Received: by 2002:a05:6a10:6744:0:0:0:0 with SMTP id w4csp714537pxu; Fri, 23 Oct 2020 11:24:37 -0700 (PDT) X-Google-Smtp-Source: ABdhPJxFv2+k5XFHjYk7dBM3b26iVFV7WFTNCqw4FO6ADNx8BpTcDusGzX/PXRT11CujaBt3xOc1 X-Received: by 2002:a17:906:791:: with SMTP id l17mr3081325ejc.361.1603477476949; Fri, 23 Oct 2020 11:24:36 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1603477476; cv=none; d=google.com; s=arc-20160816; b=IwSxwGIubsnCnkJ2vuYUVVgzyX1kkw+XerOQN+Gus4yL30YZzS+1KpsU/wrH4J9mcO LZlSUDxQXZ6HPMrUyl1zrWoUhxBOmguaKweU075Kss214/LevWDdinvemsPq2Y0Weebp a2BlaWanlg77CQ19TLWH045lBjuQZHGdgEh8VKmVf4yVi28YpnnLV//+KeQq8eHYGZTv k+JFlLrHv07pr3DKUctVwfxqw7fi1dPsRe6u0+pMb4HeY2XGhfdnD9GZmQGZpCTmOGp1 GEIpL8kX3+nwc/GK45xGBq3nLCyorD3r/3C/8IJSL8I1oDWUpuGvSJMSYZ62Bksx+nRB d0mg== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:content-language :in-reply-to:mime-version:user-agent:date:message-id:from:references :cc:to:subject:dkim-signature; bh=3EfnjP8cFlCYg0/O1l2Oacqi7OB2EGKKxw7FPYkg8F4=; b=kBkflPW5Awqk4Vn+t1i+/nrJCEi3oJGEst0BglQsPBoEilxpLSwjveXDYDj0lmy0Na W1OLd9yq5YRBfL0XCXC/B26l39MtfWoyDGf++Ixsr5WkKO1JLBLyQgBOhFuc979M9zuZ yoc1mJo0uLvTMCPl+osAfRGJNFL7HhP1uXaUO0dINULlOH2iRfZGm8o5HiWUsCCmdVD6 i/MzHxzmIqf9A90K1333jf4E91PsizdWOdJtaQ+m2k1MUe1B2krNaHFSsJCo4CAPRbSh AT30n5SFD0C24FIpfNHS4xB7QyLvt9aqaVE3L2FJekr11wonYSta02xMNcShV6jHUDYN JaFg== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@gmail.com header.s=20161025 header.b=SegUUioD; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=NONE sp=QUARANTINE dis=NONE) header.from=gmail.com Return-Path: Received: from vger.kernel.org (vger.kernel.org. [23.128.96.18]) by mx.google.com with ESMTP id g20si1712535ejm.339.2020.10.23.11.24.13; Fri, 23 Oct 2020 11:24:36 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) client-ip=23.128.96.18; Authentication-Results: mx.google.com; dkim=pass header.i=@gmail.com header.s=20161025 header.b=SegUUioD; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=NONE sp=QUARANTINE dis=NONE) header.from=gmail.com Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S462210AbgJWP2P (ORCPT + 99 others); Fri, 23 Oct 2020 11:28:15 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:38704 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S462128AbgJWP2P (ORCPT ); Fri, 23 Oct 2020 11:28:15 -0400 Received: from mail-ej1-x644.google.com (mail-ej1-x644.google.com [IPv6:2a00:1450:4864:20::644]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id A9115C0613CE; Fri, 23 Oct 2020 08:28:14 -0700 (PDT) Received: by mail-ej1-x644.google.com with SMTP id p9so2941691eji.4; Fri, 23 Oct 2020 08:28:14 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=subject:to:cc:references:from:message-id:date:user-agent :mime-version:in-reply-to:content-language:content-transfer-encoding; bh=3EfnjP8cFlCYg0/O1l2Oacqi7OB2EGKKxw7FPYkg8F4=; b=SegUUioDaVWHcqpmrBQan6Sne2uqrHeL0w7cgVMaY8ucsQHl0OxJZ/K8pJPnY3YXQV 4BvbvOKS9hJD4lZHiZWeRRmcHl41vTcslnH5A3IFwM3s6ZacSkMP0cbYrUsx7d88Vnwf nK8uFChBnPQ2krmYkYDhzZjlEoLGxCtOCV90VsH4qd099eX7RO9vV6iqNQR04ez6hLYf 9BClSo+XvZoAG+wFHzowjQ7jHXJQvMUk6gmd2Cq1nDDfyimigTVH+BDaqWGTIyHVoZ3R 9MVm6QP+v7o1Rwg7wliF5kX+1DACWtTW+DterAFAJ5eyzmf2P/7eKRCL9QvysAdQpl7Y xkUA== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:subject:to:cc:references:from:message-id:date :user-agent:mime-version:in-reply-to:content-language :content-transfer-encoding; bh=3EfnjP8cFlCYg0/O1l2Oacqi7OB2EGKKxw7FPYkg8F4=; b=IURE60nT8zEekSZul+v7AOM0p8JE67Mz4jWKyldeDeqzT7rjpyHoyWobbDb5Nd1nB9 3OHC5L4Fd1/ExF2/JAl9PPdZPKzWUACT3PzJQj9HVuyLWEy6AXT5AXXOChf+bYC9FNLq RtMYCpbPy2RtxmQoz1B9PCukkwDBTayyg0JZDFHE1RRagQzeOT4LnWBhPkGClapfKwJE f4CxCUIElFYS4Tnt4CnTiYXNd1jYzj1QxYMMYCXfuFpkKZ+9fdSGcaPoqVq1zLH+he/G eSX3jkFH4AsrPQMbxU5Q+K7/ReqOYFcbA+PM/nkBe9UDXw3bT7rXuEjdBQnxKGVDIh5L KoGQ== X-Gm-Message-State: AOAM53119zzMHOnvLvDF71S3lwqdjp3hzFSwtHI+F2xE7o6AfExwduUQ P15SAZ0+SL3DGfbZeTpmDgDwnPw12y8= X-Received: by 2002:a17:906:2895:: with SMTP id o21mr2642425ejd.332.1603466892443; Fri, 23 Oct 2020 08:28:12 -0700 (PDT) Received: from [192.168.2.1] (81-204-249-205.fixed.kpn.net. [81.204.249.205]) by smtp.gmail.com with ESMTPSA id b4sm1044841eja.3.2020.10.23.08.28.10 (version=TLS1_3 cipher=TLS_AES_128_GCM_SHA256 bits=128/128); Fri, 23 Oct 2020 08:28:11 -0700 (PDT) Subject: Re: [PATCH v12 2/8] mtd: rawnand: rockchip: NFC drivers for RK3308, RK2928 and others To: =?UTF-8?B?6LW15Luq5bOw?= , Miquel Raynal , richard , vigneshr , robh+dt Cc: devicetree , linux-mtd , =?UTF-8?Q?HeikoSt=c3=bcbner?= , linux-rockchip , linux-arm-kernel , linux-kernel References: <20201020031733.17883-1-yifeng.zhao@rock-chips.com> <20201020031733.17883-3-yifeng.zhao@rock-chips.com> <2020102314511434035715@rock-chips.com> From: Johan Jonker Message-ID: Date: Fri, 23 Oct 2020 17:28:09 +0200 User-Agent: Mozilla/5.0 (X11; Linux i686; rv:68.0) Gecko/20100101 Thunderbird/68.11.0 MIME-Version: 1.0 In-Reply-To: <2020102314511434035715@rock-chips.com> Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Hi, Hope that I have the text and the brackets right now. ;) Let us know if something is in need for improvement. () Parentheses or round brackets {} Braces or curly brackets [] Brackets or square brackets <> Chevrons or angle brackets On 10/23/20 12:11 PM, 赵仪峰 wrote: > Hi  Miquèl and Johan, > > I've fixed some comments, but there are still a few points I can`t understand. > >> Hi Yifeng, Miquèl and others, >> >> I've copied some comments from Miquèl from version 8 to this one here >> and added some more. ;) >> >> >> On 10/20/20 5:17 AM, Yifeng Zhao wrote: >>> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, >>> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using >>> 8-bit NAND interface on the ARM based RK3308 platform. >>> >>> Support Rockchip SoCs and NFC versions: >>> - PX30 and RK3326(NFCv900). >>> ECC: 16/40/60/70 bits/1KB. >>> CLOCK: ahb and nfc. >>> - RK3308 and RV1108(NFCv800). >>> ECC: 16 bits/1KB. >>> CLOCK: ahb and nfc. >>> - RK3036 and RK3128(NFCv622). >>> ECC: 16/24/40/60 bits/1KB. >>> CLOCK: ahb and nfc. >>> - RK3066, RK3188 and RK2928(NFCv600). >>> ECC: 16/24/40/60 bits/1KB. >>> CLOCK: ahb. >>> >>> Supported features: >>> - Read full page data by DMA. >>> - Support HW ECC(one step is 1KB). >>> - Support 2 - 32K page size. >>> - Support 8 CS(depend on SoCs) >>> >>> Limitations: >>> - No support for the ecc step size is 512. >>> - Untested on some SoCs. >>> - No support for subpages. >>> - No support for the builtin randomizer. >>> - The original bad block mask is not supported. It is recommended to use >>>    the BBT(bad block table). >>> >>> Signed-off-by: Yifeng Zhao >>> --- >>> >>> (no changes since v11) >>> >>> Changes in v11: >>> - Fix compile error. >>> >>> Changes in v10: >>> - Fix compile error on master v5.9-rc7. >>> >>> Changes in v9: >>> - The nfc->buffer will realloc while the page size of the second mtd >>>    is large than the first one >>> - Fix coding style. >>> - Remove struct rk_nfc_clk. >>> - Prepend some function with rk_nfc_. >>> - Replace function readl_poll_timeout_atomic with >> readl_relaxed_poll_timeout. >>> - Remove function rk_nfc_read_byte and rk_nfc_write_byte. >>> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op. >>> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw. >>> >>> Changes in v7: >>> - Rebase to linux-next. >>> - Fix coding style. >>> - Reserved 4 bytes at the beginning of the oob area. >>> - Page raw read and write included ecc data. >>> >>> Changes in v6: >>> - The mtd->name set by NAND label property. >>> - Add some comments. >>> - Fix compile error. >>> >>> Changes in v5: >>> - Add boot blocks support  with different ECC for bootROM. >>> - Rename rockchip-nand.c to rockchip-nand-controller.c. >>> - Unification of other variable names. >>> - Remove some compatible define. >>> >>> Changes in v4: >>> - Define platform data structure for the register offsets. >>> - The compatible define with rkxx_nfc. >>> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS. >>> - Use exec_op instead of legacy hooks. >>> >>> Changes in v2: >>> - Fix compile error. >>> - Include header files sorted by file name. >>> >>>   drivers/mtd/nand/raw/Kconfig                  |   12 + >>>   drivers/mtd/nand/raw/Makefile                 |    1 + >>>   .../mtd/nand/raw/rockchip-nand-controller.c   | 1439 +++++++++++++++++ >>>   3 files changed, 1452 insertions(+) >>>   create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c >>> >>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig >>> index 6c46f25b57e2..2cc533e4e239 100644 >>> --- a/drivers/mtd/nand/raw/Kconfig >>> +++ b/drivers/mtd/nand/raw/Kconfig >>> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN >>>     Enables the driver for the Arasan NAND flash controller on >>>     Zynq Ultrascale+ MPSoC. >>> >>> +config MTD_NAND_ROCKCHIP >>> + tristate "Rockchip NAND controller" >>> + depends on ARCH_ROCKCHIP && HAS_IOMEM >>> + help >>> +   Enables support for NAND controller on Rockchip SoCs. >>> +   There are four different versions of NAND FLASH Controllers, >>> +   including: >>> +     NFC v600: RK2928, RK3066, RK3188 >>> +     NFC v622: RK3036, RK3128 >>> +     NFC v800: RK3308, RV1108 >>> +     NFC v900: PX30, RK3326 >>> + >>>   comment "Misc" >>> >>>   config MTD_SM_COMMON >>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile >>> index 2930f5b9015d..960c9be25204 100644 >>> --- a/drivers/mtd/nand/raw/Makefile >>> +++ b/drivers/mtd/nand/raw/Makefile >>> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o >>>   obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o >>>   obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o >>>   obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o >>> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o >>> >>>   nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o >> nand_ids.o >>>   nand-objs += nand_onfi.o >>> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c >> b/drivers/mtd/nand/raw/rockchip-nand-controller.c >>> new file mode 100644 >>> index 000000000000..cf28c5936209 >>> --- /dev/null >>> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c >>> @@ -0,0 +1,1439 @@ >>> +// SPDX-License-Identifier: GPL-2.0 OR MIT >>> +/* >>> + * Rockchip NAND Flash controller driver. >>> + * Copyright (C) 2020 Rockchip Inc. >>> + * Author: Yifeng Zhao >>> + */ >>> + >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> +#include >>> + >>> +/* >>> + * NFC Page Data Layout: >>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + >>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + >>> + * ...... >>> + * NAND Page Data Layout: >>> + * 1024 * n Data + m Bytes oob >>> + * Original Bad Block Mask Location: >>> + * First byte of oob(spare). >>> + * nand_chip->oob_poi data layout: >>> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data. >>> + */ >>> + >>> +/* NAND controller register definition */ >>> +#define NFC_READ (0) >>> +#define NFC_WRITE (1) >>> + >>> +#define NFC_FMCTL (0x00) >>> +#define   FMCTL_CE_SEL_M 0xFF >>> +#define   FMCTL_CE_SEL(x) (1 << (x)) >>> +#define   FMCTL_WP BIT(8) >>> +#define   FMCTL_RDY BIT(9) >>> + >>> +#define NFC_FMWAIT (0x04) >>> +#define   FLCTL_RST BIT(0) >>> +#define   FLCTL_WR (1) /* 0: read, 1: write */ >>> +#define   FLCTL_XFER_ST BIT(2) >>> +#define   FLCTL_XFER_EN BIT(3) >>> +#define   FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ >>> +#define   FLCTL_XFER_READY BIT(20) >>> +#define   FLCTL_XFER_SECTOR (22) >>> +#define   FLCTL_TOG_FIX BIT(29) >>> + >>> +#define   BCHCTL_BANK_M (7 << 5) >>> +#define   BCHCTL_BANK (5) >>> + >>> +#define   DMA_ST BIT(0) >>> +#define   DMA_WR (1) /* 0: write, 1: read */ >>> +#define   DMA_EN BIT(2) >>> +#define   DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ >>> +#define   DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ >>> +#define   DMA_INC_NUM (9) /* 1 - 16 */ >>> + >>> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ >>> +   (((x) >> (e).high) & (e).high_mask) << (e).low_bn) >>> +#define   INT_DMA BIT(0) >>> +#define NFC_BANK (0x800) >>> +#define NFC_BANK_STEP (0x100) >>> +#define   BANK_DATA (0x00) >>> +#define   BANK_ADDR (0x04) >>> +#define   BANK_CMD (0x08) >>> +#define NFC_SRAM0 (0x1000) >>> +#define NFC_SRAM1 (0x1400) >>> +#define NFC_SRAM_SIZE (0x400) >>> +#define NFC_TIMEOUT (500000) >>> +#define NFC_MAX_OOB_PER_STEP 128 >>> +#define NFC_MIN_OOB_PER_STEP 64 >>> +#define MAX_DATA_SIZE 0xFFFC >>> +#define MAX_ADDRESS_CYC 6 >>> +#define NFC_ECC_MAX_MODES 4 >>> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ >>> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 >> data.*/ >>> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ >>> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) >>> + >>> +enum nfc_type { >>> + NFC_V6, >>> + NFC_V8, >>> + NFC_V9, >>> +}; >>> + >>> +/** >>> + * struct rk_ecc_cnt_status: represent a ecc status data. >>> + * @err_flag_bit: error flag bit index at register. >>> + * @low: ecc count low bit index at register. >>> + * @low_mask: mask bit. >>> + * @low_bn: ecc count low bit number. >>> + * @high: ecc count high bit index at register. >>> + * @high_mask: mask bit >>> + */ >>> +struct ecc_cnt_status { >>> + u8 err_flag_bit; >>> + u8 low; >>> + u8 low_mask; >>> + u8 low_bn; >>> + u8 high; >>> + u8 high_mask; >>> +}; >>> + >>> +/* >>> + * @type: nfc version >>> + * @ecc_strengths: ecc strengths >>> + * @ecc_cfgs: ecc config values >>> + * @flctl_off: FLCTL register offset >>> + * @bchctl_off: BCHCTL register offset >>> + * @dma_data_buf_off: DMA_DATA_BUF register offset >>> + * @dma_oob_buf_off: DMA_OOB_BUF register offset >>> + * @dma_cfg_off: DMA_CFG register offset >>> + * @dma_st_off: DMA_ST register offset >>> + * @bch_st_off: BCG_ST register offset >>> + * @randmz_off: RANDMZ register offset >>> + * @int_en_off: interrupt enable register offset >>> + * @int_clr_off: interrupt clean register offset >>> + * @int_st_off: interrupt status register offset >>> + * @oob0_off: oob0 register offset >>> + * @oob1_off: oob1 register offset >>> + * @ecc0: represent ECC0 status data >>> + * @ecc1: represent ECC1 status data >>> + */ >>> +struct nfc_cfg { >>> + enum nfc_type type; >>> + u8 ecc_strengths[NFC_ECC_MAX_MODES]; >>> + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; >>> + u32 flctl_off; >>> + u32 bchctl_off; >>> + u32 dma_cfg_off; >>> + u32 dma_data_buf_off; >>> + u32 dma_oob_buf_off; >>> + u32 dma_st_off; >>> + u32 bch_st_off; >>> + u32 randmz_off; >>> + u32 int_en_off; >>> + u32 int_clr_off; >>> + u32 int_st_off; >>> + u32 oob0_off; >>> + u32 oob1_off; >>> + struct ecc_cnt_status ecc0; >>> + struct ecc_cnt_status ecc1; >>> +}; >>> + >>> +struct rk_nfc_nand_chip { >>> + struct list_head node; >>> + struct nand_chip chip; >>> + >>> + u16 spare_per_sector; >>> + u16 oob_buf_per_sector; >>> + u16 boot_blks; >>> + u16 boot_ecc; >>> + u16 metadata_size; >>> + >>> + u8 nsels; >>> + u8 sels[0]; >>> + /* Nothing after this field. */ >>> +}; >>> + >>> +struct rk_nfc { >>> + struct nand_controller controller; >>> + const struct nfc_cfg *cfg; >>> + struct device *dev; >>> + >>> + struct clk *nfc_clk; >>> + struct clk *ahb_clk; >>> + void __iomem *regs; >>> + >>> + u32 selected_bank; >>> + u32 band_offset; >>> + u32 cur_clk; >>> + >>> + struct completion done; >>> + struct list_head chips; >>> + >>> + u8 *buffer; >>> + u8 *page_buf; >>> + u32 *oob_buf; >>> + u32 buffer_size; >>> + >>> + unsigned long assigned_cs; >>> +}; >>> + >>> +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip) > Fixed it.,to_rknand -> rk_nfc_to_rknand >>> +{ >>> + return container_of(chip, struct rk_nfc_nand_chip, chip); >>> +} >>> + >>> +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p, >> int i) >> >> rk_nfc_buf_to_data_ptr ? >> Comment by Miquèl: >> Please prepend all your functions with rk_nfc_ >> >> For the ftrace filters it is needed to have all functions start with >> the same prefix in a module. >> >> >>> +{ >>> + return (u8 *)p + i * chip->ecc.size; >>> +} >>> + >>> +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i) >> >> same here >>> +{ >>> + u8 *poi; >>> + >>> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; >>> + >>> + return poi; >>> +} >>> + >>> +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i) >> >> same here >>> +{ >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + u8 *poi; >>> + >>> + poi = chip->oob_poi + rknand->metadata_size + >>> +       chip->ecc.bytes * i; >>> + >>> + return poi; >>> +} >>> + >>> +static inline int rk_nfc_data_len(struct nand_chip *chip) >>> +{ >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + >>> + return chip->ecc.size + rknand->spare_per_sector; >>> +} >>> + >>> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip,  int i) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + >>> + return nfc->buffer + i * rk_nfc_data_len(chip); >>> +} >>> + >>> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + >>> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size; >>> +} >>> + >>> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + u32 val; >>> + >>> + if (cs < 0) { >>> + nfc->selected_bank = -1; >>> + /* Deselect the currently selected target. */ >>> + val = readl_relaxed(nfc->regs + NFC_FMCTL); >>> + val &= ~FMCTL_CE_SEL_M; >>> + writel(val, nfc->regs + NFC_FMCTL); >>> + return; >>> + } >>> + >>> + nfc->selected_bank = rknand->sels[cs]; >>> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; >>> + >>> + val = readl_relaxed(nfc->regs + NFC_FMCTL); >>> + val &= ~FMCTL_CE_SEL_M; >>> + val |= FMCTL_CE_SEL(nfc->selected_bank); >>> + >>> + writel(val, nfc->regs + NFC_FMCTL); >>> +} >>> + >>> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) >>> +{ >>> + int rc; >>> + u32 val; >>> + >>> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, >>> + val & FMCTL_RDY, 10, NFC_TIMEOUT); >>> + >>> + return rc; >>> +} >>> + >>> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) >>> +{ >>> + int i; >>> + >>> + for (i = 0; i < len; i++) >>> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + >>> +        BANK_DATA); >>> +} >>> + >>> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) >>> +{ >>> + int i; >>> + >>> + for (i = 0; i < len; i++) >>> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); >>> +} >>> + >>> +static int rk_nfc_cmd(struct nand_chip *chip, >>> +       const struct nand_subop *subop) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + unsigned int i, j, remaining, start; >>> + int reg_offset = nfc->band_offset; >>> + u8 *inbuf = NULL; >>> + const u8 *outbuf; >>> + u32 cnt = 0; >>> + int ret = 0; >>> + >>> + for (i = 0; i < subop->ninstrs; i++) { >>> + const struct nand_op_instr *instr = &subop->instrs[i]; >>> + >>> + switch (instr->type) { >>> + case NAND_OP_CMD_INSTR: >>> + writeb(instr->ctx.cmd.opcode, >>> +        nfc->regs + reg_offset + BANK_CMD); >>> + break; >>> + >>> + case NAND_OP_ADDR_INSTR: >>> + remaining = nand_subop_get_num_addr_cyc(subop, i); >>> + start = nand_subop_get_addr_start_off(subop, i); >>> + >>> + for (j = 0; j < 8 && j + start < remaining; j++) >>> + writeb(instr->ctx.addr.addrs[j + start], >>> +        nfc->regs + reg_offset + BANK_ADDR); >>> + break; >>> + >>> + case NAND_OP_DATA_IN_INSTR: >>> + case NAND_OP_DATA_OUT_INSTR: >>> + start = nand_subop_get_data_start_off(subop, i); >>> + cnt = nand_subop_get_data_len(subop, i); >>> + >>> + if (instr->type == NAND_OP_DATA_OUT_INSTR) { >>> + outbuf = instr->ctx.data.buf.out + start; >>> + rk_nfc_write_buf(nfc, outbuf, cnt); >>> + } else { >>> + inbuf = instr->ctx.data.buf.in + start; >>> + rk_nfc_read_buf(nfc, inbuf, cnt); >>> + } >>> + break; >>> + >>> + case NAND_OP_WAITRDY_INSTR: >>> + if (rk_nfc_wait_ioready(nfc) < 0) { >>> + ret = -ETIMEDOUT; >>> + dev_err(nfc->dev, "IO not ready\n"); >>> + } >>> + break; >>> + } >>> + } >>> + >>> + return ret; >>> +} >>> + >>> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( >>> + NAND_OP_PARSER_PATTERN( >>> + rk_nfc_cmd, >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), >>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), >>> + NAND_OP_PARSER_PATTERN( >>> + rk_nfc_cmd, >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), >>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), >>> +); >>> + >>> +static int rk_nfc_exec_op(struct nand_chip *chip, >>> +   const struct nand_operation *op, >>> +   bool check_only) >>> +{ >>> + if (!check_only) >>> + rk_nfc_select_chip(chip, op->cs); >>> + >>> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, >>> +       check_only); >>> +} >>> + >>> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int >> csline, >>> +        const struct nand_interface_config *conf) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + const struct nand_sdr_timings *timings; >>> + u32 rate, tc2rw, trwpw, trw2c; >>> + u32 temp; >>> + >>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY) >>> + return 0; >>> + >>> + timings = nand_get_sdr_timings(conf); >>> + if (IS_ERR(timings)) >>> + return -EOPNOTSUPP; >>> + >>> + if (IS_ERR(nfc->nfc_clk)) >>> + rate = clk_get_rate(nfc->ahb_clk); >>> + else >>> + rate = clk_get_rate(nfc->nfc_clk); >>> + >>> + /* Turn clock rate into kHz. */ >>> + rate /= 1000; >>> + >>> + tc2rw = 1; >>> + trw2c = 1; >>> + >>> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; >>> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); >>> + >>> + temp = timings->tREA_max / 1000; >>> + temp = DIV_ROUND_UP(temp * rate, 1000000); >>> + >>> + if (trwpw < temp) >>> + trwpw = temp; >>> + >>> + /* >>> + * ACCON: access timing control register >>> + * ------------------------------------- >>> + * 31:18: reserved >>> + * 17:12: csrw, clock cycles from the falling edge of CSn to the >>> + *   falling edge of RDn or WRn >>> + * 11:11: reserved >>> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles >>> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the >>> + *   rising edge of CSn >>> + */ >>> + temp = ACCTIMING(tc2rw, trwpw, trw2c); >>> + writel(temp, nfc->regs + NFC_FMWAIT); >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, >>> +        struct nand_ecc_ctrl *ecc, >>> +        uint32_t strength) >>> +{ >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + u32 reg, i; >>> + >>> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { >>> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) { >>> + reg = nfc->cfg->ecc_cfgs[i]; >>> + break; >>> + } >>> + } >>> + >>> + if (i >= NFC_ECC_MAX_MODES) >>> + return -EINVAL; >>> + >>> + writel(reg, nfc->regs + nfc->cfg->bchctl_off); >>> + >>> + return 0; >>> +} >>> + >>> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, >>> +       dma_addr_t dma_data, dma_addr_t dma_oob) >>> +{ >>> + u32 dma_reg, fl_reg, bch_reg; >>> + >>> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | >>> +       (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); >>> + >>> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | >>> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; >>> + >>> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { >>> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); >>> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | >>> +   (nfc->selected_bank << BCHCTL_BANK); >>> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); >>> + } >>> + >>> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); >>> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); >>> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); >>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); >>> + fl_reg |= FLCTL_XFER_ST; >>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); >>> +} >>> + >>> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) >>> +{ >>> + void __iomem *ptr; >>> + int ret = 0; >>> + u32 reg; >>> + >>> + ptr = nfc->regs + nfc->cfg->flctl_off; >>> + >>> + ret = readl_relaxed_poll_timeout(ptr, reg, >>> + reg & FLCTL_XFER_READY, >>> + 10, NFC_TIMEOUT); >>> + >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, >>> + int oob_on, int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + int ret = 0; >>> + u32 i; >>> + >>> + if (!buf) >>> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); >>> + >>> + for (i = 0; i < chip->ecc.steps; i++) { >>> + /* Copy data to nfc buffer. */ >>> + if (buf) >>> + memcpy(rk_nfc_data_ptr(chip, i), >>> +        nand_data_ptr(chip, buf, i), >>> +        chip->ecc.size); >> >>> + /* >>> + * The first four bytes of OOB are reserved for the >>> + * boot ROM. In some debugging cases, sush as dump >> >> such as >> >>> + * data and write back, the last four bytes stored >>> + * in OOB need to be write back. >> >> such as with a read, erase and write back test >> these 4 bytes stored in OOB also need to be written back.>>> + */ >>> + if (!i) >>> + memcpy(rk_nfc_oob_ptr(chip, i), >>> +        nand_oob_ptr(chip, chip->ecc.steps - 1), >>> +        NFC_SYS_DATA_SIZE); >>> + else >>> + memcpy(rk_nfc_oob_ptr(chip, i), >>> +        nand_oob_ptr(chip, i - 1), >>> +        NFC_SYS_DATA_SIZE); >>> + /* Copy ecc data to nfc buffer. */ >> >> Copy ECC data to the NFC buffer. >>> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, >>> +        nand_oob_ecc_ptr(chip, i), >>> +        chip->ecc.bytes); >>> + } >>> + >>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0); >>> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); >>> + ret = nand_prog_page_end_op(chip); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >> >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_write_oob(struct nand_chip *chip, int page) >>> +{ >>> + return rk_nfc_write_page_raw(chip, NULL, 1, page); >>> +} >>> + >>> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, >>> +    int oob_on, int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : >>> + NFC_MIN_OOB_PER_STEP; >>> + int pages_per_blk = mtd->erasesize / mtd->writesize; >>> + int ret = 0, i, boot_rom_mode = 0; >>> + dma_addr_t dma_data, dma_oob; >>> + u32 reg; >>> + u8 *oob; >>> + >>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0); >>> + >>> + memcpy(nfc->page_buf, buf, mtd->writesize); >>> + >>> + /* >>> + * The first blocks (4, 8 or 16 depending on the device) are used >>> + * by the boot ROM and the first 32 bits of oob need to link to >> >> OOB >> >>> + * the next page address in the same block. >> >> Add more explanation why: >> >> We can't copy OOB directly, >> because this page address conflicts with the bad block marker (BBM), >> so we shift all OOB including the BBM with 4 byte positions. >> As consequence the OOB size then is also reduced with 4 bytes. >> >> PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ... >> >> If a NAND is not a boot medium the first 4 bytes are left untouched >> by writing 0xFF to them. >> >> 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... >> >> >> Could you include the above layout to make things more clear? >> >>> + * Config the ECC algorithm supported by the boot ROM. >> >> comment by Miquèl: >> >> s/Config/Configure/ > > modified, please check again... > /* >  * The first blocks (4, 8 or 16 depending on the device) are used >  * by the boot ROM and the first 32 bits of OOB need to link to >  * the next page address in the same block. We can't copy OOB >  * directly, because this page address conflicts with the bad block >  * marker (BBM), so we shift all OOB including the BBM with 4 byte >  * positions. As consequence the OOB size then is also reduced with >  * 4 bytes. >  *   PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... >  * If a NAND is not a boot medium, the first 4 bytes are left untouched >  * by writing 0xFF to them. >  *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... >  */ /* * The first blocks (4, 8 or 16 depending on the device) * are used by the boot ROM and the first 32 bits of OOB need to link to * the next page address in the same block. We can't directly copy * OOB data from the MTD framework, because this page address * conflicts for example with the bad block marker (BBM), * so we shift all OOB data including the BBM with 4 byte positions. * As a consequence the OOB size available to the MTD framework is * also reduced with 4 bytes. * * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... * * If a NAND is not a boot medium or the page is not a boot block, * the first 4 bytes are left untouched by writing 0xFF to them. * * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... * * Configure the ECC algorithm supported by the boot ROM. */ > >> >>> + */ >>> + if ((page < pages_per_blk * rknand->boot_blks) && >>> +     (chip->options & NAND_IS_BOOT_MEDIUM)) { >>> + boot_rom_mode = 1; >>> + if (rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, >>> +     rknand->boot_ecc); >>> + } >>> + >>> + for (i = 0; i < ecc->steps; i++) { >>> + if (!i) { >>> + reg = 0xFFFFFFFF; >>> + } else { >>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; >>> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | >>> +       oob[3] << 24; >>> + } >>> + if (!i && boot_rom_mode) >>> + reg = (page & (pages_per_blk - 1)) * 4; >>> + >>> + if (nfc->cfg->type == NFC_V9) >>> + nfc->oob_buf[i] = reg; >>> + else >>> + nfc->oob_buf[i * oob_step / 4] = reg; nfc->oob_buf[i * (oob_step / 4)] = reg; >> >> Please use brackets. > > I don't understand this. Can you give an example of how to modify it? > >>> + } >>> + >>> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, >> >> Do you need this cast? > > Yes, need dma_map_single to get phy_addr and do cache ops. > >>> +   mtd->writesize, DMA_TO_DEVICE); >>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, >>> + ecc->steps * oob_step, >>> + DMA_TO_DEVICE); >>> + >>> + reinit_completion(&nfc->done); >>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); >>> + >>> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, >>> +   dma_oob); >>> + ret = wait_for_completion_timeout(&nfc->done, >>> +   msecs_to_jiffies(100)); >>> + if (!ret) >>> + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); >>> + /* >>> + * Whether the DMA transfer is completed or not. The driver >>> + * needs to check the NFC`s status register to see if the data >>> + * transfer was completed. >>> + */ >>> + ret = rk_nfc_wait_for_xfer_done(nfc); >>> + >>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, >>> + DMA_TO_DEVICE); >>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, >>> + DMA_TO_DEVICE); >>> + >>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >>> + >>> + if (ret) { >>> + ret = -EIO; >>> + dev_err(nfc->dev, >>> + "write: wait transfer done timeout.\n"); >>> + } >>> + >>> + if (ret) >>> + return ret; >>> + >>> + ret = nand_prog_page_end_op(chip); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >> >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int >> oob_on, >>> + int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + int i; >>> + >>> + nand_read_page_op(chip, page, 0, NULL, 0); >>> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >> >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + for (i = 0; i < chip->ecc.steps; i++) { >> >>> + /* >>> + * The first four bytes of OOB are reserved for the >>> + * boot ROM. In some debugging cases, sush as dump data >> >> such as >> >>> + * and write back, it`s need to read out this four bytes, >> >> such as with a read, erase and write back test >> these 4 bytes also must be saved somewhere, >> >>> + * otherwise this information will be lost during write back. >> >> otherwise this information will be lost during a write back. >>> + */ >>> + if (!i) >>> + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1), >>> +        rk_nfc_oob_ptr(chip, i), >>> +        NFC_SYS_DATA_SIZE); >>> + else >>> + memcpy(nand_oob_ptr(chip, i - 1), >>> +        rk_nfc_oob_ptr(chip, i), >>> +        NFC_SYS_DATA_SIZE); >> >>> + /* Copy ecc data form nfc buffer. */ >> >> Copy ECC data from the NFC buffer. >>> + memcpy(nand_oob_ecc_ptr(chip, i), >>> +        rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, >>> +        chip->ecc.bytes); >> >>> + /* Copy data form nfc buffer. */ >> >> Copy data from the NFC buffer. >>> + if (buf) >>> + memcpy(nand_data_ptr(chip, buf, i), >>> +        rk_nfc_data_ptr(chip, i), >>> +        chip->ecc.size); >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_read_oob(struct nand_chip *chip, int page) >>> +{ >>> + return rk_nfc_read_page_raw(chip, NULL, 1, page); >>> +} >>> + >>> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, >> int oob_on, >>> +   int page) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : >>> + NFC_MIN_OOB_PER_STEP; >>> + int pages_per_blk = mtd->erasesize / mtd->writesize; >>> + dma_addr_t dma_data, dma_oob; >>> + int ret = 0, i, boot_rom_mode = 0; >>> + int bitflips = 0, bch_st; >>> + u8 *oob; >>> + u32 tmp; >>> + >>> + nand_read_page_op(chip, page, 0, NULL, 0); >>> + >>> + dma_data = dma_map_single(nfc->dev, nfc->page_buf, >>> +   mtd->writesize, >>> +   DMA_FROM_DEVICE); >>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, >>> + ecc->steps * oob_step, >>> + DMA_FROM_DEVICE); >>> + >>> + /* >>> + * The first blocks (4, 8 or 16 depending on the device) >>> + * are used by the boot ROM. >>> + * Config the ECC algorithm supported by the boot ROM. s/Config/Configure/ Configure the ECC algorithm supported by the boot ROM. >>> + */ >>> + if ((page < pages_per_blk * rknand->boot_blks) && >>> +     (chip->options & NAND_IS_BOOT_MEDIUM)) { >>> + boot_rom_mode = 1; >>> + if (rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, >>> +     rknand->boot_ecc); >>> + } >>> + >>> + reinit_completion(&nfc->done); >>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); >>> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, >>> +   dma_oob); >>> + ret = wait_for_completion_timeout(&nfc->done, >>> +   msecs_to_jiffies(100)); >>> + if (!ret) >>> + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); >>> + /* >>> + * Whether the DMA transfer is completed or not. The driver >>> + * needs to check the NFC`s status register to see if the data >>> + * transfer was completed. >>> + */ >>> + ret = rk_nfc_wait_for_xfer_done(nfc); >>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, >>> + DMA_FROM_DEVICE); >>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, >>> + DMA_FROM_DEVICE); >>> + >>> + if (ret) { >>> + bitflips = -EIO; >>> + dev_err(nfc->dev, >>> + "read: wait transfer done timeout.\n"); >>> + goto out; >>> + } >>> + >>> + for (i = 1; i < ecc->steps; i++) { >>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; >>> + if (nfc->cfg->type == NFC_V9) >>> + tmp = nfc->oob_buf[i]; >>> + else >>> + tmp = nfc->oob_buf[i * oob_step / 4]; tmp = nfc->oob_buf[i * (oob_step / 4)]; >>> + *oob++ = (u8)tmp; >>> + *oob++ = (u8)(tmp >> 8); >>> + *oob++ = (u8)(tmp >> 16); >>> + *oob++ = (u8)(tmp >> 24); >>> + } >>> + >>> + for (i = 0; i < ecc->steps / 2; i++) { for (i = 0; i < (ecc->steps / 2); i++) { >> >> Brackets here as well please > > I don't understand this. Can you give an example of how to modify it? > >>> + bch_st = readl_relaxed(nfc->regs + >>> +        nfc->cfg->bch_st_off + i * 4); >>> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || >>> +     bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { >>> + mtd->ecc_stats.failed++; >>> + /* ECC failed, return the minimum number of error bits */ >>> + bitflips = ecc->strength + 1; >> >> Could you explain why: >> >> bitflips = -1; >> >> changed to: >> >> bitflips = ecc->strength + 1; >> >> >> Comment by Miquèl: >> >> I think you should return 0. >> >> Then the upper layer will check for failures. >> >>> + } else { >>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); >>> + mtd->ecc_stats.corrected += ret; >>> + bitflips = max_t(u32, bitflips, ret); >>> + >>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); >>> + mtd->ecc_stats.corrected += ret; >>> + bitflips = max_t(u32, bitflips, ret); >>> + } >>> + } >>> +out: >>> + memcpy(buf, nfc->page_buf, mtd->writesize); >>> + >>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) >>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >>> + >>> + if (bitflips > ecc->strength) >>> + dev_err(nfc->dev, "read page: %x ecc error!\n", page); >>> + >>> + /* >>> + * Deselect the currently selected target after ops done, >> >>> + * otherwise the NAND flash will has extra power consumption. >> >> will have >> >> or use for example: >> >> Deselect the currently selected target after the ops is done >> to reduce the power consumption. >> >>> + */ >>> + rk_nfc_select_chip(chip, -1); >>> + >>> + return bitflips; >>> +} >>> + >>> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) >>> +{ >>> + /* Disable flash wp. */ >>> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); >>> + /* Config default timing 40ns at 150 Mhz nfc clock. */ >>> + writel(0x1081, nfc->regs + NFC_FMWAIT); >>> + /* Disable randomizer and DMA. */ >>> + writel(0, nfc->regs + nfc->cfg->randmz_off); >>> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); >>> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); >>> +} >>> + >>> +static irqreturn_t rk_nfc_irq(int irq, void *id) >>> +{ >>> + struct rk_nfc *nfc = id; >>> + u32 sta, ien; >>> + >>> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); >>> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); >>> + >>> + if (!(sta & ien)) >>> + return IRQ_NONE; >>> + >>> + writel(sta, nfc->regs + nfc->cfg->int_clr_off); >>> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); >>> + >>> + complete(&nfc->done); >>> + >>> + return IRQ_HANDLED; >>> +} >>> + >>> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc) >> >> Change function name, because there are 2 clocks. >> >> _clks with an s to inform that there are several of them. >> >> _clk ==>> _clks >> >>> +{ >>> + int ret; >>> + >>> + if (!IS_ERR(nfc->nfc_clk)) { >>> + ret = clk_prepare_enable(nfc->nfc_clk); >>> + if (ret) { >>> + dev_err(dev, "failed to enable nfc clk\n"); >>> + return ret; >>> + } >>> + } >>> + >>> + ret = clk_prepare_enable(nfc->ahb_clk); >>> + if (ret) { >>> + dev_err(dev, "failed to enable ahb clk\n"); >>> + if (!IS_ERR(nfc->nfc_clk)) >>> + clk_disable_unprepare(nfc->nfc_clk); >>> + return ret; >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static void rk_nfc_disable_clk(struct rk_nfc *nfc) >> >> Change function name, because there are 2 clocks. >> >> ditto >> >> _clk ==>> _clks >> >>> +{ >>> + if (!IS_ERR(nfc->nfc_clk)) >>> + clk_disable_unprepare(nfc->nfc_clk); >>> + clk_disable_unprepare(nfc->ahb_clk); >>> +} >>> + >>> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oob_region) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + >>> + if (section) >>> + return -ERANGE; >>> + >>> + /* >>> + * The beginning of the oob area stores the reserved data for the NFC, >> >> OOB area >> >>> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. >>> + */ >>> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; >>> + oob_region->offset = NFC_SYS_DATA_SIZE + 2; >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oob_region) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + >>> + if (section) >>> + return -ERANGE; >>> + >> >>> + oob_region->offset = rknand->metadata_size; >>> + oob_region->length = mtd->oobsize - oob_region->offset; >> >> oob_region->length = mtd->oobsize - oob_region->offset; >> oob_region->offset = rknand->metadata_size; >> >> Keep length and offset in the same sort order as in rk_nfc_ooblayout_free(). > > modified: > oob_region->length = mtd->oobsize - rknand->metadata_size; > oob_region->offset = rknand->metadata_size; > >>> + >>> + return 0; >>> +} >>> + >>> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { >>> + .free = rk_nfc_ooblayout_free, >>> + .ecc = rk_nfc_ooblayout_ecc, >>> +}; >>> + >>> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + const u8 *strengths = nfc->cfg->ecc_strengths; >>> + u8 max_strength, nfc_max_strength; >>> + int i; >>> + >>> + nfc_max_strength = nfc->cfg->ecc_strengths[0]; >>> + /* If optional dt settings not present. */ >>> + if (!ecc->size || !ecc->strength || >>> +     ecc->strength > nfc_max_strength) { >>> + chip->ecc.size = 1024; >>> + ecc->steps = mtd->writesize / ecc->size; >>> + >>> + /* >>> + * HW ECC always requests the number of ECC bytes per 1024 byte >> >>> + * blocks. 4 Bytes is oob for sys data. >> >> The first 4 OOB bytes are reserved for sys data. >>> + */ >>> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / >>> + fls(8 * 1024); >>> + if (max_strength > nfc_max_strength) >>> + max_strength = nfc_max_strength; >>> + >>> + for (i = 0; i < 4; i++) { >>> + if (max_strength >= strengths[i]) >>> + break; >>> + } >>> + >>> + if (i >= 4) { >>> + dev_err(nfc->dev, "Unsupported ECC strength\n"); >>> + return -EOPNOTSUPP; >>> + } >>> + >>> + ecc->strength = strengths[i]; >>> + } >>> + ecc->steps = mtd->writesize / ecc->size; >>> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); >>> + /* HW ECC always work with even numbers of ECC bytes. */ >>> + ecc->bytes = ALIGN(ecc->bytes, 2); >>> + >>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength); >>> + >>> + return 0; >>> +} >>> + >>> +static int rk_nfc_attach_chip(struct nand_chip *chip) >>> +{ >>> + struct mtd_info *mtd = nand_to_mtd(chip); >>> + struct device *dev = mtd->dev.parent; >>> + struct rk_nfc *nfc = nand_get_controller_data(chip); >>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip); >>> + struct nand_ecc_ctrl *ecc = &chip->ecc; >>> + u8 *temp_buf; >>> + int len, oob_len; >>> + int ret; >>> + >>> + if (chip->options & NAND_BUSWIDTH_16) { >>> + dev_err(dev, "16 bits bus width not supported"); >>> + return -EINVAL; >>> + } >>> + >>> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) >>> + return 0; >>> + >>> + ret = rk_nfc_ecc_init(dev, mtd); >>> + if (ret) >>> + return ret; >>> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE; >>> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; >>> + >>> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { >>> + dev_err(dev, >>> + "Driver needs at least %d bytes of meta data\n", >>> + NFC_SYS_DATA_SIZE + 2); >>> + return -EIO; >>> + } >> >>> + len = mtd->writesize + mtd->oobsize; >> >>> + >>> + /* Check buffer first, avoid duplicate alloc buffer. */ >>> + if (nfc->buffer) { >>> + if (len > nfc->buffer_size) { >> >> Check only for buffer_size. >> Maybe split in 2. One size variable per buffer. >> Reorder flow, see example? >> >>> + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA); >>> + if (!temp_buf) >>> + return -ENOMEM; >>> + kfree(nfc->buffer); >> >> Is there a realloc for kernels or use helper? >> >>> + nfc->buffer = temp_buf; >>> + nfc->buffer_size = len; >>> + >>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >>> + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); >>> + if (!temp_buf) >>> + return -ENOMEM; >>> + kfree(nfc->oob_buf); >>> + nfc->oob_buf = (u32 *)temp_buf; >>> + } >>> + return 0; >>> + } >>> + >> >> Example: >> >> // Check and resize existing buffer sizes. >> >> new_len = mtd->writesize + mtd->oobsize; >> >> if (nfc->buffer && new_len > nfc->buffer_size) { >>   ret = resize(...); >>   if (!ret) >>     return -ENOMEM; >>   nfc->buffer_size = new_len; >> } >> >> new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >> >> if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) { >>   ret = resize(...); >>   if (!ret) { >>     free(nfc->buffer); >>     return -ENOMEM; >>   } >>   nfc->oob_buffer_size = new_oob_len; >> } >> >> // If no buffers exists then create new buffers. >> >> if (!nfc->buffer) { >>   ret = kzalloc(...); >>   if (!ret) >>     return -ENOMEM; >>   nfc->buffer_size = new_len; >> } >> >> if (!nfc->oob_buf) { >>   ret = kzalloc(...); >>   if (!ret) { >>     free(nfc->buffer); >>     return -ENOMEM; >>   } >>   nfc->oob_buffer_size = new_oob_len; >> } >> >> >>> + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA); >>> + if (!nfc->buffer) >>> + return -ENOMEM; >> >> >>> + >>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; >>> + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA); >>> + if (!nfc->oob_buf) { >>> + kfree(nfc->buffer); >>> + nfc->buffer = NULL; >> >>> + nfc->oob_buf = NULL; >> >> !nfc->oob_buf == (nfc->oob_buf = NULL) >> >> Comment from Miquèl: >> I don't think this is needed >> >> If something is NULL then there's no need to set it to NULL again. >> >>> + return -ENOMEM; >>> + } >>> + >>> + nfc->buffer_size = len; >>> + nfc->page_buf = nfc->buffer; >>> + >>> + chip->ecc.write_page_raw = rk_nfc_write_page_raw; >>> + chip->ecc.write_page = rk_nfc_write_page_hwecc; >>> + chip->ecc.write_oob_raw = rk_nfc_write_oob; >>> + chip->ecc.write_oob = rk_nfc_write_oob; >>> + >>> + chip->ecc.read_page_raw = rk_nfc_read_page_raw; >>> + chip->ecc.read_page = rk_nfc_read_page_hwecc; >>> + chip->ecc.read_oob_raw = rk_nfc_read_oob; >>> + chip->ecc.read_oob = rk_nfc_read_oob; >>> + >>> + return 0; >>> +} >>> + >>> +static const struct nand_controller_ops rk_nfc_controller_ops = { >>> + .attach_chip = rk_nfc_attach_chip, >>> + .exec_op = rk_nfc_exec_op, >>> + .setup_interface = rk_nfc_setup_data_interface, >>> +}; >>> + >>> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, >>> + struct device_node *np) >>> +{ >>> + struct rk_nfc_nand_chip *rknand; >>> + struct nand_chip *chip; >>> + struct mtd_info *mtd; >>> + int nsels; >>> + u32 tmp; >>> + int ret; >>> + int i; >>> + >>> + if (!of_get_property(np, "reg", &nsels)) >>> + return -ENODEV; >>> + nsels /= sizeof(u32); >>> + if (!nsels || nsels > NFC_MAX_NSELS) { >>> + dev_err(dev, "invalid reg property size %d\n", nsels); >>> + return -EINVAL; >>> + } >>> + >>> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), >>> +       GFP_KERNEL); >>> + if (!rknand) >>> + return -ENOMEM; >>> + >>> + rknand->nsels = nsels; >>> + for (i = 0; i < nsels; i++) { >>> + ret = of_property_read_u32_index(np, "reg", i, &tmp); >>> + if (ret) { >>> + dev_err(dev, "reg property failure : %d\n", ret); >>> + return ret; >>> + } >>> + >>> + if (tmp >= NFC_MAX_NSELS) { >>> + dev_err(dev, "invalid CS: %u\n", tmp); >>> + return -EINVAL; >>> + } >>> + >>> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { >>> + dev_err(dev, "CS %u already assigned\n", tmp); >>> + return -EINVAL; >>> + } >>> + >>> + rknand->sels[i] = tmp; >>> + } >>> + >>> + chip = &rknand->chip; >>> + chip->controller = &nfc->controller; >>> + >>> + nand_set_flash_node(chip, np); >>> + >>> + nand_set_controller_data(chip, nfc); >>> + >>> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; >>> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; >>> + >>> + /* Set default mode in case dt entry is missing. */ >>> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; >>> + >>> + mtd = nand_to_mtd(chip); >>> + mtd->owner = THIS_MODULE; >>> + mtd->dev.parent = dev; >>> + >>> + if (!mtd->name) { >>> + dev_err(nfc->dev, "NAND label property is mandatory\n"); >>> + return -EINVAL; >>> + } >>> + >>> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); >>> + rk_nfc_hw_init(nfc); >>> + ret = nand_scan(chip, nsels); >>> + if (ret) >>> + return ret; >>> + >>> + if (chip->options & NAND_IS_BOOT_MEDIUM) { >>> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); >>> + rknand->boot_blks = ret ? 0 : tmp; >> >> Comment by Miquèl: >> Can't you guess this entry knowing the IP version/SoC version? >> >> No, "rockchip,boot-blks" depends on the size of multiple partitions >> and is user layout dependent. > > The "rockchip,boot-blks" is not a fixed number, can be configured with different number of blocks to store the pre loader > for the same SoC. > >>> + >>> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", >>> +    &tmp); >>> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; >>> + } >>> + >>> + ret = mtd_device_register(mtd, NULL, 0); >>> + if (ret) { >>> + dev_err(dev, "mtd parse partition error\n"); >>> + nand_cleanup(chip); >>> + return ret; >>> + } >>> + >>> + list_add_tail(&rknand->node, &nfc->chips); >>> + >>> + return 0; >>> +} >>> + >>> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) >>> +{ >>> + struct rk_nfc_nand_chip *rknand, *tmp; >>> + struct nand_chip *chip; >>> + int ret; >>> + >>> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { >>> + chip = &rknand->chip; >>> + ret = mtd_device_unregister(nand_to_mtd(chip)); >>> + WARN_ON(ret); >>> + nand_cleanup(chip); >>> + list_del(&rknand->node); >>> + } >>> +} >>> + >>> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) >>> +{ >>> + struct device_node *np = dev->of_node, *nand_np; >>> + int nchips = of_get_child_count(np); >>> + int ret; >>> + >>> + if (!nchips || nchips > NFC_MAX_NSELS) { >>> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", >>> + nchips); >>> + return -EINVAL; >>> + } >>> + >>> + for_each_child_of_node(np, nand_np) { >>> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); >>> + if (ret) { >>> + of_node_put(nand_np); >>> + rk_nfc_chips_cleanup(nfc); >>> + return ret; >>> + } >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static struct nfc_cfg nfc_v6_cfg = { >>> + .type = NFC_V6, >>> + .ecc_strengths = {60, 40, 24, 16}, >>> + .ecc_cfgs = { >>> + 0x00040011, 0x00040001, 0x00000011, 0x00000001, >>> + }, >>> + .flctl_off = 0x08, >>> + .bchctl_off = 0x0C, >>> + .dma_cfg_off = 0x10, >>> + .dma_data_buf_off = 0x14, >>> + .dma_oob_buf_off = 0x18, >>> + .dma_st_off = 0x1C, >>> + .bch_st_off = 0x20, >>> + .randmz_off = 0x150, >>> + .int_en_off = 0x16C, >>> + .int_clr_off = 0x170, >>> + .int_st_off = 0x174, >>> + .oob0_off = 0x200, >>> + .oob1_off = 0x230, >>> + .ecc0 = { >>> + .err_flag_bit = 2, >>> + .low = 3, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 27, >>> + .high_mask = 0x1, >>> + }, >>> + .ecc1 = { >>> + .err_flag_bit = 15, >>> + .low = 16, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 29, >>> + .high_mask = 0x1, >>> + }, >>> +}; >>> + >>> +static struct nfc_cfg nfc_v8_cfg = { >>> + .type = NFC_V8, >>> + .ecc_strengths = {16, 16, 16, 16}, >>> + .ecc_cfgs = { >>> + 0x00000001, 0x00000001, 0x00000001, 0x00000001, >>> + }, >>> + .flctl_off = 0x08, >>> + .bchctl_off = 0x0C, >>> + .dma_cfg_off = 0x10, >>> + .dma_data_buf_off = 0x14, >>> + .dma_oob_buf_off = 0x18, >>> + .dma_st_off = 0x1C, >>> + .bch_st_off = 0x20, >>> + .randmz_off = 0x150, >>> + .int_en_off = 0x16C, >>> + .int_clr_off = 0x170, >>> + .int_st_off = 0x174, >>> + .oob0_off = 0x200, >>> + .oob1_off = 0x230, >>> + .ecc0 = { >>> + .err_flag_bit = 2, >>> + .low = 3, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 27, >>> + .high_mask = 0x1, >>> + }, >>> + .ecc1 = { >>> + .err_flag_bit = 15, >>> + .low = 16, >>> + .low_mask = 0x1F, >>> + .low_bn = 5, >>> + .high = 29, >>> + .high_mask = 0x1, >>> + }, >>> +}; >>> + >>> +static struct nfc_cfg nfc_v9_cfg = { >>> + .type = NFC_V9, >>> + .ecc_strengths = {70, 60, 40, 16}, >>> + .ecc_cfgs = { >>> + 0x00000001, 0x06000001, 0x04000001, 0x02000001, >>> + }, >>> + .flctl_off = 0x10, >>> + .bchctl_off = 0x20, >>> + .dma_cfg_off = 0x30, >>> + .dma_data_buf_off = 0x34, >>> + .dma_oob_buf_off = 0x38, >>> + .dma_st_off = 0x3C, >>> + .bch_st_off = 0x150, >>> + .randmz_off = 0x208, >>> + .int_en_off = 0x120, >>> + .int_clr_off = 0x124, >>> + .int_st_off = 0x128, >>> + .oob0_off = 0x200, >>> + .oob1_off = 0x204, >>> + .ecc0 = { >>> + .err_flag_bit = 2, >>> + .low = 3, >>> + .low_mask = 0x7F, >>> + .low_bn = 7, >>> + .high = 0, >>> + .high_mask = 0x0, >>> + }, >>> + .ecc1 = { >>> + .err_flag_bit = 18, >>> + .low = 19, >>> + .low_mask = 0x7F, >>> + .low_bn = 7, >>> + .high = 0, >>> + .high_mask = 0x0, >>> + }, >>> +}; >>> + >>> +static const struct of_device_id rk_nfc_id_table[] = { >>> + { >>> + .compatible = "rockchip,px30-nfc", >>> + .data = &nfc_v9_cfg >>> + }, >>> + { >>> + .compatible = "rockchip,rk2928-nfc", >>> + .data = &nfc_v6_cfg >>> + }, >>> + { >>> + .compatible = "rockchip,rv1108-nfc", >>> + .data = &nfc_v8_cfg >>> + }, >>> + { /* sentinel */ } >>> +}; >>> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); >>> + >>> +static int rk_nfc_probe(struct platform_device *pdev) >>> +{ >>> + struct device *dev = &pdev->dev; >>> + struct rk_nfc *nfc; >>> + int ret, irq; >>> + >>> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); >>> + if (!nfc) >>> + return -ENOMEM; >>> + >>> + nand_controller_init(&nfc->controller); >>> + INIT_LIST_HEAD(&nfc->chips); >>> + nfc->controller.ops = &rk_nfc_controller_ops; >>> + >>> + nfc->cfg = of_device_get_match_data(dev); >>> + nfc->dev = dev; >>> + >>> + init_completion(&nfc->done); >>> + >>> + nfc->regs = devm_platform_ioremap_resource(pdev, 0); >>> + if (IS_ERR(nfc->regs)) { >>> + ret = PTR_ERR(nfc->regs); >>> + goto release_nfc; >>> + } >>> + >>> + nfc->nfc_clk = devm_clk_get(dev, "nfc"); >>> + if (IS_ERR(nfc->nfc_clk)) { >>> + dev_dbg(dev, "no nfc clk\n"); >>> + /* Some earlier models, such as rk3066, have no nfc clk. */ >>> + } >>> + >>> + nfc->ahb_clk = devm_clk_get(dev, "ahb"); >>> + if (IS_ERR(nfc->ahb_clk)) { >>> + dev_err(dev, "no ahb clk\n"); >>> + ret = PTR_ERR(nfc->ahb_clk); >>> + goto release_nfc; >>> + } >>> + >>> + ret = rk_nfc_enable_clk(dev, nfc); >>> + if (ret) >>> + goto release_nfc; >>> + >>> + irq = platform_get_irq(pdev, 0); >>> + if (irq < 0) { >>> + dev_err(dev, "no nfc irq resource\n"); >>> + ret = -EINVAL; >>> + goto clk_disable; >>> + } >>> + >>> + writel(0, nfc->regs + nfc->cfg->int_en_off); >>> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); >>> + if (ret) { >>> + dev_err(dev, "failed to request nfc irq\n"); >>> + goto clk_disable; >>> + } >>> + >>> + platform_set_drvdata(pdev, nfc); >>> + >>> + ret = rk_nfc_nand_chips_init(dev, nfc); >>> + if (ret) { >>> + dev_err(dev, "failed to init NAND chips\n"); >>> + goto clk_disable; >>> + } >>> + return 0; >>> + >>> +clk_disable: >>> + rk_nfc_disable_clk(nfc); >>> +release_nfc: >>> + return ret; >>> +} >>> + >>> +static int rk_nfc_remove(struct platform_device *pdev) >>> +{ >>> + struct rk_nfc *nfc = platform_get_drvdata(pdev); >>> + >>> + kfree(nfc->buffer); >>> + kfree(nfc->oob_buf); >>> + rk_nfc_chips_cleanup(nfc); >>> + rk_nfc_disable_clk(nfc); >>> + >>> + return 0; >>> +} >>> + >>> +static int __maybe_unused rk_nfc_suspend(struct device *dev) >>> +{ >>> + struct rk_nfc *nfc = dev_get_drvdata(dev); >>> + >>> + rk_nfc_disable_clk(nfc); >>> + >>> + return 0; >>> +} >>> + >>> +static int __maybe_unused rk_nfc_resume(struct device *dev) >>> +{ >>> + struct rk_nfc *nfc = dev_get_drvdata(dev); >>> + struct rk_nfc_nand_chip *rknand; >>> + struct nand_chip *chip; >>> + int ret; >>> + u32 i; >>> + >>> + ret = rk_nfc_enable_clk(dev, nfc); >>> + if (ret) >>> + return ret; >>> + >>> + /* Reset NAND chip if VCC was powered off. */ >>> + list_for_each_entry(rknand, &nfc->chips, node) { >>> + chip = &rknand->chip; >>> + for (i = 0; i < rknand->nsels; i++) >>> + nand_reset(chip, i); >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static const struct dev_pm_ops rk_nfc_pm_ops = { >>> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) >>> +}; >>> + >>> +static struct platform_driver rk_nfc_driver = { >>> + .probe = rk_nfc_probe, >>> + .remove = rk_nfc_remove, >>> + .driver = { >>> + .name = "rockchip-nfc", >>> + .of_match_table = rk_nfc_id_table, >>> + .pm = &rk_nfc_pm_ops, >>> + }, >>> +}; >>> + >>> +module_platform_driver(rk_nfc_driver); >>> + >>> +MODULE_LICENSE("Dual MIT/GPL"); >>> +MODULE_AUTHOR("Yifeng Zhao "); >>> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); >>> +MODULE_ALIAS("platform:rockchip-nand-controller"); >>> >> >> >> >