Received: by 2002:a25:683:0:0:0:0:0 with SMTP id 125csp1984138ybg; Fri, 5 Jun 2020 02:34:14 -0700 (PDT) X-Google-Smtp-Source: ABdhPJzfrMMW7upGhKdFgJOh979ASu5ZNnBUH08FILinnbVW1yaZFixddMI67TEcViEMnZTBsRlW X-Received: by 2002:a17:906:556:: with SMTP id k22mr7648114eja.115.1591349654037; Fri, 05 Jun 2020 02:34:14 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1591349654; cv=none; d=google.com; s=arc-20160816; b=06SxVqS0n4Khdby4UxUX0fQ3YjixM06aYEosa1rbugwANqy5tF+FFnL9t17CKAwh9w Zc5LaGLbtsG7nOy45LmNRXvZ70a4GlD508NHELWLzERW63wcmwHjB9sFqUUwyyOXQz82 howUuA/kX8yTBIZrgbDj4KowP6XVEjOrQ9dtjHM1cBoGnxYmAcmhx0hPHeD1fPLwSAkz niyJavuf94qnEa1Rm460jtCuE4W1rf8CIumfwZ7EpefDeymKIzJmKU8mspJc1mVHuftR GrnWHY4bwl4h+zcZko9D4C4AnFm8Kg29/JykrhtZyU9b+yzftgv7fCX8rIxQwEBWB64K bZPw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:sender:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from :dkim-signature; bh=oJDJWr9ygGYPbuj/L+Awxyt5UmiZxrVONmxkwZXqprI=; b=fA0BeJVkxX5VbbOAVW54ykqKdNYPH3yoZTyxy3AMvL4SMpUGUjl6x3jF52JnbyEm9P OkmNP2MKy2lutWxqV5xDyk5a8oQ0VyI4pw0+e3FUZ9Gzk4oke074sPC741aL22tNL+gJ Y7xLtCxuiinL+Db6ZiTaRTiLKVflT5s5FNr+cWCZoAGTUORvkqq7M+rtb635ouW4bqeB wqO1dLRKHx4xGRJ9JZJxyG31fH9d5eakbSDf8+m7rLi4IVM3bq48M2R+qPz6S6q9b9PF FZOxxeNPVDFeuOXPg8+KA+n4MOL+ikK1SV5gq8kNTnZL8fPcJ2XjQET7VDKWI53FgC7i 7zKQ== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@unikie-com.20150623.gappssmtp.com header.s=20150623 header.b=rjBKwhWk; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Return-Path: Received: from vger.kernel.org (vger.kernel.org. [23.128.96.18]) by mx.google.com with ESMTP id md18si3344467ejb.275.2020.06.05.02.33.50; Fri, 05 Jun 2020 02:34:14 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) client-ip=23.128.96.18; Authentication-Results: mx.google.com; dkim=pass header.i=@unikie-com.20150623.gappssmtp.com header.s=20150623 header.b=rjBKwhWk; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1726378AbgFEJ3d (ORCPT + 99 others); Fri, 5 Jun 2020 05:29:33 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:59834 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1726368AbgFEJ30 (ORCPT ); Fri, 5 Jun 2020 05:29:26 -0400 Received: from mail-lf1-x144.google.com (mail-lf1-x144.google.com [IPv6:2a00:1450:4864:20::144]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 77618C08C5C4 for ; Fri, 5 Jun 2020 02:29:25 -0700 (PDT) Received: by mail-lf1-x144.google.com with SMTP id j12so5387204lfh.0 for ; Fri, 05 Jun 2020 02:29:25 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=unikie-com.20150623.gappssmtp.com; s=20150623; h=from:to:cc:subject:date:message-id:in-reply-to:references :mime-version:content-transfer-encoding; bh=oJDJWr9ygGYPbuj/L+Awxyt5UmiZxrVONmxkwZXqprI=; b=rjBKwhWkDSa5QOYus4LdV+v2jLVug9klvX0mdOtLqpYMAot9DFj17/BE3RNkCdP4uy jo/aiAs0PLxSbXbdbBZIryl4k+gWI0arBBZAjtwxcGoY+a/HnehHLO7oPyUWU92y+N41 pRCIn0mjIIKYK39pCAZFQ6NWqWcAYa9qdRyfgxjbC9OT9L9mw1otErcmfPcakz8t1Noy vGA2Pmz50vxbKecbibv5lBxzAxE0atZCAM3KetIIVLxh3Kb2P9w/HDrNBzzBJI8mJ3aM ghWhL5Yq/RwV2kyBRNlVRMEfUvurQlBTMxijUUtTaghlAUnYp+2nzkiffVs/qDJzOTMt 6F9Q== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references:mime-version:content-transfer-encoding; bh=oJDJWr9ygGYPbuj/L+Awxyt5UmiZxrVONmxkwZXqprI=; b=SbD84b3ucdOZW7KZQYD1+K+QUvOC1aYDLMyDe1OzG/1HJtVOztEANUVJ7QL8bDkTP2 /HDosgndZuHWOpsp2y4vXkkYBOwyoYgQC9k796KWlDwfBQYvJ6mCeMh1N+D/OM60wfpC ZJOXxVuknEuH99ysCLV9h4dLAhOfeNYEVoPvygXcP26xRL8n+25yUHZrkdEWcnXW8zvc EPz1U0mMT8jtoYwIkm+rgKZiiN4JNLk9Xq/ni9gABvKztxhMQfILZiB33xEytPce70YL AC+fvXaAz5Rgl7SzWwl7o0K7hKEiv7shrNHYQwRiyUuFnH07IbEJ9rfx+BRplJmrDLxy 0zmw== X-Gm-Message-State: AOAM531bx+K/Hc8RVOMwEC9g7ewyM6f3aZ4G402S9lge0AoCEOM6xWMs amVxG5AUhDFsxqqh0hnm6CzwiA== X-Received: by 2002:ac2:5604:: with SMTP id v4mr5001509lfd.124.1591349363588; Fri, 05 Jun 2020 02:29:23 -0700 (PDT) Received: from localhost.localdomain ([109.204.235.119]) by smtp.googlemail.com with ESMTPSA id a1sm746471lfi.36.2020.06.05.02.29.22 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Fri, 05 Jun 2020 02:29:23 -0700 (PDT) From: john mathew X-Google-Original-From: john mathew To: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org, corbet@lwn.net, mingo@redhat.com, peterz@infradead.org, juri.lelli@redhat.com, vincent.guittot@linaro.org, dietmar.eggemann@arm.com, rostedt@goodmis.org, bsegall@google.com, mgorman@suse.de, bristot@redhat.com, tsbogend@alpha.franken.de, lukas.bulwahn@gmail.com, x86@kernel.org, linux-mips@vger.kernel.org, tglx@linutronix.de, willy@infradead.org, valentin.schneider@arm.com, srikar@linux.vnet.ibm.com, John Mathew , Mostafa Chamanara , Oleg Tsymbal Subject: [RFC PATCH v7 3/3] docs: scheduler: Add introduction to scheduler context-switch Date: Fri, 5 Jun 2020 12:29:06 +0300 Message-Id: <20200605092906.29478-4-John.Mathew@unikie.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20200605092906.29478-1-John.Mathew@unikie.com> References: <20200605092906.29478-1-John.Mathew@unikie.com> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org From: John Mathew Add documentation for introduction to -context-switch -x86 context-switch -MIPS context switch Suggested-by: Lukas Bulwahn Co-developed-by: Mostafa Chamanara Signed-off-by: Mostafa Chamanara Co-developed-by: Oleg Tsymbal Signed-off-by: Oleg Tsymbal Signed-off-by: John Mathew --- Documentation/scheduler/arch-specific.rst | 3 + Documentation/scheduler/context-switching.rst | 126 ++++++++++++++++++ Documentation/scheduler/index.rst | 1 + .../scheduler/mips-context-switch.rst | 89 +++++++++++++ .../scheduler/x86-context-switch.rst | 64 +++++++++ 5 files changed, 283 insertions(+) create mode 100644 Documentation/scheduler/context-switching.rst create mode 100644 Documentation/scheduler/mips-context-switch.rst create mode 100644 Documentation/scheduler/x86-context-switch.rst diff --git a/Documentation/scheduler/arch-specific.rst b/Documentation/scheduler/arch-specific.rst index c9c34863d994..65dc393b605f 100644 --- a/Documentation/scheduler/arch-specific.rst +++ b/Documentation/scheduler/arch-specific.rst @@ -9,3 +9,6 @@ Architecture Specific Scheduler Implementation Differences .. toctree:: :maxdepth: 2 + + x86-context-switch + mips-context-switch diff --git a/Documentation/scheduler/context-switching.rst b/Documentation/scheduler/context-switching.rst new file mode 100644 index 000000000000..04f97bff08e1 --- /dev/null +++ b/Documentation/scheduler/context-switching.rst @@ -0,0 +1,126 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +========================== +Process context switching +========================== + +Context Switching +----------------- + +Context switching, the switching from a running task to another, +is done by the context_switch() function defined in kernel/sched/core.c. +It is called by __schedule() when a new process has been selected to run. +The execution flow is as follows: + + - prepare_task_switch() performs necessary kernel preparations for the + context switch and then calls prepare_arch_switch() for architecture + specific context switch preparation. This call must be paired with a + subsequent finish_task_switch() after the context switch. The various + steps are: + + - Prepare kcov for context switch. Context switch does switch_mm() to the + next task's mm, then switch_to() that new task. This means vmalloc'd + regions which had previously been faulted in can transiently disappear in + the context of the prev task. Functions instrumented by KCOV may try to + access a vmalloc'd kcov_area during this window, and result in a recursive + fault. This is avoided by setting a new flag: KCOV_IN_CTXSW in kcov_mode + prior to switching the mm, and cleared once the new task is live. + - Update sched_info statistics for both the prev and next tasks. + - Handle perf subsystem context switch from previous task to next. + The various steps are: + + - Remove perf events for the task being context-switched out. + - Stop each perf event and update the event value in event->count. + - Call the context switch callback for PMU with flag indicating + schedule out. + - Create a PERF_RECORD_MISC_SWITCH_OUT perf event. + - Context switch the perf event contexts between the current and next tasks. + - Schedule out current cgroup events if cgroup perf events exist on the + CPU. + + - Set TIF_NOTIFY_RESUME flag on the current thread for the Restartable + sequence mechanism. Restartable sequences allow user-space to perform + update operations on per-cpu data without requiring heavy-weight atomic + operations. + - Fire preempt notifiers. A task can request the scheduler to notify it + whenever it is preempted or scheduled back in. This allows the task to + swap any special-purpose registers like the FPU or Intel's VT registers. + - Claim the next task as running to prevent load balancing run on it. + + - arch_start_context_switch() batches the reload of page tables and other + process state with the actual context switch code for paravirtualized + guests. + + - Transfer the real and anonymous address spaces between the switching tasks. + Four possible transfer types are: + + - kernel task switching to another kernel task + - user task switching to a kernel task + - kernel task switching to user task + - user task switching to user task + + For a kernel task switching to kernel task enter_lazy_tlb() is called + which is an architecture specific implementation to handle a context + without an mm. Architectures implement lazy tricks to minimize TLB + flushes here. The active address space from the previous task is + borrowed (transferred) to the next task. + + For a user task switching to kernel task it will have a real address + space and so its anonymous users counter is incremented. This makes + sure that the address space will not get freed even after the previous + task exits. + + For a user task switching to user task the architecture specific + switch_mm_irqs_off() or switch_mm() functions are called. The main + functionality of these calls is to switch the address space between + the user space processes. This includes switching the page table pointers + either via retrieved valid ASID for the process or page mapping in the TLB. + + For a kernel task switching to a user task, switch_mm_irqs_off() + replaces the address space of prev kernel task(last active_mm) with the + next (next mm) from the user task. The context_switch() function saves the + active_mm to the runqueue’s prev_mm field to drop this mm later in + the finish_task_switch(). + + - prepare_lock_switch() releases lockdep of the runqueue lock to handle + the special case of the scheduler context switch where the runqueue lock + will be released by the next task. + + - Architecture specific implementation of switch_to() switches the + register state and the stack. This involves saving and restoring stack + information and the processor registers and any other + architecture-specific state that must be managed and restored on a + per-process basis. + + - finish_task_switch() performs the final steps of the context switch: + + - Emit a warning if the preempt count is corrupted and set the preempt count + to FORK_PREEMPT_COUNT. + - Reset the pointer to the memory descriptor used by prev which was set in + context_switch(). + - Store the state of the previous task to handle the possibility of a DEAD + task. + - Do virtual CPU time accounting for the previous task. + - Handle perf subsystem context switch from previous task to current: + + - Add perf events for the current task. + - Schedule in current cgroup events if cgroup perf events exist on the + CPU. + - Context switch the perf event contexts between the prev and current + tasks. + - Clear the PERF_RECORD_MISC_SWITCH_OUT perf event. + - Call the context switch callback for PMU with flag indicating + schedule in. + + - Free the task for load balancing run on it. + - Unlock the rq lock. + - Clear the KCOV_IN_CTXSW in kcov_mode which was set in prepare_task_switch + now that the new task is live. + - Fire preempt notifiers to notify about task scheduled back in. + - If the prev task state indicated that it was dead, the corresponding + scheduler class task_dead hook is called. Function-return probe + instances associated with the task are removed and put back on the + free list. Stack for the task is freed and drop the RCU references. + - Evaluate the need for No idle tick due to the context switch and do the + idle tick if needed. + diff --git a/Documentation/scheduler/index.rst b/Documentation/scheduler/index.rst index f311abe5b711..691fdfe32954 100644 --- a/Documentation/scheduler/index.rst +++ b/Documentation/scheduler/index.rst @@ -20,6 +20,7 @@ specific implementation differences. sched-data-structs cfs-overview sched-design-CFS + context-switching sched-features arch-specific sched-debugging diff --git a/Documentation/scheduler/mips-context-switch.rst b/Documentation/scheduler/mips-context-switch.rst new file mode 100644 index 000000000000..42a3454a06f0 --- /dev/null +++ b/Documentation/scheduler/mips-context-switch.rst @@ -0,0 +1,89 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +============================================== +MIPS Architecture And Scheduler implementation +============================================== + +Multi-threading in MIPS CPUs +----------------------------- +The MIPS architecture defines four coprocessors. + + - CP0: supports virtual memory system and exception handling. + - CP1: reserved for the floating point coprocessor, the FPU. + - CP2: available for specific implementations. + - CP3: reserved for floating point operations in the release 1 + implementation of MIPS64. + +MIPS32 and MIPS64 architectures provide support for optional components +known as Modules or Application Specific Extensions. The MT module +enables the architecture to support multi-threaded implementations. +This includes support for virtual processors and lightweight thread +contexts. Implementation of MT features depends on the individual MIPS +cores. The virtual processing element (VPE) maintains a complete copy +of the processor state as seen by the software system which includes +interrupts, register set, and MMU. This enables a single processor to +appear to an SMP operating system like two separate cores if it has +2 VPE's. For example two separate OSes can run on each VPE such as Linux +and and an RTOS. + +A lighter version of VPE enables threading at the user/application +software level. It is called Thread Context (TC). TC is the hardware +state necessary to support a thread of execution. This includes a set +of general purpose registers (GPRs), a program counter (PC), and some +multiplier and coprocessor state. TCs have common execution unit. +MIPS ISA provides instructions to utilize TC. + +The Quality of service block of the MT module allows the allocation of +processor cycles to threads, and sets relative thread priorities. This +enables 2 thread prioritization mechanisms. The user can prioritize one +thread over the other as well as allocate a specific ratio of the cycles +to specific threads. These mechanisms allocate bandwidth to a set +of threads effectively. QoS block improves system level determinism +and predictability. Qos block can be replaced by more application +specific blocks. + +MIPS Context Switch +------------------- + +Context switch behavior specific to MIPS begins in the way the switch_to() +macro is implemented. The main steps in the MIPS implementation of the macro +are: + + - Handle the FPU affinity management feature. This feature is enabled + by the config option CONFIG_MIPS_MT_FPAFF at build time. The macro checks + if the FPU was used in the most recent time slice. In case FPU was not + used, the restriction of having to run on a CPU with FPU is removed. + - Disable the FPU and clear the bit indicating the FPU was used in this + quantum for the task for the previous task. + - If FPU is enabled in the next task, check FCSR for any unmasked + exceptions pending, clear them and send a signal. + - If MIPS DSP modules is enabled, save the DSP context of the previous + task and restore the dsp context of the next task. + - If coprocessor 2 is present set the access allowed field of the + coprocessor 2. + - If coprocessor 2 access allowed field was set in previous task, clear it. + - Clear the the access allowed field of the coprocessor 2. + - Clear the llbit on MIPS release 6 such that instruction eretnc can be + used unconditionally when returning to userland in entry.S. + LLbit is used to specify operation for instructions that provide atomic + read-modify-write. LLbit is set when a linked load occurs and is tested + by the conditional store. It is cleared, during other CPU operation, + when a store to the location would no longer be atomic. In particular, + it is cleared by exception return instructions. eretnc instruction + enables to return from interrupt, exception, or error trap without + clearing the LLbit. + - Clear the global variable ll_bit used by MIPS exception handler. + - Write the thread pointer to the MIPS userlocal register if the CPU + supports this feature. This register is not interpreted by hardware and + can be used to share data between privileged and unprivileged software. + - If hardware watchpoint feature is enabled during build, the watchpoint + registers are restored from the next task. + - Finally the MIPS processor specific implementation of the resume() + function is called. It restores the registers of the next task including + the stack pointer. The implementation is in assembly in the following + architecutre specific files :: + + arch/mips/kernel/r4k_switch.S + arch/mips/kernel/r2300_switch.S + arch/mips/kernel/octeon_switch.S + diff --git a/Documentation/scheduler/x86-context-switch.rst b/Documentation/scheduler/x86-context-switch.rst new file mode 100644 index 000000000000..9d5abd6f0609 --- /dev/null +++ b/Documentation/scheduler/x86-context-switch.rst @@ -0,0 +1,64 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +X86 Context Switch +------------------ + +The x86 architecture context switching logic is as follows. +After the switching of MM in the scheduler context_switch() calls the x86 +implementation of switch_to() macro. For x86 arch it is located at :: + + arch/x86/include/asm/switch_to.h + +Since kernel 4.9, switch_to() has been split into two parts: a +`prepare_switch_to()` macro and the inline assembly implementation of +__switch_to_asm() in the assembly files :: + + arch/x86/entry/entry_64.S + arch/x86/entry/entry_32.S + +prepare_switch_to() handles the case when stack uses virtual memory. This +is configured at build time and is enabled in most modern distributions. +This function accesses the stack pointer to prevent a double fault. +Switching to a stack that has top-level paging entry that is not +present in the current MM will result in a page fault which will be promoted +to double fault and the result is a panic. So it is necessary to probe the +stack now so that the vmalloc_fault can fix the page tables. + +The main steps of the inline assembly function __switch_to_asm() are: + + - store the callee saved registers to the old stack which will be switched + away from. + - swap the stack pointers between the old and the new task. + - move the stack canary value to the current CPU's interrupt stack + - if return trampoline is enabled, overwrite all entries in the RSB on + exiting a guest, to prevent malicious branch target predictions from + affecting the host kernel. + - restore all registers from the new stack previously pushed in reverse + order. + - jump to a C implementation of __switch_to(). The sources are located in:: + + arch/x86/kernel/process_64.c + arch/x86/kernel/process_32.c + + +The main steps of the C function __switch_to() which is effectively +the new task running are as follows: + + - retrieve the thread_struct and fpu struct from the next and previous tasks. + - get the current CPU tss_struct. + - save the current FPU state while on the old task. + - store the FS and GS segment registers before changing the thread local + storage. + - reload the GDT for the new tasks TLS. + + Following is effectively arch_end_context_switch(). + - save the ES and DS segments of the previous task and load the same from + the nest task. + - load the FS and GS segment registers. + - update the current task of the CPU. + - update the top of stack pointer for the CPU for entry trampoline. + - initialize FPU state for next task. + - set sp0 to point to the entry trampoline stack. + - call _switch_to_xtra() to handle debug registers, I/O + bitmaps and speculation mitigation. + - write the task's CLOSid/RMID to IA32_PQR_MSR. -- 2.17.1