Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by smtp.lore.kernel.org (Postfix) with ESMTP id 7CDBAC433F5 for ; Mon, 22 Nov 2021 17:40:08 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S240036AbhKVRnN (ORCPT ); Mon, 22 Nov 2021 12:43:13 -0500 Received: from mga05.intel.com ([192.55.52.43]:29070 "EHLO mga05.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S240046AbhKVRnK (ORCPT ); Mon, 22 Nov 2021 12:43:10 -0500 X-IronPort-AV: E=McAfee;i="6200,9189,10176"; a="321063803" X-IronPort-AV: E=Sophos;i="5.87,255,1631602800"; d="gz'50?scan'50,208,50";a="321063803" Received: from orsmga003.jf.intel.com ([10.7.209.27]) by fmsmga105.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 22 Nov 2021 09:40:02 -0800 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.87,255,1631602800"; d="gz'50?scan'50,208,50";a="456362927" Received: from lkp-server02.sh.intel.com (HELO 9e1e9f9b3bcb) ([10.239.97.151]) by orsmga003.jf.intel.com with ESMTP; 22 Nov 2021 09:39:57 -0800 Received: from kbuild by 9e1e9f9b3bcb with local (Exim 4.92) (envelope-from ) id 1mpDIK-0000Uf-WC; Mon, 22 Nov 2021 17:39:56 +0000 Date: Tue, 23 Nov 2021 01:39:30 +0800 From: kernel test robot To: Alejandro Colomar , LKML Cc: kbuild-all@lists.01.org, Alejandro Colomar , Andy Shevchenko , Arnd Bergmann , Alexey Dobriyan , Jani Nikula , Rasmus Villemoes , Kees Cook , Joe Perches Subject: Re: [PATCH v2 10/20] linux/container_of.h: Remove unnecessary cast Message-ID: <202111230143.phqxGXir-lkp@intel.com> References: <20211120130104.185699-11-alx.manpages@gmail.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="jRHKVT23PllUwdXP" Content-Disposition: inline In-Reply-To: <20211120130104.185699-11-alx.manpages@gmail.com> User-Agent: Mutt/1.10.1 (2018-07-13) Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org --jRHKVT23PllUwdXP Content-Type: text/plain; charset=us-ascii Content-Disposition: inline Hi Alejandro, Thank you for the patch! Perhaps something to improve: [auto build test WARNING on robh/for-next] [also build test WARNING on linux/master linus/master v5.16-rc2 next-20211118] [cannot apply to drm-intel/for-linux-next mkl-can-next/testing] [If your patch is applied to the wrong git tree, kindly drop us a note. And when submitting patch, we suggest to use '--base' as documented in https://git-scm.com/docs/git-format-patch] url: https://github.com/0day-ci/linux/commits/Alejandro-Colomar/linux-stddef-h-linux-offsetof-h-Split-offsetof-into-a-separate-header/20211120-220144 base: https://git.kernel.org/pub/scm/linux/kernel/git/robh/linux.git for-next config: mips-randconfig-s031-20211122 (attached as .config) compiler: mips64-linux-gcc (GCC) 11.2.0 reproduce: wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # apt-get install sparse # sparse version: v0.6.4-dirty # https://github.com/0day-ci/linux/commit/ed03be33a3de1708b5a06ea31cc6cd8573890649 git remote add linux-review https://github.com/0day-ci/linux git fetch --no-tags linux-review Alejandro-Colomar/linux-stddef-h-linux-offsetof-h-Split-offsetof-into-a-separate-header/20211120-220144 git checkout ed03be33a3de1708b5a06ea31cc6cd8573890649 # save the attached .config to linux build tree COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-11.2.0 make.cross C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__' ARCH=mips If you fix the issue, kindly add following tag as appropriate Reported-by: kernel test robot sparse warnings: (new ones prefixed by >>) command-line: note: in included file: builtin:1:9: sparse: sparse: preprocessor token __ATOMIC_ACQUIRE redefined builtin:0:0: sparse: this was the original definition builtin:1:9: sparse: sparse: preprocessor token __ATOMIC_SEQ_CST redefined builtin:0:0: sparse: this was the original definition builtin:1:9: sparse: sparse: preprocessor token __ATOMIC_ACQ_REL redefined builtin:0:0: sparse: this was the original definition builtin:1:9: sparse: sparse: preprocessor token __ATOMIC_RELEASE redefined builtin:0:0: sparse: this was the original definition arch/mips/kernel/signal.c:280:13: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:280:13: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:280:13: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected unsigned int [noderef] __user *__pu_ptr @@ got unsigned int [usertype] * @@ arch/mips/kernel/signal.c:280:13: sparse: expected unsigned int [noderef] __user *__pu_ptr arch/mips/kernel/signal.c:280:13: sparse: got unsigned int [usertype] * arch/mips/kernel/signal.c:280:13: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:293:23: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:293:23: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:293:23: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected unsigned int const [noderef] __user *__gu_ptr @@ got unsigned int * @@ arch/mips/kernel/signal.c:293:23: sparse: expected unsigned int const [noderef] __user *__gu_ptr arch/mips/kernel/signal.c:293:23: sparse: got unsigned int * arch/mips/kernel/signal.c:300:23: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:300:23: sparse: sparse: cast removes address space '__user' of expression arch/mips/kernel/signal.c:300:23: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected unsigned int const [noderef] __user *__gu_ptr @@ got unsigned int * @@ arch/mips/kernel/signal.c:300:23: sparse: expected unsigned int const [noderef] __user *__gu_ptr arch/mips/kernel/signal.c:300:23: sparse: got unsigned int * arch/mips/kernel/signal.c:667:17: sparse: sparse: symbol 'sys_rt_sigreturn' was not declared. Should it be static? >> arch/mips/kernel/signal.c:157:14: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected void const *__mptr @@ got void [noderef] __user *sc @@ arch/mips/kernel/signal.c:157:14: sparse: expected void const *__mptr arch/mips/kernel/signal.c:157:14: sparse: got void [noderef] __user *sc arch/mips/kernel/signal.c:157:12: sparse: sparse: incorrect type in assignment (different address spaces) @@ expected struct ucontext [noderef] __user *uc @@ got struct ucontext * @@ arch/mips/kernel/signal.c:157:12: sparse: expected struct ucontext [noderef] __user *uc arch/mips/kernel/signal.c:157:12: sparse: got struct ucontext * >> arch/mips/kernel/signal.c:157:14: sparse: sparse: incorrect type in initializer (different address spaces) @@ expected void const *__mptr @@ got void [noderef] __user *sc @@ arch/mips/kernel/signal.c:157:14: sparse: expected void const *__mptr arch/mips/kernel/signal.c:157:14: sparse: got void [noderef] __user *sc arch/mips/kernel/signal.c:157:12: sparse: sparse: incorrect type in assignment (different address spaces) @@ expected struct ucontext [noderef] __user *uc @@ got struct ucontext * @@ arch/mips/kernel/signal.c:157:12: sparse: expected struct ucontext [noderef] __user *uc arch/mips/kernel/signal.c:157:12: sparse: got struct ucontext * vim +157 arch/mips/kernel/signal.c 2db9ca0a355100 Paul Burton 2015-07-27 143 bf82cb30c7e58b Paul Burton 2015-07-27 144 /* bf82cb30c7e58b Paul Burton 2015-07-27 145 * Extended context handling. bf82cb30c7e58b Paul Burton 2015-07-27 146 */ bf82cb30c7e58b Paul Burton 2015-07-27 147 bf82cb30c7e58b Paul Burton 2015-07-27 148 static inline void __user *sc_to_extcontext(void __user *sc) bf82cb30c7e58b Paul Burton 2015-07-27 149 { bf82cb30c7e58b Paul Burton 2015-07-27 150 struct ucontext __user *uc; bf82cb30c7e58b Paul Burton 2015-07-27 151 bf82cb30c7e58b Paul Burton 2015-07-27 152 /* bf82cb30c7e58b Paul Burton 2015-07-27 153 * We can just pretend the sigcontext is always embedded in a struct bf82cb30c7e58b Paul Burton 2015-07-27 154 * ucontext here, because the offset from sigcontext to extended bf82cb30c7e58b Paul Burton 2015-07-27 155 * context is the same in the struct sigframe case. bf82cb30c7e58b Paul Burton 2015-07-27 156 */ bf82cb30c7e58b Paul Burton 2015-07-27 @157 uc = container_of(sc, struct ucontext, uc_mcontext); bf82cb30c7e58b Paul Burton 2015-07-27 158 return &uc->uc_extcontext; bf82cb30c7e58b Paul Burton 2015-07-27 159 } bf82cb30c7e58b Paul Burton 2015-07-27 160 --- 0-DAY CI Kernel Test Service, Intel Corporation https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org --jRHKVT23PllUwdXP Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICBfLm2EAAy5jb25maWcAlDxLc9w20vf8iinlklStHY0ky0p9NQcQBIfIkAQFgPPQhaXI Y1sVPVzSKLveX/91gy8ABCfePWw03Y1GA+g3QP/8088z8nZ4frw93N/dPjx8n33ZP+1fbg/7 T7PP9w/7/5vFYlYIPWMx1++BOLt/evvPb4/3315nH97PL9+fvnu5m89W+5en/cOMPj99vv/y BsPvn59++vknKoqEL2tK6zWTioui1myrFyc4/PLi3QPyevfl7m72y5LSX2fz+fuz96cn1jCu asAsvneg5cBqMZ+fnp2e9sQZKZY9rgcTZXgU1cADQB3Z2fnHgUMWI2mUxAMpgMKkFuLUEjcF 3kTl9VJoMXDxELWodFnpIJ4XGS/YCFWIupQi4Rmrk6ImWsuBhMvreiPkaoBEFc9izXNWaxLB ECUkzgbn8fNsaU73Yfa6P7x9G04okmLFihoOSOWlxbvgumbFuiYSFs1zrhfnZ71sIi9RIs0U sv951sI3TEohZ/evs6fnA07U75qgJOu27eTEEbdWJNMWMGYJqTJtJAiAU6F0QXK2OPnl6flp /2tPoDaktIVRO7XmJbWl6XGlUHxb59cVq1iQYEM0TetpPJVCqTpnuZA7PBVC0yBdpVjGoyCK VGBXNsacEpzp7PXtz9fvr4f943BKS1Ywyak5ctCHyFIUG6VSsQljWJIwqvma1SRJ6pyoVZiO F38gHRxTEE1TXroKGIuc8MKFKZ6HiOqUM0kkTXcuNhGSsrjWqWQk5sUyPHXMomqZKHPE+6dP s+fP3mb5g4wdrEENQPeyMU8KSrlia1ZoFUDmQtVVGRPNbJ0yLFcV2gbq/uj09P3j/uU1dIDp TV0CZxFzajME8wYMjzMWsBr4DzrNWktCV86++JhmC0eMg3qX8mVaS6bMYqRyadqNHa2jt9gy GaRICagTA1D9B+/dDPwMrR+phqPohWkHBxaPmKooJV/3pi8Sa3KwLJmLmNUxkDBpq4UrQjeg lIzlpa7XIqsKTcBujfuxpelIClGEzmPEITD2yDAqYFS3TbSsftO3r3/NDrDVs1sQ/PVwe3id 3d7dPb89He6fvgx7t+YSRpdVTajh0aiCpZR05aEDUgSYoLbbjNDKjIYfZRSpGF0QZeAAgdCK Zj6mXp87coLTUZpoFdojxQc+8KM/85grjGSxfb4/sHe9ocCCuRIZaV2a2XtJq5kaqyisd1cD bhAEftRsC3ZrLVI5FGaMB8JlmqGtMwmgRqAKFDkAR/s+jqjRZ9Z5ZO+Pu77e066aPyzfu+o1 VFAbnAJPcA2LxyF+Y7AGC055ohfzj4Nq80KvIIInzKc5t03DUPEiZtvA2Xc+V9EUooBxy91J qbuv+09vD/uX2ef97eHtZf9qwO06A1gve4J552dXTlLF8zLjFBx4Aq4IQo6oluni5N3m/vHb w/3d/eHdZ8iFD19fnt++fF18OLFC/hJoSxX0qZiQqBKOJIyGhdFVKUAadLxayHBS0WwAqbQw U4VpdipRYB3gVCgEpziwn5JlxHFNUbaCEWuTUck4yDYSAh0U/h1eAa1FCb6B3zCMNRjL4D85 KWgwcHnUCv7wwgbkfTFqLjUunGhSM8wyC+LmHj9OJmSZkgISN2nBMeLoDGyYslKbIgTtZsD7 xp2Dy+EYWSwWS6YxXQpFr+YwWkRw3xKQyQvuXhI6jsKO1TjnWIUPJyIK9rmaEqHSrtn1GFaK iTGKLwuSJWFdMRJP4Ew+lYS0UqWQLVulGLfKJC7qSnpRjcRrDstqNze0QcAvIlJy+7RWSLvL 1RhSO0lgDzV7hxaDubGbXZgAZNeEK5o7FYZU7DogF4jF4pjFnsajydR+vmmAMFm9zkEi2wuX dH560fnBtsgu9y+fn18eb5/u9jP29/4JYh4BV0gx6kG+1iQWFuNmtmCG94McB4brvGHXpDFh lcW6kGgoKR21VRkJV0Aqq6KQpmQisuwPRsNRyyXrcgILl1ZJAnVoSQBr9o+Ac3XMX7O88RuQ I/KEU89xNLW1k1sbF2GctVNruOVzr4O8VN0h5bd3X++f9kDxsL9r2yD9WpGwj3QrJgsWtjxD RzKIBPkuXDbKj2G4Ts8+TGE+/h52HLZUYQqaX3zcht0H4C7PJ3CGMRURlPZhPBTMcJ4U80E4 kGmaP8hNuIwxWDg4VmDqIMLiZwSy2Ovp8ZkQxVKJ4vzsn2nOWPLPRJcX09sBFq7JNIuS02Ni rOXFfGqzEV+AwrIiFhMSSAJavpoeDmlkptmqlnoiIix5zcuzsIAt8mPImBvUleMQDOz89Aiv iZ1QPNppVlOZ8mIih2opiMwnLGzgIY7z+EcCBclGfowg41pnTFXyKBdwqkKFFaMlifhykknB 6wkhzLnq7fnvx9RGby8m8XwlheagE9GHifOgZM2rvBZUM2wg+lbYus6xY/RT/3TD+DK1PHvf hwG1jSQkuuAsmqzWyZVFjom8hOy7Nh7bTgWSDfhKK6BStob0+8Lqe1Eo3FxI47awAgk0jrBz VauqLIXU2BzCNpwVyuOcYOOAipRJVmgnCplihBGZ7Ya0zlsp1LnIYhLRzdw2bK3kqcWT0iqh se6NMBcpYk7chHhYQojA7EBaQTzVWdSRWuM3pMR0zRQ7dpLM23or3sViOUakJDsbQxVj12Po Jv79fAy94VmIMb86vbA4d20DRJdEau6Ge7O6bA5qBerTVKr1x6PoxUc79FKskZQIdusQ2zSE HZXBFCMHJfYV8/LCapxg9cWy5LJP+OD8nDzCOlY5P4X/jdXLwdm9koDdaQL5lDaqI9l6uMhw 1OPyIgLranIVV7N6kvOzfyT5AS6obpjC9ZlUm5wevn/bD2s3jOwwYk5rTUCNgcfFVaiEwrwQ i8/6YhU5zboeMb9chZPTgeTyYhVKU03LFZzotr6BOCFkDM5nPrcXiKcCdXrCNE3dpXe2HVd5 iYY2WlZSdtsTSrPxpC9WrZo2wy1UwVhsLo5UDhZg2EENnnMKitikq56MaldQzwiI4nFrAKdj BO744qqDQxRsFa+GoopOHTI4eLcCRHeaQOEFUHBD2OWztyG9qc/CqQxggqcN8Hmr/Bbk7GqK ydmHcAZiUJdTKFzoNM4VOWRVRKI9pDdWdXizAKYDoxXbsnA6SyVRqVGaUDlsDvr8DHTn8sLy 3H7JZ6xqaOzRVczKgKPXhK6aLuMIVy6b28UMCsJMLc7bxv/b6+z5G7qZ19kvJeX/mpU0p5z8 a8bAz/xrZv5P018HiwaitnsPXpctCbXvhZQVCvO88vQmzyEOyaJRRVh6sZifHSMg28X8KkzQ Fa0dox8hQ3YfelGvzj6cO/cPP7oT9tHBwTVT2Lc87u+WDM7Y9xcA9WoYcyTl87/3LzOo7m+/ 7B+huO+kGo7ArDHlEbhnU4hhUwqSzox5+60qVUKqYKOHFLTBhSyyZYz5eJZFoFGW97FmDQIh tSWlSiEyxhCiBuXLQTdjK7gPV8SIyhgrHWJsp3bQwbnn4LVWDLU/2HrLPWJz9xgg3FzDjmyY xOtVTjm2R0ZNCvSCLcNWPyaPxTFlttW4FVnTb7MTg2Z83o8HRI/jnx72br6Al4uuNAipl2IN 5XEct1dnIXTOimoi/PQ0kPj3/Q+QupdhFr/c/931pLo6IExgpyqN+DZktFirJcWlrqBAuBn1 EJx8DmyXFDWWv/U6Vr24XUPn9gWqkwMkSG8v+3ef9t9g7qCpNM6XCuko/6opA4Lu+g+M7hmJ 3EK003TsCTbJESxhWWDnn+LVmWd52BzEi0rNizpq3zjYLDgIhD4K5NAeauWXKA1UMh1EFLlV QDSun8triNBLNY4BZoQR0FCmQqw8JNYk8FvzZSWqwBW7gs0xatTc+3vLxrwEMizNkx3UlZWk vkdCAlMWQR5bFSYV8juu+KwmF3H77sRfrmSwLgI+zYS6dvPdKqqhU3aRMrRycXwIjq3jlidG 6tCWDYrhLWpDwIPwkqJ7w6Zw+2ImQNSGox+iFVls0YcEUowiwRFUnYAKur6ixUzpttkC1EpG 3aasDx8YOhj4KUXwBjrTwlzRe+LSyecSBg2qBKOcxAvB0/fijpWNr8YnbKGA0hjr/76q8ehA IduNLRnFjrQV30VcZUwZk4dq0FxLHMUGhGRbcCgQPM0zHNzPgNmY0aD5Ih/fy42TJ4/ATBA0 WXfUkI8F+FrJ1BQTm+RqrNNdoa9FGYtN0YzLyE7Yz+uwvo0qz6hpBqpTYzIChUusnOjXzNlU tXjcE9EPaqsh4CeJv0VGyvaNnKyt0s80lqxbFH+gaky57TzVhQxZ89Rdp328GKWG9LEJd1Ss 3/15+7r/NPurKQS+vTx/vn9oXpr0W4BkgfsJfw5D1j1M7G5Fu5uSIzM5y8UnnWVWLXnhnIIF DrYTfzBwd1OBeed4BWrHO3Prp/DKbTH37MtJrQ2orfQzQcJ3ni1VVfgUA34cgsaxyeenJO2e zk7dLneUE5f2LRr1QGJs8581TRIub3j49YFPuL0Jr9chuoF83Xdj5rZuAwkalBOF9X4Cn2dg mezQm2wFwpxOFye/vf55//Tb4/Mn0Kk/9ye+c9SS4UmJVWUFs6h9UtL/bJ5DRMpYfG4HTQvn 9OyGJxSaLSXXuyOoWs9Px2hsEjmPzRCxicLXY80gqDnqJJxaIoHCBnhJQnaK6OZBcc0KKnel W2UF0eZBTESGxzfl7cvhHm1ppr9/21uZcF974SU9PgGxIwG4niLUevUQNa1yUhB7Q3wKxpQI vRfy6ThVx9iQeGIPfUJTyWm39TJBKrmifOvMyrcDPsBBqMTZlWFgzpfk6FCiiQx3swkN88xV LNRRnlmchzgi2OjdwruuO8YLwrC0V2+lelVQFVZE5iQsOUsm5rLf3Kwvr44KRPPY6LY7Q1d8 e1rtOIlRywUtJb82SaL9YKUFS+fCBoFl7rmdOoXsG7KA4cVWZ15cDA/YLOMCtlw0t1v48sn9 KMBCrnYRpOP9C70OHCXX9mrdSYbgU8wHplXR+gJVQo2JYWyUNWLOaR7Dx4bI9E2mSeQmRNB8 zVDUAqJaRsoS/T6JYxMivOukBLz4zdDzYP/Z370dbv982JsPU2bmxcrB2rOIF0lublD85lkQ 1SZI1kk1RIpKXuoRGIKU82Ybx/o92H7Dp2RtOiT7x+eX71YzY9xlaBviXmKYEKXrpR3TzJau GCvNMyj3yNrPEux3r93KtzSrFH4F0D6NkcSaSpUZ5L2lbiyhhKL9wmMZYdh2LdbsM52wRHOJ IhmGdKdiAp8nPdGoaRXU/iuodKeMltS6vwBqUaZwg0owqhz3v1J5QJCuXDBlQs4Lw3Nxcfr7 pfWuLVC8BVjh9QpW+qYSWFnbRzNGmkaErcmwLLdrQ3Mn6sHPcXtxjE2C762w/4FvEB3uoBuM qEX/SPfG/zLGAPr8TMjhsTVD9QvniJODshvxvw24ugg/JjgyQ+hW5Rh5Sn9ovZiZ/g+cFycP /734enfic74phcgGplE1zdQjPU+E+wVCkEo1bwN/jOni5L/nn58fPp24NP03FJbJmXHWTxDc +tXJ1rPxXyh2EOwz2LdDaPOmsYetQ6sYj7uXeuMGDZiTuSzErwOcUrAqRx/a+DGlxDc02Esh WRcw4tvD7Yzc3e1fX2f589P94fnFK3Njkvv5RevAp8b2TexJHz44iNEdDsJMAxrKHNXedHdO dxWZVn/R1YFGzGJ/+Pfzy18wsxUirLtpumKhTYFQvh1yAvwFQc2+c00aoBDOlbOBxZyEfZAO vr7dJtJijL/w+xwsgT0oyZbCA7kvrA3IPN5JMAt4HGY2GFVFkJpnnO4mpGijCfM4mqeFSjfV gSNQOmyRAUDp6UF4adqhlihwgBBuQyKonA6j4YfZSItfXOLDKDgvW44B6JHzRnv6eXnZPEqn RIVLRSDoqrBaigp2MSAjEJVF6fEFSB2nNFzpt3h8mXKUQBIZ6gDjdvHS/lawgSwlvuTKq62P qHVVOC9Eenprc3dQNkJtz90uTUO51nxCjioOc09ENQIMkjhT4KmA3oQ3AnGgQqFtb0RrdckG Gi1rhXIxvqQGONaRWtOyA7ui4HJ9W7bxkmxC/BAER4NNd6u5gbPAn8tApd+jIk5tIXo4rQAT kKIn2MBsGyHiQZIelcJfgalSNQHfRRkJsFmzJVEB+mJtn24PxrYrvmw4JnQWmn/NChGYfsdI GqDmGcQCwVVgRExxgWM4jZdBiaMoZO79t9LNbg1Rr4WbbQkqc0cB8x3FQ5Isjkzcybc4+Xq4 +3ZiLyePPyjnI7RyfWmpIvxq3Zh5OuXSNRjQ10R4iOZzI/T2ENpj13ouHY/fQByX34P6CObZ lEFChJrylYaksfOg8wUBc15e+jOO7B8JwY95EAVVjy1QC6svZSjPNOgihpoVqu2Y6V3JvL3q p3VZLmVI7w0KPeWjD5niY8JVmbX/BEFYzRpCc5rTeMWWl3W2aaaZEs0QpTmhbnBDXSmzfxzN BcmHOZwWWjl12nB0+I8u4PVnTmT4SX1HA+WruUeCXCQvvc9pbeLmcjXUyC37e9ch7saUln6A oEM4aFJgAMwo5fHr1D/N0TKqkeis7/oFkOcT4KkxOpG0drrnDmboL3YZ95Sow0Lap2vp7d1f zpfRHeMwT2+UNUhRbdk//qrjaFmL6A9aOOlXg+qcosk9jLahGwvlglPkKiXzH+I78em5offm t2oIH9tOZ2tIM6OXMMg4bJ/a+4czWjDRdi2h85pmdorXQfB+lNPcw2SkcF7OICwvRfjDB0RG 8uzyKlT5Z2fayc3x95EuiUGvLS02AO5ERgNiOg1tva0qkeTxkvm/a77MQakKIUrvK8YWv4bF ty8oprxAS5nLsNdp0TQJf+thfID7EUmLMVNfnZ7Nr225Bmi9XE9MadHk62CWHzPqFLvN7zZ+ W/udWRUS/DgbfhFNspV9lnhVRkoIH4gIirU9C1leRspoYFvipzuWYJeZ2JSksCdqQSG9GdEU afg9LmeM4QZ9CD9UbswuZeFr45iGXpXHhcJvxEW2tncwAnsg5rrNXsIA7f5ch3XHostCOmIR xMTxfxammPhCcKDI/SI1wN4NGRYGm0JOT0iUrFirDcfH848BYO3Uhg6CFWxt4dZd/T2CeIVQ D87Aks1VqLXbzR1QTxMyNZeiu1x2uwimDTRRn+VlZlUrqD4IqZfKKi4QWihrS1LlPKIySmf2 AUxpoiLOzvFfANLmWsp6WnsttcMKf9cqD2WZBgVZ0yCGgeQp92UpqJoqzOUWm/c77O5YBW90 3ffx2i7Y7LB/df9FFBxdrjS+0/J6NLEUUGOIgmvhfTDXZgYjnh7Cbrn1W0xySWLePx0tIaPY H2by9tP9Mz5uOTzfPT/Yr6rBR1k+Dn5hw5Hgt8xr5m2QFKH7CikU61I5sn0PLu+plfvT/u/7 u/3sU/+8ttOdFVeWhl+Wjfr2eeQ1RDf7wjAGDaB258r7Mf7gjoKNbhlN7XtQsgMlr/HFYxJb nUcLnhp4v+IdyYPH8v+cXd1z27ay/1c09+FOz8zJqShZsvTQBwgkJdT8MkFJdF44vqnTeI6d 5NrOtP3vzy4AkgC4kDunM0mj3cU3COwCuz9cbGSfLWfWhEOn3pqd7cyRtONUfyJnP5H9Ndou 6cho5ArpnX3pI1hWzGJdPdvF2Up3QhG6Cqd20gSZTUj4UXo15Szj6AuHVm5AgUAx1myjIDPN ktarmsOXx+JKBLkYixlqFufX1/NJlZGILniXEnVVxhpEEnF7QKQC/5/Gfqa5XwuHW3NGR8n2 TJ1puAd+ZX54j80tU3WL+TxOhKOEPRyREj7ff7I9ZFB8g6oMCLgtS3JJEGWMxIVHbdCZT642 rUvfEzncnBh+bBN6zndsSq0SdmOoTvuPk87tHfGnbXUnLLoqQXsFTxzQBOJjGZYI+6Ido1qT 2Nl8gFanuINSCgXIF25EhyFBg7uwMW1k0MW47HzDGrgHEfuZHqiNHuhuCAwQjK4YknYdTYGU yxS9lWl5VsoK4TLdJGETB5gyyVKDxzgldgmPD15uA0/m01Vu9/Tj4e3bt7cvwf1m16g7m8wd RW59yPD7ljO3g7nYNTjxKKIO1dHBRP4o9CL06m5L5B5mjsXysA0ciSOrG79WSMM9zFGSLNbh iiQXYIczpxt6zo7LikzCmsOSqLbiBXw/LYnlWQQQpSwhNVjvCV3qXiVADKhuwH7dtoEG5PUp 3O9Q4mK+JJLuKliLA8AjWiBVK1Ig3xP88b84rx42Tw0AnRlMKDU5np0Et7A00aoxMI272PO4 EAa/p0FJTEEdritLB+sp+oTcPjgZGAqrE4wVGXBw7AVD4Wt1e+N48acIcWRpgU2dsFzHlzhr c84b6jggFfCNGR9qQ8KZmTlBTWcM0XDdrxTJxaDj6R4N68hR7zNFUg4BiPxIb+MmIe5GSVai nw66ycO+HYBm6+V5gsFGBiCoK4sj6XDTS9fJ7RGapoCy8OI12ce7ae2VU5x2ptcieIUsCbn+ JLCimSPw6aTWdcwuRYr3cme9m/Tjx/ikd3tahzAGosCxp75aW2zwOPkfg9b37flh9sfjy8MT Ok+YGT57efj/H0Cb3c8QW3r26dvXt5dvT7P7p9+/vTy+fXl2UJL63PNE0retgwRuqZfqR/Sa nbvsHVFC6rSbUSgWcpCSDUNvlIMCBFB4d1ZEd53eiIzqTbRYtxM/g21lVpBgCu15+uwRvcMV zkTq/pr69ioqJPfOClw+vc7ypDqYY/5R3NDw7q5p7kLrziCG3wd94lWk3PnRxWIvGpa5xIIL p/M0qcP1muo7YHvbApLkIc74RAMqHu5fZunjwxOioT0///j6+EndSsx+gjT/MMu4pQ+pnETu Z44fZhRADEC+iWHFagdl0ph0scDci9VyOSkSiYFBG/liYe01PXnRuXoQ0nHbdCWR4psPAx3y DZQrGzNeE5qpjDuObeV3ip1umZ7rYuVlponTpmnGxrTO2pb/5iCPNaskyyvSQUC5eqTWqaN1 q+hRXBTlGPrA8xrd1yV8I5l/GNhr7D4Z3XVzuXep8EXjUeNITJnISucbS5pDg56D5lSyP92a nG4YcR3+5wAzmF9D9+BvHcxDTuaKgw0eTz41FdD1+MmUOCt9n+ijDpk7JFllV98hm/AgCy7+ 1OSVu/73tC7H4DvyqocVMctK96IK1jJVUCrqHHQJHY49bUX6+PL8xz1sdE/f7n97eLFcus8q dszDptIk5RAZI26u1akt7EtDaVabxlQqxnjoj6GmpMAQ10MOyZik93cNiak5Sp4O+C0f9Dod qHkaPOYtVVOFf9E8j2oNnzplUIAh5GWUOYSoHVQuRVV2rk4Je01euqewVd7dljKA625kVA4M kXL6fDQM/3ieaqg2Prz1Rfd4ZhhoDGauh+EPymFu+4jr32oh82l5bgei9IK1FaKuouIPMHXU vErdKYLMNCm4Vn7o8Qx8jwPKy7j3jaaGceFER8yy7jL6lnJX81w2u24v0NqvaeClXRN1rLrA a+md8iCkyAT86LLAqw/KBO5EW121bZfQJaBdBzyxoJS9g/CjDQyJ8uC3wGCGfaTXf0rYBtyo eDR/RnRYd0EZV2J9H1DnM6mwvdFfQivTUJblkSz6Y7pZZS4n/LGSPBf6HIyXGVnv/6oUa8Ho F8s8wZgLejQ1uGhXnGr/VqD/bMpyj47kJrPJmts8/P5yP/vcd5Q2OWzIkYDAZOXyTyf3hW2z 4i88CNIu5mPtkJwj/rliETNGJxR12qd+djjHXTtm28+oxvKHhB+d3vGf/ZjM7/cvr+4FUIPA Atcq6k06lh0wDFarZlJTG2TssLlJBvoQoBM57FdNwFHckmvqAKZkE6u1qZLZxbrA4qVA8fq6 EKwY7G/8hu5MfO+HKJhBdywMOrAbgjsVRFiDssjuyE9i2vlqTI6vCFDzDWPsNHpy83L/9fVJ K5LZ/V+TUdplN7BNec3SjZiSurrsB7/4Bvbz25f7t9nj19krGtuf7l+hzONOzP7v6dunf2Ot v788fH54eXn47V8z+fAww3yAr/P6l6WUNI5S7//q6rPjUIc06gApjd2cpExjxx3eZWNtyrLy mq7ikxzKELkJe5i+qe4XRVgpfq7L/Of06f71y+zTl8fvxFUoTuZU+FP41yROuNp4A5MONulh V3dSQmbKR6FUgdKhOYsb8Y4VN91ZxM2hi5xv2ucuLnKvXC6WLyKCtvBns6LiNkdfLQyNyWPZ xFQzQQWmLux69rER3nBiBKGXD32lrdanHaLd2hbYhfE0oNrfv+OVfH+a9Pnbi5a6VyE63qCX aJy12JvoiCXdHsNYwnwy0zRxirVm8aBPwGyc/7mZq/8okSyxngOzGTioakx/WXgLpRHYV6JU 0Yjh9ZKvFnMeBxAZQADsNyUTFGjkakVea6qKZKzpB3EA7L3c6fq07+Hp8wc8zbt//PrwGy40 Yd8EbEWVMPQmEd4ap3UAmWZMObW4Lc9CioHuQY9rf09NrNs00uB315QNy/TxnIr9dLlJrWBB kBstNk4tcfVc6K1Z28iPr//+UH79wLFXwu4AmDYu+X5J7ifv96Be9sEodfsSKfoM3V1ZiwQ5 fi8askbAv+vOtQh4XdvCl0DhbTnJcnkkUZpsqbKp/JWqZy1aXHP34aHEeBXTLL0D3P/xM+y/ 909PD0+qb2af9dqhtdSnycxTxUA10aOlYX7v6PrBlxjAXu9FjNZyWQhjt98RyVl9SkJ4LkNh GUcrZrkIQXMPuf1dQTS9VGddlCrbIhAYMoikoLmJNDwx9FRL19Ecj97e69MuzXgAcX6QitlJ hI5HB6GmbbdFnObvlXgsAubjIIJ25GoewPHvhdBMfGdkGuo+cWS3btTU2BC0od9pRJMjzGvO 35myeSJpWMReAPceshK9V87l/DmLE/oBoPGDgCXV9bsdWNoaz/ZOIXrPf3z9RHzC+BeesD9P OLGQN2Wh3ia8xNTKHRHKdklWAVS4ezstigDHl7Pc7Rq1+Pa6bMI5bAW/K2j8H9+/f3t5I1qd 2I+g2lRQm9ExMfc8zgMiGJl6aaCM9I4fbP8dqobD2TluS6odWYXqy//q/y8Q7Hb2rKOkSU1A ibkDdYshXZbubYp4P2M7EzBz3FzR7jlnCqxOIgyLv+drwyjZmfdNF3O3F5GLwBve8YUnsc+O CVWwj8kB5MNdldR4gGR9DoddzmFzWgdcyEv6zRGwjwI3vl6Yr4rxNReYOvJ88rVVU/9VIZmX j0Gxmt6SnfJkJv3Ji9QJUqoi6uAwRgZaKIGU7WonZFtRvetOJcgnmXsRWw5LAd57uRoU/IpJ CXPkSHPRFdwr2nBMpbw6aF5g57NFJvFl/Xdld+mwHk4vHFm8WqzaLq7KxnIaGYn+pVp8zPM7 PCkm+gh6fLtcyKu5E6SktBkw6em2wNKflfKIThBJrTz/wgeqvIQdPKT1sCqW2818wUicASGz xXY+X1oBiIqycBxOwayUZS3B0skWqxVl6vQSu0OknVU9uqrFdm75Wh5yvl6uLKfMWEbrjWNy S1ptbfFJqbaTcZo4sxRVC/jrJrkL3akvKuvF5iTBtyOsvWHse8WBASLx5g3Xh1Q35Jy16821 dXVq6Nslb9cTKpiu3WZ7qBLp+GgZbpJEc19V6rcOt/LmuPbP+9eZ+Pr69vLjWT029vrl/gVM nzc8MUO52RPuNb/BhH/8jv+0X+cEvcfeHP6LzKbzJRNyGbiyxveQaobGf2UdeSj/d1udwUDb upFtYESrU8UK8+Zvb13bn7M2pTFGwph+E00AmYhvaF36MBGrp8CtczQl5aMZItH95T4xoyjj 7e/YO0hXNxLpdL9QlTW1VI8JzH6CLv73P2dv998f/jnj8QcYdwvlvwdAlNa5Nj/Umua41Q3U QITciM1IfTp9Yn6YNAX+jVe75GmzEsjK/d7ToxRdKqd6vPWju6Hpp9qrN16yEuQIpZwkC/W3 5rijI/F5eJPCqxvD6buTLNgqWVdW2v7Qwau31w9n9ajDWAldMwd1QZPUobkHPiX3Ah/v0fPO ry87sGi1oM3UUeCKungb2NdXc6/nmODXbWut2oaAtxlSwXRpt3Tr9fpeArRC5SeRsbsul7+s 5vYjHL2QfqKeuoCaiGo9S79kQq0njph6gX0+rdLeuE7pd6ImE1LtIDJgo+sOQesGxiXUjcdU Hnjs9aImEsEYPbfj6KZ1gR+fOcwSW8KtFspg5cMVR4ld4NMfBJL2rigvta1TcKblpONU+RX5 3GTP1i6Y2qnWRcUUu9SOYMWfZTJpYmpeuRehx9xQqHcEKHi9Wm5IRQXFbmFFAikwP7y+BgP4 OppPyg4jyCl20J1QJ56umPEB1FtGbYs9+1CBvehvLocuyfmUyLIjs3dAar8bPoXG3qDw5c5D KRtXLVWvee5KBEKvaz/Oz5JSwM10ryC7IgIf+HiKOPvj8e0LcL9+kGk6+3r/BibnGAFjLfiY FztwMc5+u7bIEHlg3cOk+wQMdPrDQDYWTpiflj7Qb4y5fXMc44sXCasdEmoO8wklmlKmQler tUMbLDlHG4r1V0Q/XbqbuBB5DYjz/qmLaeNiZ02Jw2+yqExSYYXM9sLmQhVxh/ewMeAPJ+LY k9NvOEzikjF/gYcVQpaFU0iFcN2yUa/AsIY5vCN6VIsqiR2qWqy8dvXP3tBNaw5CXVKeBOLF 6XA0Kz/lRzihdDK/9UpRB1Gh8YjRBUY6+YAq7OWgcPTpxLnAz9JJj6/Do1OaRnq1OTi5HMLH pHYHz55qBBUWS69qI4v05XIkDrIJZCtK5s0hDIj1JuExVIL2TnSmTZoxMP2cPPFOpvEz1cT+ vqYGRUt5lodg3scUKQlejXPKC6M3A6ImgTvOI8C5MyQKvHyEpdInGOYGaqhIwyG9+nYoBzpg 4msB7okzUivJA3oBcnHS0OfcfZC+qU6oTGvnNsqsPgsy10mI4TCLltur2U/p48vDGf78gzK5 QQVMpnFWPczypUyGsyPlZm9CJPsFU1gGWpE0k1OzXVnEgrxfU+c5Y9uwbvsjq53rv4F4QUFI btUbSgm9jSqouYS+nGMcIUK8CItTE/D2EhVKk6xTm5GRkz6Qww5U8GPsxEvsyUgkqIdMuNOz XD/c6RwaDtQuvitYLkjP9aRx8QkU9gBQFGJxDf9wHSybI91GoHcnNcJ1KfG9O7onaAwagyzh YJoUmQcugb6IRUKjRLKaB1lN3r/CR5nVKmxEs71gksZduBQtqGgq9AEP2xJ744RvVtfdMnSf ZslolGmqkrZQxrja2qy7GHOS00h/9IdEOftI3pQ5MpbGleEFkjUUYr3ys25x8gabpLjdiV7Y 7FLh4ywaQRsUtlwdmLuDgBQe5qZh7OqSxdD7zqJzRd9GoLPGdr4BG5dcboGNzXLDlveIRwUc ugmaTV039hqywilXp6LPZMuJS0hHjLOsTWIGPZ6zwKG8nRm+Z325JzkoN/Z7Zlxutn9a+rL+ rR6wtL8OTb14sZpUW/TR9JYAsp4KUJ1y1Irz7dx9BFVTzCM2YD4iNB/i0uEaRmXgLjJjmbF7 lq2xSjMRQn81qZKP6lqWyjBlNYttiBGbVycJonE6X2waeBYVXRLSPLC3ILO6BctE0DDle8GK NAAbgWlxQvNOJDUZTjXWWLsqk405HNk5mQDjGOYkLnsqop7uRfQJO4ubsvZmAJV7Bksh9YaK nbt2SHG28dP6ipiJAzfXWDiWPOQXcFo4VQHPmqpl0Xrzd2Z7DtVjRUmb0F4//a2+DE5J3dNJ HhqsgjXIvVyEAvUpypyeDIWt8AncCIxBmqPdqJZPG9qu4qHVFjqutOPcxiKqpJD4vFugEajv +cAalFwNBdOny7YQYl1NAKgMM+wcZgvpR+DHM5G9QNJ7tcPHLWqwqAKHsrZkHrjBdHLj6G3c 0iqSLdioOfKu2F1RVt4pLCXXBKI+R4nT+5v/WXwMKXeWlL6UpNe5OA7NabmLnNfmYedwoD3l GSiWYpTEXVOLPZ6vOIxUtElsSOa1WDGDn0GfUdC3lLit4KI/U7dvM2RQJ+wxno24aXoFKpSk 3Wyut+udW9leJzKZjerN6iq6mhtZWyvSsRVkCcBVR/tuATzfXG020aSAzbURtYna5PA6ngvQ fJhfF6MYBOqCnnRjs0bLjFfZUQbSZG3jVkj7bbVndue2KQPTOmmieRRxl2E2GJoYzfc0Y7Np F/CfW3bOWn2q2e3dREksWJPcgMU4mTRqUwg0btgNvGIGchN5tes3CI9cNqBewZrqj4d+ypqF yscgZ3616ppfWRT5k4Q1m/nSmw23VtlDIXWCFs5NoAyzjE8SwcLdt5zSu2HRdIsGPTyatzY4 ORhVMDMFl26942qz3AwjN+qhQG74JopCkxOTXW2IvNbXFHHrVu+ER1lyMvzGFWMPy82ixr/J s3Swrc014V8OcWcr+ukZAbU7o/x4aWvv5UgkhwHVFDtsIeqyRbNjtGe1YuPZWCE08rXNyE8O wJKmIXofNN4N1VCcsvXAElx+yZvENY316o3qdP7j6e3x+9PDn1ZwYsXldEkfdT6YKy2KUIdo RNJh16lcr7aq6nYyDuCtI9e8ZGQ3F8lBaDBk5lU1SaBOg9E9glZhq6pkDWUvIseaTFXV2K/S A9NgGFtFKTcDR6hT4caNfRYrHcBlmR3s2zaEXu6juN1AN8WSeWikFRshddS/1kR7ED5Lw2t6 J0HI4KzhLuUGDJ7m4NIqfHTAdX40oFybaEXHrox8yisAuWAXXG/s638kwh/HiO0rj5t9dN2G GNsuut6wKZfHXGNn/uXWzPC6JKFmgC1R2G/w9AxtFYb5yMh3tr/zMAj5dj2Ppilkvb12bX+L syEDgAYBWCGuV35H9pyt5kyy3WfrxZw6hegFClQINvNpVVHh2FE1zbm83iwvVbXGxw30pfCk sthn8rhDvw7th0F3qxbxi2eZ6PLVekmbq0qiWFwHwqwUOF2S3Qj6FEKlrnNYSY6UOY7spALt drHZbLxPiS+iLTmoH9mxPtIWxtDYdrNYRvOgkd3L3bAsD9gZvcgt6B3nc+CQpRcC3XAVtVGg hdj1PjI30kV1SOzLPaRJkdQ16yayp2w9J+YTP2wX9NRntzyKaFDUcXlZdgmJfHfW9xvWr+E8 Nc5B5bKVtcOI90zJ28shCntgTUhSiAxVKQr3ETRgben9R3HwlReSy1mdbaNrer5C0vUN/cT3 arWwvG1BMJrf+L87W1UyJA8RyFBlQb5cZ7gTQCqbTkJdGoHJtfyZF8u1vYAZggUEZuUQ3fhV jW4u3JHZAqHXhLXIJUgxdz6EIsVsqd4QfVeQC8mpaxdbpofrJDNQ769J8X6VLsWvOXLGJHtf sDe23pWsma+JUULaGBqHW33hm2t7vIGEX0fg8QtMABb7McA8bzaUlQX0Lf3p19I5ToSf3Tai dgE7kQ0ew88RLm7PdK8EjpBskY93MXmOZ8uoc5KkcJ/kHuDtDmcpLmk5elNWy6VlkdVNdxZu IL63gyjj4NxDBgJzPADCzcaZrfA7WA+8+1QCvKntAPWerBQpywPNKdI670JcBlvlwrZNgbO0 oHGwh09HuE/2yXjaRvH1+4+3oI+3KKqjNeDqZw8a7NDSFAFVDKLmWKLiSYW9cUOHK2mRnOFT 3Tc6Cn4Ar3hCYBcKxtokKo9gTiSnaYk9B2HRSL3GE5O8TpKia3+J5ouryzJ3v1yvN67Ir+Wd RkZ3qMmJJOK28mx3fThIWye5Se52pYdORjX3Ah8qiC+QUSuUFlAvYjlzRVO0esgTzujibSlR eYvqVObACpjW1t5o8W528CNQA2OhhTPXWDXwDcOWdOWcIOrmlUd+0OMXngv6MW2HttlU+WY9 b7uyQP+oyTRT/J59of9ZfB1d0SfcRqDhi/XfyUgFPnFWqRZdENzlLCKjjcw0XLbzbndsGvfJ 7P5bbK+v19slDFcFs+bCN9tutouV6Zxngrm9Nnn4HZvnbHO1mvuJ/sPYlTQ3jivp+/wK395M xPQ0d1KHPlAkJfOZW5HU4roo1GW9bse47Arb9ab73w8SAEkAzKR0qLKN/ABiRyKRC3c5sc6y hseDMKrFiWmW1CkeSXQC7fN1G5tlx33OPaz1mTNvMni/bcAVPwcs9OvDsf/nivx6Ux+yttQi vgrCYxbrPg9FclLa1spMBMWogjsrG/vOnM4HdtfwLNFOsjI7sXfP+rFJNr4VuO6pKXFOYoRF fohZcUn6oRyGalZBoC1Xjo9TW/dx+wj2erXmhFBA0jh0Ikt2AnKqpPHK8p2rS4bD/DlsBgrc cZkbi/dYuN5xNp9EsmnMKIh52bEOxPzySvqXzglWMZLxSxc4Ad1vSRm7ls5yaQTCZEwWnmZx E4MTB/bbWtXAlr3Q7vkuNHX5nBz4I3lWBwEY1jwRYJEjubUIXy3Lg9eCZ8+uYROqFbvVArZL HHijouZdW+ae4d6bJ+muDCGlK9dGysZy5yn80KmNdCeVFnwm3rZnKY6Z4mpyApmGKzxJIi4Z EUQfW7uS5A+Pnffn9yfuZy7/tb4z7cX09vG45mW+ve+Fw9UmMRH8z1MeWZ5jJrL/pQHpJNvl hCJfNx1qWsXJRhwdkSjV5pbyMRpIyBX5tMjZJkCaV6MGfYa46fC7nmwDvJosfpXvalC+JpIE ElrsNi4z01p+vAhgIzNq9WI8u+Ac/zy/n78xhnlulg3i+nFU9tpQJFLZtG/jqivimTbjCNz3 Axbpg/vDQFTLZlkmwmmdz7SGp56q8uMqOjU9aiMm7zRAVV/1h0T2hV3V/+b4ox+FgoeaBZ+m Mva7dA71/nx+mb/qSw4ycnxLnzQykXEeTZtxR32DtzVzFg3IpqJn0YCxA9+34tM+ZkmG+SeK 34AYBBdZaJUssa1PRZQZj72Dt7FquSPq7jcPo7asg/MyGyFoDbIju6unGRZ/QqvoQVfW0Ejm ih8oeZ24V7ug7Z0oIoyaFFhN+f7UOqsP/DC8CmMTt7nPCT11bWYcrw0Pd7JDtR80NpxQExlL 94uvvwCApfDJzQ2gEUsBWVZcrtnmWVg2LoAdUKQcUAJmTnxMQFI0XWjbi2OBKGKZENrvkASQ NmyCDNO1oDyLDUU0jnP6mhf1Yk3A1AV1/D402DCRGDqqw8WkkrzvI5/wwy8R1+ZqAYpEuF7a UPMkqY6Y9GWk20HehfpjmkkzecvZQOXlOmvTmLAgGOaVOLz/2cdbIhqCDtT9/s9pcNOEQ3S+ aamgdbxLW7iY2bbvqObUCBY54WZDeuzYyUK+WksQ4wRmER9mH0b14yUR1HyLRvaAmXMi3lJj js4rCLV3rUrcn/jiSMMh8tV2/eVSSuLBcihkn613V/unPixuQmy6odyTccwb/VqCMHZwMqaT KuGRIQV7JUWL6hiLV4pCzVKdIECHpv5/2hKLvdoVBbBg9GBzDxI7jKvgfuehxiw/4V1pNMxX HsSmtJPwnRAoXJmw26GZubwpc5DXpYUam5OngqmAsCNV7+ScAh5FhLNwqkihzSRedTaaxSUn d7mZ0OUb7aYJiYcYosjWmAqSqAfcLOuNljHumozxbg9JJzBrwiNf1XC9yOtAWSCEm0NgE0/c gsazZsUyJsKWCbeDElXUmGDr2HMVW2iFkJRO5CoB1ydSzt2ktNXWUZ+lFTr3No9Ras3jv57u gg9dvC2khdUEqVgRaf6AFc63C4zA2QyU0KMFCUcMGAVGFq/6ER76UalB2heaAxo2fY3BUknz y9ywFBP2ryE8MhWP4Kg/KWI1TC5P1+JjDlOm3bENGpycjLE7pqiWs9ufeGdg5/b8ZUeVe7A/ TvyRAdzdacuaEYQHYmytAfE+bvV3DpZY7o7DfUtRxeP14H5pEd4UssXtWlyhWaFFkVVbQhIr vsChVwAl/vgj6UWfeK4V6N0AhCaJV75nU4S/zB7ipLyCPXrhc222xTKWxTFpihQ9xhZ7Ty1f RlSB265e67jY1uu8nyc2yUYfNJEYDwMHnxtlEBArghi0+/zo36faST9NOhGm4fefU9C1//z+ 9vH58vfd5fvvl6eny9PdrxL1C7vEgCvn/5rNCr7PkgNNRhbmxOOR0B7iMz6R2+Qi4qFG7dk4 WYQN0Ts3gdVsOjAFAuIuVqVmELKPR6Yw7xEGmQfrvl4K5vODQ/JtntQF4Z0EEIsLC7yJsgtH Slx3BQSNrA6kvJytAXZ9Y3wsdbfgiLpxj9RC/udXL1QV+SDtISvZijL7H27zhDdiQQ4Dh55K YHp2XMp+JATejCZ5CqIFNYx3Z9aWvPRxIsEV8znf4HHAgMbWNzkvGsIGh9OO9CoSfhQJN8gA aPOcHtvOTRyPkERw+j3jvtc52aIuL3vd/pOn4sewIDFGY4NL1Sc6LvTh9F0VMA7TOdAN7h6r LzvG29IrhMs0TmvDz48GWRQqqYAT7okVIKARHfc5cTMExKGke2rBLouTC7pux6JZLawVMxy6 cCr5F2NcXtmljSF+7Uo4cs5P5x+cm0F0I/hOVoOe0G5h60iLChPX8326cQLb18/Atl7X/Wb3 9eupNu8dMGpx3bHbDc7+cUBezRxo6gOSg6NdU5uDt6v+/FMc8rLtyqGpMW2nrMge+rqd7W5z NsJY+Ibht6iPybNPbwzU+a+tvn63NsucHU/GOQZ+jGDHuwIBdoQ85LgvpJ0W0V1lckewq93O uas4liYjt2Ds/kGhK7KBfYKml3mTc8K9Hu6za1ApYaPGmOj4BZudlG4Q6m7TgFB25Yn9TMhg ZPeEZ5qmQRwp983dNx6GZ3YLYKST7UcROE1KHuTLBo/6JNbk6/n3l8udMPHjYbaqrD/ULTfp 4rfXro9LCGly9/nGPghRgC5s2T7xaERsLfPPfvyPGvlqXpuxMoKFVkxN8kpcJRQA+21KGJzW TQTlOgaTBOHKp64SNDDoXKSXbKdwOytaBHVH29ejgksVr8/Ly92P59dvn+8v2j42PuVhgHn5 7AR2fHxHVSHhMoQSRQ/0AlxOAzc2a0h7eb18nD/QphiFIObZ87pu2EZWZoSfERXVRnEYrla4 rHEOxA92pECc5ZgBw9WNBd5Y3oqwKEKAOC86r+HyxJwKxN/O5rgbv7sKbh2T4NYmB7d++tZp E936ZcIYYQ6MbwR6t+Hc+MYJ691aQ+/GUfFu7EPvxmlDeOaZ45JbG5LdOBu8+Fbg+jqwuw8d 63qTARZcbzGHXd9BGIwy35rBrg8bwAi1IRPm4/ccExZdn1McFtwCc29YQrylN41C6NzS0iMe 54o61ITk8vL0fO4v/7t05GV51ZsBdSbhHVWAwe8wtjLNVIXVIT3pvLCIfJ3/GQkriyIocnQQ 5WiaFjKBxw/hziRFiBHfdkxE3n6R7mgMnsoUDyn5TL/bQporVPTNpNPeNlIlNzd1BE8FdWTX mgTKIs7K9/OPH5enO14XZGBE8Lr+nji+RSUQ/QSVnh7iZm1UZmQ4EXfSHEC6kubUvMYe4UUz 11HQqTbAIjWrvtpOOPtM2SQRJY0SgCN+KZZEnDsT+muErEeo7CaERyqp0CtcN9AI4V4ODUgg hgwc9eqO8kXHpb3reO6RWGjklBhF0Tz18tcPdofRbtQyymHj+6p9q5qqx7BWpqSFpTrHWd1l OhHhRPQ5vCu4x9kwy3QzKwIi2AMJAFXuhcnSN3niRIQUTiA6b2UqqSgXb6N3xULdpMu9vk5Z te3yYG4OQrHbWHhCjXvWQaZ8R6cKOTDV6UXjrjx3VmTRRKFLbgrmXi1Xhd/7kTsb+a5wIkIo I/u9C3wrCmZ14IQoWBwyhlgtDtmX8hhhLhMEVdgQ/KYG15wPmLDEYst1cSAnqZZaHJKNF7d/ fv/8eX65snVvt222BSsIciDYXrNrjKkj5FmqWAj92pDnYGsWgDboQ8xuvvYv//csRWDl+ePT qC3LJKRCp7RzvBVmcqNDIsf4pqQZGzaS1z4o9n8TwXxqmijdNkdXLNIitaXdy/nfquIwK5DL 9E7ga0KvgkjvygxLhtZaPkWIjDqrJB7tGjwoo7NbA9su3mtKcQFRBcelqhBZ/rVSXYsoVVXU 0AkuSTglrfIYrxPJfjLETQgC3sXQT4YRUckoszyKYofq6tbnisJ3g+qNiGCC1E5Qu13TFIoy upo6N7xvwJkYINDJMBihzRCSDkHqBXH63jru2fJ4HM37NBnxPTjhbvnhbxHyiCF/nPTRyvMJ B7ISlBwcy8am0wCA8Qg0CbBKQSNxaABlKLV0zcphoHRr1JeybHS31p4hh3gEeKahyPUXRwa6 mX1NkgijJBN1n35BmmIwA0M6G3c7hANsNqqS4mAV4jQHZfmHPliaFIPp3EL2vGvg64qNvCTw iaraEQ0E4DcYhz9L19UTp2L4mGC1K3o38DEXJxMg8ezAKdDK2Z4fhppRyETj5qDoLNdat8Kl CSOmD1xCFDhA2FTwbELMrWHQg1ZFOH6I9RGQQhdbjgrCZ1WY9xEQIvXSrRJWkUV8zg+Ia9q4 6Mq164UL62Mb77YZDJ6z8pDFvq2LdJN399hyb3vfcpdHru3ZFobLd8YaJk7oLk0sxsmvVr6n K9eVqONyzkPEyhSUCVi0t4HU9XGfd6ZJoQHKyozVpQJrIKn9OUXQskwwxJcAy3FwCdp088qk mYi5tK0hFFzWnA657qMdA27ivOXRuPGnTSwLGIedeOSRxSx06Qhwsb4AAOd9J8KDn4qbKjd1 UJrtN232hR7GrNwJAzLs62VJKBY9uAMGJY8uIRdBSdxigOEw6x+UWiuPc/Du/l0zCePEOGny u7zqXY/xWXPMyAgt4/RnPpPMy1m/v52fvr19Rz8yrGehaLbYfu6PtbsK6dBOGitK1oaIk7lQ aQiMWSeLX7tenjDaO3//+Pn6x9IwUBAZDDhP85h97Y/382KNuVoOqzSvM74kR82dxZ7mMNeC 0A5gDYw2frFWvFpf2M2VjQU+NWQpJGaqTNe06cLKGLTplRuITJlpIo6Eqj7Ej/UOVx4aUcJ+ QERkFG7vMFHICK+brOJKBazg3yykPC5dXirhvuUa9TxUoSxHrvXD+fPbn09vf9w175fP5++X t5+fd9s31lGvb6o8YyxpKgH2QqRrdMCpy7RYTxSsqlEJMAVvZIjWBZh6nAxwvcW0gxlw3Y8a U0wSf+FkYcHgQvpXGCfRdz1z4F7/QIB/YLqHZNXGsSEe+TXYVytYLVVWOt1VZvyY+2uec28D C7kHbwRY9kHUt1zFmC1Bdp11wcBkGdiv7LYE14HXcV1crq4UxyCxn3pLjZPhStDGbfpD2lv2 lbpIVc7FyXJAJ4qML7JYOujDLiOa6uhZVnRtvnEl7GUQY0fYRrKMaSu/D+wrX+t21fFKOYO9 0XI5fQkq0EdWrSuLoO9ChyhtkpgEam/rN3646zlXBjovj2zFpoTmaHkMd0VD0oVfZ5IsztfF z3OFY7J46Yp/vb62WQDuCkT6bl+eUIM6/TKsaBI7ujbMg0d0qnEDvf0aUxBplbY8m4AfWETs wWtjdW0JlF3i2i6+ZU4fS3yYT0R1xQsNSYa4TnxxpKj9UZU+GhOYARmnf8Tldv3xuFr6FDf1 WAKElhstTPxtkyYkuckTl141gpoS2thlA50468Xp3DvFjg1UddPelQU6MuLq08W//H7+uDxN bEJyfn9SOKEmQTeI/MhW3wFl49IxdOGuW18pnSG0DwyTBZy91V2Xax6SO90jM4CEu29QwCV8 Z0wYQl0BIn8h34JkRcYCIPDoDJcCTcACBKISKqTbFHF3rxc/VgwijCVlRZW7VPFBSj7Z2P3r 5+s3ULol45aUm3TGz0OacGuzbeIU1xgATNy5IeGrWGgpw1M5ocHE88e9E4UWrffNQYyXYRMD dwoAAIhzsrJUo1Weqjwj6+UdG8eihM8AGN9ytWwilXR2wLsR1GxsXGg20lEp40hV1XrGRFW6 OCU6s4Z1OeEIhQ8GsNToA/ZI9R39O5LL10xCx3Tf/Lxg2YnGCZ4fyYK7I+TEonLMQQAtkYe1 u3LpOSUMfYXKMgkqE9ulXyA4onECZ2VWGBw8FO3SkmA8kM+4LQMiAfcQcZ4Pk2KIDNHaHLgj mB/jTt+wAQOitGXTxkX4nVRDYY+JPpIYWMaSwcT9Mp2zf3SjOYBQYZ4AqNrBRF65s+qEYeTN Zo14MsFE4yPV8WdFwTsEWtIKc4/MqfxhwiiIpSHlDDdRoiRFE8LIWfVHIkggUNl1HnMWCKTh zUl7Eh1cOFITdASQppy86JLUIeOV6r0IFfsLIrws6H2GqMHwAyZLljf+LvfC4HgFQ6vScHLp W7a5ifBE6hjlgIfHiC0EbfeJ10ffunJSSRvAFnXNzwGPwD+bHcH46bh0Xf/I9o0E3zgANtdL EqlRiDr4liUX5c7M0sRFibrXBuUh21IfuYQmkm2ZKaGxc2AaS1M6+io31I+rVSGlRQGWurKt WfeJdIc8mvtD4VnufOwmMnebqjuBhJIPhe2ELsodFaXrow++vEZcxcrsi7jNv8JFYomDOJSR Rzh9kmTXph0uDRB/5u/ThKwIgxg+SfuDFxHuuQS9ZHeSouEi1SsojqGPYQba0B86JOnK9agD UPpG1s+1wWGy4X2VH5j3ccruyGWCe7fluRPQ8IBljsalH+R843xQvTFQfPaYeXDfO02xyaOv EVtjIogohPu66ONthgFAs23HfYxV3a7UFQAmFDzZ8Re7EYc1b4Qz7mCrLT+NJFkM5DOSq8BO 5gkE2jFR4GOFx6nvriK87LhiPzAZuQIxZ8REGq8IGG2ub6qMzKBnglRJsMGLVWIQR909DYqN jnlc+a6v89cGNULVfyaQriMypeddwVhntO8ZKXBCO8aysc0ucNG+gzMpRFvBKQ6eJwqdI96l QLvSpUWfuH60wnsHiEGIsZkTZuRykboBzde3bo1Is8EmjGCGNVgUeJjTcAMToPMHSNHKJWtq csgUylnubY5R74UGSeeFzU5AGX4TtNAIxv5buB63CXOufKmJIp+YM0ALsFNGgTCuny9WLDvQ 8Du/DnIwdkGH+BHa0UChKj9TnkIh1DA16xzlBBVEEq/AJT+enVZ8U0B7tl3hk5iTIpq0wkmH Ep8x/AWgbUosCLiBkkb3VCE8ctcaDS0xIdu4a9ZZ2z42uRpKgp1D4PAB216GmxBGYrcqy8Yp /EqFUgIb71hGcTwfz/PFsV0PJ5V7hyjuSxBSx2DnlE1s4VJAHdURskIF5ZdRGFzbuEjFMwUy XeHmtGLr2xbFxAjGdV3Xpi8IErtvs816h7tbMbHN4VqZcBtc484d1MI4j37al4QXQgXKOsIK CI/wKipyiFgkBirE9PeU+jedb7PdDuv5+QVTpzluQIyKuEhe2UKVuylZBGGMasBsFxNkGiCC RVbuqfjmUsTrfK35R2nnkhBJSaSQRFEvZSlV3eebnOuuC72NLMH8sPGXSp4BlOgpj/Jq5v/Q cspcyqVYTZbBaefUddruucu5LiuyZFS14Xavw/Xo8+8flw+krnEJQna0uhqQXQeKmt3d9xhW Q8JDbA9uiPdUe9pYBD/GG5u2CsmoxWDuebUS3NxALUa1Bdb7ZMi4z9OMR2o2a8T+6Nu6KNSu T/frYZpIY6qny5tXPL/+/Ovu7QfcS5UXH1Hy3isUtm5K08X9SjoMbMYGtslNcpzuzSusIIjr a5lX/LSstpmiU8vL5M9gEDjM9HMpqDyAtZFlCDusmHLN26pMuG9vr5/vby8vl/d5T5gdCv04 Hx6kBF5++vzH8+f55a7fKyVPCgBsSEo8thmQtEChHBsfWUfGDYQ1/M0O9ILSxyqGVxrelbg8 hcMy8BzZsUWX19WpqMFpC6WfwOC7IsNiSMrGI81T17GuFiu1yO7+9fzyeXm/PN2dP1hpL5dv n/D7590/Npxw913N/I/5BsBDqS6sfrFWh35C+pZPPHYaO8a2OaUjE5+nl1lZq0rfSo4yLora XBWclMJjrqYUxYoXy12GnibGX4XoE4EV3u81A0ytw5UxOL9+e355Ob//jbzqil2y72NuNS1U l38+Pb+xzebbG1hd/vfdj/e3b5ePjzc2bODC6fvzX1oRYgn3+3inBZCXyWkceq7GEY6EVeRh NxJJz+LAs33Fml9Jd7R7hiCUXeN6aCxoQU861+VWg0aq76oM8JRauE48+3ixdx0rzhPHXc9r sEtjxjFjDIGgHxjPGvrzfJDu4o4G5LbaOGFXNtjdUwC6uno8rfsNu6Me1X3ptpEUDprSbgSa Y9vFcQD27cpc0+DTUUIWwbb+0NaNXFQCxq9N9MDy5r0mCcC2LGaOPMccRpkMWc35uu4je2Xi WaIfIIlBYGZ/6CxbNcaSU7OIAlbZYEZgHRvaNtIrgkAPOJdthZ47W24yHWtav298Ww1EpiSr UWvG5NCyZid/f3AibDT6w2pl0aPIyQGyC7B0wgh9mPpH19FFacpsg0l81uY4MnVDW32Fkgv8 6PiRbr5uzF/lK5fXhbLno82TI5+Y6iG9Qwn6bDOCZFd/3VYIhGHd/1P2ZM1t5Dz+FT1tZWpr Kupu6/BuzUMfbImjvtJky1JeVBpHSVxjW17Z+b7J/voF2Id4trMPcWwAzQMESYAEgSvFzLNZ wD3+NljeRkaNmyUYjcbQr9myT9er8Gzgj8SzhydYa/51wkcZEwzLbDCvqZL5zTTwQr2aFtFd Ayv1mGVet6uPLcn9GWhghcMLlr5ac2rhGcWaWZWZ8cLa1yRJPXn78QxKilEDGgGgn/kwitbS 9U/bPfrh9f4E2/Pz6fzjdfL99PhiK3oYg0UwMs/ymb+4tWyOdv+VjiFcBKJMpr6iTLhb1XKh omZb+27qOM3IaQrJJP3x+nZ+evjfE+qPgjeGdiLoMVJvJXvayThQJjw19ZaGXfqKb5SOVK6p jXLliwsNe7tcLhxIEs4Wc9eXAun4Mue+6qSm4eaOngiceu+vYv251a9GJfLkAAQy7hP3lAt+ GbeL/am/dOFm06nzu5sWZ2/yLoNPZzbN2CRbGBZ5h41vbthSfjitYHGyypeM5uh7jn6l8XTq OXglcL6rXwJr9QkwK3cWQpBzIwcffVWwz71Pli+XNZtDgSMnE22rmvAWGm/nCKO+N3MINeW3 XrBzdaaGjWXsFGcY6GDq1fYDVEVUcy/xgMmOGIUGaQQ9v7Eu2LbVSV62Xk8TMMUm6QVMf/hk MHPFVf/rG+gnx8uXyYfX4xuspQ9vp98mXyVSxchmPJoub233fB127qlTpQVvp7fTf5wfAVZV LzvwHLTOka8ALUm2OHWASSYvSgK2XCYs8MTcsvX6XgT//c8J2POwjb5hRqWR/if1zh6vRVjB 3UIc+4k92K5oOMW57OhVXiyXNwtfZ2ALDgz9EnC/M+fASQWAJnnjyeviAPQDozIeeDbzEHGf MxjeYK5yvQXeqkA2W3toAT/pQ+3LIch6oZnahcYfkTQhHXpJKGdanbh1TpeBLl44VtOp9Uq3 /8qfa+K1Jczb3ZpFdWtH4k2tlv2Vph0GW1ugMvt1RftxiNPKUXRb6Nwytt7CNuA600Ae9TnD GeyUxojANHJ3ECP7hd7c4D20W2gmg7zyyQfnVJObVYHSstM5BT3wF2OcAKyv9Q8FMdCAMI0T FZLNbzDKzE+blFi9tsSx547Ptau3bgbNxmZQMAu05tAIWSunZJbBsQFeINgKrfTGAPzWtQlL XbQ5XSI6TG+nXqAOK4k9s9M4+YK5zVuqHZrEh+2z1hks4DeePU494Gue+ctAE9kW6Ost6MBo 34yvvq6+fk482Lrx3LlM+lc+KLJxt0s4hRUXhqU+sVrG+g6Zsl7+Xde9RV9/yBlUX5wvb98n 4dPp8nB/fP64OV9Ox+cJv86jj7HYxhK+dTYShBUMY2NKlfXM863Wd4/15OtPBEZxHszMHTtb JTwIrAG7JPRMm3ctdB6apcFIuWa6mNRTbcsJm+XMN6SihR6AMy4Jbwm2N5kh0liLkzWgbMxv /X6cKEt+fW27NaUCpulybJqK9dWfmnkPRMWqEvAf77dGlcgY3QJdK5ZQPm6Ex5xyUSSVPTk/ P/7sNM+PVZap3QWAti2IzRB6DHuDvltfUcIWbq14EvfXVn3Ot8nX86VVf9S6YGEPbnf7P3X2 ZkW09u1+TQPapWsAsvI9TWwRZuhp6HZ4M3VXI/C+S6BarLY14KFAoE8ZtlxlxjwCoOwSKj7m Eai/gakRzeezf9Tv6c6fTWdbQxlEm8t3b/u4PQSGCrku64YF1lSD+A2LS+4Ttf41yUhBehmL z09P52cRUOby9Xh/mnwgxWzq+95v8v2lJbhJv6dMb+1XFa1qoVlcqhllWEttUJjz+fEV83+A AJ4ezy+T59O/XfM7afJ8f0hVt2rHHZcofHU5vnx/uLenn8t3B1o128DlVJGoAZrhz0NSwaq2 69MW2hmBZCLSNSNZivd39qIPm5x1ifckKRo+hppyxg+8rMqsXO0PNZEjY1/pYEfFaIkHTMCi SAtQpOImfoip5GgHJoI8gE2cHFJa55j8TS8H2mK/ZkHkiuQHts7hZ9cZpZEsXpNhy8djyO60 eAKrjHZ+KH3VpoYErWuusqZN2ZV58xt9YESetF0lDuVul9adUqeaKWfZY21r9YU6H/JiygGc JLDapE2Omw+rstCWthcptis58qmAgFCokCbJNJI29+6qanQeaOlZJEwVFmSIW5U8vL48Hn9O quPz6VHpi4aRS4hqmshPC4ZSrxil8OsCE10evnw7aQPc+uXQHfyyWyyV1VXGJpU8RO6y5Y8J L8It3aoldkAz8JiQ4Nzzm0AxqVFyxYGzZQ2Abqd16ZzWqyZRC8rIKoz3NtaVNSUFF3Pz8Kmh 9Yb1MyW9HJ9Ok79+fP0KQpgMUteVkMJSnCcZLaQBAZhw99rLIOn3bmqLia58FcO/lGZZ3fpg qYi4rPbwVWggaB6uSJRR9RO2Z/ayEGEtCxFyWQOnsVWwLNNVcSBFQkPb6tXXqPhjpOjfkpK6 JslBdkgAOMYEzuhqza8DBFBcQbu1i2ktwOR32DBOCzMIgjJG3/tcZ5atE1lmSRYg47U87sqn rduRvfsNGEih1uhVZH96CKhqW9vPRAGH4bNEKkkHo71EvIXWKrvLlzOHXoZYz6F4I29z68NK rKp7jSlDWNykO2Uw24VRLpFGMPt2/GbmrrSPdmmvuHslpUoHAe4XZU60yqIatk22JsR+cI2N FguIo4sMLWIlxmieV2K7sGpQ1vWgjf93vP/78eHb9zcwTrI46Z0ELfoOYFv3uS6LuqVlwwRR CKWAFgN+wxN/Ftgwmtv9FdG+kRqttX+Ubf2+DdxjDwJ3pQoTfKcxtbVMoBZTe+n9U/fRwofX 1JbSxeunaehE3Vox1XI229lb1Pumj7ZIfcIlFbyd+dNFVtlwUTL3VNmTeFTHu7gorDJ9peqe OFpF9R2B7JuzTnI6XAKfn1/Pj7B2dht8u4baZHi7En6YrHQkJc0TK77feYX50OGlDVkGw/9Z kxfsj+XUjq/LO/aHP5Omeh3moIqnKZ5D29rWW0HjvZQmarmyJ9U0rJm+haxsCiVmACvMFKFr mpgZHNdU+Q7+vAb75jUpVnxtZTQQ1uGdFdVgRSbzseg+RU9//PByusdDDvzAcE1E+vCGk3gt S6qAxnEjHtK4WgYUtTV1u8BVrR+B+gECqe2sVGBZI2nlAtKAIpOpsIhkG1roMDDgDmmqQSns 0YUBBlOprvc6jMJfe729sFGzkNpPY1t8swpd3cnDOMwyvSJxLaqzOoZucoqTPZrOHEnpBN2+ As3BpjogFkRlVRZ1G1R40IJ7GPLhp0xOwDBOU73LJLPqgC2KwN6gFZKVemfI5w3ZO7sAtlhE a/v1osCntc28EqgMNPlSl5F1mXGykWDib6O3YJaEWUL1xq74fBm4RhD6ISaAzqPN3rbsIaaJ 0aKK1RbehRmIp94ccsfKQifd0bDMzUbua9fJAqIpRoXUv6Hc1cY/w0jOjYMgfkeLdahNqg0p GCjkvNTgWdxmalCBJFE7mJGi3JYaDHgjVhorFP+olExmAyZNLX1BbN3kUUaqMPGVAUfU6vZm qsk3gu9Al8yYVqLCOTCTaJyDnNn3vpYkQ3V1BL8XbymcBGA1iYnpWjpoDKZvmXKVyTnYKKQm e32s8ybj1FiqJYKCwodFUsrM6GF25oqvuCGJYCNRW7hKxJW1Og8pxjYp8CgA5q1krEtAY5aC cQScL7R+V4SH2b7Y6fOwwpiOsWsXrGAlw1GiMTM+zMI942NzqqrBXN7p3a/RSklcE6su4zjU mg7bh8EVFuasKVZqzxnJLZRloQy28EAfEV0RVhID9DtayDgJc50ZAIQZAQoDsT9lETRNUWXW B7ii43LKbLFg4cvbkFHpEGIAWfYcloc1/7Pcj1QBu2OpfwaLKiNWO0Vg17B4absVX9cN40OC 8KE0Ge6eDw3qYoeKBXpDGj/9TGp7CKd2A4B901HoHaV5yY3le0dhIjgLxNpGmPV5n4BqJkIb KRKGQc4PazUZvISJgQf4GNsIhi5rZJl8CCQWn7jyfd+TTxBtCueQpMyqH+NDI9SRn/QJblcU OnLtbkCpIjoDtLqc387350dT7cUSNpGilCPIsuxLidJGytXJruZGdyCvdls5D1dQPUIpRGph uY7pAc/KwEZqT+yuwyE911KBIH65GukKofjQz7GeI7rJKnqIGiXZUFtYUbjidSEebFvYy0N2 WMeJ0gy1TWFRwEofk0NB7roTEDa4uClu0chT47EgFtFHVccjRcq43r8UCqYF5WLZdq1uohzn ez6Z8XylVwAg2CjKpIl5Rq0n1T1VQpnIZEJ2sMIUYSZm4U+dKmW5zmwYIyYGCTO4YDxW+7tW wVB849vAFlAkbVKVP3xduM28eUJez69vaDb315KJbbLE88VuOhVj+iTDdyiPLVSpTMCTaBVb 31wOFBX86wImW8q1JXC9Vgost7/MH0iMpL8GwZZE9ghUA4kzmSpSdCk/HD0kV97o0BqzLYAQ HLghtgLPOc4Lca3nrFwQpsye20Kuvw9f/j4hGlh2tVYhAyEbYcpAhrFix6kcKvKAb8OHjtPk 9gtiIbQFE4FFke6dMXLKWrlrfG+6rpDIWREmFPPmu3dpgrmv08gLFiwCUJexcLaLfgtV2/Zr A3Ila4P/uxaqniyr4sBXk8UpeIzyb38QpZB1Ufx/oVnMPY/Ld8Sk/AUx6cWgdItBaYiBxurG C4yhUwhYtvS8kcGtl+i1crswRxerVSNa91Cmb5oIFG+V8/YpvtKCPvA8/L42/axwpe+SjMSP x9dXu04UxrlaIxhCBZetfQTeJRoVz4fTxgK02f+aCI7wEoxcMvlyekEfk8n5ecJiRid//Xib RNkGN/0DSyZPx5+9Q//x8fU8+es0eT6dvpy+/Dc0/qSUtD49vgjPqafz5TR5eP56lk+tZUpb 7+nT8dvD8zfFvUDeHpN4afUTEki0yNE+U3lOK3cMUiF5ScFGX9CLsnljc6YUKDHoiZx49Aou TZVHIFZhsnLclw00CYYprLUzdMGR6vH4Bix+mqwef5wm2fHn6WJwSkyInXYB2GpuQszyEEbo y0kJKCCEiZaHsshsjhqiUXdxoPcIYaKrbu0NKcw+6xRDj3tBVTvaKj0TZrNMxPcbsgfhkn0B OpRvabJvNLn1kzp++XZ6+5j8OD7+fsFLCuTS5HL6nx8Pl1Or6LYkveqPDlswH07P6B37xWiV j6ovrdakFs4WZiusw2wQqcFCBvgWoyQzY5kROF6H8QZmBWMEjymsCZ/UCkRTy4RqoowZ42hC tMWvh4LN7aDvxd+GylnuKK6/GdF2NpEPdG5KMw6IGAbrWolnJrKTyxUmXX6pq1OL7VrhYFlH NLzEtJUQUlBLI+ew9lT1JvC8ud7bDttepIyXEK+DG8/aw7s15WRNQmMJ6vAY6AevkEhGRmyW vpoK1B5D3+iR7aXHIbe5vUt0JK/IylFGyhPQIpwma0e1paysHf2hVfhp/GtaOyonsDSNbgAa 3YG7tJS+N0vPl33aVdRMDg4qS11Y5/LFmdK5Ozu8aayDj2thFRaY9XkM72DlJmPvdHBTRhRm QMytrcpjfmj8wFh3ezQe0r7H67xki4Xv2u0loqWcvVjG7Ro9CpWELcJtbr1Hk2iqzA/kF7MS quR0vpTDT0q4T3HY2Af4Eyz2eNJj/YxVcbXczey4MCUO2UXUoQqTxHrOqixXpK7DO1rDhGfG mVFPtM+j0m2vdlTviX+8j0j9J+w/Vi7c3RlHYh1TK5Hx1PZNmRcUQ0DZW40fxiNmcUe2w4PT gyM5kNxAytYRKBLv8JM12ktUeaS53b9MImmqZLFMpwtHbg653bazXnklF+rBNWmQdjpn3RpJ Tue+zk4AWgPDCrsjaXiz08dty4immGRkVXL1+lGAdZuq3zTi/SKeB5o2sBf+qSqQJuLsVwWK bQNvxFWwcGPofI6vGAE95Ck9pCHjbdZlrUOUwX/bVagPa+Y2K0HRKmKypVGNIQsd3KPlXViD dlWr9aGlqELIGp3YhQWZ0h1vaq2FlKHjUartBnug08aGfBb82RmLMJ5pwf/+zNu5jsXWjMb4 SzCbaiPTY260WESCR7TYHIDhIrCD87AV2F4y2H7kr/GQrrVlaWEPAScGlRtHP+I6zXWvKmrb oQuM2oeGhKuMWErbwQ8AW5XM6vvP14f742Nrb9nnVLVWelWUVVtsTKjtaZiwBNHg2kaNdrYq TqLUTBytuGBWP6jGKYx4JWBF/vn5ZrGYmt9KtyKOLirNFUacKmgtbLBRlOZ0uM5OcfFAKgC9 puWohybejkQWoivN3R++BdudORyKJj+0DmpMojNNguuony4PL99PF2DK9fhdN7a7w7h3jgzR TlLGeFV3tpN6RNQdQjlHWDpDcp/wVbvQX7halG9Now1hgXFFkGNT3BtZlMRYkqMa2K59f2Es Px0YIwE6C+6GrU0z66TqcjRuYUFz2bbCYbE/lpVF3Tquyn5FI9DUqpKBEaWyKjWP4NIDRo7U TgJ7udKhBPc243sLaXooI31VTw+FWTkxQdW6LPSJmmJIUkY0lT091AXslDppjm7P3bzRcfoc TA/NNtZBa5roIB7rVr/4VS+uh16Zot9utugwtucWV4iQha69oacxWDpgWs7aSyaYBV4w9P1W CBa/T0aIzQlBIRkG1l6CPGzv15eC0B6s3ooamXOI+nF2lQ+C8SvN6M6w328IFwMyrM/dWdzL 5YRBys6YKvP+/Pz14duPy9FyHY1eGXpjEXZYF9WIygIzVrsg5Oth1qgKNCC0QVQXNpS10W0w 1TSBtClEdFo3XDRPv1i/YsdFTyK0nHmpm8GviFa3cnNUrV3sXDkm9uo9MUgwtvd1TdY5W27o yJaCy8Uhd8n6qnXR03SLFmhbIHtUbO7gwjFmpB1JtHJpuKvDHYniUFuN0KepU7ye1G3sffHv y+H7ikj6h/gTJlOl6MAD1HoJ12JT1DumvlGUCOK+3OnwdRIwhpErzXoYh6I87aWJRiOeumC+ TatOzn++nH6P23BLL4+nf06Xj8lJ+mvC/v3wdv/ddGZqC8fYzxUNRIdmga8z9/9but6sEAM4 Px/fTpMc7xAMi6FtBD6kzri4LDQ4VGypiErc4p16+3h9iiThuw12R7nqMZ3bEzGSnHEqn+H0 EC1t7unpfPnJ3h7u/7Y9+hs+agpxVAVGf5M7Hq2wCtbiCF9wO/Am0mjCu74y6M2ETjuSMzK6 8LQB1S2wNuj6lQsSRqwBImu54sSMBFGNdnqBJxzrOzR6ixUxn6LgIy5DMMT3UsZRteCwpsT2 CFIgRZq9qdZWAfS1ruFTrBvlAEiAzcQ7Kl74Jzj8VFrGlBHI6+FT43h8KRPV6oG9SoOJdGbW tBICLd57aV3ChI83FqCc1qQDzpTkZtcKZybDO7jLoW6gmQfmt86nfu1Xd7nWBkvWu1aaEn85 NYaQB7PbQCuhYDoZj0PM8qHR8Sye3Xo7s8ldmqoxCZv9Y8hNiZF/RsRb+AT89fjw/PcH7zex atWraNK9YfzxjMEGLD6pkw9XP+HftAkS4XFTrvU1z3Y1WWldxWx+Ok9Eos+r16U+M/zFjc6v ayoWtee0CsyOp4/H1+8iLDM/X2CPcM/zkME8nIXmlJ1PPV1Ca76ceTMNyFZ54IkQzgPL+eXh 2zezqs5JkRld6L0XjQyVNiIwP9i65DpDOywoShsHKueJs+Y1CWsekdBuSimkw+PL9xoaV42j JSGovFvK9w60ZWkZutf5swqhEfx+eHnDm//XyVvL9Ks8F6e3NrtDp5NNPuDYvB0voLLpwjyM QB0WDGMh6NLX90nke3Egq7CgsZPFYDVq3tj2MvDNY2HM74F1mNzg/UHi3OZBgpfNjNGIZi3z +7ePx79/vCCTxKvQ15fT6f77lT/oOLdppPe7HaAzIqhi0A24fQGWWBgXnNliBJlkVWypoMVW ZZaVTmyTVFy5VlbxUWGzOFSahMQ827jLADzZ2WeGQVjZNDmNqq3MituQvZsT2ciH6lMoDVdt ysaJ5buq5iOdxyM8q+rrEJy+Fgo/CxqFheTce4WJTQH2uhFkK60jHxPlbEhCl8X/VfZlvY0j u8J/Jeine4GZM97jfEA/lCXZVltbVLLj5EXIpD3dxnSSRhbcmfvrP7IWqRaW0vcAZzomqdqL RbJYJEb4w78qtnEiZvjULI7Vxu+ZDokmzGUGHcZsQKNqj6xFspX0huxCWpXpKoxpo1DnJNpL g+MT8roiywd4Q1fMzUtDB2EtEQNXNzVK48gzyR3ikkJRBzqdbxOh0dcYPgDk0Xi2WI6XPsZR FxC0jZqS39JAHUHi08vbw+hT3zwk4ei2tg3kpQM8kXLIbnO72+MjioAFC4mKg1ytMsVJA3Xp 0EGGkICEadGssUFrpxsCDtpZRIBlzi2rURre7tNExN0Kd64+eA3vnuRgSz2xSX9laEgUxkps rBBstZrfJfbzsB6XlHdketmO4Li09TGNCb8x0BQxV1FOSHgbwerd17dU2UhxORsuemElDlZw kOMXV07Sxh7lprulKOz4IxYqcD9l0ASz2SqSms+j6eWEqiHl2XgyonzJbAo7OqKDC6QtVERH ICET+Sp8Fa2XczNQooXA9AI0Zrog15bALWi12qJZDtPks3FDp7LWK/F6Otn5bTPSL/qbT6Vf HJqrLg2r9zWfzqdXo0C2TEWzBgUl4OTS1QBba7gJRxicsd8z/HAy91d/kk9HZkqajv4wtTI0 mPApuZ5qTKw7PC18Tlv8O3wMm3zpcThMDxLkcBihT5yWVRcdBulRpfyQM8Z8ankfGktsMg6O ylVE7sb6iGHQvcZ3vtmDLYnykvvVAcuaLBckN5ybAfdNuBljyWR9y3m7ZnlqRvGw0QGmuljS 4TsNksvJMpCn2qCZ/QLNcjnEa0QpxGzFfDIbzQi4sCkF4MRWQDjFsHizG182bEkcHbNlQ80P wqdEDQifXxFwni8mVNdW1zPLnNWttWoejYhdjsuTPMkwszHpedER4LMrklnr+FViNT8//R5V e2ct+yICz68mi2FONvSkqqNJN9JqPMw2OXpF5y3LWD3MX/KEB5wfLYr2ICS/IUY1HcYn1dU0 YPztpqqejT8gGbpo7IpplqHodV1j98VxeJxzytzRDW8Df43G9LJq8mqwZMLlxz/Q8+XxAxLh zzXchfLIQqk9NUkzuSTTafQEIqE9Jcs1l4sJ7d/TSUo4W8PzgIm6h0/3Jh6Pr47eGYKWXn4C 7f1l+BTRwQrJLvBoSiYRAuW3f7PefdZDfbVKxm3NmR9nFBXppNhYcUYRpuIkiuudIsmMo45h qmd857KJcyuYFDum+Cm9+rFMdNQLpCoS+jwbj48D6H2xoDdFfDNct9zbQbesNMegcpGL77Ts JsnQQ5ctLLdQBS+rloUK3k2DdebRuk2CyLxqqyFkE0TCqg7w3vzIg60pVtVajSBtixMJ6z/E 5nuaJ/CqjsNfy2u38OwJTjIZtaxaBQuRNONReC6aNA9/LjhBGCt89dq72+Ia43eGhr7ZtVs+ hI2u6RUmPAG2uMLafJMbBqQe0cNgreNIyZTGLtSyNa69NaT5i3KztCxqfIu/k3bF7Ed3Ck4z wYjV4XkzvDkHiO48XDdhYoPYXAkff/eQRqzYFsNV8RWr/d2ZOQPQscHox/n09GawQZFKvG2O alBMxkOacAC+2q/9yCCiGHT0tcbwRsBpxxlVEsnlAQHH5CHpwz6bDUNs2ICmCHSAejL5tCTZ JqxyTxLxKdrKWgxV9dHHws5n24wtdOTuCh3t2x7FbjL2R/3AoZtrfNJgPbTA0NhI1UO28QzP F331+ejADftrjhMepal6utE1etuMF7spdeQC4cQao0pE95bODyiD8pDrmGp4u8rakozuZBJY r9YMhBfQTa8e8zoPfsCWl1JoWl/biBij9yvEo/VFvedWzw5r0hlAGuHdLOUyUr37Gwak2HvA FaZONydGwdOiMu9QdBG5ff9lgHVkdB25J9Ba0WuQG2AYk1g5x5sc8hBXNLM+4PNe0Qdv3+fn h5fn1+e/3i62//48vfx+uPj2fnp9o6IrfUSqm7qpk1vrlYQCtAk39EtY1LDcreUhIMHrig4t r3XFhk7vkna3+jwZzZYDZDk7mpQjr8o85VEbzmmvqFLOjPXillFF2eWYDtBiUExmH1JQllgD b7oM9eDl2FDRTfCCbupyTNlsO3w+hZZ6BbK8ymCc0nIyGuFoBAiqaDJdDOMXU4F3OwJLfGnm XTXBlsFLTzKLRpQ21aH5eJGPvWoAPlqqBvpFwjeDRVItxK8C8MVs5E9N3EyWI6JhAB6PSeqx Px0CPKfBl2TZkyM1iDlIuwFvDkWyzuZjWm3UEwusCf4/nrQDywqJ0rQuW3JRpiJ81WS0o2Qn RRMtjmiPKb0+51W0oBZsfD2erLyhKADTtCBez/29pHAljcjTMGK8iInRBWzGVlWEy21wx7GY 3Kl5zEiDQU+QE+MB4D3RVOEDeT31yPl8svCAQsxV7M5fTFfIcYihgK8Wc2JpAzw2X1pbYHzi GUDxdJP7jOKQ75aWV6CCLydzfxUA0N8lCGwJFrST/2apv2xM9jfE+iguMFp6UFgQljrQj2FD r7K63GNODw8lpGEa2iZHJgJf0FhVaGK9MAf5OOAIkacg+uqQTi1hsak5iKVJy6LAw0Yqk4Uh HdbQtq58+h1EnmQZK8pjR0ZSlRlsuGPppbTvxwDk6TbKyMiuN7xKCzczVQ8VKhtZrEFz7YQo pWjQiPAhTdBeZxIF7UhbDjLy3rXOSnP5j+eHvy/48/vLA+Xvjt6FIN6bqilCqrpcGXY1GEFe A2tbTswcpgBNDg0BXWVxB+3auIryyXI69x0aTYp2VxZsgERZ8ocotB1/iOZG2GTCBOumyevR eDRAkh4rNP6ECYR5fzFAUN5kA9g6HhoHWAqzoVGQj5LDeGnKHyBQsQ8HKNTFywCFWjXxCmNe wZKCsypAJ/MPDQ3mkQ81FrZInQxNViEGpIFVwaqgS61qb5UCZ4y2thKncE3aTif0QwhFIW2K Gc05FE1ecXqzM1FF7mgnBjo/XObCZpEGnmOAhALafZXSYp7EBqKC6Q7IONvoCE/vDXUFNrCw jwXjbV0NTRmaFQeWN9pdB9BbxaaiQNyQjiBv9oFrEGXjA32Z7mZXRBNYtYkaAhhOmimr8US5 imGuriGi6kgr9NvlFLdpXi+H0WPatUbhK7oHsvmYaVJkQGsGdzHHfEC0JZA1IAc040F+IiIB YkAxXJuLmRO5Uiehoc4qowyWZquSullO4aDfG0GcZdi40xMmTr4QyIvq/ttJeIUbwep6/iC+ R5vSphERh7MqYDn2KMWe5GR3PmqA3XphDllbYhZKIBJLr2EQCsSQhklgJ89H6QBBWmHdh5zT 609GZ4lD150MUxEG655ejdoouhlqHpIM9hH5RBgr7hkGikc24qGlv+Xp8fnt9PPl+YF0Lkgw ujy6VpITS3wsC/35+PqNLK/KuTbt0SVaX0rPIqj8v/i/r2+nx4vy6SL6fv753+hP/XD+C9ZU 7FeC8kQF4jqsmrTwI5myxx/P3+BL/kz6U0hvhIgVBxaSyLmUpeEvxveB8J2SagMspYzSYk0/ S5BEeYBI5y4l2is7IkJMhPqhAlCgYgAcjfZxNWh4UZb0Wa2I9rD2tUY2RFdN2IcVDnbX75XJ Ya/G+HUbeMTc4fm69iZ+9fJ8//Xh+TE0YvgdiN6LkBeJwPvetH1ONap8GdT2WP2xfjmdXh/u ge1dP7+k114jVCEfkcp3Pf/Jj0O9gKNsmZNt9L6U7swgw//zT6hEJeFf55tBDaCo6FfAROGi 9EREJb3Izm8n2aTV+/kHvk3q9jbRlixtErFddMbNzD1nVa2/Xrp6pPv1fN+c/g5yBbz9zWP6 SSgi4+TAAmKBYN3FumbRmt45SIDvyNubOqBpIwWPKhBPPkAHGJ9FmedeOWaWbncUxDBcv9// gKUd3DviAMLLqTaQ90gS8BUtIgpslkWUKVTgrvO0y/766HwHhwptYBFYngdCXkhsRe8Tsr/2 JlOS87BEsqnpdDsdwQfzJXiZVESCeO1ecSizBgNJReW+8raFSz/9P9AHYrALbdZnxmJZHM8/ zk8+R1GjS2G7l1O/dNzrxVEJs9y6Tq61tKt+XmyegfDp2TTyKFS7KQ8qPm5bFvIxlOGIYRDB ckOTG4bQCxBgLEHODnYydoMAH2PxipF5XK2CGOfpIXE7QUg3KGrKgPWtCCumKENSKWo1H9H1 g9gmB+etklbyjk3UvytN/nl7eH7S8eCJRkpyUJHZ1SzgL6ZI3IfrLj5nx/Fsfkm9B+kpptO5 5UrdYy4vF1eUN4BJsZxZrwd6VPApiSKpmmI+ng92TzMZeeU6RFk3y6vLKXVlogh4Pp+bsU0U WAfq6w2PPQL2LgYQMZOmAzcsay++IYg0bVytada9asZtNgGhjpbp0M0nT2k2hzYS9HMqkqaN wiTpOnxy8jzgMsiW6HMW16F2actGXUWB1kkT1TqPJm0SOJi0ESinG5iSjhYYOuFf44f7Zg1B XkRCBCrTML1JEZ/UWUo7Uws0JZwa+MH85kgw4EKN6G26OtD6L2KB09DeAAo5ofeSwEpfrw19 UAuKa76YjKjdgVgRXMPaxBIajXGN8Cjc6CFfaYnnfPjqBamEAOhlBTcJMG1rk9CmSiQQMToC rzUEPmAXQ1wNKtMKk9JWKRxI9B4WdKFURAKpdkvIRiZolNASJBiSVAQ+myyjKhCuVhCErogE Mng31GFD9mYkCPuzC2yaRAHhW6G3dcgSjAQHYO+gkdBcRBB4jwak6lVfXzyAjEPl0caA7Ckl EuOd0lXPT9BtvGat5RgGP+T1pYw04XFF2HIRElUBftLR1dfDzqH1HRuHqfSMi/ro44ODhDDC EqiOFqhTYNivfSsd4rz6t0seLhxHYV+k1TbFN/NpHAiHKO0wSBwUR/RNLmYNpasCQQtKwHSY ATUZCYom5GKtZDpsBMgMq7QIFIMOeBtsbhWFGwPHgDuiPS7aVm3ifqiVdXc5djNRYcYOy8ut i/5fRo2ZZrtOMEp01Onn9qwhjjXby8ALN4k/8nEg9JokEGaaWeBxm6QIH5WKYOCwtCjwV8RC MgYSbnlMc3aJhokPvEgWaMwzm9JTpQjkOTZAIaYU1Iz6ODQkAy+xerwMogKqw9DI4KUosVsl krw2lCghDbOSB5TmnqaKQ0wHSYwDb4jqbjPJUAqutrdhi6Sk5VFAylRooSwOEZTRutoEXktJ CvdBmIUFGRpkxMj2HpYofLRAlqucOtQSTKeLwOM/h24xmRAPZre3F/z9z1ehdvcKs3oMp2KH 68MMhrObYxxfs80iOvEmd0N5G59GrJARQzDwuO3Oi2h5ob8PpHRTFFceRdcLHZwLQ3p1Btmf 6j2wpaNiWcrci6XRJqTOFQMoJsHg5lhUwSfoz0fbQH+hZXZpcp4Gx0FO+Yckl79E4rfcokE2 iKfS0AAAVQoHXCHWREBOAzJ9pDuNMhfXkbWTZZGLeP7u+uiQg5Ug1VCv87yafkyA9QfaKLjU XuQc6A8+B+E3XjxpHLdV4AkuktRMZCoYapt4tAODOA2HWRdk2sQYi1+Bd3kW5eAqUAIKCJUp SLtxQmq+uD+VyowTZCm4iJtXBxFvfmjyQHYRL6PHU6CE6gbWXE86+5g03c5Gl4MjK1SE8dWs rSYBLQiIpOFhqJg4X2I2zxCJuM1W4lGQpcCJUKVVQtmuREsxPO3EfiAsdxdq0rskyVcMpiwP 2C180qH+dOr5cIHWK7sgG+yPma4/aESNxLOwXliOswTq/ZIEdPe4qSgJJI+s7OTw03XW0Gcr 67JFs6evL89nIzseK+K6tAOHK1ALYnmMriLuTY++u1RFGe1klJuGjnjUkQmANBOR3ZV4oUGk tA7aU5RR2dCKrKTRZpEE7/WHCtOEw8WhR1q4SrSMJGsvK7pVQoHrq4jLYEXyBmjtNtceO7Sx 8phZMaM7xhZuQkcy3EuUAz4aWGmBQJ/eQIx1rYh+NCCH9QI438CgareBjwrixQHjyW4qMqYY OyQwbGodWK8dReCKgdKFP4mHtqqucYU/esOIuXSKQ838PDbbm4u3l/sHzLBKmEIc77TOPICM yY4wr2HtpqHe23VoOKTMeG4KWjUpAe2NtWqjE43VH6EeYHYcf7f5ph7UEVyilpEBh9TD/Qo5 kH4/7JeBDLh1qzKJVnUab6xvVcHrOknuEoUnG6p4fIXRRol7Q7OWOtnIhGl2C+M1rYhZzc8r rwM+oXAozMKETUItzwo2cmWdNTwlfel4lua2vQMAkhehNmkvkxr+LuCwcleihiNnpq1CJpEo vOTAemmxziImjK2dxre3ky6L7+p91bRRYYezFCxL+ZAWAR9SZVgdpsJboOuEyh2QW5lW8ZeU j80k0AIa6Vh9+m2xfb0oYxefMZimkB8sZe4AYnPMmqTFLCSs5vSy5OgEZ74/T47NxMofogDt kTVN7YMxvcOxZVHm3DYKJE+ifZ2SwWWBZNqaWTIUIFjg9OMCZ26BM7dAB6WLczBO/l4B62M2 GlV8WcXWm0T8HXy8iuleVhGLtolt0sBwmZgshXp2+kUgjApDA/RleHAQ7fTqi3oHn6LHuDHf R6dK/K3cZ9vDzKa73pcNs0HEaCO4buzfZSEeO/Oo3q9ITJ1ULLUMpYi8YTVtrzuuiQgxCrdZ c3tJw4kiIY8upC0n0YoAi4ABlv+twMgcZznju6ykajapzAasGjnjPoQavw4HSyfaqRcLctX2 VhlNU+8L4IOwVm9bL0SCQx2OsyDxjGMg1wECrC5Z46mTrqlVV6SZO9DridNxAcDh9aE+09Fg YpA0yt/SAiOHzq9CPBCXWlVq2xp1gZjCBjNfpgFLsaBLS+wCib8riyS0vUPcCTebzYMlRObT gNPaWosYmqNFBP1kD1MOFVF9W6keUmAQdzZ2mRY2lXtS/KZrwDVgr8gOOLDOeprVPs2aFJZu uikYptGkh4uIGSJBAeFA4ITLEVUc64rTapXiZ72ehQCMxS5MUEJoWNOuSyIXkqJHLoWvNO1y XQYsgQ0ImEZ0nHUOXHbsAgwfF/FV1BjLhe2bcs3ts0/C7J0Ho2ABIis7qwousbacCUuYnYzd OotXShn3D9/NmFsF5sLq3lk8OmCXfa65OAhJk4EqWdYS/w6a2B/xIRZyTi/m6Bnm5RWafM3N 8qXMUjvl2h2QkftvH6tcaX3ldIXSBa3kf6xZ80dyxP+C1Ec2ae2wspzDdxbk4JLgbx2sIipj OPlAF5lNLyl8WmIIFUwL+On8+rxczq9+H3+iCPfNemlX0YswppCkGuNAiOre3/5adjUVjV5e vT7bDJzBAlnf9A1CwJQoYdouZitoZpTteRN61CfosrtjexSsOVAfIU5qOXpoJuXFyevp/evz xV/UDOPjD2v+BGAntE/TuotQvMNqqPw/AosTDZI+TIudkkggo22axXVCJT3fJXVhNsDxpmry yvtJHTQSoc/YXnERYGCecbKgQlmzOtrqnc7b7X4D7HFlVhgGiR4beyPJ1zEcKwkzs3bKf7Sc 0JtK/SnpysHgLSIVrYjZZIp6NQYz8tYqi70jucetQ8d1Ig5A3SwXqCIm0Yfw1uHG8LuCFW7B Vn47BSi0p1aOKOV//mUt5S+K9a1Sj1zDYHgO6OEbS+Fn4GvYhGawJg29s+Lv92Bu55SRCIZq tF5PQ3U5wmAHN0Q+oiv7ZpsUoOKwxpHg9GqrWW7PqIRIWYvOwcKv94xv7a80TIpj3vFGUsVp 7VhIOjwak/IK5KFiE7hnd0lFZI+hKk06dOS2Mu50VM4od3A1p3712R0d0MggoB2I+irvhprt rpoOMRNvTFbZTgSBGq4iyVdJHNsp3bwpqdkmh7UiJ08U+nnaHdpHb7vkaQEcldxdZe7szW3l fX5dHGchTgO4Rc8AbWCIHdS60kcbghmYMFbYrVzRlvHBIcgb2tfQK6gkLcmSDPQFXZE+zjAN qSFryt+djLHDF5CrW4xBMh5NZiOfLEM7llbErAs+SQIrrENTZ62mmpmFeMhtNFTHcjb5hTpw sfalOCMQRrh91GNjCQV+LzQZfQFJdexXvrD6QH1Ad6pr86evp79+3L+dPnmEOmG7DccXsERH nSuRfk/f8kPo7N4Hj+7a1Yc0xLP2abgnF3WYTpQi29CRUfY4n+oupUzEoDfdlPWOFmqipNra qpwEUDJelJpsCH9JbcxyRBBgjGR4A2KfaDasm2TDIsqqI4j3VQT0TsHO0SFgzuj2sAkFxPxR Faa14l7z4q7WUJv4TdG3y/64LktqBfN8JS08uROlsowZvY6YL0oOWtI6LKjbNS8pWeqqsuZS /KSNvBI1YOYtzJjW8KPfkr6uiGitbLagbNofdphLgelVLwt3SSVKsEiW81Gg4OXcMp07ONpr 0yGinkDZJItg7YtxEDPQrgXlfeKQGDkgHMw8WOVioEoqyZFFcjVdBKq8mo+CBV+RyVptktlV qC+XTi9TXuL6apeBD8YTM9CeixrbKBHH1h4rXf6YrtabMo2gbw1NCkrDNfFzukZvxjQitCg1 /srdTl3XPm7r+KPGjp3W7sp02dZuUwV0HygKA3GDIMcKt50iQneCGZQHvsTUWMm+LsmP6xKU MEYpYR3JbZ1mmZ0WU+M2LMkG697USbKz+4/gFBptvWftEMU+bdyx6bo/3NBmX+9SM800IoTJ zSgvzoJuL5GTIVxh0rK9uTaNHtbtrgz+cXp4fzm//evH6XaPTfzd1sn1PuFNUCHF9+MpyBeg 9gB9Deqmbd2QlwAg9mNpZG8A0cbbtoSShI4deLatTi0M2syFJ3dTpwFXtoETTqNszWhd1sLQ z8t9TVrnxUVnJC4CMDe7fDdvKLkUGpOrbj9/+uP1z/PTH++vp5fH56+n37+ffvw8vXSnqNZh +u4xI+dexvPPn37cP33F6EW/4X++Pv/P02//3j/ew6/7rz/PT7+93v91gpaev/6GSf6+4dT+ 9ufPvz7J2d6dXp5OPy6+3798PT2hc00/60Yq9Yvz0/ntfP/j/L/3iDXs42jxRcf0XVuUhWWe FChx8wPKmpEpN3CTIonRHSZAq0WnqN0ykGpBvm1RFMNBjdHzxZBMaKQRc4Hsk0aHh6R7MO9u EV3xsaylbmqm/hDh7e3UAxKWJ3lU3bpQKMMFVdcupGZpvICOReXBkNJxJyFnlFcbL//+fHu+ eHh+OV08v1zIddXPnCTGezlWGWehBZ748ITFJNAn5bsorbbmLnAQ/icwsVsS6JPW5vVXDyMJ DWXXaXiwJSzU+F1V+dS7qvJLQLXVJwXGDzKJX66C21qTRLm3iy5efYrPYUVYsFDmAoc8OTYY p1E4nLit2azHk2W+zzxEsc9oINVw8Q9lEdNDJEynlsu+wpDpI6r3P3+cH37/+/TvxYNY299e 7n9+/9db0rUVFVzCYn9dJVFEwOIt0REA05GVNbqOrTC/ap3nEw8GTPyQTObzMQq+0hf6/e37 6ent/HD/dvp6kTyJrgFTufif89v3C/b6+vxwFqj4/u3e62sU5f7k2bl6NeUWDmg2GVVldjue jgJRa/WG3qSYky/cZZ5cpx7ngYHYMuDkB923lQiqh8faq9/ylT/80Xrlj1jjb5aIWLJJtPJg WX3jlVeufbqKasyx4cTKBGEkGDJIj14Mol2zp7xndVsx8ogepO396/fQGOXMb9eWAh5lD9ym HJw0MfKa+fzt9PrmV1ZH0wkxJwj26zuSvHqVsV0yWREtkZgBtgT1NONRnK799UxWpdexN8Ea Id5i+3w2nhGwuQ9LYS0nGf7r1VDn8dhU/PWe2LKxzwRgz80XFO18TPFMQFAmgI6lTP2i0MNj VW68qm8qWYWUBs4/v1vhl7utzolWADQUg6ibz/ImHGZbTSnDUNrpAOeMGGoOvnmsx1IGIAPt j2yccG8k1uLfAaY4xOjqKikagrnPqHPrpnQHRY7+8+PPl9PrqyU7dw0WpnmvBuvmU8GWM38r Zncz4tvZ1t/K6qJLxosEpeH58aJ4f/zz9CLDhWrR3lsMBU/bqKppx2fViXq1cRLYmBjFs9yS JY4NryJB5ESI9Sm8er+kTZPUCT75qm49LMpULSX4aoSURd1x7bCdcBukoARUEwnL9+BLjR2F ErQpWVDgk0LIeuUKbzwaSiU1xGeMhefqBT/Of77cgxb08vz+dn4iDh9MJC+5AwGvI2LRAUKx ef2MeYiGxMkNOfi5JKFRnXQ1XIIphPloioMgvDtYanFzO3E5KXqtbPGFj0lMDl9X0lArB0tw pTmyhMDZI1Ak+9reUDcS/DbPEzSmCEtMc1sZN2wGstqvMkXD9yub7DgfXbVRgkYUdJRI1IMB 46ZuF/El+jgeEItlKIpHk+JSJw0jv78UagN+bL23SDcFxkhNpEeE8CUmnDXk1ji9vGHMO5C3 5aPx1/O3p/u3d9CgH76fHv4+P30zs9bhrVnb1OhHFmvjlmHz8fD886dPDlYqYcbIeN97FNJv YDa6WnSUCfwRs/r2w8bA1ot2WcqbX6AQjAP/wlabl6NIVieHUg6iIKH9LH9hNHXtq7TA9gsn 17XmVFmQRUnzR2Wka9OQdgUaJRw3teEegL7FrG6Fp5Z5Nc6ER3MPWKUgSuETJ3OBy12Nl5p1 EVW37boWr83NxWfRZEnhoHVIB4zItm9S8wpNo9ZpEcN/ahh2aISxY8s6to3VMEJ5Ahp3vqLz iEkTKTOU9KLsg0pEGI9bvLSw3uTYeBLlgEWX0eE3yqtjtN0I9/A6sYT3CLRTOIQt0HhhU/gi P1TV7Fv7K1sBgZ9dhkaT7wk4sKBkdbu0j04DE8iNJklYfcOaQLB8QbFKqVtewC2s4zCydIzo 0lyKK1/Pigw/WlexgkUbl7nZ4w5lOozYUOmIZcPRvQrlgMxiMnfywHOgpruLDaVKpt1eHH8X i5psH+3YIsAU/fEOwSanl5D2uKRyqymkePheWTtKYVJG+qIqLKtz4huANlvYivSLIUmDMYLo B/yKQKQnyO7IrLOKZBV9IWp3jWTOjhV2dyYdf/VikpHAs9JK9WlCsWBzj64iQwhmHKOIA4M5 YO6B2sw0itwvLeUTewvkM5utm0W3wPpFIl9WiZsSl/0ijsVx3TbSd5vgvEhyU6fSw2llJebu uTMazpFwXdYqs9RHVJYHo1UZrEZ8D7wVKkZPg6iiLDSiza2ui8S7bnreKqmBnWuEtNCc/rp/ //F28fD89Hb+9v78/nrxKO8s7l9O93CO/u/p/xnyOubrxNyTufJxW3gYjpYMiTUZo4lGf01o cTAjq1VUIMyXTUTGYUASloFMho6Qn5fGXSYiqnBqTr1AiPOdbzK52o2BvTZOwE1WruxfBDct Mse5KLtrG2Z8h2HiQNw2ys2r1PJDjtPc+o3hK/BJNogF1laB7aM36SHmhpavoZukQZ/lch2b e4xj3I7SqF/cu8VJVTYOTMpuIDuAGDLp3B05bJ3cjvkBvCln9FyWqy9ssyEFO08uc9svVES+ zeJ06ndOIesgMhtCgrwRm/dSJm7fIe2rTS24C+jPl/PT298X99CVr4+n12/+NbcQQmWKIENY lEC8VHQudqMdCOhRIl6YxW1qXo9Jf0SQjTYZyJVZdw91GaS43uPTolm3wpS645XQUazKstGN ixMr+3N8WzAMce94yFng1n1UAvrcqkQ9LqlroKNfUAXHsDN2nX+cfn87PypJ/1WQPkj4iz/i 6xpqEq/aZJrdvjWgWVaY7gvbFQphx2KZDYdTFvdtgpE68bUJTJW5eWX3uXyXiQ88ctZEhuDl YkTz8PHwrVsGHBQw/et9EamXjsDd8KDq6Q7AF4r9sXV2n/n5TcJ2yIPxyKG1qV8dVSsBkdoD 8enP92/f8C47fXp9e3l/tBO552yTiqdEZgJsA9jdyEur0+fRP2OKSkanpEtQkSs5eotgbPdP n5xB5MTIaJ9RxyfTJ8OrT0GZYxwG6vSwC1S+Cu7Bvl9xpl434ylmrReBM/Z2ZHyxglpj7tAG oLiCepTxnkRUvU3X9BMVxMbpQbg2+N/tC9gG0RYnh3YIUg0qKd9WiUxACHHbSo+EsLLI4eif G+GhtovwIxTVUx2D1ElHNbgc7bnCJ2hJ5i8KN6i76aXSlWswc2SfybFJCu68vxaY8qYgn+4K ZFWmvLQf2so2CKzUdp3WwakJfINSzMUIqa6BnJzBfvc/15jgCpbH+55br9x4tEUJXqCSIpZv 0d02H3K/ukMubgj9l7IuVU0FDuyw1Qb0R9P/Rs2UiHsvXHsc6cfoC74AXsOW9BgzjVTbbsdw pWnrqYtFx3aYNdjl/QIG9UGqj64XUL9mnAZsZfRjJZAD0UX5/PP1t4vs+eHv95+S+W7vn76Z kgPDMItwBpRlZRmaDDDGTdknn8c2Uoh7++azkTeel+sGrSr7ClrUwKoinbslqt1i+L+GcWva Jc/uUF0l414mRPEBhECWG2SiRYYKGCLpetI1+eYaTkk4K2MyWIXgG7JHQm3vYs4Mja10SYTz 7us7HnLEDper3xFyJFBde5iw/qW49uUiynZ3AA7cLkkq5+mlNFKii0PP0P7r9ef5Cd0eoDeP 72+nf07wx+nt4T//+c9/920WURZE2fic08ge2Emb5aELueCCa3YjCyhgQC28yufLGnc3oQ6+ b5Jj4m1SIxGxvXlp8psbiWk5bEvhv+jWdMOtpyQSKhrmqGjy9WPlAdDIBkrs3AUL3xKusAsX K7mfksQFydUQiVCQJN3Mqyito33GahDGk70ubeJ3SDbeWSqsKVG45lmS0E4i/fc48+IuUemi 1KkhBg52PkasaG2FtZ+KXpftmUe0tj6j1XUeywpuWNpQb0y0vvd/WOLdZhfDDCyUPBp8eK9I md0QMrfw4yx4ksToyynsocHTaCcPYJtv/y2ljq/3b/cXKG484B2ElaRITElqD6E66v3rDXv/ 0M9yJFKE/0hpQ72QFkCmYw1DJQxDhWkBxWKMgcbbbY9qGJyiAQm7i7EJa5iUhyQLiawMBR3Q u8zRs2mvwF75gk8wUru/yAwCevkiBoP79J/bOG8tIDC5HnoLJVojvL7bjVh+oE+lZUyuaXt4 3ImDg0yqZbWnkOmNyUCkjG6b0mBgRVnJZhsGAiHvdLrhMBYaXW1pGq20r/WwWAXIzZaLIHTC KbiOHRIME4H7SFCCXFuYHnSCIlIfylIMaV+UHdlnBF4dwgper82GikRWgt46lOAf4FJNy29S VKPd7lV1kuSw9kFHJBvnlacAxqHZu+mLEmiXf4bx5P0wM49nEDeIfZKwOlP3kUa/ozwWgYpW lh1OQQ2dVtOhAFunsSmrq/PW20oyYI1OxUuuWaetppGrOb2+IW9GwSnCNGz3307Gw429JYPL OC190l8LbO9ECUuOYvS8NkusWFfBUGCaB6JBqaz7UFjEnhoKlsXSTKpdQooga3I+F7ewUVnR z2NFgTnbJfoBS5gqLbXk/EvValMD5UqhDQ079Nt31RZQVgCsNlxlSEqKuh92JFMOQKhtsxr1 1MDjGaRF41e9F6EH6Oetkgq2IKsTacL/PPpnNoL/GdwV2ALePTdS6hTeXqE+4s0wqH/2WuoB 7lMLcvU6UgDo/Riroo3LSPSE7q4UGFapXG30NnLswv8ftPLKJRglAgA= --jRHKVT23PllUwdXP--