Received: by 2002:a05:6a10:f3d0:0:0:0:0 with SMTP id a16csp5763197pxv; Wed, 7 Jul 2021 11:11:12 -0700 (PDT) X-Google-Smtp-Source: ABdhPJzDhv/MqcZgQ4v2Y3LgwZ2pUFSx9LA6om398OKOx7c3g0FIiyK/3mg7vL39A/rqLv0FEhb0 X-Received: by 2002:a17:906:9c84:: with SMTP id fj4mr11111982ejc.438.1625681472459; Wed, 07 Jul 2021 11:11:12 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1625681472; cv=none; d=google.com; s=arc-20160816; b=LzUZ2JXrq78NzP8BSblJBwKUh1He0laz8kSYyOx0DRo5EEwzOemcLd7xOdenQ1mTZJ oB6FMtaOCM9wf7lgtZTnuN93a6a2b1xhKXlo38sQ7Cgwu9oPJ9j5i3E5fGpJXTIqsub0 e/cTP2WSDfHIMpwaEGMBxX+MTMxQaBTnbM4C2UKqlBUOPcZJivlCdA4+t3ca6Nh/ua07 lgtZEwo2UlzZlx+15GnFH1cfDUg911UWoBRDn5jjj1qrhF5NN+Ck3OIrGzAVmqOzRmT0 J/eGI3Kx0liUDOxwDLynncD5LNWTyrPuj292Rj351BxcwJ8zKTgBDuNOVHQLYjBI0nYJ G6tQ== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:user-agent:in-reply-to:content-disposition :mime-version:references:message-id:subject:cc:to:from:date; bh=slK9vZcAeHn5KQ9fMRjxaIRZdKeTTJPRQaQ7IA4HhQw=; b=uXDutRixDFwCU1PAFVlBj1ciwijBhpcAulyUp3fNlchYA9iAGE9c8yPKTH1P66BT+b 2+03Vs/J6djYbwCTDna/loVoXMnnDcwjuU0sme0PWZwJWVSTcvpRnQtmXEoMqTRKae+y S4isbpFpHb9FmG2YNJTnuK7tfprWXHlBu/IEStualKTE3QMpWGXqBNKtr/IKvcghEXfO RrWSC17CY5O8kJjpi1lhLJm+PuF1kJpkZ64HBjwQLBQFlDUogitfHPlzmL4Fm3QlACwL ZtAiZp27EZCXrbwU30RR9SxiWmZWqe8j8X2dRi6dvSafZobkcWB5bUdYAwJZ8o2QqFOR tm4g== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=intel.com Return-Path: Received: from vger.kernel.org (vger.kernel.org. [23.128.96.18]) by mx.google.com with ESMTP id p17si19230790edq.574.2021.07.07.11.10.48; Wed, 07 Jul 2021 11:11:12 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) client-ip=23.128.96.18; Authentication-Results: mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=intel.com Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S231196AbhGGSK6 (ORCPT + 99 others); Wed, 7 Jul 2021 14:10:58 -0400 Received: from mga06.intel.com ([134.134.136.31]:9733 "EHLO mga06.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S229542AbhGGSK5 (ORCPT ); Wed, 7 Jul 2021 14:10:57 -0400 X-IronPort-AV: E=McAfee;i="6200,9189,10037"; a="270472530" X-IronPort-AV: E=Sophos;i="5.84,221,1620716400"; d="gz'50?scan'50,208,50";a="270472530" Received: from fmsmga008.fm.intel.com ([10.253.24.58]) by orsmga104.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 07 Jul 2021 11:08:15 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.84,221,1620716400"; d="gz'50?scan'50,208,50";a="461411582" Received: from lkp-server01.sh.intel.com (HELO 4aae0cb4f5b5) ([10.239.97.150]) by fmsmga008.fm.intel.com with ESMTP; 07 Jul 2021 11:08:12 -0700 Received: from kbuild by 4aae0cb4f5b5 with local (Exim 4.92) (envelope-from ) id 1m1Bxz-000Dip-RV; Wed, 07 Jul 2021 18:08:11 +0000 Date: Thu, 8 Jul 2021 02:07:59 +0800 From: kernel test robot To: Christian Borntraeger , peterz@infradead.org Cc: kbuild-all@lists.01.org, borntraeger@de.ibm.com, bristot@redhat.com, bsegall@google.com, dietmar.eggemann@arm.com, joshdon@google.com, juri.lelli@redhat.com, kvm@vger.kernel.org, linux-kernel@vger.kernel.org, linux-s390@vger.kernel.org Subject: Re: [PATCH 1/1] sched/fair: improve yield_to vs fairness Message-ID: <202107080102.8lX8XECK-lkp@intel.com> References: <20210707123402.13999-2-borntraeger@de.ibm.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="3MwIy2ne0vdjdPXF" Content-Disposition: inline In-Reply-To: <20210707123402.13999-2-borntraeger@de.ibm.com> User-Agent: Mutt/1.10.1 (2018-07-13) Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org --3MwIy2ne0vdjdPXF Content-Type: text/plain; charset=us-ascii Content-Disposition: inline Hi Christian, I love your patch! Perhaps something to improve: [auto build test WARNING on tip/sched/core] [also build test WARNING on v5.13 next-20210707] [If your patch is applied to the wrong git tree, kindly drop us a note. And when submitting patch, we suggest to use '--base' as documented in https://git-scm.com/docs/git-format-patch] url: https://github.com/0day-ci/linux/commits/Christian-Borntraeger/sched-fair-improve-yield_to-vs-fairness/20210707-213440 base: https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git 031e3bd8986fffe31e1ddbf5264cccfe30c9abd7 config: i386-randconfig-s002-20210707 (attached as .config) compiler: gcc-9 (Debian 9.3.0-22) 9.3.0 reproduce: # apt-get install sparse # sparse version: v0.6.3-341-g8af24329-dirty # https://github.com/0day-ci/linux/commit/75196412f9c36f51144f4c333b2b02d57bb0ebde git remote add linux-review https://github.com/0day-ci/linux git fetch --no-tags linux-review Christian-Borntraeger/sched-fair-improve-yield_to-vs-fairness/20210707-213440 git checkout 75196412f9c36f51144f4c333b2b02d57bb0ebde # save the attached .config to linux build tree make W=1 C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' ARCH=i386 If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) kernel/sched/fair.c:830:34: sparse: sparse: incorrect type in argument 1 (different address spaces) @@ expected struct sched_entity *se @@ got struct sched_entity [noderef] __rcu * @@ kernel/sched/fair.c:830:34: sparse: expected struct sched_entity *se kernel/sched/fair.c:830:34: sparse: got struct sched_entity [noderef] __rcu * kernel/sched/fair.c:5458:38: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected struct task_struct *curr @@ got struct task_struct [noderef] __rcu *curr @@ kernel/sched/fair.c:5458:38: sparse: expected struct task_struct *curr kernel/sched/fair.c:5458:38: sparse: got struct task_struct [noderef] __rcu *curr kernel/sched/fair.c:7048:38: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected struct task_struct *curr @@ got struct task_struct [noderef] __rcu *curr @@ kernel/sched/fair.c:7048:38: sparse: expected struct task_struct *curr kernel/sched/fair.c:7048:38: sparse: got struct task_struct [noderef] __rcu *curr kernel/sched/fair.c:7332:38: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected struct task_struct *curr @@ got struct task_struct [noderef] __rcu *curr @@ kernel/sched/fair.c:7332:38: sparse: expected struct task_struct *curr kernel/sched/fair.c:7332:38: sparse: got struct task_struct [noderef] __rcu *curr >> kernel/sched/fair.c:7364:40: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected struct sched_entity *curr @@ got struct sched_entity [noderef] __rcu * @@ kernel/sched/fair.c:7364:40: sparse: expected struct sched_entity *curr kernel/sched/fair.c:7364:40: sparse: got struct sched_entity [noderef] __rcu * kernel/sched/fair.c:5387:35: sparse: sparse: marked inline, but without a definition kernel/sched/fair.c: note: in included file: kernel/sched/sched.h:2011:25: sparse: sparse: incompatible types in comparison expression (different address spaces): kernel/sched/sched.h:2011:25: sparse: struct task_struct [noderef] __rcu * kernel/sched/sched.h:2011:25: sparse: struct task_struct * kernel/sched/sched.h:2169:9: sparse: sparse: incompatible types in comparison expression (different address spaces): kernel/sched/sched.h:2169:9: sparse: struct task_struct [noderef] __rcu * kernel/sched/sched.h:2169:9: sparse: struct task_struct * kernel/sched/sched.h:2011:25: sparse: sparse: incompatible types in comparison expression (different address spaces): kernel/sched/sched.h:2011:25: sparse: struct task_struct [noderef] __rcu * kernel/sched/sched.h:2011:25: sparse: struct task_struct * kernel/sched/sched.h:2011:25: sparse: sparse: incompatible types in comparison expression (different address spaces): kernel/sched/sched.h:2011:25: sparse: struct task_struct [noderef] __rcu * kernel/sched/sched.h:2011:25: sparse: struct task_struct * vim +7364 kernel/sched/fair.c 7360 7361 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7362 { 7363 struct sched_entity *se = &p->se; > 7364 struct sched_entity *curr = &rq->curr->se; 7365 7366 /* throttled hierarchies are not runnable */ 7367 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7368 return false; 7369 7370 /* Tell the scheduler that we'd really like pse to run next. */ 7371 set_next_buddy(se); 7372 7373 yield_task_fair(rq); 7374 7375 /* 7376 * This path is special and only called from KVM. In contrast to yield, 7377 * in yield_to we really know that current is spinning and we know 7378 * (s390) or have good heuristics whom are we waiting for. There is 7379 * absolutely no point in continuing the current task, even if this 7380 * means to become unfairer. Let us give the current process some 7381 * "fake" penalty. 7382 */ 7383 curr->vruntime += sched_slice(cfs_rq_of(curr), curr); 7384 7385 return true; 7386 } 7387 --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --3MwIy2ne0vdjdPXF Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICFvj5WAAAy5jb25maWcAjDxJc9y20vf8iinlkhySaLPi1Fc6YEiQgwxJ0AA4iy4sWR47 qmdLeVpe4n//dQNcALA5tg8uDboBNIDe0eCPP/y4YK8vj19uX+7vbj9//rr4dHg4PN2+HD4s Pt5/PvzfIpWLSpoFT4X5FZCL+4fXf3+7v3h7tXjz69nFr6e/PN1dLdaHp4fD50Xy+PDx/tMr dL9/fPjhxx8SWWUib5Ok3XClhaxaw3fm+uTT3d0vfyx+Sg/v728fFn/8isOcn//s/jrxugnd 5kly/bVvysehrv84vTg9HXALVuUDaGhm2g5RNeMQ0NSjnV+8OT3v24sUUZdZOqJCE43qAU49 ahNWtYWo1uMIXmOrDTMiCWArIIbpss2lkSRAVNCVeyBZaaOaxEilx1ah3rVbqbx5l40oUiNK 3hq2LHirpTIj1KwUZ7DcKpPwH6Bo7Arn9eMit6f/efF8eHn9ezzBpZJrXrVwgLqsvYkrYVpe bVqmYFdEKcz1xflIa1kLmNtw7c3dsFq0K5ieqwhSyIQV/baenARLaTUrjNe4YhverrmqeNHm N8IjyYcsAXJOg4qbktGQ3c1cDzkHuKQBN9ogM/246GAevYv758XD4wtu8wRuqT6GgLQfg+9u jveWPjgGXhIU40KIPinPWFMYywXe2fTNK6lNxUp+ffLTw+PD4eeTcVy91xtRJySZtdRi15bv Gt5wEmHLTLJq5+GJklq3JS+l2rfMGJasSLxG80IsSRBrQNsRK7anyxRMbzFgGcCyRS87IIaL 59f3z1+fXw5fRtnJecWVSKyU1kouPXH2QXoltzREVH/yxKBUeGymUgDpVm9bxTWvUrprsvJl A1tSWTJRhW1alBRSuxJc4Wr3ITRj2nApRjCQU6UF91VST0SpBfaZBUzo8akvmVHAC7DFoBpA 5dFYuH61YbhBbSlTHhErVcLTTuWJKh+humZKc5o6SxlfNnmmrTwcHj4sHj9GJzzaHpmstWxg IsecqfSmsezio1hx+Up13rBCpMzwtoAdbpN9UhC8YrX6ZmS9CGzH4xteGeI0PCCqdJYmzNfA FFoJfMDSPxsSr5S6bWokOdKAToiTurHkKm1tTGSjjuJYgTL3Xw5Pz5RMgSFdgzXiIDQeXaub tgbCZGrN7CDNlUSIAA4lhd2CKWEX+QqZqyPP54MJYYOxqrNoJzg0tX/aE7drgp/BggYyEK87 VZLMbpwQ1tETDjpssOK8rA0s0LoQo4bt2jeyaCrD1J7Www6L2Ji+fyKhe78uOMffzO3zfxYv sDeLW6Dr+eX25Xlxe3f3+Prwcv/wKTo9PHiW2DECsUTRszweAMdt0Clq0YSDjgcMQ9KOnITu lqao1yLYDNBDvcVKhUZvKSX3+DsW6NkgWJzQsrBayR/O7pVKmoWmmLratwDzyYOfLd8BV1MH oR2y3133/Tuqw6mGPV67P7xdXw+HKwPhEWvnrFFbWUh0z4BtVyIz1+enI4OIyoDDyzIe4Zxd BMLRgDfr/NNkBUra6p2eofTdX4cPr58PT4uPh9uX16fDs23u1kVAA4W7ZZVpl6iMYdymKlnd mmLZZkWjV57yzZVsak9R1iznjq+5Z23Al0gCJnT9HNW0D+IQapHqY3CVznhyHTwDSbvhitj6 DmHV5BzWFa8IOHojEj5pBrZEmZm0A39lxPpKoZP5ua19DPQsOHtgVEE0qU4rnqxrCYyBOhWM eaCS3Pmzxkg7NrknoBwzDbOC+gFvYGbjFS/Ynph+WaxxU6zxVZ6zZH+zEgZ2NtjzY1UahRbQ 0EcU43zpvDsOsB1lWGwfGYwb+d3QMuNzL6VExdsJ73hgSStr0JrihqPHYw9UqpJVCafOIsLW 8EcQ9UpVg0sHQqQ8zwyNkyki89aI9OwqxgGNlfDaOmSwucnEOUh0vQYaQTsikSPUKTovVgwH L0FHC/DaPcnUwP4lug2jPxTxC2FSO3jmvNbYIRmsfaDM4t9tVQo/3PZUKS8yOKGQv6MlUwfL wBfNGt+lyxrDd9FPUCneTLX08bXIK1b4CQy7Fr/BOnV+g16BcvOcVSED5S/bBpabE/SydCOA 4m57td8LRlwypQSpuNaIvS+9De5b2sCfHVrtxqBYG7HxDgv5wFptfzVW9WPuZCQBKKyS/jz6 sRObxBjFTfN3BKkwBk9TnsbsCxO3sYdtG4GmdlPacCU8/LPTy4kT0KXM6sPTx8enL7cPd4cF /9/hATwKBiYuQZ8CfMzROyCntTqYnrwzlN85zUjtpnSz9GaQVOayrBnYV+uqjwJXMDqc1kWz pNyXQi7j/nByCkxw55HRo62aLAOfwdrqITac8WFlJgqaga1msgYpcO3DBFiPvHt71V54qST4 7dsQl5NDfZfyBEJQT0PJxtSNaa02Ntcnh88fL85/wfTpYGfQ6QGr1uqmroM0HfhGydqSOYWV ZROxfYk+jqrARgkXtl2/PQZnu+uzKxqhP91vjBOgBcMNUbRmbern2XpAoC/dqGzfG4c2S5Np F9AyYqkwOE7RxBMyjz436okdAQMuAFZu6xw4wkTyrLlxLpALSRT3CK44uCU9yOoDGEphcL5q /DxvgGcZk0Rz9IglV5XLV4DJ0WLpGyGLohtdc9jiGbB1bu3GsGLqAnYjWIbB8BxTTp7KyMDG caaKfYL5El/517lzxguQf9Dog6ve5aM1q7jjSdxEnriEjNVl9dPj3eH5+fFp8fL1bxccBU57 N9ANBKLtnMury5qQUhS8jDPTKO78y0AG27K2SRyPXWSRZsL6+J5PaMBQiooO/3EYxzrguijK UUAMvjNwIHjIo9cSDNFPPDsHKBpMsNaajggQhZXj+J0LT+IKqbO2XIoZWlWaXJyf7cKdujiH yFoEdto53bIUoJ7AB8asDRJJWe3VHpgbDD44i3kTZO1h/9lGWNU0qt2uzZmnGSpXG5TpYgn8 1G56bhq3g1eU8wDGKZrfpdfqBtM7wKaF6XyikZgNfSYDkVGygUoZ9Kh9gDq6Opdvr/SOHB9B NODNEYDRdFYcYWU5M9PV3ICgRMBjLoX4Bvg4vDwKvaSh6xmS1r/PtL+l2xPVaEmLQcmzDEQk TLCM0K2oMP2dzBDSgS/oOLIEQzIzbs7Bwue7syPQtpg5qWSvxG52vzeCJRftOcGBFvR7wHno 0tLXROBoSPrMrKJyBnVGKq0CqHAJCQP10KVtrnyU4mwehk5oDebBhfu6KUMlBNwdNoAjvktW +dVl3Cw3kaKHQL1sSqupM1aKYh9ObDUNhJ6l9nwvwUDrofVog8AV8Tflbs6udNlFjIt5wYNs CUwOhtWp8iD87gD2eEHVUi5zhwI6fjrgap/7tzvDcCBhrFHUTOAWVrrkhh2frSkT57dOBrhZ MbkTlJJd1dwpRW8nbRuHABwdMGWC8CYtKUNUWV9It0AneENLnoMjeUYD8fZqAuoigAlgbIBF WHLC+xTLhbDNtUgmjUJOm+2tM4EOoW/XGEiP4go8epc26S7FbUoGL+NmRKr0EyBdA2ZFC56z ZB9PUNobIuCv+dFCHrKOQ5UIDNmoqezVl16BezIFuZvFwYvzYsQvjw/3L49PQdrei0A7b6ap wsB6iqFYXRyDJ5imnxnBukNyy5Ufn80QGRyp3VgQcT9I636FLpmsC/yPkxkZI0HBLb1gQLxd h1uoOJ49ONQuhzwqYJGADgElOquEQU3NnK91ZYKsqsSLKHDUycE62CXltnSwq8vc3wZdF+Dw XQTpw771PCcn6cFntHMEIiyzDMKo69N/k1P3L6Ih3LeaRWya1MyVx2gjEk8VW+cuAymHIUBN MCJSsv7/PNhq8L4YAG+HPW4UBXJK0bu9eP3a8OvTcHNrcyRsQCMHAbDUmGBSTR3f9gS8grfU eB+yvb66HOy6UYF6x98YaAkjorx/MDHE3XTdAq4ZlGoqKYbGnhqi91gMwAOkM+5j2GL0zu4e HvR3o85tRYSHWX+fJJ7R7tHqpj07PaX4/KY9f3PqDwEtFyFqNAo9zDUMMyRfbHC0UnhX6Q+9 5jtOXooopldt2vjlUfVqrwWaF+BthdJx1gmHf12B6SvkXEq0+v6sEHkF/c+j7l0KZpNqSS42 KVOMe9FE0ZfKcAAi27dFaui7517pHonvwzTOqkZhwxSRyy6g2A2S6azM4z+HpwUo8NtPhy+H hxc7GktqsXj8G8sGvZRnlwbxMmJdXqS7FwuC2Q6k16K2OV9qP8tWF5z7J1Ra9pu2btma28oM urUrdjvzDyOA5/T8QWBazsbHAEqKdTB1nwdz9TKBudm+c2aytfGQdQSI/OnsUMSexBgyi/Vq n17Cg/Ngk1+9MbYsDtsm5bqpo8FKULOmq63CLrWf/7MtwJsGVLxbpfUYtJcSHdUf4to9zcks hhurTpQjJ54k3AbbpvimlRuulEi5n40Lp+RJXyw0NymLV7RkBkzOPm5tjLGBQDj+BmanivYs MGPTDobRUa3bIGDQucFseKU4MJTWEW1jWBT7bBFYpJOtHYATSkVd0to+GpTluQJOihL9wZpX 4MaxIuItW0jrtgRTm02dK5bG5MUwgqGO0Jgg68gZg2w3VUIYB2p4lvSVNHXR5GN8EvbXSzpl 6PrOXIS7mRttZAl62KzkETTF0waL5LCqcMsUmu6CukQfRZTV3BP0sL27Gg2nQMARlqwN7Vb0 +wd/Z/QmAP/gbTYwx7zvBRotimdt0ATN6L97zBAqaEQAuwsRjr1t7E0MdYqoy+Vo6IIhbC1Q Shp420+Ac8327bJgwVUBmqYCvMW2u6Hqq6wW2dPhv6+Hh7uvi+e7289BhNaLb5hKsAKdyw0W w2JSw8yAwZsoQ+0zgFHiaQ+jx+hrqHCgmeqDb3RC5a6Bk76/C56KLTj5/i6ySjkQRh0iiQ+w rrrUv3wOts1bLbl3s4ujEIclzQ71PSsgKB/Y52PMPosPT/f/c1fN/oxuK+hTH7342tqC+UAF H0C4seZvPTrDEyP5w+D2VSAL60kMP4LoxLJNee6s7JYzOtDGRTXnKTgZLummREXZ2xBRJKuY mBGoZ8yaJfnSXSQco6c/gMrWL1MpPpe8qnLVVDEZ2LwCFp4dnY8MGRglywLPf90+HT5MvfFw gYVYzq/eXsNiQR/EATZIJil5J5V4R7PHWHNJqLuBlcWHz4dQ+YW+R99i5aFgaconudQBXPKq mVUjA5bhM4GWj9TfQpEW1IH6Gys/szWsaMhPWAmL0b4dP7k649fnvmHxE/goi8PL3a8/+zKO jksuMXtBG1YLLkv38whKKhRPyFDDglnlebnYhDOGLW6EsK2fOIiYoD2pluensNHvGqEoNxZr DpaN/zjKFSFgNtcfC5qpkpQEY2wv4LS/Vyr2HyAg3wVJOm7evDk9o0x8mbbVVFT2OluSLD9z bu5M7x9un74u+JfXz7eRcHaZgC7X3481wQ89NvANsUpDupyQnSK7f/ryD8j/Ih2MwuBOQ/Sc lNYpNzKRwQXICLQhmosbqd2wePWxQer5QcYUUUqZv0yo0rqvLgPhD51t2yTrSgKpVG8DEZ5u S7lr1dZ42cplUl7+vtu11UYxolnDMrxmw3m7rHYGpvMnz6XMCz6QR1/pl7s21XQaDmE6aSaK 2hw+Pd0uPvYn5sy4XyQ9g9CDJ2cdcMd6460Mb78bYPob1r1DGvNhGyrViFHXZvfmzCuZwgqS FTtrKxG3nb+5iltNzRo9uC19Tdbt091f9y+HO0w8/fLh8DesAxXgxFK5XFx4NdGnNNC6B5cu a1cgQyziz6bEK6alnzN2jzjbNd9rTC5n3RPGMQ3l4JhJG+BzkdSYrmkqm+HDEugEA94oiMVb VXwGaUTVLvWWxc8dBawUU25EcdM6Lv9xrVgSQwFkTbd3w2BSL6NKerOmcvVvXClMAVAv1gAt KJodH9PZEVdSriMgqm0MnkXeyIZ4zqThfKzVda+7iNAfvCeDCc6uuHuKANFQl6acATrb1JaT TXeUu5e0rv6v3a4EWGwxKU/Bei3dpvuKob61z5xcjwjv4nwpDKbY2/gY8S0wuIvd69j4dCD4 BXnD5CdWZ3U81Bm8AE/7oWF4cPiCd7bjatsuYaGufj+ClQI9vRGsLTkRko2fgekaVbWVhCMR we1yVFZL8AmmJtBntu8OXPFZ/2phMggxf18hq7otCvP043lSIk9BiYLksmzanGEWqssnYZKa BOObHgql4zsnJ+71TFcfERHTtbq76xlYKpuZwkFRJ617+tg/tiaWqnmCLsURUFdT6anGuMsE cdSSHcTVkcxlwb0p8dAK4LCInkk1oq+HPQgxeGFk/zBuMt1WmBWoWscqtjQu5if6kVogFhLZ romLx11zGTf3arDC+0y0CFjViTerFB7CsNQ7zqPb07VAmAANq4q7gwrpr015AkLoZaUB1GCG Hm0NvmBQExHQMjO4blAWctvtDqE0bWd7BRm8KhnJDwqRIwS+AwVIavOw11CS3Ln7oc6C6Bov vYA+8LdSbw6JXxIQeZfIu5gAWGS0Bq8a9TKeN7WeYbHt2nFMdxk+oM4gDCUuhOExYN5M//xe bb1aziOguLs7UrI7BRpXVMPhX5z3l5OhwUEl7D8QiH2V7vUF+FmJ2teTWuvRPYo1dPeotLOS FGvPPUwKb6S6JxEgO/1biADNFjKAsbMlZ867TOTml/e3z4cPi/+4xxJ/Pz1+vA8zq4jUbTqx YAt1jw142z9D6h8UHBk+2AH8tgleA/S3e9GDhG84vwOzweHiQyFfZdknNBrfhoyfK+nk3deZ HVPYjBOc88wdUofVVMcwekfl2AhaJf1XYebePPeYgjIPHRBlVKHbEj9zjuGz392IEWe+nxGj xS/0YkSXvS+F1mAdxseREM5ZRqVXZP1srO9YXZ/89vz+/uG3L48fgGHeH06ikwNzwfl4oTrM vixm7vd0dTayRFO5T8uAQIClw8OcKPPxjtflCSB6JeIS+x2O1A4T3ZfHKGpLIaD4VGhSgBcK Vte4VyxN7Q73ifCJfuufdLVLnvXXM+GnHzxcW9bQbhUM7rsrYw2B1QL838Pd68vt+88H+92j hS0ye/GCyqWostKgeRvHgB/xSz9LFrqXwzUCGsT5N9TdsDpRog4iyQ4w9wZX4qVd94yt0xRz S7DrKw9fHp++LsoxbzgttyCLpcYcSleHVbKqYVRyc6zFciie1ekhRNPku0guLsEvYOR+qUBH 1vCqPjprd/fWY3U3qv50qPdrY82XrSO9pLp3aFh4aEKRsK5AEmc/bPGb4ign9NOBUuSKxU4F RrRtZJ2w1scyfmvaq8ulX9LqXinILq05Ji40lXnpuc76S+7jHam6vjz9YyiXPu5mUlCgdcv2 weQkWukehVLVwP77qLXHBgl49ZUNA7w2/8kY/BhemsdNmQ4bbXovbAIKmb7+vW+6qaX0+PJm 2QS1ljcXGXiCBP03evqss2+bXI72LkOfccLHVn2Oxh/Api7sxmECZD3zznZ43mZjJaezA88a ttUWdeP3LrwcCRaJBy9lsCXnKAS2CtFWN3pOKuYx8N4f3O/aljdnlKrGzjZ48MV7jbzWB6OD OprXOCNX+K8d10v3yqrPcFi1VR1e/nl8+g9eU476yhO/ZM2pvQfz5nm2+AvT0/7m27ZUMPpm wxQzr7QyVVprQ0JhPZgZpG4l3FLHo6/da3b8/g6d863xhTXeKYPhxIpzKoYFpLryv+9kf7fp KqmjybAZax1mEswOQTFFw3Fdop7xnhwwR6vHy2ZHCj9itKapKh690K9AG8q14PRuu44bQ1+l IjST9KVdBxunpSfAY2kZ/T7MwvhcSt6RhkZh5rTH5fqNyHBRk0nqvjkcvknreQa1GIptv4GB UDgXiPok/ZUfnB3+zAduo25HepykWfqGujc1Pfz65O71/f3dSTj6/3P2LFtu4zr+Si1nFnPG j7LLXvSCkmibsV4lyrKcjU5uUnO7zslN5VSqZ/rzB6BeJAVYmVmkuwxAfIIkQDyYRBtafoeZ 3bpsWm07XkdtkHYIMkRt8gr0FW8iRgfB3m/vTe327txuicl125ConA4sM1iPZ22UVuWk1wBr tgU19gadRiAENhiVVd5yOfm65bQ7TcWdJo+7XJDMSjCEZvR5vJbHbRNf5+ozZKdE0JGM7TTn 8f2CYA7MRSslUuVlmHuLyMC81dXCfC5roecLZq70jTN27ZiHDO8pE1HQ3gs9DQhu5moIzt8k 985wm7i9BSWxQX4HCVtYFIbsxq1DZlMvmNRDJZd4EaR7Eh6vmBqCQkVHJqca7j2aDvSuYpE2 u8VqSbsERTJMJT0tcRzSEY+iFDE9S/VqQxclcjpXRX7KuOq3IDXlTFSoklJinzZ0OCyOB58t Kgqp9BhRiqYUUHdAM/7jX9aww0QJlOsrsrAsl2mlr6pk0l5WGpP7leyJa3LVsqdKkjNHKfYw ZcLfT5qXl9qWRpLuDFLEa1AsNJ4KHNVzUfIVpKGm5YcujRXS5IVi/HpGmjAWWitqjzZHcY3q 2a1xM/IEz7EnyD58vPzqkuE5rczP5VHSrGXWUpHBSZrBpuVnOumE7UnxHsIWoK2JEUkhIq7v DKsHjKvzAQah4PaWAybdIcbuqgoZtxbvseLDEZeS403TjleP+PHy8u3Xw8fbwz9eoJ944/EN bzse4MwxBOOdRg9B9QgVGMw0UrcKlB2Gczgr0l8Lx35vHTbtb6ORu5mSOgTvKx4KRUs0ocxP DZeINj0wSXI1HDZcPksUTQ80jjpz++0G05W4ivgRA7llm92pAx2EirN2Q+ogsjyVoFT3W0fP 79HLf79+JdyIWjOP0sIePUl7Y3UJYSzLjv+DCocBsLmQgfVIO6VJofPEKcZALHuMU5bB3fdO dsnw5vS3iGfcpJEQFG76VDY+cpqSMhFjvOP8UbnDnSaIoSSzNCEKr8JwlRKZ5xCtMnpfRhxs rTxO0BuqqbIzwrujgaY+4OBJHKJPw0ylwaFhnR9vpPitiWkJZbHC/9DHXhfWgV58/laGsK9v Pz7e375jEkvCBRsH4VDCf5dMJCMSYI5tKqOD29Qac2Bhql2elWoshMVWaxCFGY9mg0d2LxWz IZk2CBRwaYFw6Eh5uqSYFz5ngp0nhDIUPGWcgU6qifSr0cuv13/+uKLnG05D+AZ/6L9+/nx7 /7C95+6RtVfqb/+AWXv9jugXtpg7VO10f/n2gsHsBj2yBGYXHsuyRzIUkQTONJmCzHCwI/Dp abWUBEnvcDxb8+BzTHPrwMnyx7efb68//LZiZgfjE0RW73w4FPXrf14/vv75G2tDXzvZsZQh Wz5fmnUA13HjnRVWRaEomEyjIlee6DQ6K75+7U6+h8y3slxa4/lJxo45ygF3BkArpX5VJrl9 IdtDQCi8pG7OuDQS8TTjsyl98JA1jypMmj44hH5/A9Z4H9t8uBp7sGM+60HmBjvCHL+WXawu CzHUhh0ZmjJ+Z9yx2v4SW/lI1xtcHVvUtZVVyIn3uzHImsJExlau8ayXUI211sYy2il6F0SF qphNvyOQVcHctLQEePXQFQNKHnoFUcdZ0jxn2rqscCwwWIIwptCuHGM7piS7Di3dknohr0+w h8nvLmXGPFGA6OoSY865AI6TUtkOBqBSuk73hTw6/knt70atwgkMJCE1AV6XE1CSqGxaoJ28 H91FjdeT4caD63KGyIPZN423Kck4zNId4im+GZnW84nHKA208WVFEzsWhqBcNtwtg8HVlPR2 UhqGF340ce6Ym55hHTQyUFQskFaoDSC/OLNw0HGThL7dsIOah1g6Gz+t6p/UdF+0ohT60bB2 0gx0C9/fbsAeUyb1XUK/LlJavJI56amzA5pvSvb6DvBo8o/KgNIAAIum7NLxvQTgOQs+OYCJ KxKW27omODCHCeG3Y9bKDv0ljgNr3R18p2MrEr510nSTfnKAxuWUHgr7qyIN9eNnsEcfMupb QBktRlFxcD2RqHe7p/2W+n652j3e+TLNukb3cNuMZWxYZpdMYKjhdBmsgfn728fb17fvjjAA uiN8QVWW5l1CgvYGpkokJaA58Fawe/31lVjs0Wa1qRuQaGyXvRHo7m5wgiS3jjXGpgYJunIz F49wPDF520p1SMy5RFkIQr1fr/Tjwtoy0VEjbrSdbQ22vjjTmO4Mo0JV6Lp+nWArjampNrtO CDIc3gNMtiP00mCvfPJI73eLlYipRah0vNovFpYLZgtZ2cFXMtUZvgsCmM2GQASn5dMTATdV 7xdOhNYpCbfrDbV5Rnq53Tk50nL0gTxdmGTGBaNzRNemjkQpjJTOyuS9SMwbHzptTUcHMtEM OgQ1Raltz004M+A/Z3kDocqJNQtX/vbeOjtJDFyiNIwWAwy0opZvh51mLusQiai3uyf6xr0j 2a/DmjacdQQqKpvd/pRLTdmSOyIpQSt+dJyf3C5ZQxA8LReTxdMFUP395deD+vHr4/2vf5mc 2F3s68f7lx+/sJyH768/Xh6+wX7w+hP/tIeqxCsT8nT8f5Rr8VfHxLHSa9xSiEFodWmU9XNn TbYBowmTaWHAwr8ZgrKmKapWe6iSkBJdZHhyzhLDqSIOMVQjZFJe9szsU0zwHmOfRCBS0Qjq I3zjwvaPqXKRumk1OpCRKemV2hFM2t0r9fYJ4VxXqmgIW9NoeWiJrKXWTzMg0cfO5mHqA0tu u2jqMRm0PD0s1/vHh38DxeflCv/+fVod6GIS79odQbCDNdmJmZ6BgjOJjQSZvpEjdbd5FiOI ENgvwxRaRluhzgxoRJsU2RK/jGXGc8EMsjTiDLHmWCYx2I3jhdP25bMJf7zj+FNK5lyArlVc MlmVs6iq5jCokjF3ywEsz0tEq65HxowL7dP+FcrYL/gLpFe6tvJCNxDgTWVmxjzFx3xdyfJE zHJrWzFCtGX0TOOEyfMLgnNK+oBJDLZyZHFsUgUHMGxI6zBzlLUKjklJJ+0tb/kpI3PLWOWJ SOSldHP3tCCT/A3XyUwBR+lysSyX6yXnTtV/FIuwUFCJk4lCo/6omRU0flpKP9WUTJlb5O7A KRnfzrHQRHy2XV0dlONpCT93y+Wy8XjAEpXg2zVj7U+ipj4GvPWLv8wesE1FiYJ2e2HBp6Vy zFTimUnwaH9XuExQhI3kXGEQ0RRZeMZE1DPFIjNnjswuypjzhojp5NSIoMcFMdzUz/Bg+46g u5qCR9oNAuPm94sdCMHMeQIERx6Z1nSHQ45vS3XM0jVbGL3egyNOC/VUz7jCTD469uYEcwDM Dlro5RoLUsoEan3T3fs7EpYIGbsxbr4wdTISwO8e/1FFV8rO1W2jTjLWrq27AzUlzWUDmh74 AU2zyIiuKAuf3TKQDd3EoR4bEJ8YP31nTR8lphYfDgu6TTVammhclOwXjIEuos8lqz2Re2K0 bqPx3F4QdXb2saJ4RXs/6UsaMW+AWeVhXm/pKMuBXM22XX7uHpcdx99AmjTH92BSONAStDn4 y3la0kEUcFY6+uShBJ7lDJ+H8jjFEsUWUmLsjyvzMpIOXooeEkbgQmT+3CScpwzizSrjSY5K pNBP9nMcpbBRsqBM8Fan2lwi5Eodbo4dPUnVm1O0avw9wCIAPeTAHlEwoYtH9pQ+pRrd/GjH FkSyezkg1/d7erqIq51k0EKp3WpT1zTKT80vaT5B8MKnWzB68ZHeZAFeMV7KNfcJK7eoR7b2 mU3NZBvH4Gy7O58YHf+cFWruoElEUXm3fUm1fVzXNcsIScVyfoKaAG34T6qceek8r8Vyu2Or 02fG71SfbzNyXQI9E2nmbHdJXAOPM899xPVmcntkY/X1LvpwnZ89l2PPerd7ZB6AB9RmCcXS TtNn/Rk+5e5SfJbxt28YlieY5N9hNpnQCzO5FU6SLfy9XDBzdZAiTmeqS0XZVTYeki2IFnv0 br1bzZwL8CfaNZxtUq8Y7q3q48zpCX8WWZol9Kacum03jjb/t9Nxt947G1VndGHEvtV5fvbT SkWuYtM+ks6ttjgPf6Od2dl9Vzk8Ndxeh+loZza1NrILqj2q1DNVgJIJrEsWfJNoxT+Qqcfs wmWqMScDOWPPcXZ0bwufYwF7H60sPMes8gFl1jJtOPQzGWtjN+SCd6eJo1g9h+IJzqnmIhjV o7USc6d5kcxOYxE5fS+2i8eZ9VRIvB5wBFLBXDXtlus9E8qAqDKjF2GxW273c40ANhHu82Yn 9vwoRDUjZ6FWbru7WCgtEpCrHSdIjce6XxvxpbTzL9mILBbFAf65jyIzzr8AB5kZeGOGzUEc dHOD63C/WqypLIXOV+4oKr1n5HBALfczzKET7fCTTsL9kl5KMlesyG8+Y77DKu4jH+eOBJ2F cCDI2k3lBrs158OLOPhekxY6u+DSHJhOsWWCmsI8s7h5XU8iz2+JFPTJjwzJOE2GGLaQMuel usw04pZmuXZDv6Nr2NTx/KVCKU+X0jkTWsjMV+4XqolEpVI0nHKbmkXDCqElZhgGSQ2DtTQT ctbR0DjvLn7a7so9UeFnU5y4NycRW2F2HVVS0cJWsVf1OXVDh1tIc91wa2UgWM9pyK2l2S68 sz3jWMeKy+vc0oj6zpx0NHEMc87RHKKIeehF5Tkf8qsD//2WUeY43bhACuQM4knNzu1U91Y3 29d0cCOdYK0aYyYqOs+ZR+zp252LDro4H2P8sqcEUaEo6TFE5Bn0ZOacQ3Quj0Iz7q2IL8p4 t9zQAzriaX0E8ag27BjpCPHwj7sEQLTKT/RWeG0PL+vXaGtJWnmDwpUnVxA53Xu/oTxtOHnZ LTSxI7ltlHX7TWD7K0oC1V9UMKgCDm9n+8/Q2k+zWqF0sqHcNexCR6WeQkpQCNgxtbVFAl2I 7j6Swg2yIYXUikbY7qk2vGToP98ioWmUseLI1L3zvTL3fFcOUSU1mqPobezySZX60vA5DGDb 0YoKfsMVbwVUjVc+OiLs/D9+/vXBuhOoNL9Yo2Z+NrG0k9+1sMMBc+TEjg9ji2kz8pwdv90W k4iyUPXZShN9+fXy/h0Tj7/i8/H/9cVxlOs+yi4adMrKdVCxMRjFRiaM8Mh0WEhQpOo/lovV 432a2x9P251f36fs5kWOOmhZta30gG3KGWvouYi29oOzvAWZKBwjZw+DHSvfbFb0HusS7ehn cD0iShkaScpzQDfjuVwumJ3eoXmapVkttzM0YZzrJ04qH6iiLtq42O5or7GBMj5Dr+6TyHy/ Zg6igeaYMxKiQ2HCeJlg7YGwDMX2cUlfxNhEu8flzKS262um/8luvaJ3IIdmPUOTiPppvdnP EIX0ZjYS5MVyRZv/BhqdVrrJr4WXEWdKqJh3rQeCVF5LxvtjoMGwd7yHnWl4p7zPsED3lnuX jnimxDK7iquY6aM2O4TmYqpHuks6y+fQMFPWzIDAdk2bWEfmTFZNmV3C0+wU1eVsq0KRw3Kf mckgpJXUkbHKs3nS6f6pMO7W5iccJCsC1Ig41xQ8uEUUGC/+4P95TiFBExZ59zrpqFVM0Y1O 6MDjkTa8TeKZRqRJBTYJmpuQ4fPkvt/PFDttDNV0iaIoc0tpNcwwirrfrAMmAePbVSXmb7aI NmLBH36R57E01fsYYKfN/ulxWll4Ezll5WqxODyut74Lv4szQ+pjK13XtRDThrDnTdfhgW08 T1+WDnQmdm2AoKO790o7eA9pRCqAvR0L4YBa0yt7JIgoBWlAh1lQCKLK42FFteRYuGYnB9Ew YXcj0QVf7U0yig0HIqNAibAkq9EqkleF4cP3iigT9x58LNvYSu59ehVFobKC6Hoijsb6SKBM qtOsCOgmIzLgkuSOZJiDkvFQHTt2VdEnJhnYQPT5JNPThVpAA0kU7OlZFIkMmcN6bMSlCLJj IQ70cTFynt4slrSYMdCgdH8h07ANJHUuIrKxiGjITAIuSadITQu4ivgMrAYSM3WrPpDldRES k37QSmwDX/UwWbosXa79bS5LgA1COzO6jVK5Z4SxkCeRgmpLJWGziM4B/CDL7q6QiMLbDRuG IcwSWtjo+oS7d6uj3aFict0WiXr0XnMxIDeaFCGwN3uQgx1i1ENMszMPvoq60AuffrmcQFY+ ZO2YaDsYPSAdklpcLWqz6fXO05f3byaQWf1n9oD6vpOs1+kCET7oUZifjdotHlc+EP7rP6Xb IsJytwqfloxNxpDkouBEw44gRKGK6G2LjlXQSm/eZ4WgHCdaXOeO7Eh9XWV6lTgp9bsPirAh axF5cK9xGZq+Ra7zyYhd0kdFNaDVHt2qLpqJo8S90g3o7CFNqkHNtwsZMDHNVgNeJpfl4kxv mgPRIdktPJLuupviuSGWg7qCakOi/vzy/uXrB+ZX8MMmy9Lx7Ku4dK37XZOXrqWpezsawWR3 YpMXEYPW/Vz0bfzNy/vrl+/Wnb41U7Bpmby8oe2u3iF2KzfYcAA2kQTJPRSljEwOSudhBJuu DWd1eK1HLbebzUI0lQAQp1va9AcUZqh87jZR2AZpMI220yk7rbSTKdkIWYuCa38i0yYh89XZ VGlhXBSsLNs2tsAXUxJ5j8RkAo5kxDZDpJhsjc6jbxMK8yplU2FddG9NygA/UteddXxFBilm 6io0M9LR1Xsu00aCErParTf0VahbCl16Ua52u5rGZV7OaR+HyzMDJqsvjL3KoofNcOlZeqiZ KbebpyeuTljp+UmRsrdNhoJsaofeu+3QzLpLVEQjTIqGOxPwtHqiBLiOKjsM4QD90Zy+/fgP /BiozSZjgjqnQX7t9yIJ4LSKF8vptjKi2EXcW5/8trdB3uGd+CyHMI8YbxKbCLiBzGXeESVS e35zFpxqikvW3wkTJfSo+UJG9xsS3m4qzeN9/GTT6bHcJPQMRECbMrwQPRpw811SCTUk+Ozj 73zKH2TYVTTjE4X3qPkaBsphT1/6Y3dqNHGUtODxs9WkER3F/JS3dFY/mZLgqONLOWncwdar erpVjiiWAVz9wwJaX0xmMGTyOXT4T+QLDv2a0smkPoDdqa4qdxvOf6rbyBLGhtwPozooMhNR h8drRfU8aVYLZofumWqsDsO0prT2Ab/cKv1UUytjwLG3Zv0aVEkgi0jc3x9h/9+u751rnb7x qRRHUozw8HemiKFsglsuyIhN97t7tZvyElEboWiyv9lEgbhEBQixfyyXm9ViwTXSbuC94UNP X98f1WPbWoOULqYapo37nao6t6Jc8w6wfbF43TxHBGrhPXSRc5ohIDFoJ86ZTo3I3+mVoVbp IZb1/XEM0UfRJDFTR9hb4oyS0qdEv9MGk0vs7mig4P95uabNtH0pOZnEfqgjWa+mxwRC2b0j qWRwofm+RXEfZteYgrH0sEsQgwnQ+eMpUXEgQQttLtq/cPGxTb86J6PrUP3GhOGRPOXvPpGE q/n6LQrLIjY3FUSPU6ja5BBkEiEMttGypC+R0+bIZDhKs89ZQrp/XuK4uydwG4OeHV72Mgtj ugGf+XG44XDxgL5RaWlZIUZYE8sKxOrhVSQDdVPGxfmduc9zz7ely1vAf6HyROFNbBTbjuUG mptkI8babBdp4fDdRvIC19C0jo2t3eMg3BhhQ8CkQG9xWlE34AZ3FZicPTv67cU0x9nh4IHP oW6CxI1/b9VvxBgSQFMMkIMKBse5TUaUEpRkIXZ3gslYENWdrt2bnHYdA9C85lCoLJGUdDaS eR58I0I4z7sO4EA8rpcU4iidp+tGhOdTbCOQ1+63DhSDIj2GVLn9RkyUbDS5uwUn9noawbK+ pZmmMDi5FBx9GEr3Bd4BF8LadkMsRlyNLqNMKmE0FfNSd5becjLL0FXY6fl0+DeIRf0G2a/3 cPe03v7tQVMdTjZSYECaddKqENZIAJ1/637KyfAc2DSO4Umi4QxZ09rOQviXk6PrgA2d0p4S 00GnZGjmDgv7EtTGeN6wNgqEGJV6aUVsfHqpMs6TB+lS0v6DmMklCAL76tjyQjKcGjFViQnY i6y+TXuiy/X6c7565DGd6WmsS8Yh8+wmiKzxzfEY6CF9Uss+G/PkCt2yGXVzWlxATsN3vNrU uJMbb1SHpq6htpkMEyKaqcjyQh6ddwkRapxwYFgdhjbsYF5Cpo4JROLr7I4PJQCTS91fliV/ ff94/fn95W/oHDYx/PP1J9lOkMiD1oQCRcaxTO2XCbtCJ+tthHvPj00o4jJ8XC+YZ5s6mjwU +80jbT5xaf5mRgMpYGynDU/iOsxjJ+PX3ZFxK+4yQ6O1g6m490wZWEF8/+fb++vHn//65Y1y fMycFyZ7YB4eKKCwm+wVPFQ2GI4wN+w4uV2ExQM0DuB/vv36mMnt3VarlhtG1RjwW9rT8X8Z u5LmxnEl/Vd87I54PU2C+2EOFElJLBMSTVASXReFu+zu55hyuaLK9aZ7fv0gAS5YEnRd7FB+ SWzEkgnmMuPDCk7LJHLPgzE40RrOFUzcJUK8Khl0wYnX1sc3FWSOxD0SpI58gRxs63pwfISH vVcYrrgbJb2C+SrCM+qJCVazKMrcr4XjcYBfQI1wFrtXKJd21jC+WVv7HexmrjnECmqnXRAb 5D/f355ebv6AEMby0ZtfXvi8/PzPzdPLH0+Pj0+PN7+PXL+9fvntE1+Tv5oLCG5IjKUiZFRz Y8r7DPuwIKBh0OU7sQHLj0HOgeA4F3O7o0MAHjluj2iMBwF3BWX9Rm97AccRtq+OjnWOssqK 1buDCAmpSxYGyBpNvjJQ5dOKXrfC4ohPKNimaw4nR7UjnnvVVLRCY4EJTAi1kd50bJzEmSWz IdaHD1YMbG1v2O2b/FDqqqZE0HQuYtnTnckN8n3T4vFBBX5sA/3yFKgfPoZJ6l6htxVt0fy3 ADZtQW6tg9ehLwisjyO7CbRPYuJaExBnZFAv6AVxYDphVBfNko+W/bcKmsl3gXbBomOLrbTI nfOypXwFoWk/ATwYjW+H3CKMX961UmWgZedS62o9JoGg3aLROsTmFxQkVD83CuL+Svm53xhL kdXUiFwoqPhVnoB6ixkUyi3mgragiVHr6RDX15ZcaoN+f7g7cbXdWh7ye9qmdSXl5CwrH5dV +GoIOXP2Gp18oYaEZLvLCmrjqm9o2sycy12RKynnubT/5eEznEq/S/no4fHh65smF2k73RGM kE+qPC/ozYHolKIlsW9sW1bweNGc4+bYb08fP16PrN5aQ54f2ZVrs47+9fVhCjitHdVcTJ1c oUQ/j2//luLt2Enl5NU7qArII3nUxXPU4gSe2bLalE5RSdScsGiuKwHZh5UgjaGnrakvMAjm DSkJ3KeUiGfvDBS0sIDE/Q6LKylDrWh/c/MDbWUXkFSS08aMisgQlBcFV+5EzgVKpzXokxzY 61saQy9a9Fwf8Et80gSHD1D9lHsM1TWU/9AUU2kbydSURN8nTUOQPz9D0G1VIIQiQEtFL3L1 PGktW/EYPvQtcFhyJdDGatG8TbzQoqkh4M+tuMLB2zHxCLs25eppQewMEAs2yiVze/6CbCYP b6/fbHWsb3lrXz/9D9pW3kU/StOrdaMhNy2RbvFmdLUHF1BnIty3V/7Y0w1f/Xxfe3yGZCp8 sxMVf/8vd5XwQRGd33azlSK4mNp32HEOwyKtr3SCSF4AeZauTU25Mhz5ZOI4bo1rPiHejbkk jFLq7s4MpCVXqen5oRbF7pmazEneeBjfE2bi9YxJSwIek/MYJc3Jd+Tly9PL67d/bl4evn7l io1oFaIxiQcTLnu5Y6LLQXCncZM4LVvsmkiCk4pkE6/MFKsl2O8TzNlV9pM/uqm67p5vQdXQ Wg+vaEIzPuyY1KeMVllqknwdcwhWjYqYNQmgvBj5f1SwqqWQZRRWUasYMMd0lbLt4Z9mWabO DFWI1eAOmeCggJik5lJa7eGqhas5InbW2RzM0XDQKmi0uXEVRjdpzBL7MVodPvokcU9C2hap K2CXZHDpIBIdCrvOAVMspLU3nF6Ot6lJ/3LSFrptrSSWK0uK5TSPSsK3uOMGC9cjmYTljlUw g2CsBd8QVopvXV96Bcq35sHwbjV2skK9RBZEw1huoflpbJJZmHrm5J0EdYN8hmgaBz1AkASG NIpcLZThvpm5lGdhXiM29i4Cl31bx4m0srfKg5YfUr+NKNjTG7uvtpATXzPilSutTxP7nRb7 wEcjw48jGkXWiF7qA2RFMKnMj4swVeXn1RbPV2iC+vT3V3782z0Z4xjYAynpph21yYSmcpKb 1uVqaAdyaYJHu8PubWEgzgETt/mBOfQj1bQLX7AEC640wts0SswC+7YuSGpt1HwBZGMkWkWM NwZYHuTb0h54ZIgdcSbksVYmXkRS54lY8lkoFEfrMT9de4wPh08vtvxS5pmHJl1a0MgYEF2b FSR5LWUdKkEWBhYxTaLYLLLNG5qb8hZrSFrYxfYtiyPipxg5s9+eJBOr4/0dHdIY3zTs9zhn P33v/a58mJBvoneFYpIroeGHN/51YZy5qyDX9CCMliPmxcRUSS7i8FOS5x0/+B2xQeTLOcLN c2OaQCmZXbERBN/o1a1Ju5uYi0MeE8Wdn7+9/eAay8qune92/HCF5I/GxKBckTm1ai1oadMz It+lqNT/7X+fx6sL+vD9zZgFF3/UwEXMkCO2py0sJSNhpsxYHUkJhkjZB3nAv1AMMKX2BWE7 PHUS0kG14+zzw39U9zFe4HjFsq86vQmSzmiFkaGLXuQCUicAIavKTa460WscfmB0V3k4xl/H wkGcD6ceJsBoDweeo0nCqghvUoAFWdc5HEMReQMOJKnnqi5JMZla62blhc4hqPxkbcaMM0PR +cEKDbJrokYzEoUEp43mgKjS7ZsejGl/oaqI25a5xNVSRTZeQUVKg5unHXy758ezFys2YJu8 50vl/poXfZqFUW4jxYV4+oE8ITDeMSaDqAz6u9IQ7FVpDMRuDdsop+jUK40oQ1sbxOnxzR1J Bl0PNCDToN/BtS/v0H65pI2JgUuCfuKFnt20EUH6LBDiD3bHuZzHX2egrekJq1kL5a1MBl5u mqne6RMAMgxJbLqusS/FiAFHiumDOPKxtoEZjB8T7LJMaZwfSjc+A5HOkMeRJY5irElDksQZ 0jXxkYvRzQZrFn+5oR/hQoHGg8YcVjlIlLgqSAJsn1U4It4Eu+EApHocdhXKHN9UVZ4YveiY FxHdBCHaaiFieqt9HmXWxJ68u/y0q+CFkyz0sSUzmXOvLJquj7wAeZldz7esCNkPCpIE6MQ7 Fcz3PEcOp2monBrKwpFlWaRY53WHqI/9dN6UR7KxbYufXALUFEhJHD/OGEm4pJ/nwxuX1DAf 8jHVbJmEvnakaQjWj4WB+h7x8WcBwmaqzhG7H8YjvGk8Aa5IqDx+kqw3IiOh5tQ6AX0y+A4g dAOOweBQjM8ajQfVyHWOCKl53/seWi8L1ktkBdwiIiUO9XWbC39YLqM3WNm3KeQPW+3Sre+9 y7PNqR/tbbnD7guE0GKo7f3M0lFhM4UOhcAcQZmX8dg4w7fPLHDXv9aIfmjRSbDp/WuLxo6Y OAr+J6+7a9F2R/udTGjLTljxJYvRGPEL7qOvuqyahu/dFEGELMKnXYHWJ24+Vseqjm7BO3yl URCwdUBmNFwletEWB1Ky3WEt2iZRkES4C6Lk2LHCLpIWfpCkwdhPs0xW7GmJ1bZrIj91eL/O HMRjFH2Yy724n++ME/Q5cc+KBnKfWPb1PvYDdDuoNzR3hNhXWFpHEtHlrUZoVHZlnlaw7O3B HO+CDeqHQg/nI6l8Q+h8guVSb+pDle8qBDgWey5J5h0CCfEBmWgSQFo1ArrpuQZmWNsEgHRH CKwRsvwAID7espAQR1EkjLAXLCBUo9I50P0JpGGydlYCQ+zFSFsF4mcOIE5xIEOGndMDPwmQ oYXE7OgGJoAArzyOsbklgMhVh7tZ2BunRRt4aLOaoat2sFhtrC/iCJW4uBhMgjTGA3mM5VaH LfE3tDClw5mhS/i+E6DzgzoszheG5F2GNZmOw9haokmKN8ehdCgM2O2PAmMLh2K7TEPR9UrR xUpVzU+hRiRAX5uAHB4XOs/a4En/LKSVAIQE6dShL+SlYs1605N65Ch6vv7WBhE4kgTdTjiU pA5lZ+aRhqxrFbA8IOh5dCyKa5s6Lkw0puzKNsiOzzFstLZplCkrstXDnc58OBl0BhLHDgAT vzcQmmZbYT3ctPm1Y/Hqebll7TW4t4vlR/G12G5bpI31gbWn7lq3DEW7ICK4Vsah2HNEvVZ4 Ui/GP30sPC2LQocLyMzEmjjlstXqCiaRF6M6oDhKkzXtk3MEKXZ0wuESBR5+VsARFjqQ2HOd jMRLgrWXKFki1+P88EjXlj6whCGmh8IdW5xiJ2jLhwfpfEvjJA57RAhqh4qf0kgdd1HIPvhe miN7IevbsixidP3y0yr0uJCy0jHOEgVxgpzOp6LMjASmKkRW18xQtpWPCUcfG95DbAu90PEo tmpTbbDEkbo6qdn4zXWdadOjjhAzzhV25NVxMiZJcHLwN0ou0PmG+DiZuhutuJCVYA9XXB0K vXUhgPMQ/32eGC7+10aBsiJMKNbjEcEOZ4ltggxtPut7xpfhaq00jtHjjiuAPknL1JHrYGFj iWFJYPPw3qeoedayhefEy9A9miOOL+AKS0De2cb7IsHu7md4TwtMBO5p63vIsAs6IhUJOrI9 cXqI7cBAxyY5p0c+Uj7kGSva06hQWr3kcJzGuOnZzNP7xGFxsLCkBM0qODFc0iBJAvTaAaDU X7sSAo7ML+3OCYC4AGQ0BB2dvBKBPc5hRKwwNvww6hHBQUKxHpluhmKS7JEbGYlUAlr1aJzX Bvhv/8R9X3/r+T52CAiJN9dd6SUJ0hFBOha04ImH9XlfQ/Rq7KZoYqpo1e2qA4RuHQOFwEVZ fn+l7L89k3lSxKyqjnhu7Qm+dLUIQn3tu7pda01ZSce83fHMm1+110vNKqxClXELl4UiMuhq I9RHIMyvDNW++oi7dIRxtb3AsMkPO/HnnYKWxi2TsKzO2666U6aE9R5PTd7X+Osx7cRHWOST t0oEb0Vk5nFySumEIKXdBthjrK3yDntq4Tgd0nqlXEjvCt97sNLBQnftUYD57A7sXt7W3e3l eCxtpDxOFiwqNec/yxxrA9wPx2S1i5ApBcHHhFVvT5/B8eLbCxYAWUSukWuzaHL1spGLy/ML PovvvGqrAG1vwdiBtqttkxWwY3Ete+ZspdjrOGsQegPSWLU0YMFrHG1EVssyGwYR695vfl9A 2ItjU5vpguZo2Nggi4Zvvr0+PH56fXG/gtG/wJ4T4JRwYNicAIQ5pv3YJGe9olX9098P33mz v799+/EiXJVWBr2vxftbq+398mQY7oeX7z++/IVWNsUrc7AInrsfD595n7DBnAtw8qibRleu 7TR7vhThRvIkvt0h4z/FwsLEA0iScGSs3hhRH9FkLfxF5ig7ANYqESFC/vzx5RP4T9l5Sqfd YFtOPvjLDgE0rs04wgkAPBkeIa0EWIa537XGVyzxJAsSh1w4wahuK339pJ3yMuvFI3lP0sQz QgkIpM98foJpQQAlHWIWQ9zEQnfMXMB9U5TYBRlwiOxBnuqhK6iKMbNa3NASb8BoZjAgQCiE 53GNas7qQrthFmMCWz7qzz2jEdGrHz8xah9ZZnpkNkkeKY4mCTBAHjEyw6qgZqcNFPCzuOW6 ZWC8WBlF4dpAiFMd2eV9Bb6DxsdFMYKFHwzmuxmJdpdpS2KSGbSB19khU5cOJLr2LHdOjH0d czVLDLz5LIeiaHClKNv34Gdtvl6g8ha77j2gWHni3J3y7naOJ4EyQ0KK2mGlDZgzeMx8IptN d7Bci31/+VnGEpzB3+kcRG0X6svP8LkCfixsrSMQjuC4YzHBLwEA/pAfPl4LeixRARY4TIcD oKVpSzVXpYVorTVBjj1sNcvdYbauM3YNMJxz+G8sDM4lKWHVx2qhqgrxTE1Dm5pmHtawNEPt kWY0wx/KsDtogfax9rlmoqkfEAVt+mKnkw1LfgU59EPlWthd1Z/0chQbzmm7HSm6ScNMNQ3e RSHUdDdUz1ARMBPZShAnCBWdrO70Z4qoj9AvUgK9TdXbJEGStnE6kVUFcsqyOkziAZUisHtb FaaRels1kwyTVUG/vU/53NfsM/LNEHmeOziCeK6nLZo3UEopEEqkU8NMCvrkm6iVxAXbnAYB 38R7VrjPANO9SNLSRHdsGwtsKOaYCaDIsSFScB2ZIb2YXklgxel7kWYeLY0/HQmYJJi4NzrJ kGJuCQucGYtQMSa1CktDR2rgaRz4AKEyjIJr7llKhfa4Aj2NncVZHlkKleBUTFTjGN/WHbaQ /aUJvWBlbnKG2AttBqWCS+OTJEAWXEODyF7i78SsFyxFEKWZc2CE65lZrMtHVjREsf3RZeiu /ng85OZHZo3nQtPQYfY3woHvDtQ/sUDOl3WWLMNu5OXecAlT3xAVu+OeSr9FU4icEDAzdj3j QLhmMNDT1thmRADzpjVisy6QAJiJwJFgbpo93ZoqRl+Q2NI7JNEWgxcl1nqTBfifwDaLHo6d 8KRql81fjU/pUj7nh6sd3BPqd0Uz0eljs3Bs6wFSNB2bXjNNWxgg3vFJxrZnJ1o5KoI7TnHF OfOt1sqFtB3fXvCyRmlvtQBQnlP9a5gCllGQ4d+5FKYD/4eb+CpMUi9+j2s0332PTU6d9X4Z qu6CKBozUrbbdF/jMT2MDfBnChjw1mFuyAYMy/edIbK9iFxM2H6qs8QB1lDQq3UTEw0jjvPe YMJPLGVV5YcoiN5ppGBKdTexBXXEsFkYpKaMPyyxc4SafixsNWuyQPXU1KCYJH6OYYi9qgJy 4S1xNEtg2D2IypImBJ1iQoBB27qINmidIDi+874aeaz/BFec4B7YC9ekYf4EW4TKhxqPUEqx Tk/6qANL4zBzQrHzKamA4pCuORhghllLma3VRSMTzTDdymBK1U/8JkZiFBsvrowsthqepOhm AVCa4TUWrc9H3zUkbRQ6XPVVpjSN3ptzwOQI3Ksy3SUZ6kSh8HAFX0unqyPowgKE4CPDET1J qo6httw6S4bOtFkzQwpuN3WOfW1WOIo8C/E1Yd82KNg2HTzHPtxuTx8r/x1xpD3zfTx2lQCg w2DY4EJdDRWeC8WrEM6dXUsxX0KDi9ESOLFhkHir+yEZMOjTZyMKosWpWqYp6ae5BARxK/HS xQXKO2M03qis183VBaxzXR+mnuNckhc+68X29IxvxIzQNneVDCDzMQMdhSeiaRKjq2H257SR 5TLHxppd5Hse3lqhFm2OR9a7ZHnJcu6q7eZdgU3ythfcJEblEzrX+jhIXfJ6pnoGGoWD99mL 0fTdKk9KQoeYLMAE80JaeMDy048DdGSVeyIUI4FrE5AXPgS3PTTZknUlQbk8chXhB+tilu22 bGGO3X26+3m/eO0qSFEVrQhjirIJNmAru0+Tb+oN9l23K6zL0w4ipuIKXlN3qCYOUV6LY6nd GNTd9VDNgEbvishBj1H6hzNeDiTHwYH8cH/EkX3etShCC/gSWCrY8vGouw50fgr/vsQlf+mW bfGo/aMUK1+M37ku0EDghXXxDZTDsa+32mQAalvrV8cVZEcAAH1t4xNXfuCA4nL4oFzMzE9C PBEteqtozz4JiCbCAVVm1M3xj4ALw84nucGl8JjfKkQbxkS3LMLirAkOPcKeJFF0LQNmBPuD s7k9NaxKAdXpXV4f+KQpjxcdkyO0jI4x6CNw3dYNHrN4YtuU3VkkSGFVUxVQ0hgB9fH5Ybq8 evvnqxpeaHw5OYWMl9b7kWh+yJvj7tqfXQyQgqCHdKNOji6HkFgOkJWdC5rCd7pwEXZGHbg5 MKHVZWUoPr1+e8JC/57rsoKlfnaOMf8BLu1aBrvyvLHvDe16tPrnBDCvX+FmUbM8MmuCClD7 I2dhorTy+a/nt4fPN/1ZqURp8qHq9T5w/e2al3nbw9brxypU3h9y+NRN68Ox0xQDgVaQ3Yfx GVfzJdkcGXjT4hE3gf3UVFiE6bFTSLPVSWzZ/YjBgsW1zALBf3n649PDy5xLaoz8nH95+Pz6 FxQOQc9Q8PfHpQUIU+lC9T6ihk8jcj0TfeSBlm8zT1UAVXqA0Q/3rKoQ+inW3HRm+sfYU+8V JnpRcYHJM18pIFXhx5iYP+G7JlVjOU3khlYkwlpAh8b3fba1ka5vSDoMJxvh/7mQbdM/ln6g i/uA9D1gm1O5q3DjiIWprBzJXimTFXfYJgDPb0hBRpurdoz+r5Vv4ivR1IE9Z77uJKnM3n/B LPvlQZuWv2KTkr3++SYi/j8+/fn85enx5tvD4/Ora4KOW2tRT2sG6ancCvvzHPR/OvHu267i C3xbdxRS0+ivRu37gpzDZtnIy64+a7KdrMmKLA3FuR+CI8ONitcMJwOK8Ar787RNbJ+/PV0g utovdVVVN36Qhb/e5DILhbWqeacr/uzKZqwZbkrSw5dPz58/P3z7x7V5cYU8L/bWyXY6VHOm jOLH97fXl+f/e4IJ8fbjC1KK4IdcJq2ax0PF+jL3U6JezBhoSrI1UI3oapeb+E40S1Wfag2s 8iiJXU8K0PEk7YluuWhgsaMnAtO/OesoifErQ4PNRx1+VKa7/+fs2ZbcxnX8FT+dmlNbp0YX X3drHiSRkhXrFlGy5byoPB0n6dpOd6q7p87m7xegZFskQWd2H5LuBiDwBoIAL0DjKmHJp7gu 8hzliFXBLZRtAxU3t+JAvcKHC3EPuzINqAEbzedi7dj7Jeg8d0kenxuC4FraFUeO41qGWuK8 Ozj/nujZvszXa/l82rG0ummDjeNYqiRSz11YhC9tNq5vEb567dnKgzGARauOaezH3GUutHXu 2UZBUoTQnjmpgSglMdUeb+cZWpLxKxiM8Ml18ZBn3G/vp+fPp9fPs9/eTu/np6fH9/M/Z18m pBM1KJrQWW+U54cjeEnv0Q7YvbNxJi9Rr0DdVgDg0nUlqcYf4dS0k9YrCPhUIUjYes2EP7w8 pJr6IFN5/McMdP3r+e0dc4ZbG83qbqfX6KL5Io9RV8NkpVOcOFq1ivV6vvIo4LWmAPqX+DuD EXXe3NW7UAKnhwayhMZ3tUI/ZTBg/pICbrRBWWzduWeOFKixtQ4Ml4qSulJudJ7DQBMioX+O 64+z9g0gVHS9NEk93S7dc+F2G/37cS4z16jugBq61iwV+Hc6faC+HL+NzJICrqjh0jsCJEcX 6EbAuqHRgYQb9cfMEYG7pOQVFgHXMDdR2prZb9Z5oM7Dar0mA8NdkZ1eMDTQW1lVw4D1CIHz NSBMQqZCsuV8tTYdAdnQOX1kJ53frkEhtemSxl8QM8Vf+HpBLA2x98kwZVN8RHy4QoT9O0RX WvPTUI96MGmtzVeTnqUmxeDbUVPUXxqSyTxY0PTdDoTOXX0TRLpxvkMB9cFFrajpjcGlw82E 8po5DeUyGvX0HYnE6b0mj15v3eO5xjxGqG92gicPRYcdgUZA8cXL6/u3WfD9/Pr4cHr+fffy ej49z5rbZPk9kgsJuAZWNQ0C5zmONp3LeoGPy02gq3dYGOW+4VRnCWt8X2c6Qhe6lIxw8uRm wMOYGLIlp6FDpSCSotWuF55W1QHWDz6WzklvLKzaS3m2PzzbFOy+Hpqy2+gjCrNjTWtCzxFK EerC+o//U7lNhLejqMV77l8Tfl82iSYMZy/PTz9Hs+z3KstUrgCgViBoEuhrcnGSKOmvDTsA PLrsBF5c/tmXl9fBjtDnC6hRf9MdP1jVY1aEW/K5wxWpLeUAqzxDDUsofZMM0Xi9aU7Gfb9i 9TEegNqkRcfV1yeBWCfZggB2xuIUNCEYiuQtrVFRLJcLzXBNO3CkF5qES3/DM0RQ7uBp9duW dSv8QCMUUdl4XK/flme84MaaHb18//7yLF/hvn45PZxnv/Fi4Xie+086wbimvx3DGqsGx0P1 JgynYXhJ+/Ly9Ib57UDUzk8vP2bP53/b1TNr8/zYx3QuC9smiWSSvJ5+fHt8IHMKBgl1gLNP AjWT4giQu9tJ1cqd7duGPyDFIW2iLa9LMq183vVp1e716+tsmooB/hjyQLJp/jCEsgrUYScj N2vZ7SRWhl3O6ZiaNwLBsxh3syj5BKJdLlBEKmU1HuFxeEMRnKF6uWj6pqzKrEyOfc1j6tQQ P4hDzMQ3DYhgIMs9r4MsK6M/YGFVixsIMh7ILIlC5qywtjorA9aD28uum4yWOkH1lWM0hCU8 7/F5sa1HbDj8TmyhWiRWgIBcjRK8p39+fnj5jCcur7Nv56cf8BtmSZ9OM/hKZqLdgh23VLkN SYczdznXh0Umd+4quWm2WVMXEAyqhZE7yVa3waKpc/LMAthuWRbRLzSlgAcZCHgqqkxNhqYQ 7cqc66ncLgEKJgWrH9UB45a4WYgOcgbz1oouynbPAzs+3bj08+9BIsJftmmf3JHVPciUFTm8 +7V/mx+S2OKioETmAR0qF5Ety3TZCYTlzAMHLwkSOiaaHACM6MEOIAC5pr8kJtszoRf2saMj RyAuLKOtTY3gQwbMZFa1akFVUPDsZj29/Xg6/ZxVp+fzkzanJKG87E9krZ4QiFb0nxwHlFu+ qBZ9AR7dYrPUmzEQhyXvtyneoPVWG/sMuBE3e9dxDy0IX0bdHb4RM0y7m1MVHDvVgOsb+DcM z1IW9DvmLxpXMSeuFDFPu7TAwOkuLFxeGKg3YxXCI8bNiY9gXHpzlnrLwHfILazrN2mWNnyH PzbrtRtR5adFUWaw3FXOavMpCuiyP7C0zxooN+fOwuKCX4nH9zyNcKbHFhN8WiTj/IWecTYr 5hg6dexvHjCsf9bsgNfWd+fLw92iJx9ANbcMHMwNVYWi3AdIJyVMDaRPEi2XK4+OOHYjz4Oi Sbs+z4LYWawOnAxJdyMvszTnXQ/aG38tWhCCkq5HWacC85ds+7LB5z0b0hm8kQuG/0CeGm+x XvULvyGFFv4PRFmkUb/fd64TO/68cCxdYbmWercedXBkKUy3Ol+u3GlwVpJk7TmksNRlEZZ9 HYLsMZ+kuN4NWjJ3ySwNuBFxfxtQt4JI2qX/wekcct4qVPkvaiZJTEvTIFuvAwfWTjFfeDx2 yD6bUgfB/XLLGLjYeoSnu7Kf+4d97FIP3SaU8sZc9hEkqnZFp53g62TC8Vf7FTuQcSAJ6rnf uBm3tDVtYPxhUolmtfo7JPRI4SXBIOrm3jzYVRRFw8q+yUDEDmJLC1lTt9lxXJBW/eFjl1g0 5T4VYGmXHcr0xtvQjxRu5DDrKw5D1VWVs1hE3soj7TBtcZ3WL6xTlpBrzxWjrM831zN8ffz8 1bQoI1Zg6gj6TZ4k2KZVWfA+jYqlRx/tSCoYF4x5gca0+mBYugHjAgCgQobssrDJgAmqiKxZ b1wvVNt5Q26WrnsP13ba4odLeY/3MDV4zpMAG4hxRVnV4fOXhPfheuGAOxkf9GYUh+zqRVpa gEZ/1RT+fEnMRDSj+0qsl2TYIY1mbjAAhwT+pWs6D8hAkW6c6bOwC1CLaz6A0YwZ5cbCr9mm BQaFi5Y+dKELhojKuinFNg2D4bX3kNLCjr3/7eoudn0PO42SLLGwbMWVksNnBItiuYCxWy/N DyrmekK93oUWu7xXCQonKLqlP7+DXSkvPhUsq/S+Vz5c0tt4oxcZsP1qoYv7BGH613JK51tW rRfz5R1U/2HluZouubkY6vwdwFjWXY1lqhul1rnWQ7h1gxKfZWiIDzrC8LcxLOOeDjRwwWcs vIvHutsJioSDXWT3AX2b1c2bItine7VNI5CMmIgapxMxeRKFUlFHVdLqX0RpXYOn9JHndg86 yV2v9S1ReaReyWw5eaX877lniY8geyAsO3kFzL4flOZ3Dea4Lu+4vkPKpf6ep51HzKqjUiYM 5/fTsfiIV/gr0dp6O2mZtkjgYmDIX8PuVKt2LXGiR4/e3qWpHSeCfWDVyFcngReN3ObrP7Zp vbsensSvp+/n2Z9/fflyfp2x6y7SyCEOwddlmGDn1nSAydcFxylo8vu4wSe3+5SvwrJs8FyP uJSO5cR4GS/L6uGWu4qIyuoIPAMDAXKU8BD8WAUjjoLmhQiSFyJoXnFZ8zQpel6wdJq6RTao 2d7g1zFBDPwYEOSoAQUU08BqahJprSinCR1ivHkag6cF0j+NQiT3hKM2VNuUBxgQjKvfYxrg LE22aiORbtwlFVpTcDsGO6XRYoaa0vPt9Pp5uLFqht7E4ZJ6ydYfVU6ZOPhZVomV63ZatUBN 21hFR3BGPXofAtCgNVUxKo2UdkgFxhOMDK2EZPmisSL3SeBSu0ixPNdWR6lQDlBxJFXnASBJ SM1u7LR97Wm0JTgMeK5h7WjhMvlu24aXMSZtyALUukUTAbZO91ZcuprTCwbOBb52FitaMUo5 1tOCK4Xat5pla442lTtgrd1EvyhEjKFuFWxq7XmbDsd+5SUoH4tRAfjdsaYXU8D5tgUHiyxL Vpb0Qo7oBnwDa0MbsPS5fQYENR1WXU5mK9MoqPO0sHbfIQdfit7cx4nAS2b9tOoC+nEDsnXV jQ4cqC1ovRCUW28Jp4o9kGtaFgF9EEU80/WF8C08tEByEiKidhoUCWDa5j9OmBBMjq6Z0wcG 2BljmlvtOxas7ZN7DDpEM8w5bpaUOdc44n0LWwIKXFHqMmBiy8mM5XJGqNvfCBJ4MWild2G+ ci2LAIac8xQWEnI5TSXMiQFftHhQKf7wzS8FZs1IqY+YEDR0KE5XuCo2tk7/CWFF7QYoJHvQ 4pZKDI5VmWspBkaa+ZXGXsTiSmNti2C0A6S2g9zVUEhgrvdxtOsrmVt8d0uVoJaWcV71QdwA Fba8h/WLX599IR34QHJ3a3YCB5KPp6FMvwhxZYprIANmZRX4S2OJVEgGz/9eO66UE5ff5Bdd tqp6tr/bLTdC9XCOILi+0iSoBsMeRMmKM7Zcp6fKv+zUC9Mc3SJwtaeNvsAmLxqJFiNVHE4L JZ2NIbr86eG/nx6/fnuf/WOGR9bjM8/bHZGRJx6IRFkgZxu+iL41HjGX50M36NXctXx1w+8a 5i18CnONaWhgtLghN8SdeFs3IpnAmOi3G4V8m3/IOKNLEQGMMHXcMylDj0quoNbrpR21IlFm uJfJZ0NUN0sfLn0nsKI2dAuzar1YUHcmFBItgOmkg8ZgHr8YiEvQhl+QWSKHTaqyh65eZRVd mZAtXedXZYBz0kUFbc7eqMbQhvcrM0rNJY3C/Ql2+V5u22je4IjS1wvQTJpNOhZl3PC6cBBl W6ipkwtlq0xqgm3KzGm/1VLcpwxa2sBycexFU/MiaegQ4UBYB9ShcLudbk4gv4QXvJYRjYfL lz/OD3jFE6tjXLhD+mCOh64qjyCq206vqAT2cUzUQqKrSs2YIIFtzS2JPGTbebZLqV0DROLF t/qoVizapvCXDixl/nC97Khsk4DS54jMgyjIMp2RfNGkwYZHpSoQBiMpi1rL/XOD2nuJ4823 WOWGARHUHAkS+mnHjxYuCc/DtDZEKYlr+jqQRGZlnZZkYCZE78HnzViqs4Q6yJNwy1e7ozHk hyCzxc0cyuEHeR5va9qxNtIaITzFV7iWb9KGqz36IQhrbRybQ1psA4PtjhcihWln8byRJIuM nF5TLNfmX8aLcl/q5eCpB84zaynSbc5hfGyNzKFfa7Nf8uAYg0VgZ1zzQS5tbNOoLkUZNwZj PNesrSKYt1mTStHQPywaymxEDPg2fKf2Flh4eGAAsjnpxgnQmCwVb4LsWBjaqQLFoN0RnGKz oJAn6JE2k/HkRTSGxE3A2lxWC63xapYVDVoJGmyp0nh9QW+H4Pm9j/DAABPBqa0QDQ9yA8Qz ASsB11oMhVZZqwHr3Jj5CV59CURK2WWSTx7UzYfyODK7rYUT+L2+a9I9naOM4aVfwfV5hUey idbIFlfFvhK+Cj6kaV7qOqFLi7xUQZ94XerVv8DuVf3TkcFieEdlDKn++i15BiPXxawSU6uG WqXl8o1hElRL4lqQjFyf0ncChxlhGiUXduELQKvXl/eXhxciAxay3oWTAZAxMlA5TSv9C2Y6 mRJsBi8DW9qFZ7yDvWHJR3IhKKlF9obsk7JkaTetsV6q/tF4kX6Spy0FzWqrp7z3AQTmKChZ yHQWw13nnM1EPCAE8YAgByGK7ZzJzy9IqoU4gOU2StXzGnWAje0nGYPF2KCRgVQ4w21V6kYV otusSvtQnVgDs6KwuR8yEEwdQZsD0W8jVfjUOlVRqnMOigKM8oj3BT9QQcaGJ9aPbw/np6fT 8/nlrzcpl0SIoyEsypA6Eh2HlHzdgFQxFIVbb5i6RNWzkoc1LpEci4YOuzLiYGUpWRs1mb10 pGKpkGk2eQdLdYEJO1utq2CghByphGMQ9tAcYBmTq4WFpWBDJtA/PHXWF5cZISfyy9v7LLq9 4WHmEZkc6OWqcxwcRkvtO5TFYZSVDyWchUkUUF7hlWKQAAIKY1FwEQgKa2yq3CoC3RwS8LzZ UdA9D1sCjjfS9faMuQQtbeG3XtChNR4yw3D2TaPzlPimQVGXjz/uMTc6SkJjkZFMoSp9UUX5 isyYo5ChM2GohStWZgH9FQstmJ2Cw7Ry1gkiqQTlk1yxw/sGkn2+tzKOCiFDQSPdr2o/ESd1 9nat5zrb6o7wp6Jy3WVnjjwi/KVnImKY7cDVRJSWeVRaR8JCZskRphL5kUfvMStkWRX53vRS mILFkbWgcC/Xt+BYsE8LXZivWGJFKO8KSakICSECSGArzDLy7Uhg7UiRrV33LkW9xgedm9Ud 4RkVHP6+NRdKWUEZXwo3v1SU8uVUqQ872LPo6fT2RhuDQaSpTfB8imb6FA2BB6ZRNfl1H6oA g/w/Z7IXmrLGg+fP5x/4InP28jwTkUhnf/71PguzHa7evWCz76eflygwp6e3l9mf59nz+fz5 /Pm/oEfOCqft+emHfFH8HYMaPj5/ebl8ia1Lv5++Pj5/pZ6WyQWORWvLHTBAp5U9v5AUF7xY aA9VJgtoWk2oEXJJOqXWBRFJYI0Rd6VhmHGlLi15iG5klvQukkBKC6u1OKADmKqbjKv3i7pJ w4eqm+z16un0DsP0fZY8/XWeZaef51dVzOT3GANv6ajPVW7MBZlP/IpvMV0Z0SK5szfsPgym oJT7PACR+XyexCuTsp2WfVlkR70C7BDR1wFGJL09L6Vkm4I3xulrExfFv1Jj4l/lF+14ela2 Qqw8o5/Q6ScyOiMr1QAmrjfJFS5Pl/amANajo5BJPcHaprXZDoLvBU90+zQpG9xe08DminaJ 7hcdV9GSisU+EMnrp9qqym6u63RNbRgsARl5a022BTe0b5dzL54ZQvs8BiMqEA2+nk4MzuAz wI+95RqkbJ99CWjqAPyYfRrWAf1eQDapPAQ1WGBat6HiN20ewZthSYjTrmnJJ8uDDOJ5i7z8 P4Ee4QNtKeefZPd1nrbytDL+pbdwO82W3grwg+AXf6GGcZvi5kuHyiEmOystdj0Mgoy7J3T/ dBuUYscnI4Qm97BGpQUYFNOFrvr28+3x4fQ06B56UlVbZeIDa1hmCn7BEXUsxmCaXcSnl6LH TIbRcLSserEjDviZ3i36xzKFwrQaTbDdl4i+Y1JqUUcHgUjqQK+2arRk5CWOD5/mq5Vz7YzJ Vo6lD5UWyFVCr8sAvbsmTUnw4is3LHiVwrYUjFTYiXgqc1Bd2hE7Wg/ybk3YxjEeEt7oRjUq 05WVGVek6Pz6+OPb+RX64OYJ61p0NIKt/X6x6FtGX5aTFa11NGEq6j2k2od3vr/RaeZJ1QWe GidLrqD7O8wQ6WuWqCgqLTLFBQp8pBGtrdPYHE8vNgTae30U5Gyx8Jf2qhW88byVpqtGYA8W gF6gRFmyschBKXf0ewSpGhPPsdmBo9h1KegzTaOODwH2w/aNalfIACWGzzCdkKQ4qgo0jMq8 KoVyUCal0LTs4x5jZGs66TIdDFISWob6khHDXNUhysm1VOXyV53wAiXLuiKNZlwxY2X0fcgB WUT0galCxP8mEUa5F3es4yttXTDL7VqVJadCsCkkMYxUL2w9Zvb6BKVdRdCwo39HWpHJ6fPX 8/vsx+v54eX7j5e382eM6vPl8etfryctmDtyxRMVwyix3HOQ8+TuqAyzyKr547aQod5jY+W4 Ye6WPiEzhokmu124UBpxFVetcUTPah4l5sEYZ6tNlZiTJ8Fd08osDqFDmdSZ4oSGri+er1FO 30T//FocLqU1x4or0QYloG+iihL0AdlG0+fk+FcfRcqpqYRZD4vGImS+GTJqzUCwZb4Qvje9 YTYgBLqj7pDmVWMqb7Vh2iJyljQ/f5z/FQ1hXX88nf/n/Po7O0/+mol/P74/fDPvCA3MMW1B lfq4OjsLXwl/9f/hrlcreHo/vz6f3s+zHBxgyhUcqoFRorImN66rm1WxcFRMDjCkxphWhpwB SoxHap22+3olzHNLFmKeiyaNKAHH4yA8A7kNqzwRkZcoKVgvL1OQGHnjISozNZeuJAhrdJ0K dE+3B3RJioSbh69ASnW05BAUvuMtyJgX/1vZlzU3jusK/5XUPJ1TNXNOvMb5quaBpiRbE23R Yjv9osqkPd2u6U66stSdvr/+AlwkLqCT76EXAxB3ggCJReLrNM6cZrFmtpwvmNcatp9eTigN WbaV58vZdOX3AeELyu9AviF1oG/CaZoXpoWUQAm70ksKOKWAM69qtJyc01cOA/56Sm3eAX1p 5pgW0CE3oV2WuMMmnzcEGqS/ueXQLKD7mlVeSbxcw9bob7s1fQtnEtXsNlQjpiTUG5yAh55L BY1KImQNRjW7ns/9IQbwgnJKUNiFkzlYgxciMSY+AYe/VXarDnBlBwIY+0TawQ7o5cxvh2+F bH1lGy8L2JAWLLgLoqmVKlS2up0tzGiNcje5lsdydQ1JQe2Ki+bMOobFdVin9MOv2tEpD27c ljNM/eY0pM344nrirVidMdVrYDgZ67BDzYCSAli2VtgaWU5cJNPJOucOHM3Pl9fuyKbNbJJk s8m1206FkM9FDpcUV/p/fjs9/v2viUwtUm/WAg+Nf3tEI3/CbubiX6O10L89PrvGyyRK2pDM 4a7hZgBB2dPsUMcbbyAxo/mZqU751WodXOltCiPdEcYVI7+jLazl1yrLYKj0tPLYcbPJZ5O5 vyOzTe6dU8m3+5evwpeifXoGGcI+t6xthm5dC6equl0thG/JMJ3t8+nLF/9rZZbQeI3S9gpt SueJt4hKOHa3ZRssZBuzul3HjNbLLNLB6Py9OnnVBetjoBfs0pa6KLTo3ARwFlIboNhsVwzo 6ccrRnR+uXiVozpuhuL4+tcJpTAlf1/8Cwf/9f4ZxHN/JwyDXLOiSR3/SLLTIhGby34UsmJF yoPdAcbnZC6j6SphC0/b1dmD3EUp7Uhq9y3gF4uej02TrjFwHE2Rwt9FumYF9QwbR4z3cLqg eU/Da9PmRqA8Q6q65XgJYwPgCJkvV5OVj3GkUwRteVsCdyKB2hnol+fXh8tfxj4gSYO311ta bEZ8OAEUYoudEwxVrCLAXJx0wBNjU+MXIMEnWKmtfw+Yqi7JxJoa70SiNeF9l8YiyGvge8wv qJ4HBgtDbKnHuTTxalXlKzNCuUaw9XrxKTaNSkdMXH66puCHla0hakzY/kdTRI1yISXhPYed 2dV3VNlIcUU9mhgES/PmU8O3d/lqsST658pyGg5Cw9JKfGEgVEp4r3Vnsr6PFDrnu4MRuZ6p QutmwWdXlCioKdImm0zpjyWKDEHlkBBNOgB8QZVa8WS1mJLJoU2KS2q8BWZm53yycORDp0Wx IorN55N2dUlOisD0+4ji9sOaja5A3CaHcH07m1Jq9tAknZ3d3ZgqKTAx1RxTdl9TlTWgLF5f ktmcFUUCQs2MKhS2I1nZAQZsQi4s+GJK++trkjgHFf3ceq53s0t62BAzoxWDkWS1ujw3280i 9zvURMAjVprlNVUaZnkidFaBBmGpSY9ins8qCV4DyvS5nQOLcTqZkpxAjMs1P/d1fVDZdmw7 kbP8m+eld8gorjddUVFLDAIrsJgJXxDbCdnoatEnLE+zECMGgrPTK0joMIkGydX0/WKu5isq bJpJsVotyF5c2fm7Rsx0Tj6+DwRC/yaKRDhVFcApdte0N5OrlpFbJJ+v2rOzhgQzojKEL0j+ kTf5cjo/t+zWt3PrFmBYjtWCXxIrBBcywVYaPr06EIKEsL0kub7jeqwxMnqX3gZPj7+BovHe zmRNfj1dkunWh+lwTCcHRLoZLjRdztpkfdLmPctYTfAdkeGaHHOR+nonRMQwK5txv8i4up4d SBlqV88ngZf0YRDa60kN40DGGDGJGpYT8pv3hDNUDbrsJXmSNl2xpAwnDPwhJUeISt46NLHO WcRmK2IxeVlIh6lq4X+Ovdy443LaFXNoDQ8HUdI0aAsyPzewWSXuVKkGnDODGPZDvjqQN7Kj WC/TmPutP5xbZoC10hkPg1LsCBElLw/M1dkEvJ1eTUi+iTfM5wXc9mo5JRpwwPVGcJ0rx4LH mMWzZ2/dRhPram3kDVU8JocQzkLHx5en5/MHqxGQR2EiWJXSp8Zs3gj11UgZjDdnfig+1twV vG8PfVwI3xV8LRFRPvS70Fg6kGyskH0IU6F/9HeNjcV3QBtSGg6kDJPUMzgYNtLwQ4MPKZJy +0Nc9rYUjdCGTSaHQMhIRAfYQrQ3axk+kUwPwcQ3yINjq6FpvkF75d4GSj80gJmRZhW0rHrm GLnczAL15Txx6gOBZx2zrsWYCebwDPCDA8+rvnKqQ1gbqBC2gnn45IfG7lqxrhI1bGaRFd+6 XRhxWWg4xS6yyx9AuR3uQMLzQDlVHTnFyDclb3YF35pe9qxaB9okKSaXepI0OM3XdhVdkVbb FBO1upUMGDEXRB2C29ilSRukMVioPentTb9tPBC/9UAdMEzonAUXj+JbXI19vslbCmFss70Y MzeB0d4bSU1YkX4526ZzJiTxlmEjlkzcr1lDP9fJTCPOEI7Y0VrOIxomzdk9gvtIC9SRBIHo cd+sTdFQ7tZMfj7wTv7tdHx8pXin0zn4GcrCNHDRvmZpZJS+7hLD/VGPEpafWIlLmr2AGktR fuzUDxA4QnexiqlKNwWJvNhjCq5TSZHpWSTJNmaVewINcHHVGUqHY9Jxl3PoWM72mAxj3h08 I3A0+85Mz5ttNMfDYnzQseEW+21AVqOe2ZG5s4anaW8X3U6WN6ayANipcepVrMbL5iFNzQCW 2S8EcgxXpsB1KSZ5YYOl4QLK8A0zg+1XKrtM2Q64X35xxqJfZ3DUWqvCxNB3+gaFF8TCrNtY fPajCfzseUr5gSOmUrJ9Wt+6H0WYTkuiaEssjI/oBv02cE1c8zIQW1NUzVOtVQRp8Dk41PK6 s2M7IzBPQJ0NlhYl1M34LgFUCquyEwY9hk6LGPsXbF1BadYr4FXAHkcilTdcmCJ33n5MHMo4 5hsySncghKY7510QQ3FvOprHycRNdhlYbVzYXZHgYGckeo1p4khrB0WQFlXXEuXmOWmnobBC NoTVHkfK1twqIaoo4WCHblh+NwS0CNiZSqw4YJSPvwrv7Qnn+enh+enl6a/Xi+3PH8fn33YX X96OL69UpIMtrJx6RzLN90rRfdnU8Z3j0qBAfRwwmeCYsI2eq6ZlGyeM84A7rJbDmqQiAWi+ kssnPKtFSvHpq7SihQRM95HHQ/lUwXmcZQxTo1BuotKWoN+WbZUF3t0UCbmYSlCnQWSemIkf mq5OGDfaZEk9CjnrRQyjvqyg7DTAjTXxudYNtdXlDFZyGwqcpOnYBqZ5E7DE2WL4N54ZPvbw Q2RjLMubzpCbNCFUG8ORZhxN8sBVhcg1++3p4W/TggSz+9XHv47Px8eH48Xn48vpix3xIeWB GP1YY1OtJpfk0v9gRXZxIFjT0YbHjgzvYh+gu54HLowNMvGY9h7RNl06hlkUVcMD+SQsmoAl rkmTLmZz2r/foVp8hGpCn4o20fwjRFe0Zm8QrfPJKuAdYlDxiMdXl+/OIJJdB56dTDKRubfn 9FWeQShubbP40Lw/BUjasHfJNnGeFu9SyXumd8d3mldNIBuHWRgo/PDvJg7IjEByW9YpLbch Nmsml9MVw8TVUcDazqhOqMfvEWUl3xZsE4ikYBDKB9B3qfa0uGSQlIfi/XJ2/N21k+fV9Iy5 jLmyo6tJKOS2uXDSAwgxrrRjTQATrhGB1mNNLL1hWd8GlgJS8Hx6NZn00S6w5hXNahYYAInv l7NQhwyCHs6nwApQVDdlQd82aQJ+tykCOSE0ybYOiDkKXzRnuxq0LNX4JrA28QQY8xq+fw4A y13y3SwQEsElpZ80barl8iNlLd/nvUB1db3iu1DOHvs8mwbSAomY3BjyJyRbduv3ijBoPtK7 ddmE5CR8owCS4NSl+WEVyMI9oMN8UqDDy0qgLT6qIp99OT6eHi6aJ04GCVCJo3q+6Yi3oSDZ dEEnq3LpAuvAJQscwibZYXIZWCk21Wp2nqrlnT9JQ4w3YrDIVaA9ycmqMEebMD52K6JlWpGZ vj3+jdWaU2My/nZ6dfnuYStft96nWl4t3z9qgOrqXYaAVAHjZovqykkWGKT6QI2rSeicsKmW H2gXUuGBCtP1QeI033ycOE82PHlXaNHE+ccL3kUx/yD1FX2v5VCtPkK1mCzJbXN+RRuLXl0k SAXr+7enL7DXfij7IMmVrBLPkxt8t2lZDX/z2WTW5yApvtcXfL4IMlKxDsPSjHo8eFc+lhFh 6RNHht4yyM+QTT9ENp+9RyaVoiQNZCEUR4h4uGhKnlSBcCfiuYyuyKxGmUu4IPhfyW8aClPV wuW6WJLfaezqLPY6tW9LRI2c9u83Zgq4NYuCiwYI9KNcWEfZ5Hj40DdY8nVu93475AMeSbXd gxJY4OAFTpPm6e354ehbAQinC+vVXEKqulzH1lg2Ne/TlZVsAqDxriWg6ywioFhCbuUmUkK9 rNMCCyHchSvTJg+sDZsGxDAu+BBfrX3XkoEgadu8voStFvI+SQ8VPvZ6JQvTp2Xws3Kf+d/U ETvTFFiP8/Q8fpH22yZMIeO/hJokrZvcwVMBIP3GKgukvm35mUYpe7RgpWraozVG6hIb0bre 1mnyztSAZgKh0kGLSuvY7RJyqY2IpwST7yJVg6oUjgS+td+XFE7aA2RUSFJW57urXDw+pvzG /FYkoINi6btFiSXfM3SlKr+59G/Uq1PZ5XmTI+4L+roKDw2+2HufCe78zlT9gc/z2BHj0nmr uALPrbeQAZ63XcDeWT2kg0pEueENBbT2sohVl91Alc4cHqxn8S0I9rAQ85q+/hzQZI5Dha06 lxFiYl2Rf7OtyaWCNm+BKecwiJNLYm/4Kse7FNCEUG5ZTVKSy0tE/MeIdDily7mV2Ig8GoYP WZqtS8PMDEcil5Ch7uHpJd929HZhwPNmyGDqPSxk93to2o1oHCLI3lWcsr7Qpl1WA6V67gFR r/cqVr3rA4YUwnyFVRy9Ky3TFDyaqoh77R2uCpB1wDemmRSa0+TRrdMwIcugcZrTMrFHg8Mh GpbSgyIffplpEidBo4eakAg2x8fjM0jKAnlR3X85Ch9DIzK59TW+om5atN5zyx0xsAvYe+jB 5sPsrUcpOKwjPOsMPe+02y31XGY7TaEif7Omabd12W0oo4Qy6fVLuYbkcLAEYb7Ry7DMZdND p/tl6hNojiiC1/bei70JDwZbSyvE7vLG4pcMkzAHmzO7BvWD74MNEgTGKIw7C5Z76CO5eu1x E+tdw6TH4fH70+vxx/PTA2G1GmOuB3QsHEsYYT13XAo1b9xVHZyWjjui1eTGfW9Ri45ojGzk j+8vX4j2VbCjralHgDB9IcZDIgvTPllAxDht7MwfLgYBLnawjRibbzXTmF9MarVPaz9sK2h3 F/9qfr68Hr9flI8X/Ovpx78vXtDz/i/Ye17yQhR0q7yPYPmnRaPybxm7wkLrGda6Omj//hBK pwLOip3pW6agqH7HrOnMV2GJ2hxQMU2LpCQwVhMsZByfQeZmmWM6BqL1slvyYczulSEqi7Bv +KgPwgRlvmNQNEVZWkFIFK6asne+phrst2v4qL2e4Ce9GWFqADZJrads/fx0//nh6Ts9Z1qR q1RwV2OdcRlrhjT5F1jpM2trf1VuCSpk5TLQ9KH6b/J8PL483MNJcPv0nN7SLbztUs49E/MO YE1W7i2I2X5psYQJKykLjahibGoEjRwa/F6zpG//f/JDaLGgsLWp+G5qrE6aUePc4c0+yb28 KuSVP+i0//xDj5PSd2/zjTWPCly4ljL6XtwvUdQUP4oTOju9HmU71m+nbxi9YGAofqiJtDXj CYqfopcAUFk7PWy3RiOaJv0U/z4fG/XxyqWJlHEnSXAlJcXZch0cN6xyZD3YfTXjiXUKIBxj h4nYQgFtDU4gy+d/hNkcyiqUuBPWtlpUd0RHb9/uv8FmcreyLWMytCkLXTfJUwhO1j5gXi0J mjX96CawWUYKsQIHp5nhG6JBVeTAmjyyT0GZeZQXjdDXrPB2SqKvybEiR8RkUl6ekRo0P5UB RJPdNdxLCiKBK3Z1dX1N+XEa+Hnou8Cj5EBhP8L4BVy6bRTQBQmdBBoReA4yKSiXMRM/ISuc klDbhtpABF4LDQp2jkKmTj/b0PkVOV7zBd2iQCAzg4Dy8jbQnK4uJodrzmjw2vRe1brGprbs sw0dRPISSh7VNJRIJAQCP42d0kBk0HtyMBQFfZDZNEMkL8znWWW+LKGdbHZl1mI4Z0UWkC0E 9cyj9gol07+IG8tBNBIM8nD6dnp0D86Bi1DYIeXbh6Tq0VwVT5akjm91zernxeYJCB+fzJNJ ofpNuVNZ6/uyiOKc2VlrTTIQ0fHWBkPPU1KNSYkCXcN2psOOgcawWE3FeACNenW6i91OeEoE qqJqBYgg3kPfDTxKRDbS0mTl3beuwe/UOKR9vIuL1m+wAOtmFCWv3iGpKlONtUmGjRQlxm1M fGj5mGAr/uf14elRp2MhUmtJ8p4dqumKciFR+KRh1/PVpVuNF3JKgZWrYNHO5tfUTagiy9lh Ml9cXRElAGo2W1DH2UjghaMzUSuSKY4UGEmG+Na3tnPwbbGYLPyBkLICiF99njbcQ9ft6vpq xjx4ky8WZrgABdZB+ykEF+lMZmbUgDzOSzOvsXoJiGqWW4qGhMdrihUpFQnUjcRMAt9O+gy0 j9aSc/CxMs5TOp0lOq2FcOL+alMFgq7igy86nXjf625iljTcBI7ZP+pP+KBQxG3PqQ+RIE2s oZD2Pn0R55SAKMTi3HT7ZSv0xoxqZyT020Nd8UCX5W1tkvOpO/AjiXqWCQxLGrCLLFra+mmX x8jEKP5kvvvADz+sFgLDAbwQK9YQXbZaXy1fu0Wiup0Gr8Y0hWsTaaNR97dbv47rLC28uvz4 WBZePwcGCaI9tSQQMwSUMGDq+cxtxTZd7+inFMSmeXiA4QyaBOoHlB0PRwH7lgx3LbDSDXTj NTC9bZZTMhQSYkXM15n7TVZxtOcFjZF6z1AUdqI2CWy8RYawgO/tiCbcXRAp7s2C4ydU5rSh NGD58ZC2yYQeGhsgOFWUOw+7iBEhZVcLt1HVITSWhq0siDqx+yGqc8HOaP7SVvQVuqBRckCQ 4JwVkMCHDXIEOpuueJVRYQsF2g5JI0F2JnkBC6QDlDg6GsWAg/XglYeWDIFvvOgeApjGTgpQ F72tQ1b0SLBL0ZiSFOMFWsd1kbdf9e3FA8jffix2wOBkWccycJCU4jl/iGdyZofB1EsCdjbH 0ipay9JUUB15YH1iE4GktBo14aKKcWbbBiTAy95xfTUtWkOur7rS7Uo2mz7m6tsx8gBLo4A7 IrI7IMVk5KQpDaKLVkZfGGQn+X4FFYCUtk4L63avLIsN3sNjCIjKiThq4vKGmno4aoYR0feU 7twbjQc15iZwOEsjck5cQEoMa7dX1x7w0EysgJMCKi7D5wsP7J2XCh6OKGni8Rc306Uos/cm unFhMAtXfj3yLNrsgxXdTK0QewKWMdhzt35h6iwKlqXjSflA6bsCCt3aLxUtlQJLGNGDRU+w 2uFe061apnaIuAs3TgcXhb5xHkwo337DBZvMq8mCjB4kSaRJpVeiF1ZKgAfz8WB5erO6BQ6b eJN1sYtE+8IRpgwPtf8EmlaYLXHQrvOEjOy3vbto3v58EdceI5tVnvIq3ZgPBDUNjuPIQiNY iziogZWtdQmF6LBrl8iKtMkDCd3wW2l7J5OzWYUqKw3doPDn1/pzG4xv+nbOLdFBXOsrmUCP wPSbQxbGTabsXeQM5bfY7YzaYoeNwAb6MhKJXiNlzwqWlRuqwoHOny717CdSk7ktkR5U55oh nZzcKRksQ3EAzsyndKEihqlopjKqSx05rRU2wqxlBNibWNU4aowHs8myrukw2yZV5OQfNHEN 7NOaFFxNIpbtSrcEoVMLbx83h6C9HNID8HxybVt0yoTqXFHK9Oo8CZ5TeMiHpw3dtOAoKkpi 5rQw402GPIX6XX2YookpMSeKogYxCMsNGqrNrhbiFifrQISp3dyQYuLFMS3WSWjlSQqClcgr EqgEWtm1OSmsGmQrkYrD21USzavJRJZiY0HT6aerIheJNgMof2gRRTU4r2bnFxASYE1hCrRC Pbe2RGCpgI2Wxh+a90rYRgFPdU0gFzkpJQpGXbH6sMAwL1HcOOPNqmqLGUHzKIclfukOUsnj rGzVp4HihXhIjbCy5rudX06uz460lFBgadPPTQOJ82Drof25F/BOpGYNIJqiavokztvSiq/o fOwuNwMlll2o8CY0JqvL5eHsmNRMmEGdJcEoX8A2xDKm7pwF0XBXL34dvCkeX86QM51dazap y2zOkMLaPCNfjO9yBHcbkCKHV7A+pWlFFWjLUUxJyQaV2C+Czq1NP36ET259ZdolzooaEHIR 2nLWotqJBKk0fxapc7XsSn1vIkMTPdBQoziqt1v65gsb2coblckMWgpD5PLmET8P4NPt/PKK lDPFVQog4Ad5xQk04upkcj3vq2lnFyyvwIlio3w1eWcbsXy5mBP8yyL642o6ift9+olomriO U7qxLdODnoKxdWZuq0SSvemEshiQJz3qojdxnK8ZLLjcfijxKToyT/JIJ7yvQO4of/9JI1UV pi5hhkw0LxBslWb4BF9JuRn7L42yGGr4I+aWuXNE3wbn9rU8/AzcvyImEwZHUsE6PqOr4z1G oPn+9Hh6fXr2b7XwdTTK+RJEuEqZ6urOnPnc0DkDvoww7FaQFWkC+fj5+en02ai9iOrSTj6q QP06LSL0sHAdKLTVoipqfOcxLlMwbpAFEMlLnJ/DG4oFFNdQqUeL4JKXrXX9p56i4qRrKHYn v9R6aYw2yF65GitLtlDo2uRVieKKV9+Alcd4ghUF2yOeOpuImebB+owQJRNwonWo5HitUzUI boXBscictZqVOpXJb3fJErinLlh3Wpvbkp9gCGcYx01le9NhmKimUsNOv96JUO3B6ROm52SN NbGYhCpY7GoxrjLE8v7i9fn+4fT4xd91TWsUAD/Qo7LFgHONfY85otDQj9IXkULkhbbLa8qu 5rFhfOrjhmRYJDZpa8twQ/LD1tLVNSwYR28gcFOyuvhNu/WrguZQUBATCGjVpgR09LVQbIOY FP2RfcUmnrTzTW1cvtnP3QauZ+RppdyQKmRiTlhbD6VzoPt1KFK+o2T3gQrPIqoH6zqNNn7F SR3Hn2IPqw62CpOOjdZQZnkyZJzZ0DIxMaE2RknmlITmAkkee31WcOzVmcIEydB8uoQz4e0G OpZQnigDukhLnYm2YrwvZpe2jjcQ0geyNT155U6Qmc0YfogEtXh0FWUU25iciTsH12jHQG07 SswxCBjGgkzIYofQ8Aaq4WXuQNZxkpr+EwgsTV+2Nh6MueC/lBGcCR7EIzhIKusYadKAf1uT pTn9BiPyaMP/C0ekMuF4iAfZ1EAkztCygaOZjmlhERMPtIoMtg8S2jyprrsKZqGwWS4clsqB trAdaNUD6oAk24NWO7cx/TyK3sG3HYuigOY3un+2IDqCiNp2NXUU5mVjNBl/SeU9yh3o4GGl 4yjb5msypeTp2/FCisimnSJnfAtKRAmHrkzJNxa9A10+Yi0cSg1GMW4srgSgskkP8JHBYeID ujSa0p2G9GuMgwArzsBh/GMM63aTFsY1NppIorHpXQCPyeMLXt9VrcMRAbGLazrtY9LImNiW 2B8Mk51KjDCktGpg/iejENiVLR1+g3VtmTTzPnCjJtEOVtcITejN8eSWXKQi25oEJYxBxu4C MGDOUVrjFoJ/rOOEIGHZnoH4k5RZVlJvkMY3qDQcyAoLnK+D8nSlqsvjlvGy8qPj8vuHr0fL 9jJpxGolFRNFLTWwl+Pb56eLv2DFewteeCRalyAIuFFywqjQInSXI5hSYxGLr322cZsAV2jT nJdFSgdclR6R2zSL6rhwWlGB/sVqjhIYazujjTdxXZhtdlSoNq9sqzQBGDco0QxJcWBta2zq bbeJ22xtFq1AolemZpAnUc9rkGKtQLD4j1jKlkLrz8ZQTtrIWPcycLy5ZGuMg67L0sxEbHsa pMKiW6yCg1rgmOs1LT2jRdwCD7yhG1M47cDf5q2r+G1dqEhIYOwFcv77d4d83tPhi2oM+l4E mAd+iTxCRpgGnkZxEU2EywhEqqhw+hKljXDz7qLKcEs366BsmTa1iEIMLLc0hBjk1+5P7K1V oRujHw7z2vTYkr/7DZxGxigpaNjcksfVluajPE2wKOOX2GONMYkCiJHH98DNmpjDkaxG1RwL QbWPGQYQ7bdOvHybqqs4C8UnSvXmC7TV91YfoYGQbAMe9dJKhLo7Q/iB9jX74ixNGbHgkead ZwPquqJnqDDTCMEPHQbg919OL0+r1eL6t4mRVxcJoAGxYLbzGWXDYZFczSzzGht3RVnNWyQr 04DdwUyDmEUQcxXC2OYcDo6ycnVIpmc+p+Vqh4jKQeiQBLu1XJ6pnQ4RaBFdz+hozTbRgtL5 nXLCw3A9/0BDVld0oGokSpsSV2NPx7OxiplM328r0EzcxooMJIEPdfXeRxpBPdSY+Jk9exo8 p8ELGuxNtEaENqLGX4c+nFDvQxZBoIWThVvkTZmuejIwlUZ27ieY16guQfMIfCUSJMVZa76n jnDQMLu6pMoENY+1KaMvQwaiuzrNssB7vSbasNghcQnq2LTR1uAUmi19zlxE0aVtcBzSs0MB 6uqNlZwOEV2bWFlFoyxwDc2taxYF6At0fcvSTwzVOjsqjZIjLQVWRsU4Prw9n15/+kmU8PQz xec7VGtuMXlJL1QISyaM6yYFia9okbAGCZI6n9oa7U8ip2SliXpw+NVHW1B341p0yJTdUbQA LRXz3zTCyq+tU976BD4koYpRkquhSiBfkXF7YJNkTOnJ7ncVM695E5D5UOWV19DmPQl8z4Um nMM0uZFESLQs+pf/vvx5evzv28vx+fvT5+NvX4/ffhyfjTN8aEkDayoQJFOTtGVe3tFePQMN qyoGrQjE6dNUd4zOKDc0hiVoPWk/jg1YIc6WIBhlDRk6baCDPYe09j3URk2rdam1kdWmm4K5 10AjXSDTXryjWqEDKI0rzUwQCC3//Zdv94+fMc7Yr/jX56f/efz15/33e/h1//nH6fHXl/u/ jlDg6fOvp8fX4xfcY7/++eOvX+S2uzk+Px6/XXy9f/58fMQr/XH7qZgN35+ef16cHk+vp/tv p/+9R6xh0A+qMS4cfgObvojt8QAUGjCCGM6HfpDX25oUr9QNSpNhBNqh0eFuDP7BLn8ZFUvY 9KW+dOXPP3+8Pl08PD0fL56eL+RCH/sriaFPGysKmAWe+vCYRSTQJ21ueFptrXiKNsL/BDUX EuiT1rZGrWEk4SC0ew0PtoSFGn9TVT71TVX5JaBFnk8KpxgwQr9cBbdERIVCNkYpZNaHg7Ys MuV5xW+SyXSVd5mHKLqMBvpNF/8Qs9+127jgRMMDAfP0MkjzwVm+evvz2+nht7+PPy8exLL9 8nz/4+tPb7XWDfPqj/wlE5vvEAOMJIyIEmNeU+AmJ8akq3fxdLGYXOuusLfXr8fH19PD/evx 80X8KPoD2/Tif06vXy/Yy8vTw0mgovvXe6+DnOfGhYCaO54Tg8u3IDGw6WVVZneT2SWlLA7b c5Ni5nu/Q/FtuiN6v2XAxna6Q2sR+REPyxe/uWt/oHmy9mFOREwNJS9FdDP8YrJ678HKZE0U XUHLwmUfiB0CshEG3PH3wlaPsL/yMYta2+X+EGIoAz1+2/uXr6Hhs3Lkan7nZDjVbXZ65OJ3 Tu5RGUXh9OX48urXW/PZlKpEIuQbZ3j4BBXBHgAKA59RbOZwIHn7OmM38dSfaAn3JwnqaCeX UZp4mA1ZfnDq8mhOwAi6FHaDsHynhqvOowkZzEZvsK0ZhGUEThdLCryYUOwfEJQWOjClmV9U C9LHuvQPyH0lq5DywenHVyuyxsAuGqIVAKVjnxj4IpUrh5jOcm/nDXcQ49WrtyIZps1LKeF4 oED1ybm6NXD+pCLUnwDLnFvBEvGvX4DivQRHrSsrYIgN75smnvaL1ZKa5jyQhkydpfsSByo8 DIogNBIaLSuXC+Dp+4/n48uLJQYPg5Fk8hXFbUj2KZDeSaJXgShHw9dnewno7Rm+/alpB5Gh Bl3h6ftF8fb9z+OzjPfqSPR6ZRZN2vOKEhijer3RaTQJzJZizxIjmY3bfIHj9PX5SOEV+Ufa tjF6ANVldUcUiwIgxuo9c7PvEGoR+0PEdcCn3KVDMT/cM2xbr6JJmvrHt9Ofz/eg7zw/vb2e HolDMEvXiucQ8JrPPXkIEeqA0K6A5MehQwRxcgcbn3srcSAKd1nQDALg2bZYcqKPpngPwvX5 BYIvBiycnCM53xdKTAz3+SNiJVIPZ5lb1HZPVsSauzyP8WZJ3EWhF4L/wH58fsVIVyAkv4hs LZgt8/71DdTYh6/Hh79BJzZf3+WzKE42v8nSZrgto5/jP1C27uY6LVh911dQWJvoRZ0FV3OW FjGre/FAbD/uMmEqQgzkOoWDGvMZGzdb2rcVzvCCV3d9UgvvF1NjNEmyuAhgMYpO16bm+5VG JWkRwV8Yl3Bt37byso4CV74wDnkMmmG+hgYTnZE3iqZf+eCmy0WsalO21igH3LR5pTLzjkBh egDcpU/woAfhsk2rzPJXFhT4kgyrC9h9Ubbu7SbIjaBaAZu1QJOlTeGLltDCtuvtr2aOkIZS r74YDuwuQZJBr9Z3gXyrJknohBQkrN47OQkt/Dq1G7u0xFxu/zLe+2AzD0rBSGCojK4AD+s8 KnOj6yPqE3IGOAkyywzjk+RzDhSkCWFdmle1ZeQFgkBPQylqlAsIcgGm6A+fEGxOo4Rgimhy 8BVa+G4EcjgokpSRj5UKy+woOCO03cLGOlcuuh1SkpFCr/kfbvd6e1bGceg3n9KKRKwBMSUx ME8B+Nzf1eKeFI3ljCaxumZ3cvcaG7fBCNSwWXcYzB8IRhRu+LS0TOslCM1AeotrIDzKjfua QsS23ojU6sAgLXNygUMEeiLhO4HLaRDHoqju2345t7ZTs0/LNjOUVSTlZsUIqOIamKRGSC38 +Nf927fXi4enx9fTl7ent5eL7/IS+P75eA9n0P8e/58hFmFCeDjtsSR8xUMTp0uDD2h0g2rp +q4lXUktKqOgn6GC0kCuSIuIUXE6kIRl6abIUfNZGU9tiEBf2qBljJ6HdVxwELZrKgdYs8nk gjKG+dY8ZbLSugDC3yQ/1gsgs63LePYJn6XMIjDCDMg/1A1IXqXAxyy+mUTGGkFfJbQ0h7PZ WsywwPXu2EVN6e+ZTdyiZW+ZRIyIdIHf9Oadi4VoxcncOAtZvGXsmZlEXYCiuCpbByaldzj8 4VidXmoUPlwxQ5Us13+wzcb8FAUt8lXUk5PGLV9M8H2yjOIhXvzw5KGFOwH98Xx6fP37AtS8 i8/fjy9f/OdUIZrJ1EWWwCXBaCJEX5xLN5g+KzcZiF/Z8DxwFaS47dK4/X0+rAJh1EeUMB9b sUb7ONWUKM4YbZ4b3RUMY32f2SMmRe9afhpicL4uQX7o47qGD+hYrVgC/AGRc102VhD64GAP NwWnb8ffXk/flaD8IkgfJPzZn5qkhjb0e1YXv68m11NzxVSYCAzba0nJNSiXMqkL+YS5BTTI nWgD1zLzxUJ2qolFYmm03MxZyw1+72JEm/qyyGyja1FKUgpfp66QnwimBruOdKUQ/avKVJn1 DyXtclAEugOyNXo6jZqkwR5a87th4bS68tFxt3L1qO0UHf98+/IFXxDTx5fX57fvx8dXM0g9 28hcUbUZp34EDq+XcSHy+Vz+M6GoQPdITaHfx+EzQ4cBSH7/5Rd71mwjWA1T1o4hA7+BDB+8 BGWOzhXB9T4UqF51TZYs+OTNJrK4P/4mShvUkG7dMAzrUaQtHozWahQ442zhxhdrTKPSOLQB KK7PAKrZpomls0lwlO76T3FN381Jkq6ATQbK/ToLhD5SDSrpgZfoGIQbyoCGGpTR8BstXAQJ ucw/tHDtWZU2wy4bUDF7zef+oTDj2EDWHR/auGgcXw1ZCuKFxEHZyeO35b6wN72AAjNoyoLW 9MeCgdElbrPrMmItc+T1Yb1Jmv3Bb+ieEscGrbtFg1urlQJyNtWVLBfO+Zh+mxO7Rs0AyOYZ MDC/WRpzpgYpdHR4iFIiH9+iAC9o4gI0u23MiXpIKxNn2NAVpWPeQgmAZQBmYcThom5QTkW1 JnOmSFmmNwaFYu+WkuKWYtE4Hdummy3tLm2MvxgedFhJZE4aaoQ1mhKCJGu6Ybhv/ZtLiUUL LpTwinLc2aAaWbq0wUgTweV9U5dxD3qt3DqxJpW+BPQX5dOPl18vsqeHv99+yGNve//4xRT/ mEhlCNzS8t+ywOgt1hkXpxIpJO2u/X2QdNEoqsOt0cLCN/XWpkzaIBJFPJCRWW6SiRo+QuM2 bcvqyKlKBN83h9qjMCd+rMogFFVRd49BYtWuy3HlYlX9FsOxtKy5Mde0lBAG1DCw0/klUdFA Fhwjh8Qdov0tiG8gxEXlxjteZBfI8+X8epI2myBdfX5Dkco8MEbpWnCkUM48ibXTiQmYcOYw NwRVjbsncAxv4rhyThJ5/YymGOP5+K+XH6dHNM+Ajn1/ez3+c4T/HF8f/vOf//zbuJlGF0dR 9kaoa4MrzaAvAZ8wPBoNRQoRNdvLIgoYZu9i3awDuxs8/PDWpmvjg/nSoZiASkftcWOafL+X GJGMyzYXVTXtG8tPSkJFC52LBGE3GVceAK9Rm98nCxcsLGMahV26WHlgiUgJiuT6HIlQuSXd 3KsorXmXsRoUz7jTpU3dlaKog0PO2hI1xyaLY+KUURMu3wuVCk+d+WLggNWgGagjo4xTQaTr bHhifUZuzf+fBa1rlcMHB0eSsY3pb2jB+8IK/C+67H8jJsQJbiE0RFgpIDA3cRzB1paX3YSk IyWlwAH2txRnP9+/3l+gHPuA70yW56iaiDTwcKCkxnfwTeDeQCCFZ3DqvNiMJwYKe6A7oPTJ S+GP7sVIsHhooEv2KPMaBq1oQfUbkjjCaiYlcclguJlJ2V5o4/0A73oMW0ytJYMkvOAMIhDB A2WZJdmLAkHxrekBp7NmWl1zWNWtEvNqoeMbfIaB9sHv2tLgPeKdfVyPPp8uykq2yvSNRelr uLE4j93UrNrSNPqSyY3zQiD7fdpu8Y7TlQEpMuWyjVdxLrkiy0VoBCgPnx4dEnRlxn0oKMVd i1sIVx/KUlxWwO1TRVxWrrskMbsvc/Agve2jWxbA11q888dLI3fQqjqOc9gs9S3dOK88BaD8 WOVABN5cSwys15dbnk5m13NxYY7aCX0FyDCmNMXCDaVIxq9SdyLxYE3zz2pJbVCHpXpL0me5 Pk3M6uxO34RaEVkPq2Wv7iKFDNhV9FeBsqL1JvCBiEdxiNbcZ9noSJ51pCGVWFF5npbu/hsf Bkp5ldtfHlZ07jiDIqYznA0UnXcr7FK4fgjqAldcLKO4HPCkrVhQUpUloKURcf0pZi/8cIKz pa7UKstVrerQ6QGFjWC9XbGXAdz8e1PFRu0FaD4LtMeXV5QNUGLnmNLs/svRcKnqLGVd/NRX HC7YFl4kLD6IXeOdNxIruE9ALtJHK964g6omA/hZTk1VThMZLyqJYGDh8swmFXEr4wERdORK kNrZ0LDwLQBo97zcqd1sJ7Gvga/i81IrhX9hLRfiMGiCAezFHuYR4Lq4kBNrCWF52jRYaVTy Dl8XjRmVQto6laPQEMXr56T/AzzhOHUtRwIA --3MwIy2ne0vdjdPXF--