Received: by 2002:a25:ab43:0:0:0:0:0 with SMTP id u61csp2265874ybi; Mon, 17 Jun 2019 01:39:17 -0700 (PDT) X-Google-Smtp-Source: APXvYqyVDRB5JkWcaJrZES845NBAu2PBheIhV/z4Qch0SwXTcswzFhobvaOyQIiMZFwn4p9R2lW7 X-Received: by 2002:a63:5f0d:: with SMTP id t13mr41892971pgb.358.1560760757155; Mon, 17 Jun 2019 01:39:17 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1560760757; cv=none; d=google.com; s=arc-20160816; b=LPyGO61sy6M3h7K86eOUIY49egvy5R3TuNBy59b9t+8z2K5MSZy3nc3Exk9qgPn/vW 3fBaImf8Jx6BSYm7mfYNWhjKZgtXYdRIXoLB2G65nJJeaXWh479Mmp4j9LtJGHXHvVi5 rOa9bJ/nArpUc0YskFi075GmjnPeQBty0HrBM1dRTgEAO49YqkdEvWBbdRCSMzhk4W0X CeobKaoYuGqZWOYEmp8QPytlkUC4lTM4CAqlgIlr0vQ65eTkRGAg2zpuSELkWotj3YU9 n4NZhj0Asgne0BNLBipS/llT4wAs9xh4e7oyzlswWgkjfg+FvsD1f448CDpwD5vkIYCD RsLg== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:sender:mime-version:content-transfer-encoding :content-language:accept-language:in-reply-to:references:message-id :date:thread-index:thread-topic:subject:cc:to:from:dkim-signature; bh=nCU/ZLKeXtVGXtAGHOrixxGA8prNUQp4aerckvggoPY=; b=GCPrzQ/KvjvfjuVlnoj54OA2YKEHjIg9kMj5O5t8r+8ylLV/4oKYDz7GtZ+BN1uM0C vmJZkQE78/HE+QWxdz3tErUiP0tiPIkeg68IBmsGwmrmwqUHPmT2ZmFM3BkUy/MdzYyu lB31D3L1DIarf0PWj9YPhDxzvEKgwIqtWXwP5jBhNAzTJ9BFnP5Ff6BHGVVJJZExkopH t9lL5o+aan0PtlFFh2WSUd2KV0g/jnsVIdqoXn1K8uR3uRQxBOsg0e8GX1Q+oiBA57gT Hwt44JaKXJxWnSNH/8B92uGwyNJ69FajXAk0VC+0SdmDgIjq6u2SHjZzFFWOSTSv+mw8 kwLw== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@xilinx.onmicrosoft.com header.s=selector1-xilinx-onmicrosoft-com header.b="F/1xXH3g"; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Return-Path: Received: from vger.kernel.org (vger.kernel.org. [209.132.180.67]) by mx.google.com with ESMTP id 5si10030064plx.200.2019.06.17.01.39.01; Mon, 17 Jun 2019 01:39:17 -0700 (PDT) Received-SPF: pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) client-ip=209.132.180.67; Authentication-Results: mx.google.com; dkim=pass header.i=@xilinx.onmicrosoft.com header.s=selector1-xilinx-onmicrosoft-com header.b="F/1xXH3g"; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1727856AbfFQIip (ORCPT + 99 others); Mon, 17 Jun 2019 04:38:45 -0400 Received: from mail-eopbgr770044.outbound.protection.outlook.com ([40.107.77.44]:41843 "EHLO NAM02-SN1-obe.outbound.protection.outlook.com" rhost-flags-OK-OK-OK-FAIL) by vger.kernel.org with ESMTP id S1726920AbfFQIin (ORCPT ); Mon, 17 Jun 2019 04:38:43 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=xilinx.onmicrosoft.com; s=selector1-xilinx-onmicrosoft-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=nCU/ZLKeXtVGXtAGHOrixxGA8prNUQp4aerckvggoPY=; b=F/1xXH3ghZupQXlNQfJfeM5CxA2XHELl3xqs7tBcSZGdO2WiIDl6F36YdiUmRqNqdeeoyxBa9vur1aLn9ge2JJMMcnd31FUx/Fwm3PB3Nclc18l/JHGmWluouBfVYNsdeZD+Hy6xCaTzgadDuE1MDWuhfyubwMLQAbeysLBS3Hk= Received: from DM6PR02MB4779.namprd02.prod.outlook.com (20.176.109.16) by DM6PR02MB4618.namprd02.prod.outlook.com (20.176.107.87) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1987.10; Mon, 17 Jun 2019 08:38:32 +0000 Received: from DM6PR02MB4779.namprd02.prod.outlook.com ([fe80::6d49:62d5:cd7c:a8f]) by DM6PR02MB4779.namprd02.prod.outlook.com ([fe80::6d49:62d5:cd7c:a8f%6]) with mapi id 15.20.1987.014; Mon, 17 Jun 2019 08:38:32 +0000 From: Naga Sureshkumar Relli To: Naga Sureshkumar Relli , "miquel.raynal@bootlin.com" , "helmut.grohne@intenta.de" CC: "richard@nod.at" , "dwmw2@infradead.org" , "computersforpeace@gmail.com" , "marek.vasut@gmail.com" , "vigneshr@ti.com" , "linux-mtd@lists.infradead.org" , "linux-kernel@vger.kernel.org" , Michal Simek Subject: RE: [LINUX PATCH v15] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface Thread-Topic: [LINUX PATCH v15] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface Thread-Index: AQHVJOGEq3KzOUBWEUC/fOmrjWsc3Kafhjtg Date: Mon, 17 Jun 2019 08:38:32 +0000 Message-ID: References: <20190617075049.3397-1-naga.sureshkumar.relli@xilinx.com> In-Reply-To: <20190617075049.3397-1-naga.sureshkumar.relli@xilinx.com> Accept-Language: en-US Content-Language: en-US X-MS-Has-Attach: X-Auto-Response-Suppress: DR, RN, NRN, OOF, AutoReply X-MS-TNEF-Correlator: authentication-results: spf=none (sender IP is ) smtp.mailfrom=nagasure@xilinx.com; x-originating-ip: [149.199.50.133] x-ms-publictraffictype: Email x-ms-office365-filtering-correlation-id: 43d27a4f-31b9-4046-f12a-08d6f2ff2e12 x-ms-office365-filtering-ht: Tenant x-microsoft-antispam: BCL:0;PCL:0;RULEID:(2390118)(7020095)(4652040)(8989299)(4534185)(4627221)(201703031133081)(201702281549075)(8990200)(5600148)(711020)(4605104)(1401327)(4618075)(2017052603328)(7193020);SRVR:DM6PR02MB4618; x-ms-traffictypediagnostic: DM6PR02MB4618: x-ms-exchange-purlcount: 2 x-microsoft-antispam-prvs: x-ms-oob-tlc-oobclassifiers: OLM:2399; x-forefront-prvs: 0071BFA85B x-forefront-antispam-report: SFV:NSPM;SFS:(10009020)(136003)(376002)(346002)(396003)(366004)(39860400002)(13464003)(189003)(199004)(30864003)(86362001)(6506007)(52536014)(53936002)(6436002)(54906003)(25786009)(5660300002)(33656002)(2201001)(110136005)(2906002)(53546011)(8676002)(102836004)(81156014)(81166006)(74316002)(99286004)(4326008)(8936002)(107886003)(53946003)(6246003)(7696005)(55016002)(6306002)(76176011)(229853002)(2501003)(305945005)(76116006)(316002)(486006)(14444005)(5024004)(73956011)(66476007)(66556008)(7736002)(66946007)(64756008)(66446008)(9686003)(26005)(14454004)(478600001)(446003)(11346002)(6116002)(476003)(3846002)(68736007)(256004)(71200400001)(66066001)(186003)(966005)(71190400001)(559001)(579004)(569006);DIR:OUT;SFP:1101;SCL:1;SRVR:DM6PR02MB4618;H:DM6PR02MB4779.namprd02.prod.outlook.com;FPR:;SPF:None;LANG:en;PTR:InfoNoRecords;MX:1;A:1; received-spf: None (protection.outlook.com: xilinx.com does not designate permitted sender hosts) x-ms-exchange-senderadcheck: 1 x-microsoft-antispam-message-info: AInq4Kui2HXbgQ5xclFfvLgWw3Os96/RSAylLWZgYnz2HQrSNvpl0ghT4drpV0aMgz2k5aMB09Ik6hLg0NAhAx1Z8nDZ7BhhsGeUX1jvsMRNMU1j1G9/BxRK2CQ0J9JpfE8FGbXv7fODZPZrnFnMp8II//E67ZQwZEEjAZI27Iam86VV2Enfhwa1zikPsAGpa647r4uIZK6o48bMyHLhYReEceAskDbjUEXi1BnBnkw7qq8LTXZlIeXdCWa6kBvBR5NWkZNp/wXlNK3U2wmahU1TF5Rtg+dn3Zygc2/sA4+kQOo70MZsgtZk+QWIm8XT2VrbCj9q5HB7Lpn3iXEiVfsi9VT/99FHRGuIaVNkKPMUJVeOVh996HecCMagtUGLAABB9gMfOfCGzX97h+e13FPBr5S62M1RrY4LtathCiw= Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable MIME-Version: 1.0 X-OriginatorOrg: xilinx.com X-MS-Exchange-CrossTenant-Network-Message-Id: 43d27a4f-31b9-4046-f12a-08d6f2ff2e12 X-MS-Exchange-CrossTenant-originalarrivaltime: 17 Jun 2019 08:38:32.1410 (UTC) X-MS-Exchange-CrossTenant-fromentityheader: Hosted X-MS-Exchange-CrossTenant-id: 657af505-d5df-48d0-8300-c31994686c5c X-MS-Exchange-CrossTenant-mailboxtype: HOSTED X-MS-Exchange-CrossTenant-userprincipalname: nagasure@xilinx.com X-MS-Exchange-Transport-CrossTenantHeadersStamped: DM6PR02MB4618 Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Hi, Please ignore this patch. Thanks, Naga Sureshkumar Relli > -----Original Message----- > From: Naga Sureshkumar Relli > Sent: Monday, June 17, 2019 1:21 PM > To: miquel.raynal@bootlin.com; helmut.grohne@intenta.de > Cc: richard@nod.at; dwmw2@infradead.org; computersforpeace@gmail.com; > marek.vasut@gmail.com; vigneshr@ti.com; linux-mtd@lists.infradead.org; li= nux- > kernel@vger.kernel.org; Michal Simek ; Naga Sureshkum= ar Relli > > Subject: [LINUX PATCH v15] mtd: rawnand: pl353: Add basic driver for arm = pl353 smc > nand interface >=20 > Add driver for arm pl353 static memory controller nand interface with HW = ECC support. This > controller is used in Xilinx Zynq SoC for interfacing the NAND flash memo= ry. >=20 > Signed-off-by: Naga Sureshkumar Relli > --- > xilinx zynq TRM link: > https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-= TRM.pdf >=20 > ARM pl353 smc TRM link: > http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl= 350_series_ > r2p1_trm.pdf >=20 > -> Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion > S34ML01G1. > -> Tested both x8 and x16 bus-widths. > -> Tested ubifs, mtd_debug tools and mtd-tests which exists in kernel as = modules. >=20 > SMC memory controller driver is at drivers/memory/pl353-smc.c >=20 > Changes in v15: > All the comments given by Helmut Grohne to v14 are addressed in this se= ries > as mentioned below. > - Removed below unused macros > PL353_NAND_CMD_PHASE, PL353_NAND_DATA_PHASE and > PL353_NAND_ECC_CONFIG > - Used cond_resched() instead of cpu_relax() to eleminate the CPU spin f= or > a full second > - changed the size of cmnds[4] to cmnds[2] > - Removed the unused variable end_cmd in struct pl353_nfc_op > - Added new variable u16 addrs_56, instead of u32 addr5 and u32 addr6 > - Removed the unused variable cle_ale_delay_ns in struct pl353_nfc_op > - Completely changed the nand_offset calculation, taken new varibale > called dataphase_addrflags and eleminated the casting with __force > just used offset + flags > - in pl353_ecc_ooblayout64_free(), removed checking of section with > ecc.steps, as section is 0 here > - simplified the pl353_wait_for_dev_ready() and pl353_wait_for_ecc_done(= ) > - Updated the nfc_op->addrs calculation in pl353_nfc_parse_instructions(= ) > - Removed cond_delay(), instead used ndelay(), as it is sufficient > - in pl353_nand_exec_op(), instead of assigning end_cmd twice, just assi= gn > it once by nfc_op.cmnds[1] > - changed if (reading) to else in pl353_nand_exec_op() > - Removed int err variable in pl353_nand_ecc_init(), instead just used > single variable ret > - Changed reading clock value by name rather than index in pl353_nand_pr= obe() > - Instead of always calling clk_get_rate(), stored it in the probe to a > varaible and use it later > Changes in v14: > - Removed legacy hooks as per Miquel comments Changes in v13: > - Rebased the driver to mtd/next > Changes in v12: > - Rebased the driver on top of v4.19 nand tree > - Removed nand_scan_ident() and nand_scan_tail(), and added nand_control= ler_ops > with ->attach_chip() and used nand_scan() instead. > - Renamed pl353_nand_info structure to pl353_nand_controller > - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and = 'buf_addr' > - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call = it from > pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc() > - Defined new macro for max ECC blocks > - Added return value check for ecc.calculate() > - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd() > - Added x16 bus-width support > - The dependent driver pl353-smc is already reviewed and hence dropped t= he > smc driver > Changes in v11: > - Removed Documentation patch and added the required info in driver as > per Boris comments. > - Removed unwanted variables from pl353_nand_info as per Miquel comments > - Removed IO_ADDR_R/W. > - Replaced onhot() with hweight32() > - Defined macros for static values in function pl353_nand_correct_data() > - Removed all unnecessary delays > - Used nand_wait_ready() where ever is required > - Modifed the pl353_setup_data_interface() logic as per Miquel comments. > - Taken array instead of 7 values in pl353_setup_data_interface() and pa= ss > it to smc driver. > - Added check to collect the return value of mtd_device_register(). > Changes in 10: > - Typos correction like nand to NAND and soc to SOC etc.. > - Defined macros for the values in pl353_nand_calculate_hwecc() > - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc() > - Changed the return type form int to bool to the function > onehot() > - Removed udelay(1000) in pl353_cmd_function, as it is not required > - Dropped ecc->hwctl =3D NULL in pl353_ecc_init() > - Added an error message in pl353_ecc_init(), when there is no matching > oobsize > - Changed the variable from xnand to xnfc > - Added logic to get mtd->name from DT, if it is specified in DT Changes= in v9: > - Addressed the below comments given by Miquel > - instead of using pl353_nand_write32, use directly writel_relaxed > - Fixed check patch warnings > - Renamed write_buf/read_buf to write_data_op/read_data_op > - use BIT macro instead of 1 << nr > - Use NAND_ROW_ADDR_3 flag > - Use nand_wait_ready() > - Removed swecc functions > - Use address cycles as per size, instead of reading it from Parameter p= age > - Instead of writing too many patterns, use optional property Changes in= v8: > - Added exec_op() implementation > - Fixed the below v7 review comments > - removed mtd_info from pl353_nand_info struct > - Corrected ecc layout offsets > - Added on-die ecc support > Changes in v7: > - Currently not implemented the memclk rate adjustments. I will > look into this later and once the basic driver is accepted. > - Fixed GPL licence ident > Changes in v6: > - Fixed the checkpatch.pl reported warnings > - Using the address cycles information from the onfi param page > earlier it is hardcoded to 5 in driver Changes in v5: > - Configure the nand timing parameters as per the onfi spec Changes in v= 4: > - Updated the driver to sync with pl353_smc driver APIs Changes in v3: > - implemented the proper error codes > - further breakdown this patch to multiple sets > - added the controller and driver details to Documentation section > - updated the licenece to GPLv2 > - reorganized the pl353_nand_ecc_init function Changes in v2: > - use "depends on" rather than "select" option in kconfig > - remove unused variable parts > --- > drivers/mtd/nand/raw/pl353_nand.c | 1309 +++++++++++++++++++++++++++++ > 1 file changed, 1309 insertions(+) > create mode 100644 drivers/mtd/nand/raw/pl353_nand.c >=20 > diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl3= 53_nand.c > new file mode 100644 > index 000000000000..2dc799865c2e > --- /dev/null > +++ b/drivers/mtd/nand/raw/pl353_nand.c > @@ -0,0 +1,1309 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * ARM PL353 NAND flash controller driver > + * > + * Copyright (C) 2017 Xilinx, Inc > + * Author: Punnaiah chowdary kalluri > + * Author: Naga Sureshkumar Relli > + * > + */ > + > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > + > +#define PL353_NAND_DRIVER_NAME "pl353-nand" > + > +/* NAND flash driver defines */ > +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ > + > +/* AXI Address definitions */ > +#define START_CMD_SHIFT 3 > +#define END_CMD_SHIFT 11 > +#define END_CMD_VALID_SHIFT 20 > +#define ADDR_CYCLES_SHIFT 21 > +#define CLEAR_CS_SHIFT 21 > +#define ECC_LAST_SHIFT 10 > +#define COMMAND_PHASE (0 << 19) > +#define DATA_PHASE BIT(19) > + > +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ > +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ > + > +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) > +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) > +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 > +#define PL353_NAND_ECC_VALID_SHIFT 24 > +#define PL353_NAND_ECC_VALID_MASK 0x40 > +#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF > +#define PL353_ECC_BITS_BITOFF_MASK 0x7 > +#define PL353_ECC_BIT_MASK 0xFFF > +#define PL353_TREA_MAX_VALUE 1 > +#define PL353_MAX_ECC_CHUNKS 4 > +#define PL353_MAX_ECC_BYTES 3 > + > +struct pl353_nfc_op { > + u32 cmnds[2]; > + u32 addrs; > + u32 naddrs; > + u16 addrs_56; /* Address cycles 5 and 6 */ > + unsigned int data_instr_idx; > + unsigned int rdy_timeout_ms; > + unsigned int rdy_delay_ns; > + const struct nand_op_instr *data_instr; }; > + > +/** > + * struct pl353_nand_controller - Defines the NAND flash controller driv= er > + * instance > + * @controller: NAND controller structure > + * @chip: NAND chip information structure > + * @dev: Parent device (used to print error messages) > + * @regs: Virtual address of the NAND flash device > + * @dataphase_addrflags:Flags required for data phase transfers > + * @addr_cycles: Address cycles > + * @mclk: Memory controller clock > + * @mclk_rate: Clock rate of the Memory controller > + * @buswidth: Bus width 8 or 16 > + */ > +struct pl353_nand_controller { > + struct nand_controller controller; > + struct nand_chip chip; > + struct device *dev; > + void __iomem *regs; > + u32 dataphase_addrflags; > + u8 addr_cycles; > + struct clk *mclk; > + ulong mclk_rate; > + u32 buswidth; > +}; > + > +static inline struct pl353_nand_controller * > + to_pl353_nand(struct nand_chip *chip) { > + return container_of(chip, struct pl353_nand_controller, chip); } > + > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) { > + struct nand_chip *chip =3D mtd_to_nand(mtd); > + > + if (section >=3D chip->ecc.steps) > + return -ERANGE; > + > + oobregion->offset =3D (section * chip->ecc.bytes); > + oobregion->length =3D chip->ecc.bytes; > + > + return 0; > +} > + > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) { > + struct nand_chip *chip =3D mtd_to_nand(mtd); > + > + if (section >=3D chip->ecc.steps) > + return -ERANGE; > + > + oobregion->offset =3D (section * chip->ecc.bytes) + 8; > + oobregion->length =3D 8; > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops =3D { > + .ecc =3D pl353_ecc_ooblayout16_ecc, > + .free =3D pl353_ecc_ooblayout16_free, > +}; > + > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) { > + struct nand_chip *chip =3D mtd_to_nand(mtd); > + > + if (section) > + return -ERANGE; > + > +// if (section >=3D chip->ecc.steps) > +// return -ERANGE; > + > + oobregion->offset =3D (section * chip->ecc.bytes) + 52; > + oobregion->length =3D chip->ecc.bytes; > + > + return 0; > +} > + > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) { > + struct nand_chip *chip =3D mtd_to_nand(mtd); > + > + if (section) > + return -ERANGE; > + > + oobregion->offset =3D (section * chip->ecc.bytes) + 2; > + oobregion->length =3D 50; > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops =3D { > + .ecc =3D pl353_ecc_ooblayout64_ecc, > + .free =3D pl353_ecc_ooblayout64_free, > +}; > + > +/* Generic flash bbt decriptors */ > +static u8 bbt_pattern[] =3D { 'B', 'b', 't', '0' }; static u8 > +mirror_pattern[] =3D { '1', 't', 'b', 'B' }; > + > +static struct nand_bbt_descr bbt_main_descr =3D { > + .options =3D NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | > NAND_BBT_WRITE > + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, > + .offs =3D 4, > + .len =3D 4, > + .veroffs =3D 20, > + .maxblocks =3D 4, > + .pattern =3D bbt_pattern > +}; > + > +static struct nand_bbt_descr bbt_mirror_descr =3D { > + .options =3D NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | > NAND_BBT_WRITE > + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, > + .offs =3D 4, > + .len =3D 4, > + .veroffs =3D 20, > + .maxblocks =3D 4, > + .pattern =3D mirror_pattern > +}; > + > +static void pl353_nfc_force_byte_access(struct nand_chip *chip, > + bool force_8bit) > +{ > + int ret; > + struct pl353_nand_controller *xnfc =3D > + container_of(chip, struct pl353_nand_controller, chip); > + > + if (xnfc->buswidth =3D=3D 8) > + return; > + > + if (force_8bit) > + ret =3D pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8); > + else > + ret =3D pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); > + > + if (ret) > + dev_err(xnfc->dev, "Error in Buswidth\n"); } > + > +static inline int pl353_wait_for_dev_ready(struct nand_chip *chip) { > + unsigned long timeout =3D jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > + > + while (!pl353_smc_get_nand_int_status_raw()) { > + if (time_after_eq(jiffies, timeout)) { > + pr_err("%s timed out\n", __func__); > + return -ETIMEDOUT; > + } > + cond_resched(); > + } > + > + pl353_smc_clr_nand_int(); > + > + return 0; > +} > + > +/** > + * pl353_nand_read_data_op - read chip data into buffer > + * @chip: Pointer to the NAND chip info structure > + * @in: Pointer to the buffer to store read data > + * @len: Number of bytes to read > + * @force_8bit: Force 8-bit bus access > + * Return: Always return zero > + */ > +static void pl353_nand_read_data_op(struct nand_chip *chip, u8 *in, > + unsigned int len, bool force_8bit) { > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + int i; > + > + if (force_8bit) > + pl353_nfc_force_byte_access(chip, true); > + > + if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) && > + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) { > + u32 *ptr =3D (u32 *)in; > + > + len /=3D 4; > + for (i =3D 0; i < len; i++) > + ptr[i] =3D readl(xnfc->regs + xnfc->dataphase_addrflags); > + } else { > + for (i =3D 0; i < len; i++) > + in[i] =3D readb(xnfc->regs + xnfc->dataphase_addrflags); > + } > + > + if (force_8bit) > + pl353_nfc_force_byte_access(chip, false); } > + > +/** > + * pl353_nand_write_buf - write buffer to chip > + * @chip: Pointer to the nand_chip structure > + * @buf: Pointer to the buffer to store write data > + * @len: Number of bytes to write > + * @force_8bit: Force 8-bit bus access > + */ > +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *b= uf, > + int len, bool force_8bit) > +{ > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + int i; > + > + if (force_8bit) > + pl353_nfc_force_byte_access(chip, true); > + > + if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && > + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) { > + u32 *ptr =3D (u32 *)buf; > + > + len /=3D 4; > + for (i =3D 0; i < len; i++) > + writel(ptr[i], xnfc->regs + xnfc->dataphase_addrflags); > + } else { > + for (i =3D 0; i < len; i++) > + writeb(buf[i], xnfc->regs + xnfc->dataphase_addrflags); > + } > + > + if (force_8bit) > + pl353_nfc_force_byte_access(chip, false); } > + > +static inline int pl353_wait_for_ecc_done(void) { > + unsigned long timeout =3D jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; > + > + while (pl353_smc_ecc_is_busy()) { > + if (time_after_eq(jiffies, timeout)) { > + pr_err("%s timed out\n", __func__); > + return -ETIMEDOUT; > + } > + cond_resched(); > + } > + > + return 0; > +} > + > +/** > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC > + * @chip: Pointer to the nand_chip structure > + * @data: Pointer to the page data > + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored > + * > + * This function retrieves the Hardware ECC data from the controller > +and returns > + * ECC data back to the MTD subsystem. > + * It operates on a number of 512 byte blocks of NAND memory and can be > + * programmed to store the ECC codes after the data in memory. For > +writes, > + * the ECC is written to the spare area of the page. For reads, the > +result of > + * a block ECC check are made available to the device driver. > + * > + * ---------------------------------------------------------------------= --- > + * | n * 512 blocks | extra | ecc | = | > + * | | block | codes | = | > + * > +----------------------------------------------------------------------- > +- > + * > + * The ECC calculation uses a simple Hamming code, using 1-bit > +correction 2-bit > + * detection. It starts when a valid read or write command with a 512 > +byte > + * aligned address is detected on the memory interface. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_calculate_hwecc(struct nand_chip *chip, > + const u8 *data, u8 *ecc) > +{ > + u32 ecc_value; > + u8 chunk, ecc_byte, ecc_status; > + > + for (chunk =3D 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) { > + /* Read ECC value for each block */ > + ecc_value =3D pl353_smc_get_ecc_val(chunk); > + ecc_status =3D (ecc_value >> PL353_NAND_ECC_VALID_SHIFT); > + > + /* ECC value valid */ > + if (ecc_status & PL353_NAND_ECC_VALID_MASK) { > + for (ecc_byte =3D 0; ecc_byte < PL353_MAX_ECC_BYTES; > + ecc_byte++) { > + /* Copy ECC bytes to MTD buffer */ > + *ecc =3D ~ecc_value & 0xFF; > + ecc_value =3D ecc_value >> 8; > + ecc++; > + } > + } else { > + pr_warn("%s status failed\n", __func__); > + return -1; > + } > + } > + > + return 0; > +} > + > +/** > + * pl353_nand_correct_data - ECC correction function > + * @chip: Pointer to the nand_chip structure > + * @buf: Pointer to the page data > + * @read_ecc: Pointer to the ECC value read from spare data area > + * @calc_ecc: Pointer to the calculated ECC value > + * > + * This function corrects the ECC single bit errors & detects 2-bit erro= rs. > + * > + * Return: 0 if no ECC errors found > + * 1 if single bit error found and corrected. > + * -1 if multiple uncorrectable ECC errors found. > + */ > +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char= *buf, > + unsigned char *read_ecc, > + unsigned char *calc_ecc) > +{ > + unsigned char bit_addr; > + unsigned int byte_addr; > + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; > + unsigned short calc_ecc_lower, calc_ecc_upper; > + > + read_ecc_lower =3D (read_ecc[0] | (read_ecc[1] << 8)) & > + PL353_ECC_BIT_MASK; > + read_ecc_upper =3D ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & > + PL353_ECC_BIT_MASK; > + > + calc_ecc_lower =3D (calc_ecc[0] | (calc_ecc[1] << 8)) & > + PL353_ECC_BIT_MASK; > + calc_ecc_upper =3D ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & > + PL353_ECC_BIT_MASK; > + > + ecc_odd =3D read_ecc_lower ^ calc_ecc_lower; > + ecc_even =3D read_ecc_upper ^ calc_ecc_upper; > + > + /* no error */ > + if (!ecc_odd && !ecc_even) > + return 0; > + > + if (ecc_odd =3D=3D (~ecc_even & PL353_ECC_BIT_MASK)) { > + /* bits [11:3] of error code is byte offset */ > + byte_addr =3D (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK; > + /* bits [2:0] of error code is bit offset */ > + bit_addr =3D ecc_odd & PL353_ECC_BITS_BITOFF_MASK; > + /* Toggling error bit */ > + buf[byte_addr] ^=3D (BIT(bit_addr)); > + return 1; > + } > + > + /* one error in parity */ > + if (hweight32(ecc_odd | ecc_even) =3D=3D 1) > + return 1; > + > + /* Uncorrectable error */ > + return -1; > +} > + > +static void pl353_prepare_cmd(struct nand_chip *chip, > + int page, int column, int start_cmd, int end_cmd, > + bool read) > +{ > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + unsigned long cmd_phase_data =3D 0; > + u32 end_cmd_valid =3D 0, cmdphase_addrflags; > + > + end_cmd_valid =3D read ? 1 : 0; > + cmdphase_addrflags =3D ((xnfc->addr_cycles > + << ADDR_CYCLES_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (COMMAND_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (start_cmd << START_CMD_SHIFT)); > + > + /* Get the data phase address */ > + xnfc->dataphase_addrflags =3D ((0x0 << CLEAR_CS_SHIFT) | > + (0 << END_CMD_VALID_SHIFT) | > + (DATA_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (0x0 << ECC_LAST_SHIFT)); > + > + if (chip->options & NAND_BUSWIDTH_16) > + column /=3D 2; > + > + cmd_phase_data =3D column; > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > + cmd_phase_data |=3D page << 16; > + > + /* Another address cycle for devices > 128MiB */ > + if (chip->options & NAND_ROW_ADDR_3) { > + writel_relaxed(cmd_phase_data, > + xnfc->regs + cmdphase_addrflags); > + cmd_phase_data =3D (page >> 16); > + } > + } else { > + cmd_phase_data |=3D page << 8; > + } > + > + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags); } > + > +/** > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read fun= ction > + * @chip: Pointer to the nand_chip structure > + * @chip: Pointer to the nand_chip structure > + * @page: Page number to read > + * > + * Return: Always return zero > + */ > +static int pl353_nand_read_oob(struct nand_chip *chip, > + int page) > +{ > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + u8 *p; > + > + if (mtd->writesize < PL353_NAND_ECC_SIZE) > + return 0; > + > + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0, > + NAND_CMD_READSTART, 1); > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + > + p =3D chip->oob_poi; > + pl353_nand_read_data_op(chip, p, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > + p +=3D (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + xnfc->dataphase_addrflags |=3D PL353_NAND_CLEAR_CS; > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + > + return 0; > +} > + > +/** > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write f= unction > + * @chip: Pointer to the nand_chip structure > + * @chip: Pointer to the NAND chip info structure > + * @page: Page number to write > + * > + * Return: Zero on success and EIO on failure > + */ > +static int pl353_nand_write_oob(struct nand_chip *chip, > + int page) > +{ > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + const u8 *buf =3D chip->oob_poi; > + > + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN, > + NAND_CMD_PAGEPROG, 0); > + > + pl353_nand_write_data_op(chip, buf, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > + buf +=3D (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + xnfc->dataphase_addrflags |=3D PL353_NAND_CLEAR_CS; > + xnfc->dataphase_addrflags |=3D (1 << END_CMD_VALID_SHIFT); > + pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + > + return 0; > +} > + > +/** > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc > + * @chip: Pointer to the nand_chip structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to read > + * > + * Return: Always return zero > + */ > +static int pl353_nand_read_page_raw(struct nand_chip *chip, > + u8 *buf, int oob_required, int page) { > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + u8 *p; > + > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0, > + NAND_CMD_READSTART, 1); > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + > + pl353_nand_read_data_op(chip, buf, mtd->writesize, false); > + p =3D chip->oob_poi; > + pl353_nand_read_data_op(chip, p, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > + p +=3D (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + xnfc->dataphase_addrflags |=3D PL353_NAND_CLEAR_CS; > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + > + return 0; > +} > + > +/** > + * pl353_nand_write_page_raw - [Intern] raw page write function > + * @chip: Pointer to the nand_chip structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to write > + * > + * Return: Always return zero > + */ > +static int pl353_nand_write_page_raw(struct nand_chip *chip, > + const u8 *buf, int oob_required, > + int page) > +{ > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + u8 *p; > + > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN, > + NAND_CMD_PAGEPROG, 0); > + pl353_nand_write_data_op(chip, buf, mtd->writesize, false); > + p =3D chip->oob_poi; > + pl353_nand_write_data_op(chip, p, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > + p +=3D (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + xnfc->dataphase_addrflags |=3D PL353_NAND_CLEAR_CS; > + xnfc->dataphase_addrflags |=3D (1 << END_CMD_VALID_SHIFT); > + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + > + return 0; > +} > + > +/** > + * nand_write_page_hwecc - Hardware ECC based page write function > + * @chip: Pointer to the nand_chip structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to write > + * > + * This functions writes data and hardware generated ECC values in to th= e page. > + * > + * Return: Always return zero > + */ > +static int pl353_nand_write_page_hwecc(struct nand_chip *chip, > + const u8 *buf, int oob_required, > + int page) > +{ > + int eccsize =3D chip->ecc.size; > + int eccsteps =3D chip->ecc.steps; > + u8 *ecc_calc =3D chip->ecc.calc_buf; > + u8 *oob_ptr; > + const u8 *p =3D buf; > + u32 ret; > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN, > + NAND_CMD_PAGEPROG, 0); > + > + for ( ; (eccsteps - 1); eccsteps--) { > + pl353_nand_write_data_op(chip, p, eccsize, false); > + p +=3D eccsize; > + } > + > + pl353_nand_write_data_op(chip, p, > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), > + false); > + p +=3D (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Set ECC Last bit to 1 */ > + xnfc->dataphase_addrflags |=3D PL353_NAND_ECC_LAST; > + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + > + /* Wait till the ECC operation is complete or timeout */ > + ret =3D pl353_wait_for_ecc_done(); > + if (ret) > + dev_err(xnfc->dev, "ECC Timeout\n"); > + > + p =3D buf; > + ret =3D chip->ecc.calculate(chip, p, &ecc_calc[0]); > + if (ret) > + return ret; > + > + /* Wait for ECC to be calculated and read the error values */ > + ret =3D mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, > + 0, chip->ecc.total); > + if (ret) > + return ret; > + > + /* Clear ECC last bit */ > + xnfc->dataphase_addrflags &=3D ~PL353_NAND_ECC_LAST; > + > + /* Write the spare area with ECC bytes */ > + oob_ptr =3D chip->oob_poi; > + pl353_nand_write_data_op(chip, oob_ptr, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > + > + xnfc->dataphase_addrflags |=3D PL353_NAND_CLEAR_CS; > + xnfc->dataphase_addrflags |=3D (1 << END_CMD_VALID_SHIFT); > + oob_ptr +=3D (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + pl353_nand_write_data_op(chip, oob_ptr, > PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + > + return 0; > +} > + > +/** > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function > + * @chip: Pointer to the nand_chip structure > + * @buf: Pointer to the buffer to store read data > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to read > + * > + * This functions reads data and checks the data integrity by comparing > + * hardware generated ECC values and read ECC values from spare area. > + * There is a limitation in SMC controller, that we must set ECC LAST > +on > + * last data phase access, to tell ECC block not to expect any data furt= her. > + * Ex: When number of ECC STEPS are 4, then till 3 we will write to > +flash > + * using SMC with HW ECC enabled. And for the last ECC STEP, we will > +subtract > + * 4bytes from page size, and will initiate a transfer. And the > +remaining 4 as > + * one more transfer with ECC_LAST bit set in NAND data phase register > +to > + * notify ECC block not to expect any more data. The last block should > +be align > + * with end of 512 byte block. Because of this limitation, we are not > +using > + * core routines. > + * > + * Return: 0 always and updates ECC operation status in to MTD structure > + */ > +static int pl353_nand_read_page_hwecc(struct nand_chip *chip, > + u8 *buf, int oob_required, int page) { > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + int i, stat, eccsize =3D chip->ecc.size; > + int eccbytes =3D chip->ecc.bytes; > + int eccsteps =3D chip->ecc.steps; > + unsigned int max_bitflips =3D 0; > + u8 *p =3D buf; > + u8 *ecc_calc =3D chip->ecc.calc_buf; > + u8 *ecc =3D chip->ecc.code_buf; > + u8 *oob_ptr; > + u32 ret; > + > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0, > + NAND_CMD_READSTART, 1); > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + > + for ( ; (eccsteps - 1); eccsteps--) { > + pl353_nand_read_data_op(chip, p, eccsize, false); > + p +=3D eccsize; > + } > + > + pl353_nand_read_data_op(chip, p, > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), > + false); > + p +=3D (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Set ECC Last bit to 1 */ > + xnfc->dataphase_addrflags |=3D PL353_NAND_ECC_LAST; > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + > + /* Wait till the ECC operation is complete or timeout */ > + ret =3D pl353_wait_for_ecc_done(); > + if (ret) > + dev_err(xnfc->dev, "ECC Timeout\n"); > + > + /* Read the calculated ECC value */ > + p =3D buf; > + ret =3D chip->ecc.calculate(chip, p, &ecc_calc[0]); > + if (ret) > + return ret; > + > + /* Clear ECC last bit */ > + xnfc->dataphase_addrflags &=3D ~PL353_NAND_ECC_LAST; > + > + /* Read the stored ECC value */ > + oob_ptr =3D chip->oob_poi; > + pl353_nand_read_data_op(chip, oob_ptr, > + (mtd->oobsize - > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > + > + /* de-assert chip select */ > + xnfc->dataphase_addrflags |=3D PL353_NAND_CLEAR_CS; > + oob_ptr +=3D (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + pl353_nand_read_data_op(chip, oob_ptr, > PL353_NAND_LAST_TRANSFER_LENGTH, > + false); > + > + ret =3D mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0, > + chip->ecc.total); > + if (ret) > + return ret; > + > + eccsteps =3D chip->ecc.steps; > + p =3D buf; > + > + /* Check ECC error for all blocks and correct if it is correctable */ > + for (i =3D 0 ; eccsteps; eccsteps--, i +=3D eccbytes, p +=3D eccsize) { > + stat =3D chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]); > + if (stat < 0) { > + mtd->ecc_stats.failed++; > + } else { > + mtd->ecc_stats.corrected +=3D stat; > + max_bitflips =3D max_t(unsigned int, max_bitflips, stat); > + } > + } > + > + return max_bitflips; > +} > + > +/* NAND framework ->exec_op() hooks and related helpers */ static void > +pl353_nfc_parse_instructions(struct nand_chip *chip, > + const struct nand_subop *subop, > + struct pl353_nfc_op *nfc_op) > +{ > + const struct nand_op_instr *instr =3D NULL; > + unsigned int op_id, offset; > + int i; > + const u8 *addrs; > + > + memset(nfc_op, 0, sizeof(struct pl353_nfc_op)); > + for (op_id =3D 0; op_id < subop->ninstrs; op_id++) { > + instr =3D &subop->instrs[op_id]; > + > + switch (instr->type) { > + case NAND_OP_CMD_INSTR: > + if (op_id) > + nfc_op->cmnds[1] =3D instr->ctx.cmd.opcode; > + else > + nfc_op->cmnds[0] =3D instr->ctx.cmd.opcode; > + break; > + > + case NAND_OP_ADDR_INSTR: > + offset =3D nand_subop_get_addr_start_off(subop, op_id); > + nfc_op->naddrs =3D nand_subop_get_num_addr_cyc(subop, > + op_id); > + addrs =3D &instr->ctx.addr.addrs[offset]; > + for (i =3D 0; i < min_t(unsigned int, 4, nfc_op->naddrs); > + i++) > + nfc_op->addrs |=3D instr->ctx.addr.addrs[i] << > + (8 * i); > + > + if (nfc_op->naddrs >=3D 5) > + nfc_op->addrs_56 =3D addrs[4]; > + > + if (nfc_op->naddrs >=3D 6) > + nfc_op->addrs_56 |=3D (addrs[5] << 8); > + > + break; > + > + case NAND_OP_DATA_IN_INSTR: > + nfc_op->data_instr =3D instr; > + nfc_op->data_instr_idx =3D op_id; > + break; > + > + case NAND_OP_DATA_OUT_INSTR: > + nfc_op->data_instr =3D instr; > + nfc_op->data_instr_idx =3D op_id; > + break; > + > + case NAND_OP_WAITRDY_INSTR: > + nfc_op->rdy_timeout_ms =3D instr->ctx.waitrdy.timeout_ms; > + nfc_op->rdy_delay_ns =3D instr->delay_ns; > + break; > + } > + } > +} > + > +/** > + * pl353_nand_exec_op_cmd - Send command to NAND device > + * @chip: Pointer to the NAND chip info structure > + * @subop: Pointer to array of instructions > + * Return: Always return zero > + */ > +static int pl353_nand_exec_op_cmd(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + const struct nand_op_instr *instr; > + struct pl353_nfc_op nfc_op =3D {}; > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + unsigned long cmd_phase_data =3D 0, end_cmd_valid =3D 0; > + unsigned long end_cmd; > + unsigned int op_id, len; > + bool reading; > + u32 cmdphase_addrflags; > + > + pl353_nfc_parse_instructions(chip, subop, &nfc_op); > + instr =3D nfc_op.data_instr; > + op_id =3D nfc_op.data_instr_idx; > + pl353_smc_clr_nand_int(); > + > + /* Get the command phase address */ > + if (nfc_op.cmnds[1] !=3D 0) { > + if (nfc_op.cmnds[0] =3D=3D NAND_CMD_SEQIN) > + end_cmd_valid =3D 0; > + else > + end_cmd_valid =3D 1; > + } > + > + end_cmd =3D nfc_op.cmnds[1]; > + > + /* > + * The SMC defines two phases of commands when transferring data to or > + * from NAND flash. > + * Command phase: Commands and optional address information are written > + * to the NAND flash.The command and address can be associated with > + * either a data phase operation to write to or read from the array, > + * or a status/ID register transfer. > + * Data phase: Data is either written to or read from the NAND flash. > + * This data can be either data transferred to or from the array, > + * or status/ID register information. > + */ > + cmdphase_addrflags =3D ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (COMMAND_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (nfc_op.cmnds[0] << START_CMD_SHIFT)); > + > + /* Get the data phase address */ > + end_cmd_valid =3D 0; > + > + xnfc->dataphase_addrflags =3D ((0x0 << CLEAR_CS_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (DATA_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (0x0 << ECC_LAST_SHIFT)); > + > + /* Command phase AXI Read & Write */ > + if (nfc_op.naddrs >=3D 5) { > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > + cmd_phase_data =3D nfc_op.addrs; > + > + /* Another address cycle for devices > 128MiB */ > + if (chip->options & NAND_ROW_ADDR_3) { > + writel_relaxed(cmd_phase_data, > + xnfc->regs + cmdphase_addrflags); > + cmd_phase_data =3D nfc_op.addrs_56; > + } > + } > + } else { > + if (nfc_op.addrs !=3D -1) { > + int column =3D nfc_op.addrs; > + > + /* > + * Change read/write column, read id etc > + * Adjust columns for 16 bit bus width > + */ > + if ((chip->options & NAND_BUSWIDTH_16) && > + (nfc_op.cmnds[0] =3D=3D NAND_CMD_READ0 || > + nfc_op.cmnds[0] =3D=3D NAND_CMD_SEQIN || > + nfc_op.cmnds[0] =3D=3D NAND_CMD_RNDOUT || > + nfc_op.cmnds[0] =3D=3D NAND_CMD_RNDIN)) { > + column >>=3D 1; > + } > + cmd_phase_data =3D column; > + } > + } > + > + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags); > + if (!nfc_op.data_instr) { > + if (nfc_op.rdy_timeout_ms) { > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + } > + > + return 0; > + } > + > + reading =3D (nfc_op.data_instr->type =3D=3D NAND_OP_DATA_IN_INSTR); > + if (!reading) { > + len =3D nand_subop_get_data_len(subop, op_id); > + pl353_nand_write_data_op(chip, instr->ctx.data.buf.out, > + len, instr->ctx.data.force_8bit); > + if (nfc_op.rdy_timeout_ms) { > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + } > + > + ndelay(nfc_op.rdy_delay_ns); > + } else { > + len =3D nand_subop_get_data_len(subop, op_id); > + ndelay(nfc_op.rdy_delay_ns); > + if (nfc_op.rdy_timeout_ms) { > + if (pl353_wait_for_dev_ready(chip)) > + return -ETIMEDOUT; > + } > + > + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len, > + instr->ctx.data.force_8bit); > + } > + > + return 0; > +} > + > +static const struct nand_op_parser pl353_nfc_op_parser =3D NAND_OP_PARSE= R > + (NAND_OP_PARSER_PATTERN > + (pl353_nand_exec_op_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_exec_op_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_exec_op_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_exec_op_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > + NAND_OP_PARSER_PATTERN > + (pl353_nand_exec_op_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(false)), > + ); > + > +static int pl353_nfc_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only) > +{ > + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, > + op, check_only); > +} > + > +/** > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc m= ode > + * @mtd: Pointer to the mtd_info structure > + * @ecc: Pointer to ECC control structure > + * @ecc_mode: ondie ecc status > + * > + * This function initializes the ecc block and functional pointers as > +per the > + * ecc mode > + * > + * Return: 0 on success or negative errno. > + */ > +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctr= l *ecc, > + int ecc_mode) > +{ > + struct nand_chip *chip =3D mtd_to_nand(mtd); > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + int ret =3D 0; > + > + ecc->read_oob =3D pl353_nand_read_oob; > + ecc->write_oob =3D pl353_nand_write_oob; > + if (ecc_mode =3D=3D NAND_ECC_ON_DIE) { > + ecc->write_page_raw =3D pl353_nand_write_page_raw; > + ecc->read_page_raw =3D pl353_nand_read_page_raw; > + > + /* > + * On-Die ECC spare bytes offset 8 is used for ECC codes > + * Use the BBT pattern descriptors > + */ > + chip->bbt_td =3D &bbt_main_descr; > + chip->bbt_md =3D &bbt_mirror_descr; > + ret =3D pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); > + if (ret) > + return ret; > + > + } else { > + ecc->mode =3D NAND_ECC_HW; > + > + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ > + ecc->bytes =3D 3; > + ecc->strength =3D 1; > + ecc->calculate =3D pl353_nand_calculate_hwecc; > + ecc->correct =3D pl353_nand_correct_data; > + ecc->read_page =3D pl353_nand_read_page_hwecc; > + ecc->size =3D PL353_NAND_ECC_SIZE; > + ecc->read_page =3D pl353_nand_read_page_hwecc; > + ecc->write_page =3D pl353_nand_write_page_hwecc; > + pl353_smc_set_ecc_pg_size(mtd->writesize); > + switch (mtd->writesize) { > + case SZ_512: > + case SZ_1K: > + case SZ_2K: > + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); > + break; > + default: > + ecc->calculate =3D nand_calculate_ecc; > + ecc->correct =3D nand_correct_data; > + ecc->size =3D 256; > + break; > + } > + > + if (mtd->oobsize =3D=3D 16) { > + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops); > + } else if (mtd->oobsize =3D=3D 64) { > + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops); > + } else { > + ret =3D -ENXIO; > + dev_err(xnfc->dev, "Unsupported oob Layout\n"); > + } > + } > + > + return ret; > +} > + > +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int cs= line, > + const struct nand_data_interface > + *conf) > +{ > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + const struct nand_sdr_timings *sdr; > + u32 timings[7], mckperiodps; > + > + if (csline =3D=3D NAND_DATA_IFACE_CHECK_ONLY) > + return 0; > + > + sdr =3D nand_get_sdr_timings(conf); > + if (IS_ERR(sdr)) > + return PTR_ERR(sdr); > + > + /* > + * SDR timings are given in pico-seconds while NFC timings must be > + * expressed in NAND controller clock cycles. > + */ > + mckperiodps =3D NSEC_PER_SEC / xnfc->mclk_rate; > + mckperiodps *=3D 1000; > + if (sdr->tRC_min <=3D 20000) > + /* > + * PL353 SMC needs one extra read cycle in SDR Mode 5 > + * This is not written anywhere in the datasheet but > + * the results observed during testing. > + */ > + timings[0] =3D DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1; > + else > + timings[0] =3D DIV_ROUND_UP(sdr->tRC_min, mckperiodps); > + > + timings[1] =3D DIV_ROUND_UP(sdr->tWC_min, mckperiodps); > + > + /* > + * For all SDR modes, PL353 SMC needs tREA max value as 1, > + * Results observed during testing. > + */ > + timings[2] =3D PL353_TREA_MAX_VALUE; > + timings[3] =3D DIV_ROUND_UP(sdr->tWP_min, mckperiodps); > + timings[4] =3D DIV_ROUND_UP(sdr->tCLR_min, mckperiodps); > + timings[5] =3D DIV_ROUND_UP(sdr->tAR_min, mckperiodps); > + timings[6] =3D DIV_ROUND_UP(sdr->tRR_min, mckperiodps); > + pl353_smc_set_cycles(timings); > + > + return 0; > +} > + > +static int pl353_nand_attach_chip(struct nand_chip *chip) { > + struct mtd_info *mtd =3D nand_to_mtd(chip); > + struct pl353_nand_controller *xnfc =3D to_pl353_nand(chip); > + int ret; > + > + if (chip->options & NAND_BUSWIDTH_16) { > + ret =3D pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); > + if (ret) { > + dev_err(xnfc->dev, "Set BusWidth failed\n"); > + return ret; > + } > + } > + > + if (mtd->writesize <=3D SZ_512) > + xnfc->addr_cycles =3D 1; > + else > + xnfc->addr_cycles =3D 2; > + > + if (chip->options & NAND_ROW_ADDR_3) > + xnfc->addr_cycles +=3D 3; > + else > + xnfc->addr_cycles +=3D 2; > + > + ret =3D pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode); > + if (ret) { > + dev_err(xnfc->dev, "ECC init failed\n"); > + return ret; > + } > + > + if (!mtd->name) { > + /* > + * If the new bindings are used and the bootloader has not been > + * updated to pass a new mtdparts parameter on the cmdline, you > + * should define the following property in your NAND node, ie: > + * > + * label =3D "pl353-nand"; > + * > + * This way, mtd->name will be set by the core when > + * nand_set_flash_node() is called. > + */ > + mtd->name =3D devm_kasprintf(xnfc->dev, GFP_KERNEL, > + "%s", PL353_NAND_DRIVER_NAME); > + if (!mtd->name) { > + dev_err(xnfc->dev, "Failed to allocate mtd->name\n"); > + return -ENOMEM; > + } > + } > + > + return 0; > +} > + > +static const struct nand_controller_ops pl353_nand_controller_ops =3D { > + .attach_chip =3D pl353_nand_attach_chip, > + .exec_op =3D pl353_nfc_exec_op, > + .setup_data_interface =3D pl353_nfc_setup_data_interface, }; > + > +/** > + * pl353_nand_probe - Probe method for the NAND driver > + * @pdev: Pointer to the platform_device structure > + * > + * This function initializes the driver data structures and the hardware= . > + * The NAND driver has dependency with the pl353_smc memory controller > + * driver for initializing the NAND timing parameters, bus width, ECC > +modes, > + * control and status information. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_probe(struct platform_device *pdev) { > + struct pl353_nand_controller *xnfc; > + struct mtd_info *mtd; > + struct nand_chip *chip; > + struct resource *res; > + struct device_node *np, *dn; > + u32 ret, val; > + > + xnfc =3D devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL); > + if (!xnfc) > + return -ENOMEM; > + > + xnfc->dev =3D &pdev->dev; > + nand_controller_init(&xnfc->controller); > + xnfc->controller.ops =3D &pl353_nand_controller_ops; > + > + /* Map physical address of NAND flash */ > + res =3D platform_get_resource(pdev, IORESOURCE_MEM, 0); > + xnfc->regs =3D devm_ioremap_resource(xnfc->dev, res); > + if (IS_ERR(xnfc->regs)) > + return PTR_ERR(xnfc->regs); > + > + chip =3D &xnfc->chip; > + chip->controller =3D &xnfc->controller; > + mtd =3D nand_to_mtd(chip); > + nand_set_controller_data(chip, xnfc); > + mtd->priv =3D chip; > + mtd->owner =3D THIS_MODULE; > + nand_set_flash_node(chip, xnfc->dev->of_node); > + > + np =3D of_get_next_parent(xnfc->dev->of_node); > + xnfc->mclk =3D of_clk_get_by_name(np, "memclk"); > + if (IS_ERR(xnfc->mclk)) { > + dev_err(xnfc->dev, "Failed to retrieve MCK clk\n"); > + return PTR_ERR(xnfc->mclk); > + } > + > + xnfc->mclk_rate =3D clk_get_rate(xnfc->mclk); > + dn =3D nand_get_flash_node(chip); > + ret =3D of_property_read_u32(dn, "nand-bus-width", &val); > + if (ret) > + val =3D 8; > + > + xnfc->buswidth =3D val; > + > + /* Set the device option and flash width */ > + chip->options =3D NAND_BUSWIDTH_AUTO; > + chip->bbt_options =3D NAND_BBT_USE_FLASH; > + platform_set_drvdata(pdev, xnfc); > + ret =3D nand_scan(chip, 1); > + if (ret) { > + dev_err(xnfc->dev, "could not scan the nand chip\n"); > + return ret; > + } > + > + ret =3D mtd_device_register(mtd, NULL, 0); > + if (ret) { > + dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret); > + nand_cleanup(chip); > + return ret; > + } > + > + return 0; > +} > + > +/** > + * pl353_nand_remove - Remove method for the NAND driver > + * @pdev: Pointer to the platform_device structure > + * > + * This function is called if the driver module is being unloaded. It > +frees all > + * resources allocated to the device. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_remove(struct platform_device *pdev) { > + struct pl353_nand_controller *xnfc =3D platform_get_drvdata(pdev); > + struct mtd_info *mtd =3D nand_to_mtd(&xnfc->chip); > + struct nand_chip *chip =3D mtd_to_nand(mtd); > + > + /* Release resources, unregister device */ > + nand_release(chip); > + > + return 0; > +} > + > +/* Match table for device tree binding */ static const struct > +of_device_id pl353_nand_of_match[] =3D { > + { .compatible =3D "arm,pl353-nand-r2p1" }, > + {}, > +}; > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); > + > +/* > + * pl353_nand_driver - This structure defines the NAND subsystem > +platform driver */ static struct platform_driver pl353_nand_driver =3D = { > + .probe =3D pl353_nand_probe, > + .remove =3D pl353_nand_remove, > + .driver =3D { > + .name =3D PL353_NAND_DRIVER_NAME, > + .of_match_table =3D pl353_nand_of_match, > + }, > +}; > + > +module_platform_driver(pl353_nand_driver); > + > +MODULE_AUTHOR("Xilinx, Inc."); > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); > +MODULE_LICENSE("GPL"); > -- > 2.17.1