Received: by 2002:a05:6a10:8c0a:0:0:0:0 with SMTP id go10csp1100828pxb; Sun, 7 Mar 2021 06:19:09 -0800 (PST) X-Google-Smtp-Source: ABdhPJyTQpB+7FW77LCogfCnQz1mS5ptipJZ8kzTr5UuKDkdllOSFcTlmFqJOUTO4thp48HRe9mP X-Received: by 2002:a17:906:8a6e:: with SMTP id hy14mr11135348ejc.356.1615126749265; Sun, 07 Mar 2021 06:19:09 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1615126749; cv=none; d=google.com; s=arc-20160816; b=0HwVrP35LpO8aFe6h3k8HL+HFr1YW4xE35s9s/E1C7C2oZlwvirWpdrfFdZJIT/XOO 7SAuMFdtOklskKa/NrcOB8rYMe8B2VkraiA/SPow/hiZ6eNtCKa1qL9iAj/5NMGgq8rO 1gon0KSZDPwVFpeJCdDqZP6G2C62ehGgMo6NEp750eemq8rXbkjFv6SrqmxDsDoZqq40 Jo66+aZqSfOZK2KOTPTXFJ7iUrWqzZNnww+fS1Tq6Y5IGoYprMko/mr8NxiR8Rru4u6E KDNlf/aSIg7ZdUZWEJBvGDxHIOWQa7uRV4GbigrHmNAP+Eo+emAIuAVxwar3QTflmitW u6pw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from :dkim-signature; bh=IPkq8+VeYPSiW1HxY2A+cdqB16DFwzdqqKe8TamIg3A=; b=LI92cG11TRLDYUjKuaCvdRAIp32gNxsLOefX+BwoExViSf1+0kgUSrIXtDN8xvVZ8u 5MlreV6+l3OTCh4WkiTy8NrA2/wRsJaaNgb/7s9uYQzL69uCjoyMJOCVGbB3hyZ0pU9C RRrn73aGgjw/4fs7p1qflgsQ0OErvD73i0B10QZsCRIi/8oB5lmcXJDCiBsXX2/9Lu8d IWbvJR7AIRTCkrtTOJsXjc5bmB6dvs2iqVcwJ/mvAYaI0woC6ErlRx38VoGIt30X+mR8 RaHxJI3dFMqC7bbpISsqPkKcweHyZ8/PHm/SjB3wBJnxXMHBcnEEoaMZAIjNPKq+1xMR UzyQ== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@gmx.net header.s=badeba3b8450 header.b=ZsrEFJX5; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=gmx.com Return-Path: Received: from vger.kernel.org (vger.kernel.org. [23.128.96.18]) by mx.google.com with ESMTP id w26si5335242eju.454.2021.03.07.06.18.46; Sun, 07 Mar 2021 06:19:09 -0800 (PST) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) client-ip=23.128.96.18; Authentication-Results: mx.google.com; dkim=pass header.i=@gmx.net header.s=badeba3b8450 header.b=ZsrEFJX5; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=gmx.com Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S230435AbhCGMhq (ORCPT + 99 others); Sun, 7 Mar 2021 07:37:46 -0500 Received: from mout.gmx.net ([212.227.17.22]:57215 "EHLO mout.gmx.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S230323AbhCGMhi (ORCPT ); Sun, 7 Mar 2021 07:37:38 -0500 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=gmx.net; s=badeba3b8450; t=1615120607; bh=xfp74GhSnHiwLpsi3uHJPLTgd+kXFH6dVoRAtVepyzE=; h=X-UI-Sender-Class:From:To:Cc:Subject:Date:In-Reply-To:References; b=ZsrEFJX5ZBAgaqO5IMFee9kYiExoLHwpibZmMr5AaO+8bqYhAIMWpeTUSi/B3i5jD Jhd+E6Ktz9Dx3lB7usOlJ52Nb1oAzWiIsPplOIB9WYZHtw2EfpD0Z/m5tDi/Q0ysxV dsXFpLybyso0YLZk0vd6UnSdcH3BKZL0MlY5CiOQ= X-UI-Sender-Class: 01bb95c1-4bf8-414a-932a-4f6e2808ef9c Received: from localhost.localdomain ([83.52.229.153]) by mail.gmx.net (mrgmx105 [212.227.17.174]) with ESMTPSA (Nemesis) id 1MOzSu-1l6j0l0IP6-00PNtZ; Sun, 07 Mar 2021 13:36:47 +0100 From: John Wood To: Kees Cook , Jann Horn , Randy Dunlap , Jonathan Corbet , James Morris , Shuah Khan Cc: John Wood , "Serge E. Hallyn" , Greg Kroah-Hartman , Andi Kleen , kernel test robot , linux-doc@vger.kernel.org, linux-kernel@vger.kernel.org, linux-security-module@vger.kernel.org, linux-kselftest@vger.kernel.org, kernel-hardening@lists.openwall.com Subject: [PATCH v6 3/8] securtiy/brute: Detect a brute force attack Date: Sun, 7 Mar 2021 12:30:26 +0100 Message-Id: <20210307113031.11671-4-john.wood@gmx.com> X-Mailer: git-send-email 2.25.1 In-Reply-To: <20210307113031.11671-1-john.wood@gmx.com> References: <20210307113031.11671-1-john.wood@gmx.com> MIME-Version: 1.0 Content-Transfer-Encoding: quoted-printable X-Provags-ID: V03:K1:V5wXiWyrt/fTbgQQup/A2xwEulUiqjNwEt+/TggDUsotNXIrQso eGT2ReD3Wtqpo4LrHMv0fvr+4LaBwHO+zSWHBhOqNJLMEZedK3I6237LsJyeKTPd3IXgUNb t21W33F49i+ilfYJQ9d/6GqBYUNfYX876nbUAJma07NI/qi5SdZ2SfX+fXCFLpbep+gyG1s b02a08iBaJu8f7TOivEjw== X-Spam-Flag: NO X-UI-Out-Filterresults: notjunk:1;V03:K0:YD89M5lRYQA=:Q04wP1nyyEZ5klFp0ZY7aH aNSwyXTs9a97VdW1sOF4AkuTe1DH/t6fonubMLNDbu6iRQhj4SkG2x7eknaCzDgY8jeZsU0SH b6XB+EFbyLrUy5zFktvVHTuYpFjoNjvQ2RCfDDj+1+dpf2Bdw9OyQR9Mq/vUCr3NE1veSSRUR RnTWaYR02B4WQCPMgrvjZoTt1t7tdooGCGjYAn7uH+rp6XA17IKBc2TwySTyBEUubcjQp9MAr eKxbEbwOTXdoe85wVaiLUGc0wzW860l3JnoNLYtvHOJZmvCf/Sp/cG9DOalM8gCozirIc7Mvv P0tYVzqeaAcjlX2Y+Q0COc7QBe+EDVSnITp97lVxFUqtj5ozY4qXU5Z0VAQjpnY3Pjnaum9AX 2HQqJzXDOoot+Xx01X8cYENhaG6G0yfpRFnrnObPif7ZFX1H5juSpSpbvbTey4UPWW5Gxxsmd tNE85CFNJWrJmlZO+prsGiFslCct6Y9GiLWo4ykNIZpuWvSWgvOut3g7Wgo+q3Bu+rp9KQ/gW cBWaxUOhOm6Ud4CYQvK2iQ/rN80Mm7t6+V17eJXlYJFLV3j8ol/hmMHpXJ11DIa+PXwdVdjX0 VdoBxNUwd/MGppUibq9TSSdppm7xFTIgQ6xzAz8MOy4XMaAv1BTxHc/XRRiY164ypOqs9mYMM ky3yw9hL9FVHat9PQNU5GP5ElKxXeOZ/R4NzRmiWAYOB+459SPGlQwt9IltUvfeIVYMdY3u+M FOHQmkIsVDYNnD/0n+Ye9kodpSTa4zUg9O6wDUB6h6QsdHn4iFwNX8l37Q9Og2FRd5Fa5AKt3 JiFFdoKW8bucr+99NWgEhf2Hv/UDWWt/lwNRv+/jMzPefPIlp0hgJonJ3SJL7zYrFCHFjYQK4 JAcw8gErvi/XpdAwAmxA== Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org To detect a brute force attack it is necessary that the statistics shared by all the fork hierarchy processes be updated in every fatal crash and the most important data to update is the application crash period. To do so, use the new "task_fatal_signal" LSM hook added in a previous step. The application crash period must be a value that is not prone to change due to spurious data and follows the real crash period. So, to compute it, the exponential moving average (EMA) is used. There are two types of brute force attacks that need to be detected. The first one is an attack that happens through the fork system call and the second one is an attack that happens through the execve system call. The first type uses the statistics shared by all the fork hierarchy processes, but the second type cannot use this statistical data due to these statistics disappear when the involved tasks finished. In this last scenario the attack info should be tracked by the statistics of a higher fork hierarchy (the hierarchy that contains the process that forks before the execve system call). Moreover, these two attack types have two variants. A slow brute force attack that is detected if the maximum number of faults per fork hierarchy is reached and a fast brute force attack that is detected if the application crash period falls below a certain threshold. Also, this patch adds locking to protect the statistics pointer hold by every process. Signed-off-by: John Wood =2D-- security/brute/brute.c | 498 +++++++++++++++++++++++++++++++++++++++-- 1 file changed, 479 insertions(+), 19 deletions(-) diff --git a/security/brute/brute.c b/security/brute/brute.c index 99d099e45112..870db55332d4 100644 =2D-- a/security/brute/brute.c +++ b/security/brute/brute.c @@ -11,9 +11,14 @@ #include #include #include +#include #include #include +#include +#include #include +#include +#include #include #include #include @@ -37,6 +42,11 @@ struct brute_stats { u64 period; }; +/* + * brute_stats_ptr_lock - Lock to protect the brute_stats structure point= er. + */ +static DEFINE_RWLOCK(brute_stats_ptr_lock); + /* * brute_blob_sizes - LSM blob sizes. * @@ -74,7 +84,7 @@ static struct brute_stats *brute_new_stats(void) { struct brute_stats *stats; - stats =3D kmalloc(sizeof(struct brute_stats), GFP_KERNEL); + stats =3D kmalloc(sizeof(struct brute_stats), GFP_ATOMIC); if (!stats) return NULL; @@ -99,16 +109,17 @@ static struct brute_stats *brute_new_stats(void) * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock * since the task_free hook can be called from an IRQ context during the * execution of the task_alloc hook. + * + * Context: Must be called with interrupts disabled and brute_stats_ptr_l= ock + * held. */ static void brute_share_stats(struct brute_stats *src, struct brute_stats **dst) { - unsigned long flags; - - spin_lock_irqsave(&src->lock, flags); + spin_lock(&src->lock); refcount_inc(&src->refc); *dst =3D src; - spin_unlock_irqrestore(&src->lock, flags); + spin_unlock(&src->lock); } /** @@ -126,26 +137,36 @@ static void brute_share_stats(struct brute_stats *sr= c, * this task and the new one being allocated. Otherwise, share the statis= tics * that the current task already has. * + * It's mandatory to disable interrupts before acquiring brute_stats_ptr_= lock + * and brute_stats::lock since the task_free hook can be called from an I= RQ + * context during the execution of the task_alloc hook. + * * Return: -ENOMEM if the allocation of the new statistics structure fail= s. Zero * otherwise. */ static int brute_task_alloc(struct task_struct *task, unsigned long clone= _flags) { struct brute_stats **stats, **p_stats; + unsigned long flags; stats =3D brute_stats_ptr(task); p_stats =3D brute_stats_ptr(current); + write_lock_irqsave(&brute_stats_ptr_lock, flags); if (likely(*p_stats)) { brute_share_stats(*p_stats, stats); + write_unlock_irqrestore(&brute_stats_ptr_lock, flags); return 0; } *stats =3D brute_new_stats(); - if (!*stats) + if (!*stats) { + write_unlock_irqrestore(&brute_stats_ptr_lock, flags); return -ENOMEM; + } brute_share_stats(*stats, p_stats); + write_unlock_irqrestore(&brute_stats_ptr_lock, flags); return 0; } @@ -167,9 +188,9 @@ static int brute_task_alloc(struct task_struct *task, = unsigned long clone_flags) * only one task (the task that calls the execve function) points to the = data. * In this case, the previous allocation is used but the statistics are r= eset. * - * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock - * since the task_free hook can be called from an IRQ context during the - * execution of the bprm_committing_creds hook. + * It's mandatory to disable interrupts before acquiring brute_stats_ptr_= lock + * and brute_stats::lock since the task_free hook can be called from an I= RQ + * context during the execution of the bprm_committing_creds hook. */ static void brute_task_execve(struct linux_binprm *bprm) { @@ -177,24 +198,33 @@ static void brute_task_execve(struct linux_binprm *b= prm) unsigned long flags; stats =3D brute_stats_ptr(current); - if (WARN(!*stats, "No statistical data\n")) + read_lock_irqsave(&brute_stats_ptr_lock, flags); + + if (WARN(!*stats, "No statistical data\n")) { + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); return; + } - spin_lock_irqsave(&(*stats)->lock, flags); + spin_lock(&(*stats)->lock); if (!refcount_dec_not_one(&(*stats)->refc)) { /* execve call after an execve call */ (*stats)->faults =3D 0; (*stats)->jiffies =3D get_jiffies_64(); (*stats)->period =3D 0; - spin_unlock_irqrestore(&(*stats)->lock, flags); + spin_unlock(&(*stats)->lock); + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); return; } /* execve call after a fork call */ - spin_unlock_irqrestore(&(*stats)->lock, flags); + spin_unlock(&(*stats)->lock); + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); + + write_lock_irqsave(&brute_stats_ptr_lock, flags); *stats =3D brute_new_stats(); WARN(!*stats, "Cannot allocate statistical data\n"); + write_unlock_irqrestore(&brute_stats_ptr_lock, flags); } /** @@ -204,9 +234,9 @@ static void brute_task_execve(struct linux_binprm *bpr= m) * The statistical data that is shared between all the fork hierarchy pro= cesses * needs to be freed when this hierarchy disappears. * - * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock - * since the task_free hook can be called from an IRQ context during the - * execution of the task_free hook. + * It's mandatory to disable interrupts before acquiring brute_stats_ptr_= lock + * and brute_stats::lock since the task_free hook can be called from an I= RQ + * context during the execution of the task_free hook. */ static void brute_task_free(struct task_struct *task) { @@ -215,17 +245,446 @@ static void brute_task_free(struct task_struct *tas= k) bool refc_is_zero; stats =3D brute_stats_ptr(task); - if (WARN(!*stats, "No statistical data\n")) + read_lock_irqsave(&brute_stats_ptr_lock, flags); + + if (WARN(!*stats, "No statistical data\n")) { + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); return; + } - spin_lock_irqsave(&(*stats)->lock, flags); + spin_lock(&(*stats)->lock); refc_is_zero =3D refcount_dec_and_test(&(*stats)->refc); - spin_unlock_irqrestore(&(*stats)->lock, flags); + spin_unlock(&(*stats)->lock); + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); if (refc_is_zero) { + write_lock_irqsave(&brute_stats_ptr_lock, flags); kfree(*stats); *stats =3D NULL; + write_unlock_irqrestore(&brute_stats_ptr_lock, flags); + } +} + +/* + * BRUTE_EMA_WEIGHT_NUMERATOR - Weight's numerator of EMA. + */ +static const u64 BRUTE_EMA_WEIGHT_NUMERATOR =3D 7; + +/* + * BRUTE_EMA_WEIGHT_DENOMINATOR - Weight's denominator of EMA. + */ +static const u64 BRUTE_EMA_WEIGHT_DENOMINATOR =3D 10; + +/** + * brute_mul_by_ema_weight() - Multiply by EMA weight. + * @value: Value to multiply by EMA weight. + * + * Return: The result of the multiplication operation. + */ +static inline u64 brute_mul_by_ema_weight(u64 value) +{ + return mul_u64_u64_div_u64(value, BRUTE_EMA_WEIGHT_NUMERATOR, + BRUTE_EMA_WEIGHT_DENOMINATOR); +} + +/* + * BRUTE_MAX_FAULTS - Maximum number of faults. + * + * If a brute force attack is running slowly for a long time, the applica= tion + * crash period's EMA is not suitable for the detection. This type of att= ack + * must be detected using a maximum number of faults. + */ +static const unsigned char BRUTE_MAX_FAULTS =3D 200; + +/** + * brute_update_crash_period() - Update the application crash period. + * @stats: Statistics that hold the application crash period to update. + * @now: The current timestamp in jiffies. + * + * The application crash period must be a value that is not prone to chan= ge due + * to spurious data and follows the real crash period. So, to compute it,= the + * exponential moving average (EMA) is used. + * + * This kind of average defines a weight (between 0 and 1) for the new va= lue to + * add and applies the remainder of the weight to the current average val= ue. + * This way, some spurious data will not excessively modify the average a= nd only + * if the new values are persistent, the moving average will tend towards= them. + * + * Mathematically the application crash period's EMA can be expressed as + * follows: + * + * period_ema =3D period * weight + period_ema * (1 - weight) + * + * If the operations are applied: + * + * period_ema =3D period * weight + period_ema - period_ema * weight + * + * If the operands are ordered: + * + * period_ema =3D period_ema - period_ema * weight + period * weight + * + * Finally, this formula can be written as follows: + * + * period_ema -=3D period_ema * weight; + * period_ema +=3D period * weight; + * + * The statistics that hold the application crash period to update cannot= be + * NULL. + * + * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock + * since the task_free hook can be called from an IRQ context during the + * execution of the task_fatal_signal hook. + * + * Context: Must be called with interrupts disabled and brute_stats_ptr_l= ock + * held. + * Return: The last crash timestamp before updating it. + */ +static u64 brute_update_crash_period(struct brute_stats *stats, u64 now) +{ + u64 current_period; + u64 last_crash_timestamp; + + spin_lock(&stats->lock); + current_period =3D now - stats->jiffies; + last_crash_timestamp =3D stats->jiffies; + stats->jiffies =3D now; + + stats->period -=3D brute_mul_by_ema_weight(stats->period); + stats->period +=3D brute_mul_by_ema_weight(current_period); + + if (stats->faults < BRUTE_MAX_FAULTS) + stats->faults +=3D 1; + + spin_unlock(&stats->lock); + return last_crash_timestamp; +} + +/* + * BRUTE_MIN_FAULTS - Minimum number of faults. + * + * The application crash period's EMA cannot be used until a minimum numb= er of + * data has been applied to it. This constraint allows getting a trend wh= en this + * moving average is used. Moreover, it avoids the scenario where an appl= ication + * fails quickly from execve system call due to reasons unrelated to a re= al + * attack. + */ +static const unsigned char BRUTE_MIN_FAULTS =3D 5; + +/* + * BRUTE_CRASH_PERIOD_THRESHOLD - Application crash period threshold. + * + * The units are expressed in milliseconds. + * + * A fast brute force attack is detected when the application crash perio= d falls + * below this threshold. + */ +static const u64 BRUTE_CRASH_PERIOD_THRESHOLD =3D 30000; + +/** + * brute_attack_running() - Test if a brute force attack is happening. + * @stats: Statistical data shared by all the fork hierarchy processes. + * + * The decision if a brute force attack is running is based on the statis= tical + * data shared by all the fork hierarchy processes. This statistics canno= t be + * NULL. + * + * There are two types of brute force attacks that can be detected using = the + * statistical data. The first one is a slow brute force attack that is d= etected + * if the maximum number of faults per fork hierarchy is reached. The sec= ond + * type is a fast brute force attack that is detected if the application = crash + * period falls below a certain threshold. + * + * Moreover, it is important to note that no attacks will be detected unt= il a + * minimum number of faults have occurred. This allows to have a trend in= the + * crash period when the EMA is used and also avoids the scenario where a= n + * application fails quickly from execve system call due to reasons unrel= ated to + * a real attack. + * + * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock + * since the task_free hook can be called from an IRQ context during the + * execution of the task_fatal_signal hook. + * + * Context: Must be called with interrupts disabled and brute_stats_ptr_l= ock + * held. + * Return: True if a brute force attack is happening. False otherwise. + */ +static bool brute_attack_running(struct brute_stats *stats) +{ + u64 crash_period; + + spin_lock(&stats->lock); + if (stats->faults < BRUTE_MIN_FAULTS) { + spin_unlock(&stats->lock); + return false; + } + + if (stats->faults >=3D BRUTE_MAX_FAULTS) { + spin_unlock(&stats->lock); + return true; + } + + crash_period =3D jiffies64_to_msecs(stats->period); + spin_unlock(&stats->lock); + + return crash_period < BRUTE_CRASH_PERIOD_THRESHOLD; +} + +/** + * print_fork_attack_running() - Warn about a fork brute force attack. + */ +static inline void print_fork_attack_running(void) +{ + pr_warn("Fork brute force attack detected [%s]\n", current->comm); +} + +/** + * brute_manage_fork_attack() - Manage a fork brute force attack. + * @stats: Statistical data shared by all the fork hierarchy processes. + * @now: The current timestamp in jiffies. + * + * For a correct management of a fork brute force attack it is only neces= sary to + * update the statistics and test if an attack is happening based on thes= e data. + * + * The statistical data shared by all the fork hierarchy processes cannot= be + * NULL. + * + * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock + * since the task_free hook can be called from an IRQ context during the + * execution of the task_fatal_signal hook. + * + * Context: Must be called with interrupts disabled and brute_stats_ptr_l= ock + * held. + * Return: The last crash timestamp before updating it. + */ +static u64 brute_manage_fork_attack(struct brute_stats *stats, u64 now) +{ + u64 last_fork_crash; + + last_fork_crash =3D brute_update_crash_period(stats, now); + if (brute_attack_running(stats)) + print_fork_attack_running(); + + return last_fork_crash; +} + +/** + * brute_get_exec_stats() - Get the exec statistics. + * @stats: When this function is called, this parameter must point to the + * current process' statistical data. When this function returns,= this + * parameter points to the parent process' statistics of the fork + * hierarchy that hold the current process' statistics. + * + * To manage a brute force attack that happens through the execve system = call it + * is not possible to use the statistical data hold by this process due t= o these + * statistics disappear when this task is finished. In this scenario this= data + * should be tracked by the statistics of a higher fork hierarchy (the hi= erarchy + * that contains the process that forks before the execve system call). + * + * To find these statistics the current fork hierarchy must be traversed = up + * until new statistics are found. + * + * Context: Must be called with tasklist_lock and brute_stats_ptr_lock he= ld. + */ +static void brute_get_exec_stats(struct brute_stats **stats) +{ + const struct task_struct *task =3D current; + struct brute_stats **p_stats; + + do { + if (!task->real_parent) { + *stats =3D NULL; + return; + } + + p_stats =3D brute_stats_ptr(task->real_parent); + task =3D task->real_parent; + } while (*stats =3D=3D *p_stats); + + *stats =3D *p_stats; +} + +/** + * brute_update_exec_crash_period() - Update the exec crash period. + * @stats: When this function is called, this parameter must point to the + * current process' statistical data. When this function returns,= this + * parameter points to the updated statistics (statistics that tr= ack the + * info to manage a brute force attack that happens through the e= xecve + * system call). + * @now: The current timestamp in jiffies. + * @last_fork_crash: The last fork crash timestamp before updating it. + * + * If this is the first update of the statistics used to manage a brute f= orce + * attack that happens through the execve system call, its last crash tim= estamp + * (the timestamp that shows when the execve was called) cannot be used t= o + * compute the crash period's EMA. Instead, the last fork crash timestamp= should + * be used (the last crash timestamp of the child fork hierarchy before u= pdating + * the crash period). This allows that in a brute force attack that happe= ns + * through the fork system call, the exec and fork statistics are the sam= e. In + * this situation, the mitigation method will act only in the processes t= hat are + * sharing the fork statistics. This way, the process that forked before = the + * execve system call will not be involved in the mitigation method. In t= his + * scenario, the parent is not responsible of the child's behaviour. + * + * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock + * since the task_free hook can be called from an IRQ context during the + * execution of the task_fatal_signal hook. + * + * Context: Must be called with interrupts disabled and tasklist_lock and + * brute_stats_ptr_lock held. + * Return: -EFAULT if there are no exec statistics. Zero otherwise. + */ +static int brute_update_exec_crash_period(struct brute_stats **stats, + u64 now, u64 last_fork_crash) +{ + brute_get_exec_stats(stats); + if (!*stats) + return -EFAULT; + + spin_lock(&(*stats)->lock); + if (!(*stats)->faults) + (*stats)->jiffies =3D last_fork_crash; + spin_unlock(&(*stats)->lock); + + brute_update_crash_period(*stats, now); + return 0; +} + +/** + * brute_get_crash_period() - Get the application crash period. + * @stats: Statistical data shared by all the fork hierarchy processes. + * + * The statistical data shared by all the fork hierarchy processes cannot= be + * NULL. + * + * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock + * since the task_free hook can be called from an IRQ context during the + * execution of the task_fatal_signal hook. + * + * Context: Must be called with interrupts disabled and brute_stats_ptr_l= ock + * held. + * Return: The application crash period. + */ +static u64 brute_get_crash_period(struct brute_stats *stats) +{ + u64 crash_period; + + spin_lock(&stats->lock); + crash_period =3D stats->period; + spin_unlock(&stats->lock); + + return crash_period; +} + +/** + * print_exec_attack_running() - Warn about an exec brute force attack. + * @stats: Statistical data shared by all the fork hierarchy processes. + * + * The statistical data shared by all the fork hierarchy processes cannot= be + * NULL. + * + * Before showing the process name it is mandatory to find a process that= holds + * a pointer to the exec statistics. + * + * Context: Must be called with tasklist_lock and brute_stats_ptr_lock he= ld. + */ +static void print_exec_attack_running(const struct brute_stats *stats) +{ + struct task_struct *p; + struct brute_stats **p_stats; + bool found =3D false; + + for_each_process(p) { + p_stats =3D brute_stats_ptr(p); + if (*p_stats =3D=3D stats) { + found =3D true; + break; + } + } + + if (WARN(!found, "No exec process\n")) + return; + + pr_warn("Exec brute force attack detected [%s]\n", p->comm); +} + +/** + * brute_manage_exec_attack() - Manage an exec brute force attack. + * @stats: Statistical data shared by all the fork hierarchy processes. + * @now: The current timestamp in jiffies. + * @last_fork_crash: The last fork crash timestamp before updating it. + * + * For a correct management of an exec brute force attack it is only nece= ssary + * to update the exec statistics and test if an attack is happening based= on + * these data. + * + * It is important to note that if the fork and exec crash periods are th= e same, + * the attack test is avoided. This allows that in a brute force attack t= hat + * happens through the fork system call, the mitigation method does not a= ct on + * the parent process of the fork hierarchy. + * + * The statistical data shared by all the fork hierarchy processes cannot= be + * NULL. + * + * It's mandatory to disable interrupts before acquiring the brute_stats:= :lock + * since the task_free hook can be called from an IRQ context during the + * execution of the task_fatal_signal hook. + * + * Context: Must be called with interrupts disabled and tasklist_lock and + * brute_stats_ptr_lock held. + */ +static void brute_manage_exec_attack(struct brute_stats *stats, u64 now, + u64 last_fork_crash) +{ + int ret; + struct brute_stats *exec_stats =3D stats; + u64 fork_period; + u64 exec_period; + + ret =3D brute_update_exec_crash_period(&exec_stats, now, last_fork_crash= ); + if (WARN(ret, "No exec statistical data\n")) + return; + + fork_period =3D brute_get_crash_period(stats); + exec_period =3D brute_get_crash_period(exec_stats); + if (fork_period =3D=3D exec_period) + return; + + if (brute_attack_running(exec_stats)) + print_exec_attack_running(exec_stats); +} + +/** + * brute_task_fatal_signal() - Target for the task_fatal_signal hook. + * @siginfo: Contains the signal information. + * + * To detect a brute force attack is necessary to update the fork and exe= c + * statistics in every fatal crash and act based on these data. + * + * It's mandatory to disable interrupts before acquiring brute_stats_ptr_= lock + * and brute_stats::lock since the task_free hook can be called from an I= RQ + * context during the execution of the task_fatal_signal hook. + */ +static void brute_task_fatal_signal(const kernel_siginfo_t *siginfo) +{ + struct brute_stats **stats; + unsigned long flags; + u64 last_fork_crash; + u64 now =3D get_jiffies_64(); + + stats =3D brute_stats_ptr(current); + read_lock(&tasklist_lock); + read_lock_irqsave(&brute_stats_ptr_lock, flags); + + if (WARN(!*stats, "No statistical data\n")) { + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); + read_unlock(&tasklist_lock); + return; } + + last_fork_crash =3D brute_manage_fork_attack(*stats, now); + brute_manage_exec_attack(*stats, now, last_fork_crash); + read_unlock_irqrestore(&brute_stats_ptr_lock, flags); + read_unlock(&tasklist_lock); } /* @@ -235,6 +694,7 @@ static struct security_hook_list brute_hooks[] __lsm_r= o_after_init =3D { LSM_HOOK_INIT(task_alloc, brute_task_alloc), LSM_HOOK_INIT(bprm_committing_creds, brute_task_execve), LSM_HOOK_INIT(task_free, brute_task_free), + LSM_HOOK_INIT(task_fatal_signal, brute_task_fatal_signal), }; /** =2D- 2.25.1