)); > + continue; > + } > + > + /* Switch on type of interrupt we have */ > + switch (type) { > + > + case UART_17158_RXRDY_TIMEOUT: > + /* > + * RXRDY Time-out is cleared by reading data in the > + * RX FIFO until it falls below the trigger level. > + */ > + > + /* Verify the port is in range. */ > + if (port > brd->nasync) > + continue; > + > + ch = brd->channels[port]; > + neo_copy_data_from_uart_to_queue(ch); > + > + /* Call our tty layer to enforce queue flow control if needed. */ > + spin_lock_irqsave(&ch->ch_lock, lock_flags2); > + jsm_check_queue_flow_control(ch); > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); > + > + continue; > + > + case UART_17158_RX_LINE_STATUS: > + /* > + * RXRDY and RX LINE Status (logic OR of LSR[4:1]) > + */ > + neo_parse_lsr(brd, port); > + continue; > + > + case UART_17158_TXRDY: > + /* > + * TXRDY interrupt clears after reading ISR register for the UART channel. > + */ > + > + /* > + * Yes, this is odd... > + * Why would I check EVERY possibility of type of > + * interrupt, when we know its TXRDY??? > + * Becuz for some reason, even tho we got triggered for TXRDY, > + * it seems to be occassionally wrong. Instead of TX, which > + * it should be, I was getting things like RXDY too. Weird. > + */ > + neo_parse_isr(brd, port); > + continue; > + > + case UART_17158_MSR: > + /* > + * MSR or flow control was seen. > + */ > + neo_parse_isr(brd, port); > + continue; > + > + default: > + /* > + * The UART triggered us with a bogus interrupt type. > + * It appears the Exar chip, when REALLY bogged down, will throw > + * these once and awhile. > + * Its harmless, just ignore it and move on. > + */ > + DPR_INTR(("%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type)); > + continue; > + } > + } > + > + spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); > + > + DPR_INTR(("jsm_intr finish.\n")); > + JSM_IRQ_RETURN(IRQ_HANDLED); > +} > + > +/* > + * Neo specific way of turning off the receiver. > + * Used as a way to enforce queue flow control when in > + * hardware flow control mode. > + */ > +static void neo_disable_receiver(struct channel_t *ch) > +{ > + uchar tmp = readb(&ch->ch_neo_uart->ier); > + tmp &= ~(UART_IER_RDI); > + writeb(tmp, &ch->ch_neo_uart->ier); > +} > + > + > +/* > + * Neo specific way of turning on the receiver. > + * Used as a way to un-enforce queue flow control when in > + * hardware flow control mode. > + */ > +static void neo_enable_receiver(struct channel_t *ch) > +{ > + uchar tmp = readb(&ch->ch_neo_uart->ier); > + tmp |= (UART_IER_RDI); > + writeb(tmp, &ch->ch_neo_uart->ier); > +} > + > +/* > + * This function basically goes to sleep for secs, or until > + * it gets signalled that the port has fully drained. > + */ > +static int neo_drain(struct tty_struct *tty, uint seconds) > +{ > + ulong lock_flags; > + struct channel_t *ch; > + struct un_t *un; > + int rc = 0; > + > + if (!tty || tty->magic != TTY_MAGIC) > + return -ENXIO; > + > + un = (struct un_t *) tty->driver_data; > + if (!un || un->magic != JSM_UNIT_MAGIC) > + return -ENXIO; > + > + ch = un->un_ch; > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return -ENXIO; > + > + DPR_IOCTL(("%d Drain wait started.\n", __LINE__)); > + > + spin_lock_irqsave(&ch->ch_lock, lock_flags); > + un->un_flags |= UN_EMPTY; > + spin_unlock_irqrestore(&ch->ch_lock, lock_flags); > + > + /* > + * Go to sleep waiting for the tty layer to wake me back up when > + * the empty flag goes away. > + * > + * NOTE: TODO: Do something with time passed in. > + */ > + rc = wait_event_interruptible(un->un_flags_wait, ((un->un_flags & UN_EMPTY) == 0)); > + > + /* If ret is non-zero, user ctrl-c'ed us */ > + if (rc) { > + DPR_IOCTL(("%d Drain - User ctrl c'ed\n", __LINE__)); > + } > + else { > + DPR_IOCTL(("%d Drain wait finished.\n", __LINE__)); > + } > + > + return rc; > +} > + > +static void neo_send_start_character(struct channel_t *ch) > +{ > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + if (ch->ch_startc != _POSIX_VDISABLE) { > + ch->ch_xon_sends++; > + writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); > + udelay(10); PCI posting > + > +static void neo_send_stop_character(struct channel_t *ch) > +{ > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + if (ch->ch_stopc != _POSIX_VDISABLE) { > + ch->ch_xoff_sends++; > + writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); > + udelay(10); PCI posting > + > +/* > + * neo_uart_init > + */ > +static void neo_uart_init(struct channel_t *ch) > +{ > + writeb(0, &ch->ch_neo_uart->ier); > + writeb(0, &ch->ch_neo_uart->efr); > + writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); > + > + > + /* Clear out UART and FIFO */ > + readb(&ch->ch_neo_uart->txrx); > + writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); > + readb(&ch->ch_neo_uart->lsr); > + readb(&ch->ch_neo_uart->msr); > + > + ch->ch_flags |= CH_FIFO_ENABLED; > + > + /* Assert any signals we want up */ > + writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); > +} > + > +/* > + * Make the UART completely turn off. > + */ > +static void neo_uart_off(struct channel_t *ch) > +{ > + /* Turn off UART enhanced bits */ > + writeb(0, &ch->ch_neo_uart->efr); > + > + /* Stop all interrupts from occurring. */ > + writeb(0, &ch->ch_neo_uart->ier); > +} > + > +static uint neo_get_uart_bytes_left(struct channel_t *ch) > +{ > + uchar left = 0; > + uchar lsr = readb(&ch->ch_neo_uart->lsr); > + > + /* We must cache the LSR as some of the bits get reset once read... */ > + ch->ch_cached_lsr |= lsr; > + > + /* Determine whether the Transmitter is empty or not */ > + if (!(lsr & UART_LSR_TEMT)) > + left = 1; > + else { > + ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); > + left = 0; > + } > + > + return left; > +} > + > +/* Channel lock MUST be held by the calling function! */ > +static void neo_send_break(struct channel_t *ch) > +{ > + /* > + * Set the time we should stop sending the break. > + * If we are already sending a break, toss away the existing > + * time to stop, and use this new value instead. > + */ > + > + /* Tell the UART to start sending the break */ > + if (!(ch->ch_flags & CH_BREAK_SENDING)) { > + uchar temp = readb(&ch->ch_neo_uart->lcr); > + writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); > + ch->ch_flags |= (CH_BREAK_SENDING); > + } > +} > + > +/* > + * neo_send_immediate_char. > + * > + * Sends a specific character as soon as possible to the UART, > + * jumping over any bytes that might be in the write queue. > + * > + * The channel lock MUST be held by the calling function. > + */ > +static void neo_send_immediate_char(struct channel_t *ch, unsigned char c) > +{ > + if (!ch || ch->magic != JSM_CHANNEL_MAGIC) > + return; > + > + writeb(c, &ch->ch_neo_uart->txrx); > +} > + > +struct board_ops jsm_neo_ops = { > + .tasklet = neo_tasklet, > + .intr = neo_intr, > + .uart_init = neo_uart_init, > + .uart_off = neo_uart_off, > + .drain = neo_drain, > + .param = neo_param, > + .assert_modem_signals = neo_assert_modem_signals, > + .flush_uart_write = neo_flush_uart_write, > + .flush_uart_read = neo_flush_uart_read, > + .disable_receiver = neo_disable_receiver, > + .enable_receiver = neo_enable_receiver, > + .send_break = neo_send_break, > + .send_start_character = neo_send_start_character, > + .send_stop_character = neo_send_stop_character, > + .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, > + .get_uart_bytes_left = neo_get_uart_bytes_left, > + .send_immediate_char = neo_send_immediate_char > +}; - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/