Received: by 2002:a25:e7d8:0:0:0:0:0 with SMTP id e207csp2311397ybh; Mon, 9 Mar 2020 03:25:03 -0700 (PDT) X-Google-Smtp-Source: ADFU+vsCeIa/NFMWeCkVP+YO3fZJfmJ7qs8WlBuQ7MGf1c51Ke09AEZUUpy4cJ6yse0a4NX6oCbs X-Received: by 2002:aca:55c4:: with SMTP id j187mr7838125oib.114.1583749503818; Mon, 09 Mar 2020 03:25:03 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1583749503; cv=none; d=google.com; s=arc-20160816; b=O7bgzgITeO+4FNFLWyuM4KH/362Sm7BhEQF99iH+5tf73pusBryr95jC1WndU9Rn4h 6EUwjo96Jz6ZiKW/L3lkEWujiVppa3FP7ToO+JGhIT469K3vKeqyiD7bYEiKtv/uZdwE xwVwPSn847Xya9YUUzxWSq/03G3PiGmzHaS8ahrFu2J1B1ABb8AzINt3W0bVo8ndy8D2 AC6BkpalUNlEl2EPL2nIAJcQsoogqNsKLODI3tY6gPFjYyw5QV0Nj1JgEf1wpAkICKVJ LXqjKxPi985fp6OdV0+gty7HeESs9WHtkwghpmhsJVzqBEFauJHMEr1qzWnw1eSAnMXw WcTg== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:sender:mime-version:in-reply-to:message-id:date :subject:cc:to:from:ironport-sdr:dkim-signature; bh=p4T4DRWInqMTWLZizWtJxvA7+iNVvnCfQVwxkhTPCiA=; b=vioCst2WOkNovSgPIOcYKViLZCHZCqM/vllG4PWb+oQCNb/zmnEGu0toQ+oqjw1QNl kb9YuNfI5d+g4I/ucYIPubo0MmQEB9ljH7U9lnaVjYyj//Dnt7ulLooCj+rXAk7Bt+tU rJC6Io7GjRmqIjJPFU2BDBRmJgilU/tps5L3AemRf+WWbCaHCx1SzdGc/ZFXAxbcv10M 8GAQTDbypePVeEm1ZrP7Lttyu4clpuun628M8q0+h80pTdcrHRavT922rxUGfiMtR7Zu 7AlCy3IKq8jlRKRrmvDT7p8l6rGVVIGqMXX6kUu+i5gQOpODxotZUw44sJVplkRClU8n Wvig== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@amazon.com header.s=amazon201209 header.b=HFzfhr00; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) header.from=amazon.com Return-Path: Received: from vger.kernel.org (vger.kernel.org. [209.132.180.67]) by mx.google.com with ESMTP id j18si2630864oib.191.2020.03.09.03.24.52; Mon, 09 Mar 2020 03:25:03 -0700 (PDT) Received-SPF: pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) client-ip=209.132.180.67; Authentication-Results: mx.google.com; dkim=pass header.i=@amazon.com header.s=amazon201209 header.b=HFzfhr00; spf=pass (google.com: best guess record for domain of linux-kernel-owner@vger.kernel.org designates 209.132.180.67 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) header.from=amazon.com Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1726549AbgCIKY0 (ORCPT + 99 others); Mon, 9 Mar 2020 06:24:26 -0400 Received: from smtp-fw-9101.amazon.com ([207.171.184.25]:49928 "EHLO smtp-fw-9101.amazon.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1725956AbgCIKY0 (ORCPT ); Mon, 9 Mar 2020 06:24:26 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=amazon.com; i=@amazon.com; q=dns/txt; s=amazon201209; t=1583749463; x=1615285463; h=from:to:cc:subject:date:message-id:in-reply-to: mime-version; bh=p4T4DRWInqMTWLZizWtJxvA7+iNVvnCfQVwxkhTPCiA=; b=HFzfhr003rHkzUSeTHb6PfgBywMup5aZwY8k17EGaw7zMusKtya+Y5sw ynz6kK4dj8nZiTAATsuq8d59lw3toVg83ygjV8ZzlFDo5vs8UfNVHP+52 fqAGP1Wxi2C68wdiIyQuQZfJ2nt7Dag3p3USxHCGEMw1CgVH2PrUiVUR3 Y=; IronPort-SDR: aRNdBnsUB85FwzNBohBGTsy/xcHg03IJ8E4w2ivyPphGCzVrV+gxnZyEDJOEPi0yZOtk43RBKX EwYC+TCJVEhw== X-IronPort-AV: E=Sophos;i="5.70,532,1574121600"; d="scan'208";a="21678970" Received: from sea32-co-svc-lb4-vlan3.sea.corp.amazon.com (HELO email-inbound-relay-1d-38ae4ad2.us-east-1.amazon.com) ([10.47.23.38]) by smtp-border-fw-out-9101.sea19.amazon.com with ESMTP; 09 Mar 2020 10:24:18 +0000 Received: from EX13MTAUEA002.ant.amazon.com (iad55-ws-svc-p15-lb9-vlan3.iad.amazon.com [10.40.159.166]) by email-inbound-relay-1d-38ae4ad2.us-east-1.amazon.com (Postfix) with ESMTPS id 1A12DA246D; Mon, 9 Mar 2020 10:24:16 +0000 (UTC) Received: from EX13D31EUA001.ant.amazon.com (10.43.165.15) by EX13MTAUEA002.ant.amazon.com (10.43.61.77) with Microsoft SMTP Server (TLS) id 15.0.1236.3; Mon, 9 Mar 2020 10:24:15 +0000 Received: from u886c93fd17d25d.ant.amazon.com (10.43.161.164) by EX13D31EUA001.ant.amazon.com (10.43.165.15) with Microsoft SMTP Server (TLS) id 15.0.1497.2; Mon, 9 Mar 2020 10:24:03 +0000 From: SeongJae Park To: CC: SeongJae Park , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , SeongJae Park Subject: Re: Re: [PATCH v6 00/14] Introduce Data Access MONitor (DAMON) Date: Mon, 9 Mar 2020 11:23:45 +0100 Message-ID: <20200309102345.13427-1-sjpark@amazon.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20200302113512.8880-1-sjpark@amazon.com> (raw) MIME-Version: 1.0 Content-Type: text/plain X-Originating-IP: [10.43.161.164] X-ClientProxiedBy: EX13D03UWA002.ant.amazon.com (10.43.160.144) To EX13D31EUA001.ant.amazon.com (10.43.165.15) Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org On Mon, 2 Mar 2020 12:35:12 +0100 SeongJae Park wrote: > Hello, > > On Mon, 24 Feb 2020 13:30:33 +0100 SeongJae Park wrote: > > > From: SeongJae Park > > > > Introduction > > ============ > > > > Memory management decisions can be improved if finer data access information is > > available. However, because such finer information usually comes with higher > > overhead, most systems including Linux forgives the potential improvement and > > rely on only coarse information or some light-weight heuristics. The > > pseudo-LRU and the aggressive THP promotions are such examples. > > > > A number of experimental data access pattern awared memory management > > optimizations (refer to 'Appendix A' for more details) say the sacrifices are > > huge. However, none of those has successfully adopted to Linux kernel mainly > > due to the absence of a scalable and efficient data access monitoring > > mechanism. Refer to 'Appendix B' to see the limitations of existing memory > > monitoring mechanisms. > > > > DAMON is a data access monitoring subsystem for the problem. It is 1) accurate > > enough to be used for the DRAM level memory management (a straightforward > > DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough > > to be applied online (compared to a straightforward access monitoring scheme, > > DAMON is up to 94.242.42x lighter) and 3) keeps predefined upper-bound overhead > > regardless of the size of target workloads (thus scalable). Refer to 'Appendix > > C' if you interested in how it is possible. > > > > DAMON has mainly designed for the kernel's memory management mechanisms. > > However, because it is implemented as a standalone kernel module and provides > > several interfaces, it can be used by a wide range of users including kernel > > space programs, user space programs, programmers, and administrators. DAMON > > is now supporting the monitoring only, but it will also provide simple and > > convenient data access pattern awared memory managements by itself. Refer to > > 'Appendix D' for more detailed expected usages of DAMON. > > I have posted this patchset once per week, but skip this week because there > were no comments in last week and therefore made no change in the patchset. > > I think I answered to all previous comments and fixed all bugs previously > found. May I ask some more comments or reviews? If I missed something or > doing wrong, please let me know. There was no review/comment in last week, and therefore I made no change in the patchset. Instead, I ran more evaluation tests to prove the concepts in more formal way. Sharing the results with you. I hope this evaluation results makes more REVIEWS/COMMENTS than my patchsets ;) Thanks, SeongJae Park ================================== >8 ========================================= TL;DR ----- DAMON is lightweight. It makes target worloads only 0.76% slower and consumes only -0.08% more system memory. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP removes 83.66% of THP memory overheads while preserving 40.67% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation reduced 22.42% of system memory usage and 88.86% of residential sets while incurring only 3.07% runtime overhead in best case. NOTE that the experimentail THP optimization and proactive reclamation are not for production, just only for proof of concepts. Setup ----- On my personal QEMU/KVM based virtual machine on an Intel i7 host machine running Ubuntu 18.04, I measure runtime and consumed system memory while running various realistic workloads with several configurations. I use 13 and 12 workloads in PARSEC3[3] and SPLASH-2X[4] benchmark suites, respectively. I personally use another wrapper scripts[5] for setup and run of the workloads. On top of this patchset, we also applied the DAMON-based operation schemes patchset[6] for this evaluation. Measurement ~~~~~~~~~~~ For the measurement of the amount of consumed memory in system global scope, I drop caches before starting each of the workloads and monitor 'MemFree' in the '/proc/meminfo' file. To make results more stable, I repeat the runs 5 times and average results. You can get stdev, min, and max of the numbers among the repeated runs in appendix below. Configurations ~~~~~~~~~~~~~~ The configurations I use are as below. orig: Linux v5.5 with 'madvise' THP policy rec: 'orig' plus DAMON running with record feature thp: same with 'orig', but use 'always' THP policy ethp: 'orig' plus a DAMON operation scheme[6], 'efficient THP' prcl: 'orig' plus a DAMON operation scheme, 'proactive reclaim[7]' I use 'rec' for measurement of DAMON overheads to target workloads and system memory. The remaining configs including 'thp', 'ethp', and 'prcl' are for measurement of DAMON monitoring accuracy. 'ethp' and 'prcl' is simple DAMON-based operation schemes developed for proof of concepts of DAMON. 'ethp' reduces memory space waste of THP by using DAMON for decision of promotions and demotion for huge pages, while 'prcl' is as similar as the original work. Those are implemented as below: # format: # ethp: Use huge pages if a region >2MB shows >5% access rate, use regular # pages if a region >2MB shows <5% access rate for >1 second 2M null 5 null null null hugepage 2M null null 5 1s null nohugepage # prcl: If a region >4KB shows <5% access rate for >5 seconds, page out. 4K null null 5 5s null pageout Note that both 'ethp' and 'prcl' are designed with my only straightforward intuition, because those are for only proof of concepts and monitoring accuracy of DAMON. In other words, those are not for production. For production use, those should be tuned more. [1] "Redis latency problems troubleshooting", https://redis.io/topics/latency [2] "Disable Transparent Huge Pages (THP)", https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/ [3] "The PARSEC Becnhmark Suite", https://parsec.cs.princeton.edu/index.htm [4] "SPLASH-2x", https://parsec.cs.princeton.edu/parsec3-doc.htm#splash2x [5] "parsec3_on_ubuntu", https://github.com/sjp38/parsec3_on_ubuntu [6] "[RFC v4 0/7] Implement Data Access Monitoring-based Memory Operation Schemes", https://lore.kernel.org/linux-mm/20200303121406.20954-1-sjpark@amazon.com/ [7] "Proactively reclaiming idle memory", https://lwn.net/Articles/787611/ Results ------- Below two tables show the measurement results. The runtimes are in seconds while the memory usages are in KiB. Each configurations except 'orig' shows its overhead relative to 'orig' in percent within parenthesises. runtime orig rec (overhead) thp (overhead) ethp (overhead) prcl (overhead) parsec3/blackscholes 106.586 107.160 (0.54) 106.535 (-0.05) 107.393 (0.76) 114.543 (7.47) parsec3/bodytrack 78.621 79.220 (0.76) 78.678 (0.07) 79.169 (0.70) 80.793 (2.76) parsec3/canneal 138.951 142.258 (2.38) 123.555 (-11.08) 133.588 (-3.86) 143.239 (3.09) parsec3/dedup 11.876 11.918 (0.35) 11.767 (-0.92) 11.957 (0.68) 13.235 (11.44) parsec3/facesim 207.761 208.159 (0.19) 204.735 (-1.46) 207.172 (-0.28) 208.663 (0.43) parsec3/ferret 190.694 192.004 (0.69) 190.345 (-0.18) 190.453 (-0.13) 192.081 (0.73) parsec3/fluidanimate 210.189 212.511 (1.10) 208.695 (-0.71) 210.843 (0.31) 213.379 (1.52) parsec3/freqmine 289.000 289.483 (0.17) 287.724 (-0.44) 289.761 (0.26) 297.878 (3.07) parsec3/raytrace 118.482 119.346 (0.73) 118.861 (0.32) 119.151 (0.56) 136.566 (15.26) parsec3/streamcluster 323.338 328.431 (1.58) 285.039 (-11.85) 296.830 (-8.20) 331.670 (2.58) parsec3/swaptions 155.853 156.826 (0.62) 154.089 (-1.13) 156.332 (0.31) 155.422 (-0.28) parsec3/vips 58.864 59.408 (0.92) 58.450 (-0.70) 58.976 (0.19) 61.068 (3.74) parsec3/x264 69.201 69.208 (0.01) 68.795 (-0.59) 71.501 (3.32) 71.766 (3.71) splash2x/barnes 81.140 80.869 (-0.33) 74.734 (-7.90) 79.859 (-1.58) 108.875 (34.18) splash2x/fft 33.442 33.579 (0.41) 22.949 (-31.38) 27.055 (-19.10) 40.261 (20.39) splash2x/lu_cb 85.064 85.441 (0.44) 84.688 (-0.44) 85.868 (0.95) 88.949 (4.57) splash2x/lu_ncb 92.606 93.615 (1.09) 90.484 (-2.29) 93.368 (0.82) 93.279 (0.73) splash2x/ocean_cp 44.672 44.826 (0.34) 43.024 (-3.69) 43.671 (-2.24) 45.889 (2.72) splash2x/ocean_ncp 81.360 81.434 (0.09) 51.157 (-37.12) 66.711 (-18.00) 91.611 (12.60) splash2x/radiosity 91.374 91.568 (0.21) 90.406 (-1.06) 91.609 (0.26) 103.790 (13.59) splash2x/radix 31.330 31.509 (0.57) 25.145 (-19.74) 26.296 (-16.07) 31.835 (1.61) splash2x/raytrace 84.715 85.274 (0.66) 82.034 (-3.16) 84.458 (-0.30) 84.967 (0.30) splash2x/volrend 86.625 87.844 (1.41) 86.206 (-0.48) 87.851 (1.42) 87.809 (1.37) splash2x/water_nsquared 231.661 233.817 (0.93) 221.024 (-4.59) 228.020 (-1.57) 236.306 (2.01) splash2x/water_spatial 89.101 89.616 (0.58) 88.845 (-0.29) 89.710 (0.68) 103.370 (16.01) total 2992.490 3015.330 (0.76) 2857.950 (-4.50) 2937.610 (-1.83) 3137.260 (4.84) memused.avg orig rec (overhead) thp (overhead) ethp (overhead) prcl (overhead) parsec3/blackscholes 1822704.400 1833697.600 (0.60) 1826160.400 (0.19) 1833316.800 (0.58) 1657871.000 (-9.04) parsec3/bodytrack 1417677.600 1434893.200 (1.21) 1420652.200 (0.21) 1431637.000 (0.98) 1433359.800 (1.11) parsec3/canneal 1044807.000 1056496.200 (1.12) 1037582.400 (-0.69) 1050845.200 (0.58) 1051668.200 (0.66) parsec3/dedup 2408896.200 2433019.000 (1.00) 2403343.200 (-0.23) 2421191.800 (0.51) 2461284.400 (2.17) parsec3/facesim 541808.200 554404.200 (2.32) 545591.600 (0.70) 553669.600 (2.19) 553910.600 (2.23) parsec3/ferret 319697.200 331642.400 (3.74) 320722.000 (0.32) 332126.000 (3.89) 330581.800 (3.40) parsec3/fluidanimate 573267.400 587376.200 (2.46) 574660.200 (0.24) 596108.600 (3.98) 538974.600 (-5.98) parsec3/freqmine 986872.400 998956.200 (1.22) 992037.800 (0.52) 989680.800 (0.28) 765626.800 (-22.42) parsec3/raytrace 1749641.800 1761473.200 (0.68) 1743617.800 (-0.34) 1753105.600 (0.20) 1580514.800 (-9.67) parsec3/streamcluster 125165.400 149479.600 (19.43) 122082.000 (-2.46) 140484.200 (12.24) 132027.000 (5.48) parsec3/swaptions 15515.400 29577.200 (90.63) 15692.000 (1.14) 26733.200 (72.30) 28423.000 (83.19) parsec3/vips 2954233.800 2970852.400 (0.56) 2954338.800 (0.00) 2959100.200 (0.16) 2951979.600 (-0.08) parsec3/x264 3174959.000 3191900.200 (0.53) 3192736.200 (0.56) 3201927.200 (0.85) 3194867.400 (0.63) splash2x/barnes 1215064.400 1209725.600 (-0.44) 1215945.600 (0.07) 1212294.600 (-0.23) 937605.800 (-22.83) splash2x/fft 9429331.600 9187727.600 (-2.56) 9290976.600 (-1.47) 9036430.800 (-4.17) 9409815.800 (-0.21) splash2x/lu_cb 512744.800 521964.600 (1.80) 521795.800 (1.77) 522445.600 (1.89) 346352.200 (-32.45) splash2x/lu_ncb 516623.000 523673.200 (1.36) 520129.200 (0.68) 522398.800 (1.12) 522246.200 (1.09) splash2x/ocean_cp 3325422.200 3287326.200 (-1.15) 3381646.400 (1.69) 3294803.400 (-0.92) 3287401.800 (-1.14) splash2x/ocean_ncp 3894128.600 3868638.400 (-0.65) 7065137.400 (81.43) 4844981.600 (24.42) 3811968.400 (-2.11) splash2x/radiosity 1471464.000 1470680.800 (-0.05) 1481054.600 (0.65) 1472332.200 (0.06) 521064.000 (-64.59) splash2x/radix 1698164.400 1707518.400 (0.55) 1385276.800 (-18.42) 1415885.000 (-16.62) 1717103.600 (1.12) splash2x/raytrace 45334.200 59478.400 (31.20) 52893.400 (16.67) 62366.000 (37.57) 53765.800 (18.60) splash2x/volrend 151118.400 167429.800 (10.79) 151600.000 (0.32) 163950.800 (8.49) 162873.800 (7.78) splash2x/water_nsquared 46839.000 61947.000 (32.26) 49173.600 (4.98) 58301.200 (24.47) 56678.400 (21.01) splash2x/water_spatial 666960.000 674851.600 (1.18) 668957.600 (0.30) 673287.400 (0.95) 463938.800 (-30.44) total 40108199.000 40074800.000 (-0.08) 42933800.000 (7.04) 40569300.000 (1.15) 37972000.000 (-5.33) DAMON Overheads ~~~~~~~~~~~~~~~ In total, DAMON recording feature incurs 0.76% runtime overhead (up to 2.38% in worst case with 'parsec3/canneal') and -0.08% memory space overhead. For convenience test run of 'rec', I use a Python wrapper. The wrapper constantly consumes about 10-15MB of memory. This becomes high memory overhead if the target workload has small memory footprint. In detail, 19%, 90%, 31%, 10%, and 32% overheads shown for parsec3/streamcluster (125 MiB), parsec3/swaptions (15 MiB), splash2x/raytrace (45 MiB), splash2x/volrend (151 MiB), and splash2x/water_nsquared (46 MiB)). Nonetheless, the overheads are not from DAMON, but from the wrapper, and thus should be ignored. This fake memory overhead continues in 'ethp' and 'prcl', as those configurations are also using the Python wrapper. Efficient THP ~~~~~~~~~~~~~ THP 'always' enabled policy achieves 4.5% speedup but incurs 7.04% memory overhead. It achieves 37.12% speedup in best case, but 81.43% memory overhead in worst case. Interestingly, both the best and worst case are with 'splash2x/ocean_ncp'). The 2-lines implementation of data access monitoring based THP version ('ethp') shows 1.83% speedup and 1.15% memory overhead. In other words, 'ethp' removes 83.66% of THP memory waste while preserving 40.67% of THP speedup in total. In case of the 'splash2x/ocean_ncp', which is best for speedup but worst for memory overhead of THP, 'ethp' removes 70% of THP memory space overhead while preserving 48.49% of THP speedup. Proactive Reclamation ~~~~~~~~~~~~~~~~~~~~~ As same to the original work, I use 'zram' swap device for this configuration. In total, our 1 line implementation of Proactive Reclamation, 'prcl', incurred 4.84% runtime overhead in total while achieving 5.33% system memory usage reduction. Nonetheless, as the memory usage is calculated with 'MemFree' in '/proc/meminfo', it contains the SwapCached pages. As the swapcached pages can be easily evicted, I also measured the residential set size of the workloads: rss.avg orig prcl (overhead) parsec3/blackscholes 589633.600 329611.400 (-44.10) parsec3/bodytrack 32217.600 21652.200 (-32.79) parsec3/canneal 840411.600 838931.000 (-0.18) parsec3/dedup 1223907.600 835473.600 (-31.74) parsec3/facesim 311271.600 311070.200 (-0.06) parsec3/ferret 99635.600 89290.800 (-10.38) parsec3/fluidanimate 531760.000 484945.600 (-8.80) parsec3/freqmine 552609.400 61583.600 (-88.86) parsec3/raytrace 896446.600 317792.000 (-64.55) parsec3/streamcluster 110793.600 108061.600 (-2.47) parsec3/swaptions 5604.600 2694.400 (-51.93) parsec3/vips 31779.600 28422.200 (-10.56) parsec3/x264 81943.800 81874.600 (-0.08) splash2x/barnes 1219389.600 619038.600 (-49.23) splash2x/fft 9597789.600 7264542.200 (-24.31) splash2x/lu_cb 510524.000 327813.600 (-35.79) splash2x/lu_ncb 510131.200 510146.800 (0.00) splash2x/ocean_cp 3406968.600 3341620.400 (-1.92) splash2x/ocean_ncp 3919926.800 3670768.800 (-6.36) splash2x/radiosity 1474387.800 254678.600 (-82.73) splash2x/radix 1723283.200 1763916.000 (2.36) splash2x/raytrace 23194.400 17454.000 (-24.75) splash2x/volrend 43980.000 32524.600 (-26.05) splash2x/water_nsquared 29327.200 23989.200 (-18.20) splash2x/water_spatial 656323.200 381068.600 (-41.94) total 28423300.000 21719000.000 (-23.59) In total, 23.59% of residential sets were reduced. With parsec3/freqmine, 'prcl' reduced 22.42% of system memory usage and 88.86% of residential sets while incurring only 3.07% runtime overhead.