Received: by 2002:a6b:500f:0:0:0:0:0 with SMTP id e15csp196227iob; Mon, 2 May 2022 16:56:17 -0700 (PDT) X-Google-Smtp-Source: ABdhPJyuXaGDPeQ7lcnYJGVor/egidb5Wvp7uXl+dPm6eyeLHSd3XMLsQ33LHB+pOM5W7F7QuGm3 X-Received: by 2002:a17:902:eacd:b0:15c:17fc:31e with SMTP id p13-20020a170902eacd00b0015c17fc031emr14234414pld.4.1651535777676; Mon, 02 May 2022 16:56:17 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1651535777; cv=none; d=google.com; s=arc-20160816; b=Q32oH53otc9hsC4vMfeK1f/uK+eT41Jl+fNcddHaEfqG7GO4tLW4EiUHGIXMnhilZu DDblsvvWh/Y/o3aBGQIv90lQ3JXkj70ZnyEYz8wHQ5thJrdi6k+t0lhWsO5wGbnee2x4 dXjRcD1h2N7YO6f5KhFcnX7wIt3YqOr/rBJJzSDq4eFn8UgNtsNRMKTALOB7u2qCL9bD KlFOEpV8/ClJIoo1oJ29m7rt87qEAfp1P9lzJtjMn5LwD5raAeK25GLiURNZbjrn9vOh Smxquyjsjz0iERH2GHGZC1Quz3nsZz5KJFKWAwkD09mA9MQ/uQMidglANAqTtt9rO8lk 5uLA== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from; bh=Btt20cubWVFSla4ZVuUmwVvzRNkdFvgiDo6D0RKygDw=; b=V1aubnnOcrCQOzCO/okDtHiSmAbGiZNvy3FWmTqVF7NW88WHFP0rxPfxJcHSP8bQVR 2Iz0EVNhP0nCXyaxitkCj40ctmvUe6TEsLuNUft5uTMCa6eewkD4cXBqu+3wJdo6/wjc jWJ8ZZYhxd0nDtIugmW1aFyVfLFo/b0Ww5Gsn+E2lij7DcgxEQvzgluwI0rmdB90Z4dV +Plslnxr9TC6JOnKt6hoReVK5bH4kh6VfT8WkXfagInEvtJNS4HH2MfgQyzMsi5Xa8bA bxOlq4isfrUuxO7XGqrnZIeO13PO+XU05Ys4y4pl1v6/NyvNBTkylSBsdiGWlxp5bOEc OtWw== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=arm.com Return-Path: Received: from lindbergh.monkeyblade.net (lindbergh.monkeyblade.net. [2620:137:e000::1:18]) by mx.google.com with ESMTPS id m13-20020a170902db0d00b0015d2c7ccec4si6391009plx.310.2022.05.02.16.56.17 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Mon, 02 May 2022 16:56:17 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:18 as permitted sender) client-ip=2620:137:e000::1:18; Authentication-Results: mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:18 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=arm.com Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by lindbergh.monkeyblade.net (Postfix) with ESMTP id 9A34015FE1; Mon, 2 May 2022 16:56:11 -0700 (PDT) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1377158AbiD2OQy (ORCPT + 99 others); Fri, 29 Apr 2022 10:16:54 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:47592 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1376911AbiD2OQc (ORCPT ); Fri, 29 Apr 2022 10:16:32 -0400 Received: from foss.arm.com (foss.arm.com [217.140.110.172]) by lindbergh.monkeyblade.net (Postfix) with ESMTP id 6F66427CE7 for ; Fri, 29 Apr 2022 07:13:12 -0700 (PDT) Received: from usa-sjc-imap-foss1.foss.arm.com (unknown [10.121.207.14]) by usa-sjc-mx-foss1.foss.arm.com (Postfix) with ESMTP id 409F6150C; Fri, 29 Apr 2022 07:13:12 -0700 (PDT) Received: from localhost.localdomain (FVFF7649Q05P.cambridge.arm.com [10.1.32.23]) by usa-sjc-imap-foss1.foss.arm.com (Postfix) with ESMTPA id D6CE63F774; Fri, 29 Apr 2022 07:13:10 -0700 (PDT) From: Vincent Donnefort To: peterz@infradead.org, mingo@redhat.com, vincent.guittot@linaro.org Cc: linux-kernel@vger.kernel.org, dietmar.eggemann@arm.com, morten.rasmussen@arm.com, chris.redpath@arm.com, qperret@google.com, tao.zhou@linux.dev, Vincent Donnefort Subject: [PATCH v8 6/7] sched/fair: Remove task_util from effective utilization in feec() Date: Fri, 29 Apr 2022 15:11:47 +0100 Message-Id: <20220429141148.181816-7-vincent.donnefort@arm.com> X-Mailer: git-send-email 2.25.1 In-Reply-To: <20220429141148.181816-1-vincent.donnefort@arm.com> References: <20220429141148.181816-1-vincent.donnefort@arm.com> MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Spam-Status: No, score=-1.9 required=5.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS,MAILING_LIST_MULTI,RDNS_NONE, SPF_HELO_NONE,T_SCC_BODY_TEXT_LINE autolearn=no autolearn_force=no version=3.4.6 X-Spam-Checker-Version: SpamAssassin 3.4.6 (2021-04-09) on lindbergh.monkeyblade.net Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org The energy estimation in find_energy_efficient_cpu() (feec()) relies on the computation of the effective utilization for each CPU of a perf domain (PD). This effective utilization is then used as an estimation of the busy time for this pd. The function effective_cpu_util() which gives this value, scales the utilization relative to IRQ pressure on the CPU to take into account that the IRQ time is hidden from the task clock. The IRQ scaling is as follow: effective_cpu_util = irq + (cpu_cap - irq)/cpu_cap * util Where util is the sum of CFS/RT/DL utilization, cpu_cap the capacity of the CPU and irq the IRQ avg time. If now we take as an example a task placement which doesn't raise the OPP on the candidate CPU, we can write the energy delta as: delta = OPPcost/cpu_cap * (effective_cpu_util(cpu_util + task_util) - effective_cpu_util(cpu_util)) = OPPcost/cpu_cap * (cpu_cap - irq)/cpu_cap * task_util We end-up with an energy delta depending on the IRQ avg time, which is a problem: first the time spent on IRQs by a CPU has no effect on the additional energy that would be consumed by a task. Second, we don't want to favour a CPU with a higher IRQ avg time value. Nonetheless, we need to take the IRQ avg time into account. If a task placement raises the PD's frequency, it will increase the energy cost for the entire time where the CPU is busy. A solution is to only use effective_cpu_util() with the CPU contribution part. The task contribution is added separately and scaled according to prev_cpu's IRQ time. No change for the FREQUENCY_UTIL component of the energy estimation. We still want to get the actual frequency that would be selected after the task placement. Signed-off-by: Vincent Donnefort diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 684e89a0f694..83a6eb99d938 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -6719,61 +6719,97 @@ static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) } /* - * compute_energy(): Estimates the energy that @pd would consume if @p was - * migrated to @dst_cpu. compute_energy() predicts what will be the utilization - * landscape of @pd's CPUs after the task migration, and uses the Energy Model - * to compute what would be the energy if we decided to actually migrate that - * task. + * energy_env - Utilization landscape for energy estimation. + * @task_busy_time: Utilization contribution by the task for which we test the + * placement. Given by eenv_task_busy_time(). + * @pd_busy_time: Utilization of the whole perf domain without the task + * contribution. Given by eenv_pd_busy_time(). + * @cpu_cap: Maximum CPU capacity for the perf domain. + * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). + */ +struct energy_env { + unsigned long task_busy_time; + unsigned long pd_busy_time; + unsigned long cpu_cap; + unsigned long pd_cap; +}; + +/* + * Compute the task busy time for compute_energy(). This time cannot be + * injected directly into effective_cpu_util() because of the IRQ scaling. + * The latter only makes sense with the most recent CPUs where the task has + * run. */ -static long -compute_energy(struct task_struct *p, int dst_cpu, struct cpumask *cpus, - struct perf_domain *pd) +static inline void eenv_task_busy_time(struct energy_env *eenv, + struct task_struct *p, int prev_cpu) { - unsigned long max_util = 0, sum_util = 0, cpu_cap; + unsigned long max_cap = arch_scale_cpu_capacity(prev_cpu); + unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); + + if (unlikely(irq >= max_cap)) { + eenv->task_busy_time = max_cap; + return; + } + + eenv->task_busy_time = + scale_irq_capacity(task_util_est(p), irq, max_cap); +} + +/* + * Compute the perf_domain (PD) busy time for compute_energy(). Based on the + * utilization for each @pd_cpus, it however doesn't take into account + * clamping since the ratio (utilization / cpu_capacity) is already enough to + * scale the EM reported power consumption at the (eventually clamped) + * cpu_capacity. + * + * The contribution of the task @p for which we want to estimate the + * energy cost is removed (by cpu_util_next()) and must be calculated + * separately (see eenv_task_busy_time). This ensures: + * + * - A stable PD utilization, no matter which CPU of that PD we want to place + * the task on. + * + * - A fair comparison between CPUs as the task contribution (task_util()) + * will always be the same no matter which CPU utilization we rely on + * (util_avg or util_est). + * + * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't + * exceed @eenv->pd_cap. + */ +static inline void eenv_pd_busy_time(struct energy_env *eenv, + struct cpumask *pd_cpus, + struct task_struct *p) +{ + unsigned long busy_time = 0; int cpu; - cpu_cap = arch_scale_cpu_capacity(cpumask_first(cpus)); - cpu_cap -= arch_scale_thermal_pressure(cpumask_first(cpus)); + for_each_cpu(cpu, pd_cpus) { + unsigned long util = cpu_util_next(cpu, p, -1); - /* - * The capacity state of CPUs of the current rd can be driven by CPUs - * of another rd if they belong to the same pd. So, account for the - * utilization of these CPUs too by masking pd with cpu_online_mask - * instead of the rd span. - * - * If an entire pd is outside of the current rd, it will not appear in - * its pd list and will not be accounted by compute_energy(). - */ - for_each_cpu(cpu, cpus) { - unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); - unsigned long cpu_util, util_running = util_freq; - struct task_struct *tsk = NULL; + busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); + } - /* - * When @p is placed on @cpu: - * - * util_running = max(cpu_util, cpu_util_est) + - * max(task_util, _task_util_est) - * - * while cpu_util_next is: max(cpu_util + task_util, - * cpu_util_est + _task_util_est) - */ - if (cpu == dst_cpu) { - tsk = p; - util_running = - cpu_util_next(cpu, p, -1) + task_util_est(p); - } + eenv->pd_busy_time = min(eenv->pd_cap, busy_time); +} - /* - * Busy time computation: utilization clamping is not - * required since the ratio (sum_util / cpu_capacity) - * is already enough to scale the EM reported power - * consumption at the (eventually clamped) cpu_capacity. - */ - cpu_util = effective_cpu_util(cpu, util_running, ENERGY_UTIL, - NULL); +/* + * Compute the maximum utilization for compute_energy() when the task @p + * is placed on the cpu @dst_cpu. + * + * Returns the maximum utilization among @eenv->cpus. This utilization can't + * exceed @eenv->cpu_cap. + */ +static inline unsigned long +eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, + struct task_struct *p, int dst_cpu) +{ + unsigned long max_util = 0; + int cpu; - sum_util += min(cpu_util, cpu_cap); + for_each_cpu(cpu, pd_cpus) { + struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; + unsigned long util = cpu_util_next(cpu, p, dst_cpu); + unsigned long cpu_util; /* * Performance domain frequency: utilization clamping @@ -6782,12 +6818,30 @@ compute_energy(struct task_struct *p, int dst_cpu, struct cpumask *cpus, * NOTE: in case RT tasks are running, by default the * FREQUENCY_UTIL's utilization can be max OPP. */ - cpu_util = effective_cpu_util(cpu, util_freq, FREQUENCY_UTIL, - tsk); - max_util = max(max_util, min(cpu_util, cpu_cap)); + cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); + max_util = max(max_util, cpu_util); } - return em_cpu_energy(pd->em_pd, max_util, sum_util, cpu_cap); + return min(max_util, eenv->cpu_cap); +} + +/* + * compute_energy(): Use the Energy Model to estimate the energy that @pd would + * consume for a given utilization landscape @eenv. If @dst_cpu < 0 the task + * contribution is removed from the energy estimation. + */ +static inline unsigned long +compute_energy(struct energy_env *eenv, struct perf_domain *pd, + struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) +{ + unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); + unsigned long busy_time = eenv->pd_busy_time; + + if (dst_cpu >= 0) + busy_time = min(eenv->pd_cap, + eenv->pd_busy_time + eenv->task_busy_time); + + return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); } /* @@ -6833,11 +6887,12 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) { struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; - struct root_domain *rd = cpu_rq(smp_processor_id())->rd; int cpu, best_energy_cpu = prev_cpu, target = -1; - unsigned long cpu_cap, util, base_energy = 0; + struct root_domain *rd = this_rq()->rd; + unsigned long base_energy = 0; struct sched_domain *sd; struct perf_domain *pd; + struct energy_env eenv; rcu_read_lock(); pd = rcu_dereference(rd->pd); @@ -6860,22 +6915,36 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) if (!task_util_est(p)) goto unlock; + eenv_task_busy_time(&eenv, p, prev_cpu); + for (; pd; pd = pd->next) { - unsigned long cur_delta, spare_cap, max_spare_cap = 0; + unsigned long cpu_cap, cpu_thermal_cap, util; + unsigned long cur_delta, max_spare_cap = 0; bool compute_prev_delta = false; unsigned long base_energy_pd; int max_spare_cap_cpu = -1; cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); - for_each_cpu_and(cpu, cpus, sched_domain_span(sd)) { + /* Account thermal pressure for the energy estimation */ + cpu = cpumask_first(cpus); + cpu_thermal_cap = arch_scale_cpu_capacity(cpu); + cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); + + eenv.cpu_cap = cpu_thermal_cap; + eenv.pd_cap = 0; + + for_each_cpu(cpu, cpus) { + eenv.pd_cap += cpu_thermal_cap; + + if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) + continue; + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) continue; util = cpu_util_next(cpu, p, cpu); cpu_cap = capacity_of(cpu); - spare_cap = cpu_cap; - lsub_positive(&spare_cap, util); /* * Skip CPUs that cannot satisfy the capacity request. @@ -6888,15 +6957,17 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) if (!fits_capacity(util, cpu_cap)) continue; + lsub_positive(&cpu_cap, util); + if (cpu == prev_cpu) { /* Always use prev_cpu as a candidate. */ compute_prev_delta = true; - } else if (spare_cap > max_spare_cap) { + } else if (cpu_cap > max_spare_cap) { /* * Find the CPU with the maximum spare capacity * in the performance domain. */ - max_spare_cap = spare_cap; + max_spare_cap = cpu_cap; max_spare_cap_cpu = cpu; } } @@ -6905,12 +6976,14 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) continue; /* Compute the 'base' energy of the pd, without @p */ - base_energy_pd = compute_energy(p, -1, cpus, pd); + eenv_pd_busy_time(&eenv, cpus, p); + base_energy_pd = compute_energy(&eenv, pd, cpus, p, -1); base_energy += base_energy_pd; /* Evaluate the energy impact of using prev_cpu. */ if (compute_prev_delta) { - prev_delta = compute_energy(p, prev_cpu, cpus, pd); + prev_delta = compute_energy(&eenv, pd, cpus, p, + prev_cpu); if (prev_delta < base_energy_pd) goto unlock; prev_delta -= base_energy_pd; @@ -6919,8 +6992,8 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) /* Evaluate the energy impact of using max_spare_cap_cpu. */ if (max_spare_cap_cpu >= 0) { - cur_delta = compute_energy(p, max_spare_cap_cpu, cpus, - pd); + cur_delta = compute_energy(&eenv, pd, cpus, p, + max_spare_cap_cpu); if (cur_delta < base_energy_pd) goto unlock; cur_delta -= base_energy_pd; -- 2.25.1