Received: by 2002:a05:6a10:16a7:0:0:0:0 with SMTP id gp39csp1272029pxb; Fri, 13 Nov 2020 08:26:17 -0800 (PST) X-Google-Smtp-Source: ABdhPJzJBjOvpSpzbkWM2taLzGbeDTzZLxNrrAoyMc60Gmm/AfpJl644dmojJq9T99TXUoTuSOWK X-Received: by 2002:a17:907:2089:: with SMTP id pv9mr2718600ejb.34.1605284777009; Fri, 13 Nov 2020 08:26:17 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1605284776; cv=none; d=google.com; s=arc-20160816; b=QUTig92VFWuD2m9L8DqQFOMK6G56kX9AkzaCd8oC0EMdYMvwgbNPczjGZU7FOt4FeS 8i+SyvxdVw7rm7CTjAY02JOuN9+HXlVd3a/vNRp/EdfHOCbCCAwavlo8/fyApFQfdZdj fmGBAoJ/BJkSyrH6j9wfamqo3FQU12/EXwNPiVYGZ8S6lQaxRj+76ZEtPOyXhiVskjml k443JQ0b8OryJyGte2h8+THF1u+XmhCATw+wb8HzQxN33lUpfJj6t2RbpF738MWTvdVe V6WAUwyVQ10DRhO9od3c4Slhc1i/eBXcmMoOlehMM4aeBHeuCNBTfRXUI/7CuYojiRT8 zGCA== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from :ironport-sdr:ironport-sdr; bh=hJSsDwza+vdKt8/sT5yJSw3i0ocQcKsay216eVbXSYI=; b=bkH44RTLmVPbT6cQpSFKNLxx+VK/pNddhCF6JgaD1Gzs2M5cVP0zCVGdrF1sGCpxD9 HQHlisBRkAeZQVVWsReD4omEvM8FRiXx6iFg8cKeegVly5yGNLEghVQSK72f2ipqoOzY ou1EkeOCghEU7la4ekLENOt1Aw4B6kNtRuI0PFp27ZjxsidisjV22rXpHi6bhDFqzbo+ +nyK5/J2hIzHM3QrPoHek2LDJ8MvzFyvxxaZJ3V0mI7439jYrggBkFyJ6c6Z28CAve2v vaiVC8wUSQMbTWAxwtR+hnYkY5SdunBS88M4vddmZRCCqg8GJ9KgFlWykd0Lk5xbCF+y 1gfA== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=intel.com Return-Path: Received: from vger.kernel.org (vger.kernel.org. [23.128.96.18]) by mx.google.com with ESMTP id cq14si7922547edb.207.2020.11.13.08.25.51; Fri, 13 Nov 2020 08:26:16 -0800 (PST) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) client-ip=23.128.96.18; Authentication-Results: mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=intel.com Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1726531AbgKMQVq (ORCPT + 99 others); Fri, 13 Nov 2020 11:21:46 -0500 Received: from mga18.intel.com ([134.134.136.126]:45997 "EHLO mga18.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1726176AbgKMQVo (ORCPT ); Fri, 13 Nov 2020 11:21:44 -0500 IronPort-SDR: 7YVdMCFS9LEDxDcAtFGAqCTB6MY08yUZ0noYWYa8SnCOiD+ZfkrNeV25Uxd/mCIeYvPas4CFhl WltA0cbQz+Xg== X-IronPort-AV: E=McAfee;i="6000,8403,9804"; a="158272286" X-IronPort-AV: E=Sophos;i="5.77,475,1596524400"; d="scan'208";a="158272286" X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from fmsmga003.fm.intel.com ([10.253.24.29]) by orsmga106.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 13 Nov 2020 08:21:41 -0800 IronPort-SDR: q0XHVdcylpedjKMiBzyWOtZBIHg5ihJ4I2XcCHVoGeo6a3SePgeIrzkAfvitgtYJc9Ls9bQl8W 91REYiYwlJIQ== X-IronPort-AV: E=Sophos;i="5.77,475,1596524400"; d="scan'208";a="366767221" Received: from dmert-dev.jf.intel.com ([10.166.241.5]) by fmsmga003-auth.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 13 Nov 2020 08:21:40 -0800 From: Dave Ertman To: alsa-devel@alsa-project.org Cc: tiwai@suse.de, broonie@kernel.org, linux-rdma@vger.kernel.org, jgg@nvidia.com, dledford@redhat.com, netdev@vger.kernel.org, davem@davemloft.net, kuba@kernel.org, gregkh@linuxfoundation.org, ranjani.sridharan@linux.intel.com, pierre-louis.bossart@linux.intel.com, fred.oh@linux.intel.com, parav@mellanox.com, shiraz.saleem@intel.com, dan.j.williams@intel.com, kiran.patil@intel.com, linux-kernel@vger.kernel.org, leonro@nvidia.com Subject: [PATCH v4 01/10] Add auxiliary bus support Date: Fri, 13 Nov 2020 08:18:50 -0800 Message-Id: <20201113161859.1775473-2-david.m.ertman@intel.com> X-Mailer: git-send-email 2.26.2 In-Reply-To: <20201113161859.1775473-1-david.m.ertman@intel.com> References: <20201113161859.1775473-1-david.m.ertman@intel.com> MIME-Version: 1.0 Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Add support for the Auxiliary Bus, auxiliary_device and auxiliary_driver. It enables drivers to create an auxiliary_device and bind an auxiliary_driver to it. The bus supports probe/remove shutdown and suspend/resume callbacks. Each auxiliary_device has a unique string based id; driver binds to an auxiliary_device based on this id through the bus. Co-developed-by: Kiran Patil Signed-off-by: Kiran Patil Co-developed-by: Ranjani Sridharan Signed-off-by: Ranjani Sridharan Co-developed-by: Fred Oh Signed-off-by: Fred Oh Co-developed-by: Leon Romanovsky Signed-off-by: Leon Romanovsky Reviewed-by: Pierre-Louis Bossart Reviewed-by: Shiraz Saleem Reviewed-by: Parav Pandit Reviewed-by: Dan Williams Signed-off-by: Dave Ertman --- Documentation/driver-api/auxiliary_bus.rst | 234 ++++++++++++++++++ Documentation/driver-api/index.rst | 1 + drivers/base/Kconfig | 3 + drivers/base/Makefile | 1 + drivers/base/auxiliary.c | 268 +++++++++++++++++++++ include/linux/auxiliary_bus.h | 78 ++++++ include/linux/mod_devicetable.h | 8 + scripts/mod/devicetable-offsets.c | 3 + scripts/mod/file2alias.c | 8 + 9 files changed, 604 insertions(+) create mode 100644 Documentation/driver-api/auxiliary_bus.rst create mode 100644 drivers/base/auxiliary.c create mode 100644 include/linux/auxiliary_bus.h diff --git a/Documentation/driver-api/auxiliary_bus.rst b/Documentation/driver-api/auxiliary_bus.rst new file mode 100644 index 000000000000..5dd7804631ef --- /dev/null +++ b/Documentation/driver-api/auxiliary_bus.rst @@ -0,0 +1,234 @@ +.. SPDX-License-Identifier: GPL-2.0-only + +============= +Auxiliary Bus +============= + +In some subsystems, the functionality of the core device (PCI/ACPI/other) is +too complex for a single device to be managed by a monolithic driver +(e.g. Sound Open Firmware), multiple devices might implement a common +intersection of functionality (e.g. NICs + RDMA), or a driver may want to +export an interface for another subsystem to drive (e.g. SIOV Physical Function +export Virtual Function management). A split of the functinoality into child- +devices representing sub-domains of functionality makes it possible to +compartmentalize, layer, and distribute domain-specific concerns via a Linux +device-driver model. + +An example for this kind of requirement is the audio subsystem where a single +IP is handling multiple entities such as HDMI, Soundwire, local devices such as +mics/speakers etc. The split for the core's functionality can be arbitrary or +be defined by the DSP firmware topology and include hooks for test/debug. This +allows for the audio core device to be minimal and focused on hardware-specific +control and communication. + +Each auxiliary_device represents a part of its parent functionality. The +generic behavior can be extended and specialized as needed by encapsulating an +auxiliary_device within other domain-specific structures and the use of .ops +callbacks. Devices on the auxiliary bus do not share any structures and the use +of a communication channel with the parent is domain-specific. + +Note that ops are intended as a way to augment instance behavior within a class +of auxiliary devices, it is not the mechanism for exporting common +infrastructure from the parent. Consider EXPORT_SYMBOL_NS() to convey +infrastructure from the parent module to the auxiliary module(s). + + +When Should the Auxiliary Bus Be Used +===================================== + +The auxiliary bus is to be used when a driver and one or more kernel modules, +who share a common header file with the driver, need a mechanism to connect and +provide access to a shared object allocated by the auxiliary_device's +registering driver. The registering driver for the auxiliary_device(s) and the +kernel module(s) registering auxiliary_drivers can be from the same subsystem, +or from multiple subsystems. + +The emphasis here is on a common generic interface that keeps subsystem +customization out of the bus infrastructure. + +One example is a PCI network device that is RDMA-capable and exports a child +device to be driven by an auxiliary_driver in the RDMA subsystem. The PCI +driver allocates and registers an auxiliary_device for each physical +function on the NIC. The RDMA driver registers an auxiliary_driver that claims +each of these auxiliary_devices. This conveys data/ops published by the parent +PCI device/driver to the RDMA auxiliary_driver. + +Another use case is for the PCI device to be split out into multiple sub +functions. For each sub function an auxiliary_device is created. A PCI sub +function driver binds to such devices that creates its own one or more class +devices. A PCI sub function auxiliary device is likely to be contained in a +struct with additional attributes such as user defined sub function number and +optional attributes such as resources and a link to the parent device. These +attributes could be used by systemd/udev; and hence should be initialized +before a driver binds to an auxiliary_device. + +A key requirement for utilizing the auxiliary bus is that there is no +dependency on a physical bus, device, register accesses or regmap support. +These individual devices split from the core cannot live on the platform bus as +they are not physical devices that are controlled by DT/ACPI. The same +argument applies for not using MFD in this scenario as MFD relies on individual +function devices being physical devices. + +Auxiliary Device +================ + +An auxiliary_device represents a part of its parent device's functionality. It +is given a name that, combined with the registering drivers KBUILD_MODNAME, +creates a match_name that is used for driver binding, and an id that combined +with the match_name provide a unique name to register with the bus subsystem. + +Registering an auxiliary_device is a two-step process. First call +auxiliary_device_init(), which checks several aspects of the auxiliary_device +struct and performs a device_initialize(). After this step completes, any +error state must have a call to auxiliary_device_uninit() in its resolution path. +The second step in registering an auxiliary_device is to perform a call to +auxiliary_device_add(), which sets the name of the device and add the device to +the bus. + +Unregistering an auxiliary_device is also a two-step process to mirror the +register process. First call auxiliary_device_delete(), then call +auxiliary_device_uninit(). + +.. code-block:: c + + struct auxiliary_device { + struct device dev; + const char *name; + u32 id; + }; + +If two auxiliary_devices both with a match_name "mod.foo" are registered onto +the bus, they must have unique id values (e.g. "x" and "y") so that the +registered devices names are "mod.foo.x" and "mod.foo.y". If match_name + id +are not unique, then the device_add fails and generates an error message. + +The auxiliary_device.dev.type.release or auxiliary_device.dev.release must be +populated with a non-NULL pointer to successfully register the auxiliary_device. + +The auxiliary_device.dev.parent must also be populated. + +Auxiliary Device Memory Model and Lifespan +------------------------------------------ + +The registering driver is the entity that allocates memory for the +auxiliary_device and register it on the auxiliary bus. It is important to note +that, as opposed to the platform bus, the registering driver is wholly +responsible for the management for the memory used for the driver object. + +A parent object, defined in the shared header file, contains the +auxiliary_device. It also contains a pointer to the shared object(s), which +also is defined in the shared header. Both the parent object and the shared +object(s) are allocated by the registering driver. This layout allows the +auxiliary_driver's registering module to perform a container_of() call to go +from the pointer to the auxiliary_device, that is passed during the call to the +auxiliary_driver's probe function, up to the parent object, and then have +access to the shared object(s). + +The memory for the auxiliary_device is freed only in its release() callback +flow as defined by its registering driver. + +The memory for the shared object(s) must have a lifespan equal to, or greater +than, the lifespan of the memory for the auxiliary_device. The auxiliary_driver +should only consider that this shared object is valid as long as the +auxiliary_device is still registered on the auxiliary bus. It is up to the +registering driver to manage (e.g. free or keep available) the memory for the +shared object beyond the life of the auxiliary_device. + +The registering driver must unregister all auxiliary devices before its own +driver.remove() is completed. + +Auxiliary Drivers +================= + +Auxiliary drivers follow the standard driver model convention, where +discovery/enumeration is handled by the core, and drivers +provide probe() and remove() methods. They support power management +and shutdown notifications using the standard conventions. + +.. code-block:: c + + struct auxiliary_driver { + int (*probe)(struct auxiliary_device *, + const struct auxiliary_device_id *id); + int (*remove)(struct auxiliary_device *); + void (*shutdown)(struct auxiliary_device *); + int (*suspend)(struct auxiliary_device *, pm_message_t); + int (*resume)(struct auxiliary_device *); + struct device_driver driver; + const struct auxiliary_device_id *id_table; + }; + +Auxiliary drivers register themselves with the bus by calling +auxiliary_driver_register(). The id_table contains the match_names of auxiliary +devices that a driver can bind with. + +Example Usage +============= + +Auxiliary devices are created and registered by a subsystem-level core device +that needs to break up its functionality into smaller fragments. One way to +extend the scope of an auxiliary_device is to encapsulate it within a domain- +pecific structure defined by the parent device. This structure contains the +auxiliary_device and any associated shared data/callbacks needed to establish +the connection with the parent. + +An example is: + +.. code-block:: c + + struct foo { + struct auxiliary_device auxdev; + void (*connect)(struct auxiliary_device *auxdev); + void (*disconnect)(struct auxiliary_device *auxdev); + void *data; + }; + +The parent device then registers the auxiliary_device by calling +auxiliary_device_init(), and then auxiliary_device_add(), with the pointer to +the auxdev member of the above structure. The parent provides a name for the +auxiliary_device that, combined with the parent's KBUILD_MODNAME, creates a +match_name that is be used for matching and binding with a driver. + +Whenever an auxiliary_driver is registered, based on the match_name, the +auxiliary_driver's probe() is invoked for the matching devices. The +auxiliary_driver can also be encapsulated inside custom drivers that make the +core device's functionality extensible by adding additional domain-specific ops +as follows: + +.. code-block:: c + + struct my_ops { + void (*send)(struct auxiliary_device *auxdev); + void (*receive)(struct auxiliary_device *auxdev); + }; + + + struct my_driver { + struct auxiliary_driver auxiliary_drv; + const struct my_ops ops; + }; + +An example of this type of usage is: + +.. code-block:: c + + const struct auxiliary_device_id my_auxiliary_id_table[] = { + { .name = "foo_mod.foo_dev" }, + { }, + }; + + const struct my_ops my_custom_ops = { + .send = my_tx, + .receive = my_rx, + }; + + const struct my_driver my_drv = { + .auxiliary_drv = { + .name = "myauxiliarydrv", + .id_table = my_auxiliary_id_table, + .probe = my_probe, + .remove = my_remove, + .shutdown = my_shutdown, + }, + .ops = my_custom_ops, + }; diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index f357f3eb400c..86759a74b7f1 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -72,6 +72,7 @@ available subsections can be seen below. thermal/index fpga/index acpi/index + auxiliary_bus backlight/lp855x-driver.rst connector console diff --git a/drivers/base/Kconfig b/drivers/base/Kconfig index 8d7001712062..040be48ce046 100644 --- a/drivers/base/Kconfig +++ b/drivers/base/Kconfig @@ -1,6 +1,9 @@ # SPDX-License-Identifier: GPL-2.0 menu "Generic Driver Options" +config AUXILIARY_BUS + bool + config UEVENT_HELPER bool "Support for uevent helper" help diff --git a/drivers/base/Makefile b/drivers/base/Makefile index 41369fc7004f..5e7bf9669a81 100644 --- a/drivers/base/Makefile +++ b/drivers/base/Makefile @@ -7,6 +7,7 @@ obj-y := component.o core.o bus.o dd.o syscore.o \ attribute_container.o transport_class.o \ topology.o container.o property.o cacheinfo.o \ swnode.o +obj-$(CONFIG_AUXILIARY_BUS) += auxiliary.o obj-$(CONFIG_DEVTMPFS) += devtmpfs.o obj-y += power/ obj-$(CONFIG_ISA_BUS_API) += isa.o diff --git a/drivers/base/auxiliary.c b/drivers/base/auxiliary.c new file mode 100644 index 000000000000..ef2af417438b --- /dev/null +++ b/drivers/base/auxiliary.c @@ -0,0 +1,268 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2019-2020 Intel Corporation + * + * Please see Documentation/driver-api/auxiliary_bus.rst for more information. + */ + +#define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ + +#include +#include +#include +#include +#include +#include +#include + +static const struct auxiliary_device_id *auxiliary_match_id(const struct auxiliary_device_id *id, + const struct auxiliary_device *auxdev) +{ + for (; id->name[0]; id++) { + const char *p = strrchr(dev_name(&auxdev->dev), '.'); + int match_size; + + if (!p) + continue; + match_size = p - dev_name(&auxdev->dev); + + /* use dev_name(&auxdev->dev) prefix before last '.' char to match to */ + if (strlen(id->name) == match_size && + !strncmp(dev_name(&auxdev->dev), id->name, match_size)) + return id; + } + return NULL; +} + +static int auxiliary_match(struct device *dev, struct device_driver *drv) +{ + struct auxiliary_device *auxdev = to_auxiliary_dev(dev); + struct auxiliary_driver *auxdrv = to_auxiliary_drv(drv); + + return !!auxiliary_match_id(auxdrv->id_table, auxdev); +} + +static int auxiliary_uevent(struct device *dev, struct kobj_uevent_env *env) +{ + const char *name, *p; + + name = dev_name(dev); + p = strrchr(name, '.'); + + return add_uevent_var(env, "MODALIAS=%s%.*s", AUXILIARY_MODULE_PREFIX, (int)(p - name), + name); +} + +static const struct dev_pm_ops auxiliary_dev_pm_ops = { + SET_RUNTIME_PM_OPS(pm_generic_runtime_suspend, pm_generic_runtime_resume, NULL) + SET_SYSTEM_SLEEP_PM_OPS(pm_generic_suspend, pm_generic_resume) +}; + +static int auxiliary_bus_probe(struct device *dev) +{ + struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver); + struct auxiliary_device *auxdev = to_auxiliary_dev(dev); + int ret; + + ret = dev_pm_domain_attach(dev, true); + if (ret) { + dev_warn(dev, "Failed to attach to PM Domain : %d\n", ret); + return ret; + } + + ret = auxdrv->probe(auxdev, auxiliary_match_id(auxdrv->id_table, auxdev)); + if (ret) + dev_pm_domain_detach(dev, true); + + return ret; +} + +static int auxiliary_bus_remove(struct device *dev) +{ + struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver); + struct auxiliary_device *auxdev = to_auxiliary_dev(dev); + int ret = 0; + + if (auxdrv->remove) + ret = auxdrv->remove(auxdev); + dev_pm_domain_detach(dev, true); + + return ret; +} + +static void auxiliary_bus_shutdown(struct device *dev) +{ + struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver); + struct auxiliary_device *auxdev = to_auxiliary_dev(dev); + + if (auxdrv->shutdown) + auxdrv->shutdown(auxdev); +} + +static struct bus_type auxiliary_bus_type = { + .name = "auxiliary", + .probe = auxiliary_bus_probe, + .remove = auxiliary_bus_remove, + .shutdown = auxiliary_bus_shutdown, + .match = auxiliary_match, + .uevent = auxiliary_uevent, + .pm = &auxiliary_dev_pm_ops, +}; + +/** + * auxiliary_device_init - check auxiliary_device and initialize + * @auxdev: auxiliary device struct + * + * This is the first step in the two-step process to register an auxiliary_device. + * + * When this function returns an error code, then the device_initialize will *not* have + * been performed, and the caller will be responsible to free any memory allocated for the + * auxiliary_device in the error path directly. + * + * It returns 0 on success. On success, the device_initialize has been performed. After this + * point any error unwinding will need to include a call to auxiliary_device_uninit(). + * In this post-initialize error scenario, a call to the device's .release callback will be + * triggered, and all memory clean-up is expected to be handled there. + */ +int auxiliary_device_init(struct auxiliary_device *auxdev) +{ + struct device *dev = &auxdev->dev; + + if (!dev->parent) { + pr_err("auxiliary_device has a NULL dev->parent\n"); + return -EINVAL; + } + + if (!auxdev->name) { + pr_err("auxiliary_device has a NULL name\n"); + return -EINVAL; + } + + dev->bus = &auxiliary_bus_type; + device_initialize(&auxdev->dev); + return 0; +} +EXPORT_SYMBOL_GPL(auxiliary_device_init); + +/** + * __auxiliary_device_add - add an auxiliary bus device + * @auxdev: auxiliary bus device to add to the bus + * @modname: name of the parent device's driver module + * + * This is the second step in the two-step process to register an auxiliary_device. + * + * This function must be called after a successful call to auxiliary_device_init(), which + * will perform the device_initialize. This means that if this returns an error code, then a + * call to auxiliary_device_uninit() must be performed so that the .release callback will + * be triggered to free the memory associated with the auxiliary_device. + * + * The expectation is that users will call the "auxiliary_device_add" macro so that the caller's + * KBUILD_MODNAME is automatically inserted for the modname parameter. Only if a user requires + * a custom name would this version be called directly. + */ +int __auxiliary_device_add(struct auxiliary_device *auxdev, const char *modname) +{ + struct device *dev = &auxdev->dev; + int ret; + + if (!modname) { + pr_err("auxiliary device modname is NULL\n"); + return -EINVAL; + } + + ret = dev_set_name(dev, "%s.%s.%d", modname, auxdev->name, auxdev->id); + if (ret) { + pr_err("auxiliary device dev_set_name failed: %d\n", ret); + return ret; + } + + ret = device_add(dev); + if (ret) + dev_err(dev, "adding auxiliary device failed!: %d\n", ret); + + return ret; +} +EXPORT_SYMBOL_GPL(__auxiliary_device_add); + +/** + * auxiliary_find_device - auxiliary device iterator for locating a particular device. + * @start: Device to begin with + * @data: Data to pass to match function + * @match: Callback function to check device + * + * This function returns a reference to a device that is 'found' + * for later use, as determined by the @match callback. + * + * The callback should return 0 if the device doesn't match and non-zero + * if it does. If the callback returns non-zero, this function will + * return to the caller and not iterate over any more devices. + */ +struct auxiliary_device * +auxiliary_find_device(struct device *start, const void *data, + int (*match)(struct device *dev, const void *data)) +{ + struct device *dev; + + dev = bus_find_device(&auxiliary_bus_type, start, data, match); + if (!dev) + return NULL; + + return to_auxiliary_dev(dev); +} +EXPORT_SYMBOL_GPL(auxiliary_find_device); + +/** + * __auxiliary_driver_register - register a driver for auxiliary bus devices + * @auxdrv: auxiliary_driver structure + * @owner: owning module/driver + * @modname: KBUILD_MODNAME for parent driver + */ +int __auxiliary_driver_register(struct auxiliary_driver *auxdrv, struct module *owner, + const char *modname) +{ + if (WARN_ON(!auxdrv->probe) || WARN_ON(!auxdrv->id_table)) + return -EINVAL; + + if (auxdrv->name) + auxdrv->driver.name = kasprintf(GFP_KERNEL, "%s.%s", modname, auxdrv->name); + else + auxdrv->driver.name = kasprintf(GFP_KERNEL, "%s", modname); + if (!auxdrv->driver.name) + return -ENOMEM; + + auxdrv->driver.owner = owner; + auxdrv->driver.bus = &auxiliary_bus_type; + auxdrv->driver.mod_name = modname; + + return driver_register(&auxdrv->driver); +} +EXPORT_SYMBOL_GPL(__auxiliary_driver_register); + +/** + * auxiliary_driver_unregister - unregister a driver + * @auxdrv: auxiliary_driver structure + */ +void auxiliary_driver_unregister(struct auxiliary_driver *auxdrv) +{ + driver_unregister(&auxdrv->driver); + kfree(auxdrv->driver.name); +} +EXPORT_SYMBOL_GPL(auxiliary_driver_unregister); + +static int __init auxiliary_bus_init(void) +{ + return bus_register(&auxiliary_bus_type); +} + +static void __exit auxiliary_bus_exit(void) +{ + bus_unregister(&auxiliary_bus_type); +} + +module_init(auxiliary_bus_init); +module_exit(auxiliary_bus_exit); + +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Auxiliary Bus"); +MODULE_AUTHOR("David Ertman "); +MODULE_AUTHOR("Kiran Patil "); diff --git a/include/linux/auxiliary_bus.h b/include/linux/auxiliary_bus.h new file mode 100644 index 000000000000..282fbf7bf9af --- /dev/null +++ b/include/linux/auxiliary_bus.h @@ -0,0 +1,78 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (c) 2019-2020 Intel Corporation + * + * Please see Documentation/driver-api/auxiliary_bus.rst for more information. + */ + +#ifndef _AUXILIARY_BUS_H_ +#define _AUXILIARY_BUS_H_ + +#include +#include +#include + +struct auxiliary_device { + struct device dev; + const char *name; + u32 id; +}; + +struct auxiliary_driver { + int (*probe)(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id); + int (*remove)(struct auxiliary_device *auxdev); + void (*shutdown)(struct auxiliary_device *auxdev); + int (*suspend)(struct auxiliary_device *auxdev, pm_message_t state); + int (*resume)(struct auxiliary_device *auxdev); + const char *name; + struct device_driver driver; + const struct auxiliary_device_id *id_table; +}; + +static inline struct auxiliary_device *to_auxiliary_dev(struct device *dev) +{ + return container_of(dev, struct auxiliary_device, dev); +} + +static inline struct auxiliary_driver *to_auxiliary_drv(struct device_driver *drv) +{ + return container_of(drv, struct auxiliary_driver, driver); +} + +int auxiliary_device_init(struct auxiliary_device *auxdev); +int __auxiliary_device_add(struct auxiliary_device *auxdev, const char *modname); +#define auxiliary_device_add(auxdev) __auxiliary_device_add(auxdev, KBUILD_MODNAME) + +static inline void auxiliary_device_uninit(struct auxiliary_device *auxdev) +{ + put_device(&auxdev->dev); +} + +static inline void auxiliary_device_delete(struct auxiliary_device *auxdev) +{ + device_del(&auxdev->dev); +} + +int __auxiliary_driver_register(struct auxiliary_driver *auxdrv, struct module *owner, + const char *modname); +#define auxiliary_driver_register(auxdrv) \ + __auxiliary_driver_register(auxdrv, THIS_MODULE, KBUILD_MODNAME) + +void auxiliary_driver_unregister(struct auxiliary_driver *auxdrv); + +/** + * module_auxiliary_driver() - Helper macro for registering an auxiliary driver + * @__auxiliary_driver: auxiliary driver struct + * + * Helper macro for auxiliary drivers which do not do anything special in + * module init/exit. This eliminates a lot of boilerplate. Each module may only + * use this macro once, and calling it replaces module_init() and module_exit() + */ +#define module_auxiliary_driver(__auxiliary_driver) \ + module_driver(__auxiliary_driver, auxiliary_driver_register, auxiliary_driver_unregister) + +struct auxiliary_device * +auxiliary_find_device(struct device *start, const void *data, + int (*match)(struct device *dev, const void *data)); + +#endif /* _AUXILIARY_BUS_H_ */ diff --git a/include/linux/mod_devicetable.h b/include/linux/mod_devicetable.h index 5b08a473cdba..c425290b21e2 100644 --- a/include/linux/mod_devicetable.h +++ b/include/linux/mod_devicetable.h @@ -838,4 +838,12 @@ struct mhi_device_id { kernel_ulong_t driver_data; }; +#define AUXILIARY_NAME_SIZE 32 +#define AUXILIARY_MODULE_PREFIX "auxiliary:" + +struct auxiliary_device_id { + char name[AUXILIARY_NAME_SIZE]; + kernel_ulong_t driver_data; +}; + #endif /* LINUX_MOD_DEVICETABLE_H */ diff --git a/scripts/mod/devicetable-offsets.c b/scripts/mod/devicetable-offsets.c index 27007c18e754..e377f52dbfa3 100644 --- a/scripts/mod/devicetable-offsets.c +++ b/scripts/mod/devicetable-offsets.c @@ -243,5 +243,8 @@ int main(void) DEVID(mhi_device_id); DEVID_FIELD(mhi_device_id, chan); + DEVID(auxiliary_device_id); + DEVID_FIELD(auxiliary_device_id, name); + return 0; } diff --git a/scripts/mod/file2alias.c b/scripts/mod/file2alias.c index 2417dd1dee33..fb4827027536 100644 --- a/scripts/mod/file2alias.c +++ b/scripts/mod/file2alias.c @@ -1364,6 +1364,13 @@ static int do_mhi_entry(const char *filename, void *symval, char *alias) { DEF_FIELD_ADDR(symval, mhi_device_id, chan); sprintf(alias, MHI_DEVICE_MODALIAS_FMT, *chan); + return 1; +} + +static int do_auxiliary_entry(const char *filename, void *symval, char *alias) +{ + DEF_FIELD_ADDR(symval, auxiliary_device_id, name); + sprintf(alias, AUXILIARY_MODULE_PREFIX "%s", *name); return 1; } @@ -1442,6 +1449,7 @@ static const struct devtable devtable[] = { {"tee", SIZE_tee_client_device_id, do_tee_entry}, {"wmi", SIZE_wmi_device_id, do_wmi_entry}, {"mhi", SIZE_mhi_device_id, do_mhi_entry}, + {"auxiliary", SIZE_auxiliary_device_id, do_auxiliary_entry}, }; /* Create MODULE_ALIAS() statements. -- 2.26.2