Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S932614AbWCXOGV (ORCPT ); Fri, 24 Mar 2006 09:06:21 -0500 Received: (majordomo@vger.kernel.org) by vger.kernel.org id S932624AbWCXOGV (ORCPT ); Fri, 24 Mar 2006 09:06:21 -0500 Received: from fmr18.intel.com ([134.134.136.17]:39308 "EHLO orsfmr003.jf.intel.com") by vger.kernel.org with ESMTP id S932614AbWCXOGT (ORCPT ); Fri, 24 Mar 2006 09:06:19 -0500 Date: Fri, 24 Mar 2006 06:05:11 -0800 From: Valerie Henson To: linux-kernel@vger.kernel.org, ext2-devel@lists.sourceforge.net Cc: Arjan van de Ven , "Theodore Ts'o" , Zach Brown , Mingming Cao Subject: [RFC] [PATCH] fs-wide dirty bit + reservations + multiple block allocation Message-ID: <20060324140507.GA14508@goober> Mime-Version: 1.0 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline User-Agent: Mutt/1.5.9i Sender: linux-kernel-owner@vger.kernel.org X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 92859 Lines: 3062 The fs-wide dirty bit patch is now functional - crashing the system while the file system is marked clean results in a clean fsck. This is mostly the result of porting Mingming's reservations and multiple block allocation patches to ext2. Changes since last patch: * Remove old preallocation code, replace with reservations * ext2 port of multiple block allocations * Use kthread API, fsync_super() (thanks, Andrew!) * Coding style fixes * Actual working-ness Next on my plate: * Finish OLS paper :) * Test on non-UML * Performance tests * Fix at least two known unlocked regions * Various patch monkey type items * Pay Arjan $10 Thanks to everyone who reviewed and commented. Patch is still against 2.6.16-rc5-mm3. -VAL diff -x '*~' -uNr vanilla-linux/fs/ext2/balloc.c uml-clean/fs/ext2/balloc.c --- vanilla-linux/fs/ext2/balloc.c 2006-03-24 01:47:33.000000000 -0800 +++ uml-clean/fs/ext2/balloc.c 2006-03-24 05:23:17.000000000 -0800 @@ -95,41 +95,6 @@ return bh; } -/* - * Set sb->s_dirt here because the superblock was "logically" altered. We - * need to recalculate its free blocks count and flush it out. - */ -static int reserve_blocks(struct super_block *sb, int count) -{ - struct ext2_sb_info *sbi = EXT2_SB(sb); - struct ext2_super_block *es = sbi->s_es; - unsigned free_blocks; - unsigned root_blocks; - - free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); - root_blocks = le32_to_cpu(es->s_r_blocks_count); - - if (free_blocks < count) - count = free_blocks; - - if (free_blocks < root_blocks + count && !capable(CAP_SYS_RESOURCE) && - sbi->s_resuid != current->fsuid && - (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { - /* - * We are too close to reserve and we are not privileged. - * Can we allocate anything at all? - */ - if (free_blocks > root_blocks) - count = free_blocks - root_blocks; - else - return 0; - } - - percpu_counter_mod(&sbi->s_freeblocks_counter, -count); - sb->s_dirt = 1; - return count; -} - static void release_blocks(struct super_block *sb, int count) { if (count) { @@ -140,24 +105,6 @@ } } -static int group_reserve_blocks(struct ext2_sb_info *sbi, int group_no, - struct ext2_group_desc *desc, struct buffer_head *bh, int count) -{ - unsigned free_blocks; - - if (!desc->bg_free_blocks_count) - return 0; - - spin_lock(sb_bgl_lock(sbi, group_no)); - free_blocks = le16_to_cpu(desc->bg_free_blocks_count); - if (free_blocks < count) - count = free_blocks; - desc->bg_free_blocks_count = cpu_to_le16(free_blocks - count); - spin_unlock(sb_bgl_lock(sbi, group_no)); - mark_buffer_dirty(bh); - return count; -} - static void group_release_blocks(struct super_block *sb, int group_no, struct ext2_group_desc *desc, struct buffer_head *bh, int count) { @@ -170,10 +117,222 @@ desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count); spin_unlock(sb_bgl_lock(sbi, group_no)); sb->s_dirt = 1; + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bh); } } +/* + * The reservation window structure operations + * -------------------------------------------- + * Operations include: + * dump, find, add, remove, is_empty, find_next_reservable_window, etc. + * + * We use sorted double linked list for the per-filesystem reservation + * window list. (like in vm_region). + * + * Initially, we keep those small operations in the abstract functions, + * so later if we need a better searching tree than double linked-list, + * we could easily switch to that without changing too much + * code. + */ +#if 0 +static void __rsv_window_dump(struct rb_root *root, int verbose, + const char *fn) +{ + struct rb_node *n; + struct ext2_reserve_window_node *rsv, *prev; + int bad; + +restart: + n = rb_first(root); + bad = 0; + prev = NULL; + + printk("Block Allocation Reservation Windows Map (%s):\n", fn); + while (n) { + rsv = list_entry(n, struct ext2_reserve_window_node, rsv_node); + if (verbose) + printk("reservation window 0x%p " + "start: %d, end: %d\n", + rsv, rsv->rsv_start, rsv->rsv_end); + if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { + printk("Bad reservation %p (start >= end)\n", + rsv); + bad = 1; + } + if (prev && prev->rsv_end >= rsv->rsv_start) { + printk("Bad reservation %p (prev->end >= start)\n", + rsv); + bad = 1; + } + if (bad) { + if (!verbose) { + printk("Restarting reservation walk in verbose mode\n"); + verbose = 1; + goto restart; + } + } + n = rb_next(n); + prev = rsv; + } + printk("Window map complete.\n"); + if (bad) + BUG(); +} +#define rsv_window_dump(root, verbose) \ + __rsv_window_dump((root), (verbose), __FUNCTION__) +#else +#define rsv_window_dump(root, verbose) do {} while (0) +#endif + +static int +goal_in_my_reservation(struct ext2_reserve_window *rsv, int goal, + unsigned int group, struct super_block * sb) +{ + unsigned long group_first_block, group_last_block; + + group_first_block = le32_to_cpu(EXT2_SB(sb)->s_es->s_first_data_block) + + group * EXT2_BLOCKS_PER_GROUP(sb); + group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1; + + if ((rsv->_rsv_start > group_last_block) || + (rsv->_rsv_end < group_first_block)) + return 0; + if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start) + || (goal + group_first_block > rsv->_rsv_end))) + return 0; + return 1; +} + +/* + * Find the reserved window which includes the goal, or the previous one + * if the goal is not in any window. + * Returns NULL if there are no windows or if all windows start after the goal. + */ +static struct ext2_reserve_window_node * +search_reserve_window(struct rb_root *root, unsigned long goal) +{ + struct rb_node *n = root->rb_node; + struct ext2_reserve_window_node *rsv; + + if (!n) + return NULL; + + do { + rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); + + if (goal < rsv->rsv_start) + n = n->rb_left; + else if (goal > rsv->rsv_end) + n = n->rb_right; + else + return rsv; + } while (n); + /* + * We've fallen off the end of the tree: the goal wasn't inside + * any particular node. OK, the previous node must be to one + * side of the interval containing the goal. If it's the RHS, + * we need to back up one. + */ + if (rsv->rsv_start > goal) { + n = rb_prev(&rsv->rsv_node); + rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); + } + return rsv; +} + +void ext2_rsv_window_add(struct super_block *sb, + struct ext2_reserve_window_node *rsv) +{ + struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root; + struct rb_node *node = &rsv->rsv_node; + unsigned int start = rsv->rsv_start; + + struct rb_node ** p = &root->rb_node; + struct rb_node * parent = NULL; + struct ext2_reserve_window_node *this; + + while (*p) + { + parent = *p; + this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node); + + if (start < this->rsv_start) + p = &(*p)->rb_left; + else if (start > this->rsv_end) + p = &(*p)->rb_right; + else + BUG(); + } + + rb_link_node(node, parent, p); + rb_insert_color(node, root); +} + +static void rsv_window_remove(struct super_block *sb, + struct ext2_reserve_window_node *rsv) +{ + rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; + rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; + rsv->rsv_alloc_hit = 0; + rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root); +} + +static inline int rsv_is_empty(struct ext2_reserve_window *rsv) +{ + /* a valid reservation end block could not be 0 */ + return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED); +} + +void ext2_init_block_alloc_info(struct inode *inode) +{ + struct ext2_inode_info *ei = EXT2_I(inode); + struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; + struct super_block *sb = inode->i_sb; + + block_i = kmalloc(sizeof(*block_i), GFP_NOFS); + if (block_i) { + struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node; + + rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; + rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; + + /* + * if filesystem is mounted with NORESERVATION, the goal + * reservation window size is set to zero to indicate + * block reservation is off + */ + if (!test_opt(sb, RESERVATION)) + rsv->rsv_goal_size = 0; + else + rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; + rsv->rsv_alloc_hit = 0; + block_i->last_alloc_logical_block = 0; + block_i->last_alloc_physical_block = 0; + } + ei->i_block_alloc_info = block_i; +} + +void ext2_discard_reservation(struct inode *inode) +{ + struct ext2_inode_info *ei = EXT2_I(inode); + struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; + struct ext2_reserve_window_node *rsv; + spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock; + + if (!block_i) + return; + + rsv = &block_i->rsv_window_node; + if (!rsv_is_empty(&rsv->rsv_window)) { + spin_lock(rsv_lock); + if (!rsv_is_empty(&rsv->rsv_window)) + rsv_window_remove(inode->i_sb, rsv); + spin_unlock(rsv_lock); + } +} + /* Free given blocks, update quota and i_blocks field */ void ext2_free_blocks (struct inode * inode, unsigned long block, unsigned long count) @@ -245,6 +404,7 @@ } } + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bitmap_bh); if (sb->s_flags & MS_SYNCHRONOUS) sync_dirty_buffer(bitmap_bh); @@ -263,16 +423,31 @@ DQUOT_FREE_BLOCK(inode, freed); } -static int grab_block(spinlock_t *lock, char *map, unsigned size, int goal) +static int +bitmap_search_next_usable_block(int start, struct buffer_head *bh, + int maxblocks) { - int k; - char *p, *r; + int next; - if (!ext2_test_bit(goal, map)) - goto got_it; + next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start); + if (next >= maxblocks) + return -1; + return next; +} -repeat: - if (goal) { +/* + * Find an allocatable block in a bitmap. We perform the "most + * appropriate allocation" algorithm of looking for a free block near + * the initial goal; then for a free byte somewhere in the bitmap; + * then for any free bit in the bitmap. + */ +static int +find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) +{ + int here, next; + char *p, *r; + + if (start > 0) { /* * The goal was occupied; search forward for a free * block within the next XX blocks. @@ -281,244 +456,746 @@ * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the * next 64-bit boundary is simple.. */ - k = (goal + 63) & ~63; - goal = ext2_find_next_zero_bit(map, k, goal); - if (goal < k) - goto got_it; + int end_goal = (start + 63) & ~63; + if (end_goal > maxblocks) + end_goal = maxblocks; + here = ext2_find_next_zero_bit(bh->b_data, end_goal, start); + if (here < end_goal) + return here; + ext2_debug("Bit not found near goal\n"); + } + + here = start; + if (here < 0) + here = 0; + + p = ((char *)bh->b_data) + (here >> 3); + r = memscan(p, 0, (maxblocks - here + 7) >> 3); + next = (r - ((char *)bh->b_data)) << 3; + + if (next < maxblocks && next >= here) + return next; + + here = bitmap_search_next_usable_block(here, bh, maxblocks); + return here; +} + +/* + * If we failed to allocate the desired block then we may end up crossing to a + * new bitmap. + */ +static int +ext2_try_to_allocate(struct super_block *sb, int group, + struct buffer_head *bitmap_bh, int goal, + unsigned long *count, struct ext2_reserve_window *my_rsv) +{ + int group_first_block, start, end; + unsigned long num = 0; + + /* we do allocation within the reservation window if we have a window */ + if (my_rsv) { + group_first_block = + le32_to_cpu(EXT2_SB(sb)->s_es->s_first_data_block) + + group * EXT2_BLOCKS_PER_GROUP(sb); + if (my_rsv->_rsv_start >= group_first_block) + start = my_rsv->_rsv_start - group_first_block; + else + /* reservation window cross group boundary */ + start = 0; + end = my_rsv->_rsv_end - group_first_block + 1; + if (end > EXT2_BLOCKS_PER_GROUP(sb)) + /* reservation window crosses group boundary */ + end = EXT2_BLOCKS_PER_GROUP(sb); + if ((start <= goal) && (goal < end)) + start = goal; + else + goal = -1; + } else { + if (goal > 0) + start = goal; + else + start = 0; + end = EXT2_BLOCKS_PER_GROUP(sb); + } + + BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb)); + +repeat: + if (goal < 0) { + goal = find_next_usable_block(start, bitmap_bh, end); + if (goal < 0) + goto fail_access; + if (!my_rsv) { + int i; + + for (i = 0; i < 7 && goal > start && + !ext2_test_bit(goal - 1, bitmap_bh->b_data); + i++, goal--) + ; + } + } + start = goal; + + if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), goal, bitmap_bh->b_data)) { + /* + * The block was allocated by another thread, or it was + * allocated and then freed by another thread + */ + start++; + goal++; + if (start >= end) + goto fail_access; + goto repeat; + } + num++; + goal++; + while (num < *count && goal < end + && !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), goal, bitmap_bh->b_data)) { + num++; + goal++; + } + *count = num; + return goal - num; +fail_access: + *count = num; + return -1; +} + +/** + * find_next_reservable_window(): + * find a reservable space within the given range. + * It does not allocate the reservation window for now: + * alloc_new_reservation() will do the work later. + * + * @search_head: the head of the searching list; + * This is not necessarily the list head of the whole filesystem + * + * We have both head and start_block to assist the search + * for the reservable space. The list starts from head, + * but we will shift to the place where start_block is, + * then start from there, when looking for a reservable space. + * + * @size: the target new reservation window size + * + * @group_first_block: the first block we consider to start + * the real search from + * + * @last_block: + * the maximum block number that our goal reservable space + * could start from. This is normally the last block in this + * group. The search will end when we found the start of next + * possible reservable space is out of this boundary. + * This could handle the cross boundary reservation window + * request. + * + * basically we search from the given range, rather than the whole + * reservation double linked list, (start_block, last_block) + * to find a free region that is of my size and has not + * been reserved. + * + */ +static int find_next_reservable_window( + struct ext2_reserve_window_node *search_head, + struct ext2_reserve_window_node *my_rsv, + struct super_block * sb, int start_block, + int last_block) +{ + struct rb_node *next; + struct ext2_reserve_window_node *rsv, *prev; + int cur; + int size = my_rsv->rsv_goal_size; + + /* TODO: make the start of the reservation window byte-aligned */ + /* cur = *start_block & ~7;*/ + cur = start_block; + rsv = search_head; + if (!rsv) + return -1; + + while (1) { + if (cur <= rsv->rsv_end) + cur = rsv->rsv_end + 1; + + /* TODO? + * in the case we could not find a reservable space + * that is what is expected, during the re-search, we could + * remember what's the largest reservable space we could have + * and return that one. + * + * For now it will fail if we could not find the reservable + * space with expected-size (or more)... + */ + if (cur > last_block) + return -1; /* fail */ + + prev = rsv; + next = rb_next(&rsv->rsv_node); + rsv = list_entry(next,struct ext2_reserve_window_node,rsv_node); + + /* + * Reached the last reservation, we can just append to the + * previous one. + */ + if (!next) + break; + + if (cur + size <= rsv->rsv_start) { + /* + * Found a reserveable space big enough. We could + * have a reservation across the group boundary here + */ + break; + } + } + /* + * we come here either : + * when we reach the end of the whole list, + * and there is empty reservable space after last entry in the list. + * append it to the end of the list. + * + * or we found one reservable space in the middle of the list, + * return the reservation window that we could append to. + * succeed. + */ + + if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) + rsv_window_remove(sb, my_rsv); + + /* + * Let's book the whole avaliable window for now. We will check the + * disk bitmap later and then, if there are free blocks then we adjust + * the window size if it's larger than requested. + * Otherwise, we will remove this node from the tree next time + * call find_next_reservable_window. + */ + my_rsv->rsv_start = cur; + my_rsv->rsv_end = cur + size - 1; + my_rsv->rsv_alloc_hit = 0; + + if (prev != my_rsv) + ext2_rsv_window_add(sb, my_rsv); + + return 0; +} + +/** + * alloc_new_reservation()--allocate a new reservation window + * + * To make a new reservation, we search part of the filesystem + * reservation list (the list that inside the group). We try to + * allocate a new reservation window near the allocation goal, + * or the beginning of the group, if there is no goal. + * + * We first find a reservable space after the goal, then from + * there, we check the bitmap for the first free block after + * it. If there is no free block until the end of group, then the + * whole group is full, we failed. Otherwise, check if the free + * block is inside the expected reservable space, if so, we + * succeed. + * If the first free block is outside the reservable space, then + * start from the first free block, we search for next available + * space, and go on. + * + * on succeed, a new reservation will be found and inserted into the list + * It contains at least one free block, and it does not overlap with other + * reservation windows. + * + * failed: we failed to find a reservation window in this group + * + * @rsv: the reservation + * + * @goal: The goal (group-relative). It is where the search for a + * free reservable space should start from. + * if we have a goal(goal >0 ), then start from there, + * no goal(goal = -1), we start from the first block + * of the group. + * + * @sb: the super block + * @group: the group we are trying to allocate in + * @bitmap_bh: the block group block bitmap + * + */ +static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv, + int goal, struct super_block *sb, + unsigned int group, struct buffer_head *bitmap_bh) +{ + struct ext2_reserve_window_node *search_head; + int group_first_block, group_end_block, start_block; + int first_free_block; + struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root; + unsigned long size; + int ret; + spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; + + group_first_block = le32_to_cpu(EXT2_SB(sb)->s_es->s_first_data_block) + + group * EXT2_BLOCKS_PER_GROUP(sb); + group_end_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1; + + if (goal < 0) + start_block = group_first_block; + else + start_block = goal + group_first_block; + + size = my_rsv->rsv_goal_size; + + if (!rsv_is_empty(&my_rsv->rsv_window)) { /* - * Search in the remainder of the current group. + * if the old reservation is cross group boundary + * and if the goal is inside the old reservation window, + * we will come here when we just failed to allocate from + * the first part of the window. We still have another part + * that belongs to the next group. In this case, there is no + * point to discard our window and try to allocate a new one + * in this group(which will fail). we should + * keep the reservation window, just simply move on. + * + * Maybe we could shift the start block of the reservation + * window to the first block of next group. */ + + if ((my_rsv->rsv_start <= group_end_block) && + (my_rsv->rsv_end > group_end_block) && + (start_block >= my_rsv->rsv_start)) + return -1; + + if ((my_rsv->rsv_alloc_hit > + (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { + /* + * if we previously allocation hit ration is greater than half + * we double the size of reservation window next time + * otherwise keep the same + */ + size = size * 2; + if (size > EXT2_MAX_RESERVE_BLOCKS) + size = EXT2_MAX_RESERVE_BLOCKS; + my_rsv->rsv_goal_size= size; + } + } + + spin_lock(rsv_lock); + /* + * shift the search start to the window near the goal block + */ + search_head = search_reserve_window(fs_rsv_root, start_block); + + /* + * find_next_reservable_window() simply finds a reservable window + * inside the given range(start_block, group_end_block). + * + * To make sure the reservation window has a free bit inside it, we + * need to check the bitmap after we found a reservable window. + */ +retry: + ret = find_next_reservable_window(search_head, my_rsv, sb, + start_block, group_end_block); + + if (ret == -1) { + if (!rsv_is_empty(&my_rsv->rsv_window)) + rsv_window_remove(sb, my_rsv); + spin_unlock(rsv_lock); + return -1; } - p = map + (goal >> 3); - r = memscan(p, 0, (size - goal + 7) >> 3); - k = (r - map) << 3; - if (k < size) { - /* - * We have succeeded in finding a free byte in the block - * bitmap. Now search backwards to find the start of this - * group of free blocks - won't take more than 7 iterations. + /* + * On success, find_next_reservable_window() returns the + * reservation window where there is a reservable space after it. + * Before we reserve this reservable space, we need + * to make sure there is at least a free block inside this region. + * + * searching the first free bit on the block bitmap and copy of + * last committed bitmap alternatively, until we found a allocatable + * block. Search start from the start block of the reservable space + * we just found. + */ + spin_unlock(rsv_lock); + first_free_block = bitmap_search_next_usable_block( + my_rsv->rsv_start - group_first_block, + bitmap_bh, group_end_block - group_first_block + 1); + + if (first_free_block < 0) { + /* + * no free block left on the bitmap, no point + * to reserve the space. return failed. */ - for (goal = k; goal && !ext2_test_bit (goal - 1, map); goal--) - ; - goto got_it; + spin_lock(rsv_lock); + if (!rsv_is_empty(&my_rsv->rsv_window)) + rsv_window_remove(sb, my_rsv); + spin_unlock(rsv_lock); + return -1; /* failed */ } - k = ext2_find_next_zero_bit ((u32 *)map, size, goal); - if (k < size) { - goal = k; - goto got_it; + start_block = first_free_block + group_first_block; + /* + * check if the first free block is within the + * free space we just reserved + */ + if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end) + return 0; /* success */ + /* + * if the first free bit we found is out of the reservable space + * continue search for next reservable space, + * start from where the free block is, + * we also shift the list head to where we stopped last time + */ + search_head = my_rsv; + spin_lock(rsv_lock); + goto retry; +} + +static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv, + struct super_block *sb, int size) +{ + struct ext2_reserve_window_node *next_rsv; + struct rb_node *next; + spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; + + printk("req. rsv size %d\n", size); + + if (!spin_trylock(rsv_lock)) + return; + + next = rb_next(&my_rsv->rsv_node); + + if (!next) + my_rsv->rsv_end += size; + else { + next_rsv = list_entry(next, struct ext2_reserve_window_node, rsv_node); + + if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) + my_rsv->rsv_end += size; + else + my_rsv->rsv_end = next_rsv->rsv_start - 1; } - return -1; -got_it: - if (ext2_set_bit_atomic(lock, goal, (void *) map)) - goto repeat; - return goal; + spin_unlock(rsv_lock); } /* - * ext2_new_block uses a goal block to assist allocation. If the goal is + * This is the main function used to allocate a new block and its reservation + * window. + * + * Each time when a new block allocation is need, first try to allocate from + * its own reservation. If it does not have a reservation window, instead of + * looking for a free bit on bitmap first, then look up the reservation list to + * see if it is inside somebody else's reservation window, we try to allocate a + * reservation window for it starting from the goal first. Then do the block + * allocation within the reservation window. + * + * This will avoid keeping on searching the reservation list again and + * again when somebody is looking for a free block (without + * reservation), and there are lots of free blocks, but they are all + * being reserved. + * + * We use a sorted double linked list for the per-filesystem reservation list. + * The insert, remove and find a free space(non-reserved) operations for the + * sorted double linked list should be fast. + * + */ +static int +ext2_try_to_allocate_with_rsv(struct super_block *sb, + unsigned int group, struct buffer_head *bitmap_bh, + int goal, struct ext2_reserve_window_node * my_rsv, + unsigned long *count) +{ + unsigned long group_first_block; + int ret = 0; + unsigned long num = *count; + + /* + * we don't deal with reservation when + * filesystem is mounted without reservation + * or the file is not a regular file + * or last attempt to allocate a block with reservation turned on failed + */ + if (my_rsv == NULL ) { + return ext2_try_to_allocate(sb, group, bitmap_bh, + goal, count, NULL); + } + /* + * goal is a group relative block number (if there is a goal) + * 0 < goal < EXT2_BLOCKS_PER_GROUP(sb) + * first block is a filesystem wide block number + * first block is the block number of the first block in this group + */ + group_first_block = le32_to_cpu(EXT2_SB(sb)->s_es->s_first_data_block) + + group * EXT2_BLOCKS_PER_GROUP(sb); + + /* + * Basically we will allocate a new block from inode's reservation + * window. + * + * We need to allocate a new reservation window, if: + * a) inode does not have a reservation window; or + * b) last attempt to allocate a block from existing reservation + * failed; or + * c) we come here with a goal and with a reservation window + * + * We do not need to allocate a new reservation window if we come here + * at the beginning with a goal and the goal is inside the window, or + * we don't have a goal but already have a reservation window. + * then we could go to allocate from the reservation window directly. + */ + while (1) { + if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || + !goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb)) { + if (my_rsv->rsv_goal_size < *count) + my_rsv->rsv_goal_size = *count; + ret = alloc_new_reservation(my_rsv, goal, sb, + group, bitmap_bh); + if (ret < 0) + break; /* failed */ + + if (!goal_in_my_reservation(&my_rsv->rsv_window, goal, group, sb)) + goal = -1; + } else if (goal > 0 && (my_rsv->rsv_end-goal+1) < *count) + try_to_extend_reservation(my_rsv, sb, + *count-my_rsv->rsv_end + goal - 1); + + if ((my_rsv->rsv_start >= group_first_block + EXT2_BLOCKS_PER_GROUP(sb)) + || (my_rsv->rsv_end < group_first_block)) + BUG(); + ret = ext2_try_to_allocate(sb, group, bitmap_bh, goal, + &num, &my_rsv->rsv_window); + if (ret >= 0) { + my_rsv->rsv_alloc_hit += num; + *count = num; + break; /* succeed */ + } + num = *count; + } + return ret; +} + +static int ext2_has_free_blocks(struct ext2_sb_info *sbi) +{ + int free_blocks, root_blocks; + + free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); + root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); + if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && + sbi->s_resuid != current->fsuid && + (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { + return 0; + } + return 1; +} + +/* + * ext2_new_blocks uses a goal block to assist allocation. If the goal is * free, or there is a free block within 32 blocks of the goal, that block * is allocated. Otherwise a forward search is made for a free block; within * each block group the search first looks for an entire free byte in the block * bitmap, and then for any free bit if that fails. * This function also updates quota and i_blocks field. */ -int ext2_new_block(struct inode *inode, unsigned long goal, - u32 *prealloc_count, u32 *prealloc_block, int *err) +int ext2_new_blocks(struct inode *inode, unsigned long goal, + unsigned long *count, int *errp) { struct buffer_head *bitmap_bh = NULL; - struct buffer_head *gdp_bh; /* bh2 */ - struct ext2_group_desc *desc; - int group_no; /* i */ - int ret_block; /* j */ - int group_idx; /* k */ - int target_block; /* tmp */ - int block = 0; - struct super_block *sb = inode->i_sb; - struct ext2_sb_info *sbi = EXT2_SB(sb); - struct ext2_super_block *es = sbi->s_es; - unsigned group_size = EXT2_BLOCKS_PER_GROUP(sb); - unsigned prealloc_goal = es->s_prealloc_blocks; - unsigned group_alloc = 0, es_alloc, dq_alloc; - int nr_scanned_groups; - - if (!prealloc_goal--) - prealloc_goal = EXT2_DEFAULT_PREALLOC_BLOCKS - 1; - if (!prealloc_count || *prealloc_count) - prealloc_goal = 0; - - if (DQUOT_ALLOC_BLOCK(inode, 1)) { - *err = -EDQUOT; - goto out; + struct buffer_head *gdp_bh; + int group_no; + int goal_group; + int ret_block; + int bgi; /* blockgroup iteration index */ + int target_block; + int performed_allocation = 0; + int free_blocks; + struct super_block *sb; + struct ext2_group_desc *gdp; + struct ext2_super_block *es; + struct ext2_sb_info *sbi; + struct ext2_reserve_window_node *my_rsv = NULL; + struct ext2_block_alloc_info *block_i; + unsigned short windowsz = 0; + unsigned long ngroups; + unsigned long num = *count; + + *errp = -ENOSPC; + sb = inode->i_sb; + if (!sb) { + printk("ext2_new_blocks: nonexistent device"); + return 0; } - while (prealloc_goal && DQUOT_PREALLOC_BLOCK(inode, prealloc_goal)) - prealloc_goal--; + /* + * Check quota for allocation of this block. + */ + if (DQUOT_ALLOC_BLOCK(inode, num)) { + *errp = -EDQUOT; + return 0; + } - dq_alloc = prealloc_goal + 1; - es_alloc = reserve_blocks(sb, dq_alloc); - if (!es_alloc) { - *err = -ENOSPC; - goto out_dquot; + sbi = EXT2_SB(sb); + es = EXT2_SB(sb)->s_es; + ext2_debug("goal=%lu.\n", goal); + /* + * Allocate a block from reservation only when + * filesystem is mounted with reservation(default,-o reservation), and + * it's a regular file, and + * the desired window size is greater than 0 (One could use ioctl + * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off + * reservation on that particular file) + */ + block_i = EXT2_I(inode)->i_block_alloc_info; + if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0)) { + my_rsv = &block_i->rsv_window_node; } - ext2_debug ("goal=%lu.\n", goal); + if (!ext2_has_free_blocks(sbi)) { + *errp = -ENOSPC; + goto out; + } + /* + * First, test whether the goal block is free. + */ if (goal < le32_to_cpu(es->s_first_data_block) || goal >= le32_to_cpu(es->s_blocks_count)) goal = le32_to_cpu(es->s_first_data_block); - group_no = (goal - le32_to_cpu(es->s_first_data_block)) / group_size; - desc = ext2_get_group_desc (sb, group_no, &gdp_bh); - if (!desc) { - /* - * gdp_bh may still be uninitialised. But group_release_blocks - * will not touch it because group_alloc is zero. - */ + group_no = (goal - le32_to_cpu(es->s_first_data_block)) / + EXT2_BLOCKS_PER_GROUP(sb); + gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); + if (!gdp) goto io_error; - } - group_alloc = group_reserve_blocks(sbi, group_no, desc, - gdp_bh, es_alloc); - if (group_alloc) { + goal_group = group_no; +retry: + free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); + /* + * if there is not enough free blocks to make a new resevation + * turn off reservation for this allocation + */ + if (my_rsv && (free_blocks < windowsz) + && (rsv_is_empty(&my_rsv->rsv_window))) + my_rsv = NULL; + + if (free_blocks > 0) { ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) % - group_size); - brelse(bitmap_bh); + EXT2_BLOCKS_PER_GROUP(sb)); bitmap_bh = read_block_bitmap(sb, group_no); if (!bitmap_bh) goto io_error; - - ext2_debug("goal is at %d:%d.\n", group_no, ret_block); - - ret_block = grab_block(sb_bgl_lock(sbi, group_no), - bitmap_bh->b_data, group_size, ret_block); + ret_block = ext2_try_to_allocate_with_rsv(sb, group_no, + bitmap_bh, ret_block, my_rsv, &num); if (ret_block >= 0) - goto got_block; - group_release_blocks(sb, group_no, desc, gdp_bh, group_alloc); - group_alloc = 0; + goto allocated; } - ext2_debug ("Bit not found in block group %d.\n", group_no); + ngroups = EXT2_SB(sb)->s_groups_count; + smp_rmb(); /* * Now search the rest of the groups. We assume that - * i and desc correctly point to the last group visited. + * i and gdp correctly point to the last group visited. */ - nr_scanned_groups = 0; -retry: - for (group_idx = 0; !group_alloc && - group_idx < sbi->s_groups_count; group_idx++) { + for (bgi = 0; bgi < ngroups; bgi++) { group_no++; - if (group_no >= sbi->s_groups_count) + if (group_no >= ngroups) group_no = 0; - desc = ext2_get_group_desc(sb, group_no, &gdp_bh); - if (!desc) - goto io_error; - group_alloc = group_reserve_blocks(sbi, group_no, desc, - gdp_bh, es_alloc); - } - if (!group_alloc) { - *err = -ENOSPC; - goto out_release; - } - brelse(bitmap_bh); - bitmap_bh = read_block_bitmap(sb, group_no); - if (!bitmap_bh) - goto io_error; - - ret_block = grab_block(sb_bgl_lock(sbi, group_no), bitmap_bh->b_data, - group_size, 0); - if (ret_block < 0) { - /* - * If a free block counter is corrupted we can loop inifintely. - * Detect that here. - */ - nr_scanned_groups++; - if (nr_scanned_groups > 2 * sbi->s_groups_count) { - ext2_error(sb, "ext2_new_block", - "corrupted free blocks counters"); - goto io_error; + gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); + if (!gdp) { + *errp = -EIO; + goto out; } + free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); /* - * Someone else grabbed the last free block in this blockgroup - * before us. Retry the scan. + * skip this group if the number of + * free blocks is less than half of the reservation + * window size. */ - group_release_blocks(sb, group_no, desc, gdp_bh, group_alloc); - group_alloc = 0; + if (free_blocks <= (windowsz/2)) + continue; + + brelse(bitmap_bh); + bitmap_bh = read_block_bitmap(sb, group_no); + if (!bitmap_bh) + goto io_error; + ret_block = ext2_try_to_allocate_with_rsv(sb, group_no, + bitmap_bh, -1, my_rsv, &num); + if (ret_block >= 0) + goto allocated; + } + /* + * We may end up a bogus ealier ENOSPC error due to + * filesystem is "full" of reservations, but + * there maybe indeed free blocks avaliable on disk + * In this case, we just forget about the reservations + * just do block allocation as without reservations. + */ + if (my_rsv) { + my_rsv = NULL; + group_no = goal_group; goto retry; } + /* No space left on the device */ + *errp = -ENOSPC; + goto out; + +allocated: -got_block: ext2_debug("using block group %d(%d)\n", - group_no, desc->bg_free_blocks_count); + group_no, gdp->bg_free_blocks_count); - target_block = ret_block + group_no * group_size + - le32_to_cpu(es->s_first_data_block); + target_block = ret_block + group_no * EXT2_BLOCKS_PER_GROUP(sb) + + le32_to_cpu(es->s_first_data_block); - if (target_block == le32_to_cpu(desc->bg_block_bitmap) || - target_block == le32_to_cpu(desc->bg_inode_bitmap) || - in_range(target_block, le32_to_cpu(desc->bg_inode_table), - sbi->s_itb_per_group)) - ext2_error (sb, "ext2_new_block", + if (in_range(le32_to_cpu(gdp->bg_block_bitmap), target_block, num) || + in_range(le32_to_cpu(gdp->bg_inode_bitmap), target_block, num) || + in_range(target_block, le32_to_cpu(gdp->bg_inode_table), + EXT2_SB(sb)->s_itb_per_group) || + in_range(target_block + num - 1, le32_to_cpu(gdp->bg_inode_table), + EXT2_SB(sb)->s_itb_per_group)) + ext2_error(sb, "ext2_new_blocks", "Allocating block in system zone - " - "block = %u", target_block); + "blocks from %u, length %lu", target_block, num); + + performed_allocation = 1; - if (target_block >= le32_to_cpu(es->s_blocks_count)) { - ext2_error (sb, "ext2_new_block", + + /* ret_block was blockgroup-relative. Now it becomes fs-relative */ + ret_block = target_block; + + if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) { + ext2_error(sb, "ext2_new_blocks", "block(%d) >= blocks count(%d) - " "block_group = %d, es == %p ", ret_block, le32_to_cpu(es->s_blocks_count), group_no, es); - goto io_error; + goto out; } - block = target_block; - /* OK, we _had_ allocated something */ - ext2_debug("found bit %d\n", ret_block); - - dq_alloc--; - es_alloc--; - group_alloc--; - - /* - * Do block preallocation now if required. - */ - write_lock(&EXT2_I(inode)->i_meta_lock); - if (group_alloc && !*prealloc_count) { - unsigned n; - - for (n = 0; n < group_alloc && ++ret_block < group_size; n++) { - if (ext2_set_bit_atomic(sb_bgl_lock(sbi, group_no), - ret_block, - (void*) bitmap_bh->b_data)) - break; - } - *prealloc_block = block + 1; - *prealloc_count = n; - es_alloc -= n; - dq_alloc -= n; - group_alloc -= n; - } - write_unlock(&EXT2_I(inode)->i_meta_lock); + spin_lock(sb_bgl_lock(sbi, group_no)); + gdp->bg_free_blocks_count = + cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - num); + spin_unlock(sb_bgl_lock(sbi, group_no)); + percpu_counter_mod(&sbi->s_freeblocks_counter, -num); + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bitmap_bh); if (sb->s_flags & MS_SYNCHRONOUS) sync_dirty_buffer(bitmap_bh); - ext2_debug ("allocating block %d. ", block); + *errp = 0; + brelse(bitmap_bh); + DQUOT_FREE_BLOCK(inode, *count-num); + *count = num; + return ret_block; - *err = 0; -out_release: - group_release_blocks(sb, group_no, desc, gdp_bh, group_alloc); - release_blocks(sb, es_alloc); -out_dquot: - DQUOT_FREE_BLOCK(inode, dq_alloc); +io_error: + *errp = -EIO; out: + /* + * Undo the block allocation + */ + if (!performed_allocation) + DQUOT_FREE_BLOCK(inode, *count); brelse(bitmap_bh); - return block; + return 0; +} -io_error: - *err = -EIO; - goto out_release; +int ext2_new_block(struct inode *inode, unsigned long goal, int *errp) +{ + unsigned long count = 1; + + return ext2_new_blocks(inode, goal, &count, errp); } unsigned long ext2_count_free_blocks (struct super_block * sb) diff -x '*~' -uNr vanilla-linux/fs/ext2/dir.c uml-clean/fs/ext2/dir.c --- vanilla-linux/fs/ext2/dir.c 2006-03-24 01:48:18.000000000 -0800 +++ uml-clean/fs/ext2/dir.c 2006-03-08 16:21:30.000000000 -0800 @@ -67,6 +67,7 @@ struct inode *dir = page->mapping->host; int err = 0; dir->i_version++; + ext2_mark_fs_dirty(dir->i_sb); page->mapping->a_ops->commit_write(NULL, page, from, to); if (IS_DIRSYNC(dir)) err = write_one_page(page, 1); diff -x '*~' -uNr vanilla-linux/fs/ext2/ext2.h uml-clean/fs/ext2/ext2.h --- vanilla-linux/fs/ext2/ext2.h 2006-03-24 01:48:18.000000000 -0800 +++ uml-clean/fs/ext2/ext2.h 2006-03-24 04:06:12.000000000 -0800 @@ -33,22 +33,9 @@ */ __u32 i_block_group; - /* - * i_next_alloc_block is the logical (file-relative) number of the - * most-recently-allocated block in this file. Yes, it is misnamed. - * We use this for detecting linearly ascending allocation requests. - */ - __u32 i_next_alloc_block; + /* block reservation info */ + struct ext2_block_alloc_info *i_block_alloc_info; - /* - * i_next_alloc_goal is the *physical* companion to i_next_alloc_block. - * it the the physical block number of the block which was most-recently - * allocated to this file. This give us the goal (target) for the next - * allocation when we detect linearly ascending requests. - */ - __u32 i_next_alloc_goal; - __u32 i_prealloc_block; - __u32 i_prealloc_count; __u32 i_dir_start_lookup; #ifdef CONFIG_EXT2_FS_XATTR /* @@ -66,6 +53,7 @@ #endif rwlock_t i_meta_lock; struct inode vfs_inode; + struct list_head i_orphan; /* unlinked but open inodes */ }; /* @@ -91,8 +79,8 @@ /* balloc.c */ extern int ext2_bg_has_super(struct super_block *sb, int group); extern unsigned long ext2_bg_num_gdb(struct super_block *sb, int group); -extern int ext2_new_block (struct inode *, unsigned long, - __u32 *, __u32 *, int *); +extern int ext2_new_block (struct inode *, unsigned long, int *); +extern int ext2_new_blocks (struct inode *, unsigned long, unsigned long *, int *); extern void ext2_free_blocks (struct inode *, unsigned long, unsigned long); extern unsigned long ext2_count_free_blocks (struct super_block *); @@ -101,6 +89,10 @@ extern struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb, unsigned int block_group, struct buffer_head ** bh); +extern void ext2_discard_reservation (struct inode *); +extern int ext2_should_retry_alloc(struct super_block *sb, int *retries); +extern void ext2_init_block_alloc_info(struct inode *); +extern void ext2_rsv_window_add(struct super_block *sb, struct ext2_reserve_window_node *rsv); /* dir.c */ extern int ext2_add_link (struct dentry *, struct inode *); @@ -128,7 +120,6 @@ extern void ext2_put_inode (struct inode *); extern void ext2_delete_inode (struct inode *); extern int ext2_sync_inode (struct inode *); -extern void ext2_discard_prealloc (struct inode *); extern int ext2_get_block(struct inode *, sector_t, struct buffer_head *, int); extern void ext2_truncate (struct inode *); extern int ext2_setattr (struct dentry *, struct iattr *); @@ -148,6 +139,14 @@ __attribute__ ((format (printf, 3, 4))); extern void ext2_update_dynamic_rev (struct super_block *sb); extern void ext2_write_super (struct super_block *); +extern void ext2_prepare_super (struct super_block *); +extern void __ext2_mark_fs_clean (struct super_block *); +extern void ext2_mark_fs_dirty (struct super_block *); +extern void ext2_mark_inode_dirty (struct inode *); +extern void ext2_orphan_add(struct inode *); +extern void ext2_orphan_del(struct inode *); +/* XXX Gross */ +#define mark_inode_dirty(x) ext2_mark_inode_dirty(x) /* * Inodes and files operations @@ -173,3 +172,6 @@ /* symlink.c */ extern struct inode_operations ext2_fast_symlink_inode_operations; extern struct inode_operations ext2_symlink_inode_operations; + +/* state.c */ +extern int ext2_dirtyd(void *); diff -x '*~' -uNr vanilla-linux/fs/ext2/file.c uml-clean/fs/ext2/file.c --- vanilla-linux/fs/ext2/file.c 2006-03-24 01:48:18.000000000 -0800 +++ uml-clean/fs/ext2/file.c 2006-03-22 01:44:56.000000000 -0800 @@ -31,7 +31,7 @@ static int ext2_release_file (struct inode * inode, struct file * filp) { if (filp->f_mode & FMODE_WRITE) - ext2_discard_prealloc (inode); + ext2_discard_reservation (inode); return 0; } diff -x '*~' -uNr vanilla-linux/fs/ext2/ialloc.c uml-clean/fs/ext2/ialloc.c --- vanilla-linux/fs/ext2/ialloc.c 2006-03-24 01:47:33.000000000 -0800 +++ uml-clean/fs/ext2/ialloc.c 2006-03-24 04:45:43.000000000 -0800 @@ -85,6 +85,7 @@ if (dir) percpu_counter_dec(&EXT2_SB(sb)->s_dirs_counter); sb->s_dirt = 1; + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bh); } @@ -154,6 +155,7 @@ "bit already cleared for inode %lu", ino); else ext2_release_inode(sb, block_group, is_directory); + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bitmap_bh); if (sb->s_flags & MS_SYNCHRONOUS) sync_dirty_buffer(bitmap_bh); @@ -528,6 +530,7 @@ err = -ENOSPC; goto fail; got: + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bitmap_bh); if (sb->s_flags & MS_SYNCHRONOUS) sync_dirty_buffer(bitmap_bh); @@ -562,6 +565,7 @@ spin_unlock(sb_bgl_lock(sbi, group)); sb->s_dirt = 1; + ext2_mark_fs_dirty(sb); mark_buffer_dirty(bh2); inode->i_uid = current->fsuid; if (test_opt (sb, GRPID)) @@ -591,11 +595,8 @@ ei->i_file_acl = 0; ei->i_dir_acl = 0; ei->i_dtime = 0; + ei->i_block_alloc_info = NULL; ei->i_block_group = group; - ei->i_next_alloc_block = 0; - ei->i_next_alloc_goal = 0; - ei->i_prealloc_block = 0; - ei->i_prealloc_count = 0; ei->i_dir_start_lookup = 0; ei->i_state = EXT2_STATE_NEW; ext2_set_inode_flags(inode); diff -x '*~' -uNr vanilla-linux/fs/ext2/inode.c uml-clean/fs/ext2/inode.c --- vanilla-linux/fs/ext2/inode.c 2006-03-24 01:48:18.000000000 -0800 +++ uml-clean/fs/ext2/inode.c 2006-03-24 04:47:34.000000000 -0800 @@ -54,19 +54,6 @@ } /* - * Called at each iput(). - * - * The inode may be "bad" if ext2_read_inode() saw an error from - * ext2_get_inode(), so we need to check that to avoid freeing random disk - * blocks. - */ -void ext2_put_inode(struct inode *inode) -{ - if (!is_bad_inode(inode)) - ext2_discard_prealloc(inode); -} - -/* * Called at the last iput() if i_nlink is zero. */ void ext2_delete_inode (struct inode * inode) @@ -75,6 +62,7 @@ if (is_bad_inode(inode)) goto no_delete; + ext2_orphan_del(inode); EXT2_I(inode)->i_dtime = get_seconds(); mark_inode_dirty(inode); ext2_update_inode(inode, inode_needs_sync(inode)); @@ -89,61 +77,6 @@ clear_inode(inode); /* We must guarantee clearing of inode... */ } -void ext2_discard_prealloc (struct inode * inode) -{ -#ifdef EXT2_PREALLOCATE - struct ext2_inode_info *ei = EXT2_I(inode); - write_lock(&ei->i_meta_lock); - if (ei->i_prealloc_count) { - unsigned short total = ei->i_prealloc_count; - unsigned long block = ei->i_prealloc_block; - ei->i_prealloc_count = 0; - ei->i_prealloc_block = 0; - write_unlock(&ei->i_meta_lock); - ext2_free_blocks (inode, block, total); - return; - } else - write_unlock(&ei->i_meta_lock); -#endif -} - -static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err) -{ -#ifdef EXT2FS_DEBUG - static unsigned long alloc_hits, alloc_attempts; -#endif - unsigned long result; - - -#ifdef EXT2_PREALLOCATE - struct ext2_inode_info *ei = EXT2_I(inode); - write_lock(&ei->i_meta_lock); - if (ei->i_prealloc_count && - (goal == ei->i_prealloc_block || goal + 1 == ei->i_prealloc_block)) - { - result = ei->i_prealloc_block++; - ei->i_prealloc_count--; - write_unlock(&ei->i_meta_lock); - ext2_debug ("preallocation hit (%lu/%lu).\n", - ++alloc_hits, ++alloc_attempts); - } else { - write_unlock(&ei->i_meta_lock); - ext2_discard_prealloc (inode); - ext2_debug ("preallocation miss (%lu/%lu).\n", - alloc_hits, ++alloc_attempts); - if (S_ISREG(inode->i_mode)) - result = ext2_new_block (inode, goal, - &ei->i_prealloc_count, - &ei->i_prealloc_block, err); - else - result = ext2_new_block(inode, goal, NULL, NULL, err); - } -#else - result = ext2_new_block (inode, goal, 0, 0, err); -#endif - return result; -} - typedef struct { __le32 *p; __le32 key; @@ -228,7 +161,8 @@ ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big"); } if (boundary) - *boundary = (i_block & (ptrs - 1)) == (final - 1); + *boundary = final - 1 - (i_block & (ptrs - 1)); + return n; } @@ -355,39 +289,129 @@ * @block: block we want * @chain: chain of indirect blocks * @partial: pointer to the last triple within a chain - * @goal: place to store the result. * - * Normally this function find the prefered place for block allocation, - * stores it in *@goal and returns zero. If the branch had been changed - * under us we return -EAGAIN. + * Returns preferred place for a block (the goal). */ static inline int ext2_find_goal(struct inode *inode, long block, Indirect chain[4], - Indirect *partial, - unsigned long *goal) + Indirect *partial) { - struct ext2_inode_info *ei = EXT2_I(inode); - write_lock(&ei->i_meta_lock); - if ((block == ei->i_next_alloc_block + 1) && ei->i_next_alloc_goal) { - ei->i_next_alloc_block++; - ei->i_next_alloc_goal++; - } - if (verify_chain(chain, partial)) { - /* - * try the heuristic for sequential allocation, - * failing that at least try to get decent locality. - */ - if (block == ei->i_next_alloc_block) - *goal = ei->i_next_alloc_goal; - if (!*goal) - *goal = ext2_find_near(inode, partial); - write_unlock(&ei->i_meta_lock); - return 0; + struct ext2_block_alloc_info *block_i; + + block_i = EXT2_I(inode)->i_block_alloc_info; + + /* + * try the heuristic for sequential allocation, + * failing that at least try to get decent locality. + */ + if (block_i && (block == block_i->last_alloc_logical_block + 1) + && (block_i->last_alloc_physical_block != 0)) { + return block_i->last_alloc_physical_block + 1; + } + + return ext2_find_near(inode, partial); +} + +/** + * ext2_blks_to_allocate: Look up the block map and count the number + * of direct blocks need to be allocated for the given branch. + * + * @branch: chain of indirect blocks + * @k: number of blocks need for indirect blocks + * @blks: number of data blocks to be mapped. + * @blocks_to_boundary: the offset in the indirect block + * + * return the total number of blocks to be allocate, including the + * direct and indirect blocks. + */ +static int +ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks, + int blocks_to_boundary) +{ + unsigned long count = 0; + + /* + * Simple case, [t,d]Indirect block(s) has not allocated yet + * then it's clear blocks on that path have not allocated + */ + if (k > 0) { + /* right now don't hanel cross boundary allocation */ + if (blks < blocks_to_boundary + 1) + count += blks; + else + count += blocks_to_boundary + 1; + return count; + } + + count++; + while (count < blks && count <= blocks_to_boundary + && le32_to_cpu(*(branch[0].p + count)) == 0) { + count++; + } + return count; +} + +/** + * ext2_alloc_blocks: multiple allocate blocks needed for a branch + * @indirect_blks: the number of blocks need to allocate for indirect + * blocks + * + * @new_blocks: on return it will store the new block numbers for + * the indirect blocks(if needed) and the first direct block, + * @blks: on return it will store the total number of allocated + * direct blocks + */ +static int ext2_alloc_blocks(struct inode *inode, + unsigned long goal, int indirect_blks, int blks, + unsigned long long new_blocks[4], int *err) +{ + int target, i; + unsigned long count = 0; + int index = 0; + unsigned long current_block = 0; + int ret = 0; + + /* + * Here we try to allocate the requested multiple blocks at once, + * on a best-effort basis. + * To build a branch, we should allocate blocks for + * the indirect blocks(if not allocated yet), and at least + * the first direct block of this branch. That's the + * minimum number of blocks need to allocate(required) + */ + target = blks + indirect_blks; + + while (1) { + count = target; + /* allocating blocks for indirect blocks and direct blocks */ + current_block = ext2_new_blocks(inode,goal,&count,err); + if (*err) + goto failed_out; + + target -= count; + /* allocate blocks for indirect blocks */ + while (index < indirect_blks && count) { + new_blocks[index++] = current_block++; + count--; + } + + if (count > 0) + break; } - write_unlock(&ei->i_meta_lock); - return -EAGAIN; + + /* save the new block number for the first direct block */ + new_blocks[index] = current_block; + + /* total number of blocks allocated for direct blocks */ + ret = count; + *err = 0; + return ret; +failed_out: + for (i = 0; i i_sb->s_blocksize; - int n = 0; - int err; - int i; - int parent = ext2_alloc_block(inode, goal, &err); + int i, n = 0; + int err = 0; + struct buffer_head *bh; + int num; + unsigned long long new_blocks[4]; + unsigned long long current_block; - branch[0].key = cpu_to_le32(parent); - if (parent) for (n = 1; n < num; n++) { - struct buffer_head *bh; - /* Allocate the next block */ - int nr = ext2_alloc_block(inode, parent, &err); - if (!nr) - break; - branch[n].key = cpu_to_le32(nr); + num = ext2_alloc_blocks(inode, goal, indirect_blks, + *blks, new_blocks, &err); + if (err) + return err; + + branch[0].key = cpu_to_le32(new_blocks[0]); + /* + * metadata blocks and data blocks are allocated. + */ + for (n = 1; n <= indirect_blks; n++) { /* - * Get buffer_head for parent block, zero it out and set - * the pointer to new one, then send parent to disk. + * Get buffer_head for parent block, zero it out + * and set the pointer to new one, then send + * parent to disk. */ - bh = sb_getblk(inode->i_sb, parent); - if (!bh) { - err = -EIO; - break; - } + bh = sb_getblk(inode->i_sb, new_blocks[n-1]); + branch[n].bh = bh; lock_buffer(bh); memset(bh->b_data, 0, blocksize); - branch[n].bh = bh; branch[n].p = (__le32 *) bh->b_data + offsets[n]; + branch[n].key = cpu_to_le32(new_blocks[n]); *branch[n].p = branch[n].key; + if ( n == indirect_blks) { + current_block = new_blocks[n]; + /* + * End of chain, update the last new metablock of + * the chain to point to the new allocated + * data blocks numbers + */ + for (i=1; i < num; i++) + *(branch[n].p + i) = cpu_to_le32(++current_block); + } set_buffer_uptodate(bh); unlock_buffer(bh); + ext2_mark_fs_dirty(inode->i_sb); mark_buffer_dirty_inode(bh, inode); /* We used to sync bh here if IS_SYNC(inode). * But we now rely upon generic_osync_inode() @@ -458,77 +493,68 @@ */ if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) sync_dirty_buffer(bh); - parent = nr; } - if (n == num) - return 0; - - /* Allocation failed, free what we already allocated */ - for (i = 1; i < n; i++) - bforget(branch[i].bh); - for (i = 0; i < n; i++) - ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1); + *blks = num; return err; } /** - * ext2_splice_branch - splice the allocated branch onto inode. - * @inode: owner - * @block: (logical) number of block we are adding - * @chain: chain of indirect blocks (with a missing link - see - * ext2_alloc_branch) - * @where: location of missing link - * @num: number of blocks we are adding - * - * This function verifies that chain (up to the missing link) had not - * changed, fills the missing link and does all housekeeping needed in - * inode (->i_blocks, etc.). In case of success we end up with the full - * chain to new block and return 0. Otherwise (== chain had been changed) - * we free the new blocks (forgetting their buffer_heads, indeed) and - * return -EAGAIN. + * ext2_splice_branch - splice the allocated branch onto inode. + * @inode: owner + * @block: (logical) number of block we are adding + * @chain: chain of indirect blocks (with a missing link - see + * ext2_alloc_branch) + * @where: location of missing link + * @num: number of indirect blocks we are adding + * @blks: number of direct blocks we are adding + * + * This function fills the missing link and does all housekeeping needed in + * inode (->i_blocks, etc.). In case of success we end up with the full + * chain to new block and return 0. */ - -static inline int ext2_splice_branch(struct inode *inode, - long block, - Indirect chain[4], - Indirect *where, - int num) +static void ext2_splice_branch(struct inode *inode, + long block, Indirect *where, int num, int blks) { - struct ext2_inode_info *ei = EXT2_I(inode); int i; + struct ext2_block_alloc_info *block_i; + unsigned long current_block; - /* Verify that place we are splicing to is still there and vacant */ - - write_lock(&ei->i_meta_lock); - if (!verify_chain(chain, where-1) || *where->p) - goto changed; + block_i = EXT2_I(inode)->i_block_alloc_info; + /* XXX LOCKING probably should have i_meta_lock ?*/ /* That's it */ *where->p = where->key; - ei->i_next_alloc_block = block; - ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key); - write_unlock(&ei->i_meta_lock); + /* + * Update the host buffer_head or inode to point to more just allocated + * direct blocks blocks + */ + if (num == 0 && blks > 1) { + current_block = le32_to_cpu(where->key + 1); + for (i = 1; i < blks; i++) + *(where->p + i ) = cpu_to_le32(current_block++); + } + + /* + * update the most recently allocated logical & physical block + * in i_block_alloc_info, to assist find the proper goal block for next + * allocation + */ + if (block_i) { + block_i->last_alloc_logical_block = block + blks - 1; + block_i->last_alloc_physical_block = + le32_to_cpu(where[num].key + blks - 1); + } /* We are done with atomic stuff, now do the rest of housekeeping */ - inode->i_ctime = CURRENT_TIME_SEC; - /* had we spliced it onto indirect block? */ if (where->bh) mark_buffer_dirty_inode(where->bh, inode); + inode->i_ctime = CURRENT_TIME_SEC; mark_inode_dirty(inode); - return 0; - -changed: - write_unlock(&ei->i_meta_lock); - for (i = 1; i < num; i++) - bforget(where[i].bh); - for (i = 0; i < num; i++) - ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1); - return -EAGAIN; } /* @@ -542,62 +568,91 @@ * That has a nice additional property: no special recovery from the failed * allocations is needed - we simply release blocks and do not touch anything * reachable from inode. + * + * `handle' can be NULL if create == 0. + * + * The BKL may not be held on entry here. Be sure to take it early. + * return > 0, # of blocks mapped or allocated. + * return = 0, if plain lookup failed. + * return < 0, error case. */ - -int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) +int ext2_get_blocks(struct inode *inode, + sector_t iblock, unsigned long maxblocks, + struct buffer_head *bh_result, + int create) { int err = -EIO; int offsets[4]; Indirect chain[4]; Indirect *partial; unsigned long goal; - int left; - int boundary = 0; - int depth = ext2_block_to_path(inode, iblock, offsets, &boundary); + int indirect_blks; + int blocks_to_boundary = 0; + int depth; + struct ext2_inode_info *ei = EXT2_I(inode); + int count = 0; + unsigned long first_block = 0; - if (depth == 0) - goto out; + depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary); + if (depth == 0) + return (err); reread: partial = ext2_get_branch(inode, depth, offsets, chain, &err); /* Simplest case - block found, no allocation needed */ if (!partial) { -got_it: - map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); - if (boundary) - set_buffer_boundary(bh_result); - /* Clean up and exit */ - partial = chain+depth-1; /* the whole chain */ - goto cleanup; + first_block = chain[depth - 1].key; + clear_buffer_new(bh_result); /* What's this do? */ + count++; + /*map more blocks*/ + while (count < maxblocks && count <= blocks_to_boundary) { + if (!verify_chain(chain, partial)) { + /* + * Indirect block might be removed by + * truncate while we were reading it. + * Handling of that case: forget what we've + * got now, go to reread. + */ + count = 0; + goto changed; + } + if (le32_to_cpu(*(chain[depth-1].p+count) == + (first_block + count))) + count++; + else + break; + } + goto got_it; } /* Next simple case - plain lookup or failed read of indirect block */ - if (!create || err == -EIO) { -cleanup: - while (partial > chain) { - brelse(partial->bh); - partial--; - } -out: - return err; - } + if (!create || err == -EIO) + goto cleanup; /* - * Indirect block might be removed by truncate while we were - * reading it. Handling of that case (forget what we've got and - * reread) is taken out of the main path. + * Okay, we need to do block allocation. Lazily initialize the block + * allocation info here if necessary + */ + if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) + ext2_init_block_alloc_info(inode); + + goal = ext2_find_goal(inode, iblock, chain, partial); + + /* the number of blocks need to allocate for [d,t]indirect blocks */ + indirect_blks = (chain + depth) - partial - 1; + /* + * Next look up the indirect map to count the totoal number of + * direct blocks to allocate for this branch. */ - if (err == -EAGAIN) - goto changed; + count = ext2_blks_to_allocate(partial, indirect_blks, + maxblocks, blocks_to_boundary); + /* + * XXX ???? Block out ext2_truncate while we alter the tree + */ + err = ext2_alloc_branch(inode, indirect_blks, &count, goal, + offsets + (partial - chain), partial); - goal = 0; - if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0) - goto changed; - - left = (chain + depth) - partial; - err = ext2_alloc_branch(inode, left, goal, - offsets+(partial-chain), partial); if (err) goto cleanup; @@ -611,12 +666,22 @@ goto cleanup; } - if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0) - goto changed; + ext2_splice_branch(inode, iblock, partial, indirect_blks, count); set_buffer_new(bh_result); - goto got_it; - +got_it: + map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); + if (blocks_to_boundary == 0) + set_buffer_boundary(bh_result); + err = count; + /* Clean up and exit */ + partial = chain + depth - 1; /* the whole chain */ +cleanup: + while (partial > chain) { + brelse(partial->bh); + partial--; + } + return err; changed: while (partial > chain) { brelse(partial->bh); @@ -625,6 +690,19 @@ goto reread; } +int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) +{ + unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; + int ret = ext2_get_blocks(inode, iblock, max_blocks, + bh_result, create); + if (ret > 0) { + bh_result->b_size = (ret << inode->i_blkbits); + ret = 0; + } + return ret; + +} + static int ext2_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, ext2_get_block, wbc); @@ -916,8 +994,6 @@ if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; - ext2_discard_prealloc(inode); - blocksize = inode->i_sb->s_blocksize; iblock = (inode->i_size + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); @@ -943,10 +1019,12 @@ partial = ext2_find_shared(inode, n, offsets, chain, &nr); /* Kill the top of shared branch (already detached) */ if (nr) { - if (partial == chain) + if (partial == chain) { mark_inode_dirty(inode); - else + } else { + ext2_mark_fs_dirty(inode->i_sb); mark_buffer_dirty_inode(partial->bh, inode); + } ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); } /* Clear the ends of indirect blocks on the shared branch */ @@ -955,6 +1033,7 @@ partial->p + 1, (__le32*)partial->bh->b_data+addr_per_block, (chain+n-1) - partial); + ext2_mark_fs_dirty(inode->i_sb); mark_buffer_dirty_inode(partial->bh, inode); brelse (partial->bh); partial--; @@ -986,9 +1065,13 @@ case EXT2_TIND_BLOCK: ; } + + ext2_discard_reservation(inode); + inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; if (inode_needs_sync(inode)) { sync_mapping_buffers(inode->i_mapping); + ext2_mark_fs_dirty(inode->i_sb); ext2_sync_inode (inode); } else { mark_inode_dirty(inode); @@ -1067,6 +1150,8 @@ ei->i_acl = EXT2_ACL_NOT_CACHED; ei->i_default_acl = EXT2_ACL_NOT_CACHED; #endif + ei->i_block_alloc_info = NULL; + if (IS_ERR(raw_inode)) goto bad_inode; @@ -1109,9 +1194,6 @@ ei->i_dtime = 0; inode->i_generation = le32_to_cpu(raw_inode->i_generation); ei->i_state = 0; - ei->i_next_alloc_block = 0; - ei->i_next_alloc_goal = 0; - ei->i_prealloc_count = 0; ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); ei->i_dir_start_lookup = 0; @@ -1121,6 +1203,7 @@ */ for (n = 0; n < EXT2_N_BLOCKS; n++) ei->i_data[n] = raw_inode->i_block[n]; + INIT_LIST_HEAD(&ei->i_orphan); if (S_ISREG(inode->i_mode)) { inode->i_op = &ext2_file_inode_operations; diff -x '*~' -uNr vanilla-linux/fs/ext2/ioctl.c uml-clean/fs/ext2/ioctl.c --- vanilla-linux/fs/ext2/ioctl.c 2006-03-24 01:47:33.000000000 -0800 +++ uml-clean/fs/ext2/ioctl.c 2006-03-22 17:49:49.000000000 -0800 @@ -20,6 +20,7 @@ { struct ext2_inode_info *ei = EXT2_I(inode); unsigned int flags; + unsigned short rsv_window_size; ext2_debug ("cmd = %u, arg = %lu\n", cmd, arg); @@ -76,6 +77,48 @@ inode->i_ctime = CURRENT_TIME_SEC; mark_inode_dirty(inode); return 0; + case EXT2_IOC_GETRSVSZ: + if (test_opt(inode->i_sb, RESERVATION) + && S_ISREG(inode->i_mode) + && ei->i_block_alloc_info) { + rsv_window_size = ei->i_block_alloc_info->rsv_window_node.rsv_goal_size; + return put_user(rsv_window_size, (int __user *)arg); + } + return -ENOTTY; + case EXT2_IOC_SETRSVSZ: { + + if (!test_opt(inode->i_sb, RESERVATION) ||!S_ISREG(inode->i_mode)) + return -ENOTTY; + + if (IS_RDONLY(inode)) + return -EROFS; + + if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER)) + return -EACCES; + + if (get_user(rsv_window_size, (int __user *)arg)) + return -EFAULT; + + if (rsv_window_size > EXT2_MAX_RESERVE_BLOCKS) + rsv_window_size = EXT2_MAX_RESERVE_BLOCKS; + + /* + * need to allocate reservation structure for this inode + * before set the window size + */ + /* + * XXX What lock should protect the rsv_goal_size? + * Accessed in ext2_get_block only. ext3 uses i_truncate. + */ + if (!ei->i_block_alloc_info) + ext2_init_block_alloc_info(inode); + + if (ei->i_block_alloc_info){ + struct ext2_reserve_window_node *rsv = &ei->i_block_alloc_info->rsv_window_node; + rsv->rsv_goal_size = rsv_window_size; + } + return 0; + } default: return -ENOTTY; } diff -x '*~' -uNr vanilla-linux/fs/ext2/Makefile uml-clean/fs/ext2/Makefile --- vanilla-linux/fs/ext2/Makefile 2006-01-02 19:21:10.000000000 -0800 +++ uml-clean/fs/ext2/Makefile 2006-03-16 22:16:47.000000000 -0800 @@ -5,7 +5,7 @@ obj-$(CONFIG_EXT2_FS) += ext2.o ext2-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o \ - ioctl.o namei.o super.o symlink.o + ioctl.o namei.o super.o symlink.o state.o ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o xattr_user.o xattr_trusted.o ext2-$(CONFIG_EXT2_FS_POSIX_ACL) += acl.o diff -x '*~' -uNr vanilla-linux/fs/ext2/namei.c uml-clean/fs/ext2/namei.c --- vanilla-linux/fs/ext2/namei.c 2006-03-24 01:48:18.000000000 -0800 +++ uml-clean/fs/ext2/namei.c 2006-03-10 01:23:52.000000000 -0800 @@ -267,6 +267,8 @@ inode->i_ctime = dir->i_ctime; inode_dec_link_count(inode); + if (!inode->i_nlink) + ext2_orphan_add(inode); err = 0; out: return err; @@ -328,6 +330,8 @@ if (dir_de) new_inode->i_nlink--; inode_dec_link_count(new_inode); + if (!new_inode->i_nlink) + ext2_orphan_add(new_inode); } else { if (dir_de) { err = -EMLINK; diff -x '*~' -uNr vanilla-linux/fs/ext2/state.c uml-clean/fs/ext2/state.c --- vanilla-linux/fs/ext2/state.c 1969-12-31 16:00:00.000000000 -0800 +++ uml-clean/fs/ext2/state.c 2006-03-24 04:36:00.000000000 -0800 @@ -0,0 +1,109 @@ +/* + * Kernel thread to keep track of clean/dirty state of ext2 file system + */ +#include +#include +#include "ext2.h" + +#define EXT2_DIRTY_TIMEOUT 1 /* Time in secs to check for dirty */ +#define EXT2_DIRTY_JIFFIES (EXT2_DIRTY_TIMEOUT * HZ) + +/* + * ext2_update_state runs periodically to check to see if the file + * system has any ongoing write traffic. If no one has written to the + * file system recently, then we sync the file system and check if any + * metadata writes occurred while we were doing the sync. If no + * writes occurred, we go ahead and mark the file system clean. Any + * operation that changes the metadata must first mark the file system + * dirty (via ext2_mark_fs_dirty()) before any other writes hit disk. + * + * For debugging and measurement, we are keeping some statistics on + * how often the file system is dirty/clean in any given period in the + * superblock. They will go away if this hits production. + * + */ + +static void ext2_update_state(struct super_block *sb) +{ + struct ext2_sb_info *sbi = EXT2_SB(sb); + struct ext2_super_block *es = EXT2_SB(sb)->s_es; + + lock_super(sb); + sb->s_dirt = 1; + if (sbi->s_dirty_lately == EXT2_FS_DIRTY) { + es->s_dirty_count = + cpu_to_le32(le32_to_cpu(es->s_dirty_count) + 1); + /* Reset our dirty flag for the next interval */ + sbi->s_dirty_lately = EXT2_FS_CLEAN; + } else { + es->s_clean_count = + cpu_to_le32(le32_to_cpu(es->s_clean_count) + 1); + /* + * This fs has not been written to recently. If it is + * currently marked dirty, sync all outstanding writes + * and see if we are still clean. If so, mark the fs + * clean. + */ + if (es->s_fs_dirty != EXT2_FS_CLEAN) { + unlock_super(sb); + /* Sync all outstanding writes to file system */ + /* XXX need to export below for moduleness */ + fsync_super(sb); + lock_super(sb); + /* New writes may have occurred during the + * sync, recheck */ + if (sbi->s_dirty_lately == EXT2_FS_CLEAN) + __ext2_mark_fs_clean(sb); + else + printk(KERN_DEBUG "fs dirtied during sync\n"); + } + /* + * We don't flush the superblock if the file system + * was already marked clean. Otherwise we'll be + * writing to the disk continuously while the file + * system is idle. This means the stats won't + * necessarily get written to disk until the fs is + * unmounted. + */ + } + unlock_super(sb); +} + +static void ext2_print_stats(struct super_block *sb) +{ + struct ext2_super_block *es = EXT2_SB(sb)->s_es; + unsigned int clean, dirty, total, percent; + + clean = le32_to_cpu(es->s_clean_count); + dirty = le32_to_cpu(es->s_dirty_count); + total = dirty + clean; + + if (total == 0) + percent = 0; + else + percent = (clean * 100) / total; + /* XXX add fs mount point */ + printk(KERN_DEBUG "ext2: dirty:%u clean:%u total:%u percent clean: %u\n", + dirty, clean, total, percent); +} + +int ext2_dirtyd(void *arg) +{ + struct super_block *sb = (struct super_block *) arg; + + printk(KERN_INFO "ext2_dirtyd starting, interval %d seconds\n", + EXT2_DIRTY_TIMEOUT); + ext2_print_stats(sb); + + while (1) { + schedule_timeout_interruptible(EXT2_DIRTY_JIFFIES); + if (kthread_should_stop()) + break; + if (freezing(current)) + refrigerator(); + ext2_update_state(sb); + } + + ext2_print_stats(sb); + return 0; +} diff -x '*~' -uNr vanilla-linux/fs/ext2/super.c uml-clean/fs/ext2/super.c --- vanilla-linux/fs/ext2/super.c 2006-03-24 01:48:18.000000000 -0800 +++ uml-clean/fs/ext2/super.c 2006-03-24 05:20:08.000000000 -0800 @@ -30,6 +30,7 @@ #include #include #include +#include #include #include "ext2.h" #include "xattr.h" @@ -113,6 +114,7 @@ int i; struct ext2_sb_info *sbi = EXT2_SB(sb); + kthread_stop(sbi->s_dirtyd); ext2_xattr_put_super(sb); if (!(sb->s_flags & MS_RDONLY)) { struct ext2_super_block *es = sbi->s_es; @@ -129,6 +131,7 @@ percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); + kfree(sbi->s_esp); brelse (sbi->s_sbh); sb->s_fs_info = NULL; kfree(sbi); @@ -164,6 +167,7 @@ if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { rwlock_init(&ei->i_meta_lock); + INIT_LIST_HEAD(&ei->i_orphan); #ifdef CONFIG_EXT2_FS_XATTR init_rwsem(&ei->xattr_sem); #endif @@ -191,6 +195,7 @@ static void ext2_clear_inode(struct inode *inode) { + struct ext2_block_alloc_info *rsv = EXT2_I(inode)->i_block_alloc_info; #ifdef CONFIG_EXT2_FS_POSIX_ACL struct ext2_inode_info *ei = EXT2_I(inode); @@ -203,6 +208,9 @@ ei->i_default_acl = EXT2_ACL_NOT_CACHED; } #endif + ext2_discard_reservation(inode); + EXT2_I(inode)->i_block_alloc_info = NULL; + kfree(rsv); } static int ext2_show_options(struct seq_file *seq, struct vfsmount *vfs) @@ -240,7 +248,6 @@ .destroy_inode = ext2_destroy_inode, .read_inode = ext2_read_inode, .write_inode = ext2_write_inode, - .put_inode = ext2_put_inode, .delete_inode = ext2_delete_inode, .put_super = ext2_put_super, .write_super = ext2_write_super, @@ -289,7 +296,7 @@ Opt_err_ro, Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov, Opt_nobh, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_xip, Opt_ignore, Opt_err, Opt_quota, - Opt_usrquota, Opt_grpquota + Opt_usrquota, Opt_grpquota, Opt_reservation, Opt_noreservation }; static match_table_t tokens = { @@ -321,6 +328,8 @@ {Opt_ignore, "noquota"}, {Opt_quota, "quota"}, {Opt_usrquota, "usrquota"}, + {Opt_reservation, "reservation"}, + {Opt_noreservation, "noreservation"}, {Opt_err, NULL} }; @@ -448,6 +457,14 @@ break; #endif + case Opt_reservation: + set_opt(sbi->s_mount_opt, RESERVATION); + printk("reservations ON\n"); + break; + case Opt_noreservation: + clear_opt(sbi->s_mount_opt, RESERVATION); + printk("reservations OFF\n"); + break; case Opt_ignore: break; default: @@ -649,9 +666,23 @@ /* * Note: s_es must be initialized as soon as possible because * some ext2 macro-instructions depend on its value + * + * We used to operate on the on-disk superblock directly + * inside the buffer in the superblock bh. However, now that + * we need to do an asynchronous write of the superblock, we + * have to allocate a separate in-memory buffer for the + * superblock. For simplicity, we allocate a buffer that is + * as large as device block size and then set the sbi->s_es + * pointer to the beginning of the superblock inside the + * buffer. -VAL */ - es = (struct ext2_super_block *) (((char *)bh->b_data) + offset); - sbi->s_es = es; + sbi->s_esp = kmalloc(bh->b_size, GFP_KERNEL); + if (!sbi->s_esp) + goto failed_sbi; + memcpy(sbi->s_esp, bh->b_data, bh->b_size); + sbi->s_es = (struct ext2_super_block *) sbi->s_esp + offset; + es = sbi->s_es; + sb->s_magic = le16_to_cpu(es->s_magic); if (sb->s_magic != EXT2_SUPER_MAGIC) @@ -678,6 +709,8 @@ sbi->s_resuid = le16_to_cpu(es->s_def_resuid); sbi->s_resgid = le16_to_cpu(es->s_def_resgid); + set_opt(sbi->s_mount_opt, RESERVATION); + if (!parse_options ((char *) data, sbi)) goto failed_mount; @@ -726,6 +759,7 @@ /* If the blocksize doesn't match, re-read the thing.. */ if (sb->s_blocksize != blocksize) { brelse(bh); + kfree(sbi->s_esp); if (!sb_set_blocksize(sb, blocksize)) { printk(KERN_ERR "EXT2-fs: blocksize too small for device.\n"); @@ -740,8 +774,13 @@ "2nd try.\n"); goto failed_sbi; } - es = (struct ext2_super_block *) (((char *)bh->b_data) + offset); - sbi->s_es = es; + sbi->s_esp = kmalloc(bh->b_size, GFP_KERNEL); + if (!sbi->s_esp) + goto failed_sbi; + memcpy(sbi->s_esp, bh->b_data, bh->b_size); + sbi->s_es = (struct ext2_super_block *) sbi->s_esp + offset; + es = sbi->s_es; + if (es->s_magic != cpu_to_le16(EXT2_SUPER_MAGIC)) { printk ("EXT2-fs: Magic mismatch, very weird !\n"); goto failed_mount; @@ -865,6 +904,19 @@ sbi->s_gdb_count = db_count; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); spin_lock_init(&sbi->s_next_gen_lock); + /* per fileystem reservation list head & lock */ + spin_lock_init(&sbi->s_rsv_window_lock); + sbi->s_rsv_window_root = RB_ROOT; + /* Add a single, static dummy reservation to the start of the + * reservation window list --- it gives us a placeholder for + * append-at-start-of-list which makes the allocation logic + * _much_ simpler. */ + sbi->s_rsv_window_head.rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; + sbi->s_rsv_window_head.rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; + sbi->s_rsv_window_head.rsv_alloc_hit = 0; + sbi->s_rsv_window_head.rsv_goal_size = 0; + ext2_rsv_window_add(sb, &sbi->s_rsv_window_head); + /* * set up enough so that it can read an inode */ @@ -894,6 +946,9 @@ ext2_count_free_inodes(sb)); percpu_counter_mod(&sbi->s_dirs_counter, ext2_count_dirs(sb)); + INIT_LIST_HEAD(&sbi->s_orphan); + /* XXX be smarter about starting/stopping */ + sbi->s_dirtyd = kthread_run(ext2_dirtyd, sb, "ext2dirtyd"); return 0; cantfind_ext2: @@ -910,27 +965,79 @@ kfree(sbi->s_debts); failed_mount: brelse(bh); + kfree(sbi->s_esp); failed_sbi: sb->s_fs_info = NULL; kfree(sbi); return -EINVAL; } +/* + * Helper function to copy the in-memory superblock into the buffer + * used to write it to disk. + */ + +void ext2_prepare_super(struct super_block * sb) +{ + struct buffer_head *bh = EXT2_SB(sb)->s_sbh; + char *esp = EXT2_SB(sb)->s_esp; + + lock_buffer(bh); + memcpy(bh->b_data, esp, bh->b_size); + unlock_buffer(bh); +} + static void ext2_commit_super (struct super_block * sb, struct ext2_super_block * es) { + struct buffer_head *bh = EXT2_SB(sb)->s_sbh; + es->s_wtime = cpu_to_le32(get_seconds()); - mark_buffer_dirty(EXT2_SB(sb)->s_sbh); + ext2_prepare_super(sb); + mark_buffer_dirty(bh); sb->s_dirt = 0; } +static void ext2_end_async_io(struct buffer_head *bh, int uptodate) +{ + /* XXX Deal with failed write of dirty fs bit? */ + if (uptodate) + set_buffer_uptodate(bh); + else + clear_buffer_uptodate(bh); + unlock_buffer(bh); +} + +/* + * Submit the superblock for writing, but don't wait - we only need a + * write barrier here (has to hit disk after previous writes and + * before any subsequent writes). + */ +static +void ext2_write_super_async(struct super_block *sb, struct ext2_super_block *es) +{ + struct buffer_head *bh = EXT2_SB(sb)->s_sbh; + char *esp = EXT2_SB(sb)->s_esp; + + lock_buffer(bh); + bh->b_end_io = ext2_end_async_io; + clear_buffer_dirty(bh); + memcpy(bh->b_data, esp, bh->b_size); + submit_bh(WRITE_BARRIER, bh); + sb->s_dirt = 0; + /* bh unlocked in end io function */ +} + static void ext2_sync_super(struct super_block *sb, struct ext2_super_block *es) { + struct buffer_head *bh = EXT2_SB(sb)->s_sbh; + es->s_free_blocks_count = cpu_to_le32(ext2_count_free_blocks(sb)); es->s_free_inodes_count = cpu_to_le32(ext2_count_free_inodes(sb)); es->s_wtime = cpu_to_le32(get_seconds()); - mark_buffer_dirty(EXT2_SB(sb)->s_sbh); - sync_dirty_buffer(EXT2_SB(sb)->s_sbh); + ext2_prepare_super(sb); + mark_buffer_dirty(bh); + sync_dirty_buffer(bh); sb->s_dirt = 0; } @@ -943,12 +1050,19 @@ * flags to 0. We need to set this flag to 0 since the fs * may have been checked while mounted and e2fsck may have * set s_state to EXT2_VALID_FS after some corrections. + * + * Now we are keeping a copy of the superblock elsewhere in memory + * (pointed to by sbi->s_es, and copying it into the buffer on need + * (see ext2_prepare_super()). This is so we can use the superblock + * to contain the fs-wide dirty bit. We need to be able to submit an + * asynchronous I/O to update this bit without having the superblock + * information change while it is in flight. -VAL */ void ext2_write_super (struct super_block * sb) { struct ext2_super_block * es; - lock_kernel(); + lock_kernel(); /* XXX Need to lock_kernel() when writing sb?? */ if (!(sb->s_flags & MS_RDONLY)) { es = EXT2_SB(sb)->s_es; @@ -956,8 +1070,10 @@ ext2_debug ("setting valid to 0\n"); es->s_state = cpu_to_le16(le16_to_cpu(es->s_state) & ~EXT2_VALID_FS); - es->s_free_blocks_count = cpu_to_le32(ext2_count_free_blocks(sb)); - es->s_free_inodes_count = cpu_to_le32(ext2_count_free_inodes(sb)); + es->s_free_blocks_count = + cpu_to_le32(ext2_count_free_blocks(sb)); + es->s_free_inodes_count = + cpu_to_le32(ext2_count_free_inodes(sb)); es->s_mtime = cpu_to_le32(get_seconds()); ext2_sync_super(sb, es); } else @@ -967,6 +1083,183 @@ unlock_kernel(); } +/* + * Functions for marking fs as dirty or clean with respect to ongoing + * write activity. Note this is different from the fs valid bit, + * which determines whether the fs has been cleanly unmounted. + * + * sb->s_lock MUST be held while calling this function. + */ + +static void __ext2_mark_super(struct super_block *sb, int state) +{ + struct ext2_sb_info *sbi = EXT2_SB(sb); + struct ext2_super_block *es = sbi->s_es; + + if (sb->s_flags & MS_RDONLY) + return; + if (es->s_fs_dirty == state) + return; + + es->s_fs_dirty = state; + es->s_wtime = cpu_to_le32(get_seconds()); + /* + * If it's dirty, don't update free block/inode counts - + * that's expensive, and we have to rebuild them anyway. + * + * If it's clean, update the free block/inode counts, they + * have to be correct now. + */ + if (state == EXT2_FS_DIRTY) { + printk(KERN_DEBUG "marking fs dirty\n"); + sbi->s_dirty_lately = EXT2_FS_DIRTY; + } else { + printk(KERN_DEBUG "marking fs clean\n"); + es->s_free_blocks_count = + cpu_to_le32(ext2_count_free_blocks(sb)); + es->s_free_inodes_count = + cpu_to_le32(ext2_count_free_inodes(sb)); + /* We only reset the dirty_lately flag in ext2_update_state */ + } + ext2_write_super_async(sb, es); +} + +static void __ext2_mark_fs_dirty(struct super_block *sb) +{ + __ext2_mark_super(sb, EXT2_FS_DIRTY); +} + +void __ext2_mark_fs_clean(struct super_block *sb) +{ + __ext2_mark_super(sb, EXT2_FS_CLEAN); +} + +/* + * This function must be called every time we modify file system + * metadata, and must be called BEFORE any write I/O is scheduled. + */ + +void ext2_mark_fs_dirty(struct super_block *sb) +{ + /* XXX get around locking super every write ? */ + lock_super(sb); + __ext2_mark_super(sb, EXT2_FS_DIRTY); + unlock_super(sb); +} + +/* + * Whenever we mark an inode dirty, we must also mark the file system + * dirty. + * + * XXX Currently mark_inode_dirty() is #defined as + * ext2_mark_inode_dirty(), hence the bogus use of + * __mark_inode_dirty(). I don't want to replace all instances of + * mark_inode_dirty until I'm sure this is what I want to do. + */ + +static void __ext2_mark_inode_dirty(struct inode *inode) +{ + __ext2_mark_fs_dirty(inode->i_sb); + __mark_inode_dirty(inode, I_DIRTY); +} + +void ext2_mark_inode_dirty(struct inode *inode) +{ + ext2_mark_fs_dirty(inode->i_sb); + __mark_inode_dirty(inode, I_DIRTY); +} + +/* + * orphan inode stuff, stolen from ext3 + * + */ + +#ifdef EXT2FS_DEBUG +static inline struct inode *orphan_list_entry(struct list_head *l) +{ + return &list_entry(l, struct ext2_inode_info, i_orphan)->vfs_inode; +} + +static void dump_orphan_list(struct super_block *sb, struct ext2_sb_info *sbi) +{ + struct list_head *l; + printk(KERN_DEBUG "sb_info orphan list:\n"); + list_for_each(l, &sbi->s_orphan) { + struct inode *inode = orphan_list_entry(l); + printk(KERN_DEBUG " " + "inode %s:%ld at %p: mode %o, nlink %d, next %d\n", + inode->i_sb->s_id, inode->i_ino, inode, + inode->i_mode, inode->i_nlink, + NEXT_ORPHAN(inode)); + } +} +#endif +/* + * ext2_orphan_add() links an unlinked inode into a list of such + * inodes, starting at the superblock, in case we crash before the + * file is closed and deleted. + * + * We depend on the ext3 orphan recovery code in fsck to clean up. + */ +void ext2_orphan_add(struct inode *inode) +{ + struct super_block *sb = inode->i_sb; + struct ext2_sb_info *sbi = EXT2_SB(sb); + struct ext2_super_block *es = sbi->s_es; + + lock_super(sb); + if (!list_empty(&EXT2_I(inode)->i_orphan)) { + unlock_super(sb); + return; + } + /* Insert this inode at the head of the on-disk orphan list... */ + NEXT_ORPHAN(inode) = le32_to_cpu(es->s_last_orphan); + es->s_last_orphan = cpu_to_le32(inode->i_ino); + /* Add to in-memory list */ + list_add(&EXT2_I(inode)->i_orphan, &EXT2_SB(sb)->s_orphan); + __ext2_mark_inode_dirty(inode); + unlock_super(sb); + return; +} + +/* + * ext2_orphan_del() removes an unlinked inode from the list of such + * inodes stored on disk, because it is finally being cleaned up. + */ +void ext2_orphan_del(struct inode *inode) +{ + struct list_head *prev; + struct super_block *sb = inode->i_sb; + struct ext2_inode_info *ei = EXT2_I(inode); + struct ext2_sb_info *sbi; + unsigned long ino_next; + + lock_super(sb); + if (list_empty(&ei->i_orphan)) { + unlock_super(sb); + return; + } + + ino_next = NEXT_ORPHAN(inode); + prev = ei->i_orphan.prev; + sbi = EXT2_SB(sb); + + list_del_init(&ei->i_orphan); + + if (prev == &sbi->s_orphan) { + sbi->s_es->s_last_orphan = cpu_to_le32(ino_next); + } else { + struct inode *i_prev = + &list_entry(prev, struct ext2_inode_info, + i_orphan)->vfs_inode; + NEXT_ORPHAN(i_prev) = ino_next; + __ext2_mark_inode_dirty(i_prev); + } + __ext2_mark_inode_dirty(inode); + unlock_super(sb); + return; +} + static int ext2_remount (struct super_block * sb, int * flags, char * data) { struct ext2_sb_info * sbi = EXT2_SB(sb); @@ -993,6 +1286,10 @@ sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | ((sbi->s_mount_opt & EXT2_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); + /* Superblock may have changed on disk, reread into memory copy */ + + memcpy(sbi->s_esp, sbi->s_sbh->b_data, sbi->s_sbh->b_size); + es = sbi->s_es; if (((sbi->s_mount_opt & EXT2_MOUNT_XIP) != (old_mount_opt & EXT2_MOUNT_XIP)) && @@ -1125,7 +1422,7 @@ tmp_bh.b_state = 0; err = ext2_get_block(inode, blk, &tmp_bh, 0); - if (err) + if (err < 0) return err; if (!buffer_mapped(&tmp_bh)) /* A hole? */ memset(data, 0, tocopy); @@ -1164,7 +1461,7 @@ tmp_bh.b_state = 0; err = ext2_get_block(inode, blk, &tmp_bh, 1); - if (err) + if (err < 0) goto out; if (offset || tocopy != EXT2_BLOCK_SIZE(sb)) bh = sb_bread(sb, tmp_bh.b_blocknr); diff -x '*~' -uNr vanilla-linux/fs/ext2/xattr.c uml-clean/fs/ext2/xattr.c --- vanilla-linux/fs/ext2/xattr.c 2006-03-24 01:47:33.000000000 -0800 +++ uml-clean/fs/ext2/xattr.c 2006-03-24 03:01:33.000000000 -0800 @@ -345,6 +345,7 @@ lock_super(sb); EXT2_SB(sb)->s_es->s_feature_compat |= cpu_to_le32(EXT2_FEATURE_COMPAT_EXT_ATTR); + ext2_prepare_super(sb); sb->s_dirt = 1; mark_buffer_dirty(EXT2_SB(sb)->s_sbh); unlock_super(sb); @@ -688,6 +689,7 @@ ext2_xattr_update_super_block(sb); } + ext2_mark_fs_dirty(sb); mark_buffer_dirty(new_bh); if (IS_SYNC(inode)) { sync_dirty_buffer(new_bh); @@ -741,6 +743,7 @@ if (ce) mb_cache_entry_release(ce); DQUOT_FREE_BLOCK(inode, 1); + ext2_mark_fs_dirty(sb); mark_buffer_dirty(old_bh); ea_bdebug(old_bh, "refcount now=%d", le32_to_cpu(HDR(old_bh)->h_refcount)); @@ -801,6 +804,7 @@ ea_bdebug(bh, "refcount now=%d", le32_to_cpu(HDR(bh)->h_refcount)); unlock_buffer(bh); + ext2_mark_fs_dirty(inode->i_sb); mark_buffer_dirty(bh); if (IS_SYNC(inode)) sync_dirty_buffer(bh); diff -x '*~' -uNr vanilla-linux/include/linux/ext2_fs.h uml-clean/include/linux/ext2_fs.h --- vanilla-linux/include/linux/ext2_fs.h 2006-01-02 19:21:10.000000000 -0800 +++ uml-clean/include/linux/ext2_fs.h 2006-03-24 04:34:00.000000000 -0800 @@ -29,11 +29,12 @@ #undef EXT2FS_DEBUG /* - * Define EXT2_PREALLOCATE to preallocate data blocks for expanding files + * Define EXT2_RESERVATION to reserve data blocks for expanding files */ -#define EXT2_PREALLOCATE -#define EXT2_DEFAULT_PREALLOC_BLOCKS 8 - +#define EXT2_DEFAULT_RESERVE_BLOCKS 8 +/*max window size: 1024(direct blocks) + 3([t,d]indirect blocks) */ +#define EXT2_MAX_RESERVE_BLOCKS 1027 +#define EXT2_RESERVE_WINDOW_NOT_ALLOCATED 0 /* * The second extended file system version */ @@ -117,6 +118,12 @@ #endif /* + * Macro for dealing with orphan inode list + */ + +#define NEXT_ORPHAN(inode) EXT2_I(inode)->i_dtime + +/* * Macro-instructions used to manage fragments */ #define EXT2_MIN_FRAG_SIZE 1024 @@ -204,6 +211,8 @@ #define EXT2_IOC_SETFLAGS _IOW('f', 2, long) #define EXT2_IOC_GETVERSION _IOR('v', 1, long) #define EXT2_IOC_SETVERSION _IOW('v', 2, long) +#define EXT2_IOC_GETRSVSZ _IOR('f', 5, long) +#define EXT2_IOC_SETRSVSZ _IOW('f', 6, long) /* * Structure of an inode on the disk @@ -296,6 +305,15 @@ */ #define EXT2_VALID_FS 0x0001 /* Unmounted cleanly */ #define EXT2_ERROR_FS 0x0002 /* Errors detected */ +/* + * Bits defining whether the file system is currently clean or not. + * Note that in file systems created by old code, the bit would be set + * to 0. To be safe, we must define 0 as dirty and 1 as clean. + * + * XXX Should convert to state bits, but need to fix fsck first. + */ +#define EXT2_FS_CLEAN 1 +#define EXT2_FS_DIRTY 0 /* * Mount flags @@ -313,8 +331,9 @@ #define EXT2_MOUNT_XATTR_USER 0x004000 /* Extended user attributes */ #define EXT2_MOUNT_POSIX_ACL 0x008000 /* POSIX Access Control Lists */ #define EXT2_MOUNT_XIP 0x010000 /* Execute in place */ -#define EXT2_MOUNT_USRQUOTA 0x020000 /* user quota */ -#define EXT2_MOUNT_GRPQUOTA 0x040000 /* group quota */ +#define EXT2_MOUNT_USRQUOTA 0x020000 /* user quota */ +#define EXT2_MOUNT_GRPQUOTA 0x040000 /* group quota */ +#define EXT2_MOUNT_RESERVATION 0x080000 /* Preallocation */ #define clear_opt(o, opt) o &= ~EXT2_MOUNT_##opt @@ -407,7 +426,12 @@ __u16 s_reserved_word_pad; __le32 s_default_mount_opts; __le32 s_first_meta_bg; /* First metablock block group */ - __u32 s_reserved[190]; /* Padding to the end of the block */ + __u32 s_journal_reserved[18]; /* Used by ext3 journaling */ + __u8 s_fs_dirty; /* Fs-wide dirty bit */ + __u8 s_bytes_reserved[3]; /* Padding */ + __u32 s_clean_count; /* Intervals in which fs was clean */ + __u32 s_dirty_count; /* Intervals in which fs was dirty */ + __u32 s_reserved[169]; /* Padding to the end of the block */ }; /* diff -x '*~' -uNr vanilla-linux/include/linux/ext2_fs_sb.h uml-clean/include/linux/ext2_fs_sb.h --- vanilla-linux/include/linux/ext2_fs_sb.h 2006-01-02 19:21:10.000000000 -0800 +++ uml-clean/include/linux/ext2_fs_sb.h 2006-03-24 04:00:53.000000000 -0800 @@ -18,6 +18,44 @@ #include #include +#include + +/* XXX Here for now... not interested in restructing headers JUST now */ + +struct ext2_reserve_window { + __u32 _rsv_start; /* First byte reserved */ + __u32 _rsv_end; /* Last byte reserved or 0 */ +}; + +struct ext2_reserve_window_node { + struct rb_node rsv_node; + __u32 rsv_goal_size; + __u32 rsv_alloc_hit; + struct ext2_reserve_window rsv_window; +}; + +struct ext2_block_alloc_info { + /* information about reservation window */ + struct ext2_reserve_window_node rsv_window_node; + /* + * was i_next_alloc_block in ext2_inode_info + * is the logical (file-relative) number of the + * most-recently-allocated block in this file. + * We use this for detecting linearly ascending allocation requests. + */ + __u32 last_alloc_logical_block; + /* + * Was i_next_alloc_goal in ext2_inode_info + * is the *physical* companion to i_next_alloc_block. + * it the the physical block number of the block which was most-recentl + * allocated to this file. This give us the goal (target) for the next + * allocation when we detect linearly ascending requests. + */ + __u32 last_alloc_physical_block; +}; + +#define rsv_start rsv_window._rsv_start +#define rsv_end rsv_window._rsv_end /* * second extended-fs super-block data in memory @@ -34,7 +72,11 @@ unsigned long s_desc_per_block; /* Number of group descriptors per block */ unsigned long s_groups_count; /* Number of groups in the fs */ struct buffer_head * s_sbh; /* Buffer containing the super block */ - struct ext2_super_block * s_es; /* Pointer to the super block in the buffer */ + struct ext2_super_block * s_es; /* Pointer to the in memory super block */ + char * s_esp; /* Pointer to kmalloc'd memory + * containing ext2_super_block + * - might be offset inside + * buffer */ struct buffer_head ** s_group_desc; unsigned long s_mount_opt; uid_t s_resuid; @@ -53,6 +95,15 @@ struct percpu_counter s_freeinodes_counter; struct percpu_counter s_dirs_counter; struct blockgroup_lock s_blockgroup_lock; + /* root of the per fs reservation window tree */ + spinlock_t s_rsv_window_lock; + struct rb_root s_rsv_window_root; + struct ext2_reserve_window_node s_rsv_window_head; + + wait_queue_head_t s_wait; + struct list_head s_orphan; /* For quick access to orphan inodes */ + int s_dirty_lately; + struct task_struct *s_dirtyd; /* task pointer for dirty thread */ }; #endif /* _LINUX_EXT2_FS_SB */ - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/