Received: by 2002:ac0:e34a:0:0:0:0:0 with SMTP id g10csp480245imn; Wed, 27 Jul 2022 11:22:26 -0700 (PDT) X-Google-Smtp-Source: AGRyM1sGT5/LtpaZL+Y3Cp+iAJOs1EoSUCK/cgAh64JcuyQVCzo4bnnLFalPoPm3AYSPWQjfZaY+ X-Received: by 2002:a05:6402:44d:b0:43b:e6e2:c98 with SMTP id p13-20020a056402044d00b0043be6e20c98mr19005871edw.323.1658946146246; Wed, 27 Jul 2022 11:22:26 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1658946146; cv=none; d=google.com; s=arc-20160816; b=LzdZrVl1v+2mgYTlKCVgYmkiQjUiK3Q3Bd3vEL/odRQZZDNkXl0dH0UPfH9AgYjW6J SBVkhMxfewsvwYItVr8PWbcVDwdXkcGOmqJVKYhekz4YfRRu1ew8O+qs8DrGydFR6ed+ RjDacIKaw/Zq8+QFVzD8LxeQUDBrxuJV2AlQMDYhx1JopUVK0d4NSUWL5nxG8PzQx396 5BMrAPYLrU91r+e/yEY1Lp/b+htNG4pY50HFZyPs1SfFg5nevJLZJmrOnX/ZGfczPkH6 aUtT8sROIVtvuSJWt09euxU4UkyWjFfyR5Qa2VrbsJ4gNJ6KgGOx0A5rBUerSOR3xxU8 hfww== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :user-agent:references:in-reply-to:message-id:date:subject:cc:to :from:dkim-signature; bh=yRR/WG1NYbXxCrSF72E3U+Veq9lZbA1UFtssaRnnsd0=; b=sg/msqCDSFzw54BylDvB6HqoNdYIpXUhRM8SbMb5lAKSRK7NLhVxlBHeNaXCT9ZaK7 RHJHC8gNlGVa9LGBdYc7v0cRhY+7MnCY2zJ8qZ7y0gMPqd7E/ChT59d9JU7ANLmAfz/v NVnPwpEBjUhYj757lZmX8qYEtWxhw9cZZxnjxoStQuHqNCi2Vvj4Yd8fCKSuhAdkanq0 kubSZh7yM6gg+id43DMLUBS0FcLEw7mD3eI91vwqySAg4oOYV4mwnkdlH2T0n//atPiN aMsPOQF/Zkq0Tt9QOqj/amzkmY4qsd+Ad5maJD42oAAQ2aGyPDhBmT7FMaStxm6KXU8E ZVkw== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@linuxfoundation.org header.s=korg header.b=WCcXdW03; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:20 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=linuxfoundation.org Return-Path: Received: from out1.vger.email (out1.vger.email. [2620:137:e000::1:20]) by mx.google.com with ESMTP id w13-20020a1709061f0d00b0072f17b3722csi14249645ejj.933.2022.07.27.11.22.00; Wed, 27 Jul 2022 11:22:26 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:20 as permitted sender) client-ip=2620:137:e000::1:20; Authentication-Results: mx.google.com; dkim=pass header.i=@linuxfoundation.org header.s=korg header.b=WCcXdW03; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:20 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=linuxfoundation.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S239961AbiG0Qnv (ORCPT + 99 others); Wed, 27 Jul 2022 12:43:51 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:58176 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S239588AbiG0QnR (ORCPT ); Wed, 27 Jul 2022 12:43:17 -0400 Received: from ams.source.kernel.org (ams.source.kernel.org [IPv6:2604:1380:4601:e00::1]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 8CCE25C96F; Wed, 27 Jul 2022 09:30:21 -0700 (PDT) Received: from smtp.kernel.org (relay.kernel.org [52.25.139.140]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by ams.source.kernel.org (Postfix) with ESMTPS id 2F234B821C2; Wed, 27 Jul 2022 16:30:19 +0000 (UTC) Received: by smtp.kernel.org (Postfix) with ESMTPSA id 6398BC433D6; Wed, 27 Jul 2022 16:30:17 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=linuxfoundation.org; s=korg; t=1658939417; bh=demC+PeDmYDZI8/HOpE7owCl91LVUslvTxYxl8V8ZFs=; h=From:To:Cc:Subject:Date:In-Reply-To:References:From; b=WCcXdW03BKbuJ/oF+i4cezcXKTeQ89SXHSYGvAG/hB08oWz99lODERP2dTUFiydoI KytySlI6kDsn8Ch3Kdvg8TSZwCBsgDHT96jwudYa54/L/g5MiH+eUJ6vgn1T9UAeYm Mwjacax8LSO2GrZBUugOqu/8D5jDPNW3MsPxfRG4= From: Greg Kroah-Hartman To: linux-kernel@vger.kernel.org Cc: Greg Kroah-Hartman , stable@vger.kernel.org, Will Deacon , Ard Biesheuvel , Kees Cook , Hanjun Guo , Ard Biesheuvel , Elena Reshetova , Linus Torvalds , Peter Zijlstra , Thomas Gleixner , Ingo Molnar , Sasha Levin Subject: [PATCH 5.4 63/87] locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the header Date: Wed, 27 Jul 2022 18:10:56 +0200 Message-Id: <20220727161011.601518877@linuxfoundation.org> X-Mailer: git-send-email 2.37.1 In-Reply-To: <20220727161008.993711844@linuxfoundation.org> References: <20220727161008.993711844@linuxfoundation.org> User-Agent: quilt/0.66 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit X-Spam-Status: No, score=-7.7 required=5.0 tests=BAYES_00,DKIMWL_WL_HIGH, DKIM_SIGNED,DKIM_VALID,DKIM_VALID_AU,DKIM_VALID_EF,RCVD_IN_DNSWL_HI, SPF_HELO_NONE,SPF_PASS autolearn=ham autolearn_force=no version=3.4.6 X-Spam-Checker-Version: SpamAssassin 3.4.6 (2021-04-09) on lindbergh.monkeyblade.net Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org From: Will Deacon [ Upstream commit 77e9971c79c29542ab7dd4140f9343bf2ff36158 ] In an effort to improve performance of the REFCOUNT_FULL implementation, move the bulk of its functions into linux/refcount.h. This allows them to be inlined in the same way as if they had been provided via CONFIG_ARCH_HAS_REFCOUNT. Signed-off-by: Will Deacon Reviewed-by: Ard Biesheuvel Reviewed-by: Kees Cook Tested-by: Hanjun Guo Cc: Ard Biesheuvel Cc: Elena Reshetova Cc: Linus Torvalds Cc: Peter Zijlstra Cc: Thomas Gleixner Link: https://lkml.kernel.org/r/20191121115902.2551-5-will@kernel.org Signed-off-by: Ingo Molnar Signed-off-by: Sasha Levin --- include/linux/refcount.h | 237 ++++++++++++++++++++++++++++++++++++-- lib/refcount.c | 238 +-------------------------------------- 2 files changed, 229 insertions(+), 246 deletions(-) diff --git a/include/linux/refcount.h b/include/linux/refcount.h index edd505d1a23b..e719b5b1220e 100644 --- a/include/linux/refcount.h +++ b/include/linux/refcount.h @@ -45,22 +45,241 @@ static inline unsigned int refcount_read(const refcount_t *r) } #ifdef CONFIG_REFCOUNT_FULL +#include #define REFCOUNT_MAX (UINT_MAX - 1) #define REFCOUNT_SATURATED UINT_MAX -extern __must_check bool refcount_add_not_zero(int i, refcount_t *r); -extern void refcount_add(int i, refcount_t *r); +/* + * Variant of atomic_t specialized for reference counts. + * + * The interface matches the atomic_t interface (to aid in porting) but only + * provides the few functions one should use for reference counting. + * + * It differs in that the counter saturates at REFCOUNT_SATURATED and will not + * move once there. This avoids wrapping the counter and causing 'spurious' + * use-after-free issues. + * + * Memory ordering rules are slightly relaxed wrt regular atomic_t functions + * and provide only what is strictly required for refcounts. + * + * The increments are fully relaxed; these will not provide ordering. The + * rationale is that whatever is used to obtain the object we're increasing the + * reference count on will provide the ordering. For locked data structures, + * its the lock acquire, for RCU/lockless data structures its the dependent + * load. + * + * Do note that inc_not_zero() provides a control dependency which will order + * future stores against the inc, this ensures we'll never modify the object + * if we did not in fact acquire a reference. + * + * The decrements will provide release order, such that all the prior loads and + * stores will be issued before, it also provides a control dependency, which + * will order us against the subsequent free(). + * + * The control dependency is against the load of the cmpxchg (ll/sc) that + * succeeded. This means the stores aren't fully ordered, but this is fine + * because the 1->0 transition indicates no concurrency. + * + * Note that the allocator is responsible for ordering things between free() + * and alloc(). + * + * The decrements dec_and_test() and sub_and_test() also provide acquire + * ordering on success. + * + */ + +/** + * refcount_add_not_zero - add a value to a refcount unless it is 0 + * @i: the value to add to the refcount + * @r: the refcount + * + * Will saturate at REFCOUNT_SATURATED and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_inc(), or one of its variants, should instead be used to + * increment a reference count. + * + * Return: false if the passed refcount is 0, true otherwise + */ +static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + if (!val) + return false; + + if (unlikely(val == REFCOUNT_SATURATED)) + return true; + + new = val + i; + if (new < val) + new = REFCOUNT_SATURATED; + + } while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new)); + + WARN_ONCE(new == REFCOUNT_SATURATED, + "refcount_t: saturated; leaking memory.\n"); + + return true; +} + +/** + * refcount_add - add a value to a refcount + * @i: the value to add to the refcount + * @r: the refcount + * + * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_inc(), or one of its variants, should instead be used to + * increment a reference count. + */ +static inline void refcount_add(int i, refcount_t *r) +{ + WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n"); +} + +/** + * refcount_inc_not_zero - increment a refcount unless it is 0 + * @r: the refcount to increment + * + * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED + * and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Return: true if the increment was successful, false otherwise + */ +static inline __must_check bool refcount_inc_not_zero(refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + new = val + 1; -extern __must_check bool refcount_inc_not_zero(refcount_t *r); -extern void refcount_inc(refcount_t *r); + if (!val) + return false; -extern __must_check bool refcount_sub_and_test(int i, refcount_t *r); + if (unlikely(!new)) + return true; -extern __must_check bool refcount_dec_and_test(refcount_t *r); -extern void refcount_dec(refcount_t *r); + } while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new)); + + WARN_ONCE(new == REFCOUNT_SATURATED, + "refcount_t: saturated; leaking memory.\n"); + + return true; +} + +/** + * refcount_inc - increment a refcount + * @r: the refcount to increment + * + * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN. + * + * Provides no memory ordering, it is assumed the caller already has a + * reference on the object. + * + * Will WARN if the refcount is 0, as this represents a possible use-after-free + * condition. + */ +static inline void refcount_inc(refcount_t *r) +{ + WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n"); +} + +/** + * refcount_sub_and_test - subtract from a refcount and test if it is 0 + * @i: amount to subtract from the refcount + * @r: the refcount + * + * Similar to atomic_dec_and_test(), but it will WARN, return false and + * ultimately leak on underflow and will fail to decrement when saturated + * at REFCOUNT_SATURATED. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides an acquire ordering on success such that free() + * must come after. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_dec(), or one of its variants, should instead be used to + * decrement a reference count. + * + * Return: true if the resulting refcount is 0, false otherwise + */ +static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r) +{ + unsigned int new, val = atomic_read(&r->refs); + + do { + if (unlikely(val == REFCOUNT_SATURATED)) + return false; + + new = val - i; + if (new > val) { + WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n"); + return false; + } + + } while (!atomic_try_cmpxchg_release(&r->refs, &val, new)); + + if (!new) { + smp_acquire__after_ctrl_dep(); + return true; + } + return false; + +} + +/** + * refcount_dec_and_test - decrement a refcount and test if it is 0 + * @r: the refcount + * + * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to + * decrement when saturated at REFCOUNT_SATURATED. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides an acquire ordering on success such that free() + * must come after. + * + * Return: true if the resulting refcount is 0, false otherwise + */ +static inline __must_check bool refcount_dec_and_test(refcount_t *r) +{ + return refcount_sub_and_test(1, r); +} + +/** + * refcount_dec - decrement a refcount + * @r: the refcount + * + * Similar to atomic_dec(), it will WARN on underflow and fail to decrement + * when saturated at REFCOUNT_SATURATED. + * + * Provides release memory ordering, such that prior loads and stores are done + * before. + */ +static inline void refcount_dec(refcount_t *r) +{ + WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n"); +} -#else +#else /* CONFIG_REFCOUNT_FULL */ #define REFCOUNT_MAX INT_MAX #define REFCOUNT_SATURATED (INT_MIN / 2) @@ -103,7 +322,7 @@ static inline void refcount_dec(refcount_t *r) atomic_dec(&r->refs); } # endif /* !CONFIG_ARCH_HAS_REFCOUNT */ -#endif /* CONFIG_REFCOUNT_FULL */ +#endif /* !CONFIG_REFCOUNT_FULL */ extern __must_check bool refcount_dec_if_one(refcount_t *r); extern __must_check bool refcount_dec_not_one(refcount_t *r); diff --git a/lib/refcount.c b/lib/refcount.c index a2f670998cee..3a534fbebdcc 100644 --- a/lib/refcount.c +++ b/lib/refcount.c @@ -1,41 +1,6 @@ // SPDX-License-Identifier: GPL-2.0 /* - * Variant of atomic_t specialized for reference counts. - * - * The interface matches the atomic_t interface (to aid in porting) but only - * provides the few functions one should use for reference counting. - * - * It differs in that the counter saturates at REFCOUNT_SATURATED and will not - * move once there. This avoids wrapping the counter and causing 'spurious' - * use-after-free issues. - * - * Memory ordering rules are slightly relaxed wrt regular atomic_t functions - * and provide only what is strictly required for refcounts. - * - * The increments are fully relaxed; these will not provide ordering. The - * rationale is that whatever is used to obtain the object we're increasing the - * reference count on will provide the ordering. For locked data structures, - * its the lock acquire, for RCU/lockless data structures its the dependent - * load. - * - * Do note that inc_not_zero() provides a control dependency which will order - * future stores against the inc, this ensures we'll never modify the object - * if we did not in fact acquire a reference. - * - * The decrements will provide release order, such that all the prior loads and - * stores will be issued before, it also provides a control dependency, which - * will order us against the subsequent free(). - * - * The control dependency is against the load of the cmpxchg (ll/sc) that - * succeeded. This means the stores aren't fully ordered, but this is fine - * because the 1->0 transition indicates no concurrency. - * - * Note that the allocator is responsible for ordering things between free() - * and alloc(). - * - * The decrements dec_and_test() and sub_and_test() also provide acquire - * ordering on success. - * + * Out-of-line refcount functions common to all refcount implementations. */ #include @@ -43,207 +8,6 @@ #include #include -#ifdef CONFIG_REFCOUNT_FULL - -/** - * refcount_add_not_zero - add a value to a refcount unless it is 0 - * @i: the value to add to the refcount - * @r: the refcount - * - * Will saturate at REFCOUNT_SATURATED and WARN. - * - * Provides no memory ordering, it is assumed the caller has guaranteed the - * object memory to be stable (RCU, etc.). It does provide a control dependency - * and thereby orders future stores. See the comment on top. - * - * Use of this function is not recommended for the normal reference counting - * use case in which references are taken and released one at a time. In these - * cases, refcount_inc(), or one of its variants, should instead be used to - * increment a reference count. - * - * Return: false if the passed refcount is 0, true otherwise - */ -bool refcount_add_not_zero(int i, refcount_t *r) -{ - unsigned int new, val = atomic_read(&r->refs); - - do { - if (!val) - return false; - - if (unlikely(val == REFCOUNT_SATURATED)) - return true; - - new = val + i; - if (new < val) - new = REFCOUNT_SATURATED; - - } while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new)); - - WARN_ONCE(new == REFCOUNT_SATURATED, - "refcount_t: saturated; leaking memory.\n"); - - return true; -} -EXPORT_SYMBOL(refcount_add_not_zero); - -/** - * refcount_add - add a value to a refcount - * @i: the value to add to the refcount - * @r: the refcount - * - * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN. - * - * Provides no memory ordering, it is assumed the caller has guaranteed the - * object memory to be stable (RCU, etc.). It does provide a control dependency - * and thereby orders future stores. See the comment on top. - * - * Use of this function is not recommended for the normal reference counting - * use case in which references are taken and released one at a time. In these - * cases, refcount_inc(), or one of its variants, should instead be used to - * increment a reference count. - */ -void refcount_add(int i, refcount_t *r) -{ - WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n"); -} -EXPORT_SYMBOL(refcount_add); - -/** - * refcount_inc_not_zero - increment a refcount unless it is 0 - * @r: the refcount to increment - * - * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED - * and WARN. - * - * Provides no memory ordering, it is assumed the caller has guaranteed the - * object memory to be stable (RCU, etc.). It does provide a control dependency - * and thereby orders future stores. See the comment on top. - * - * Return: true if the increment was successful, false otherwise - */ -bool refcount_inc_not_zero(refcount_t *r) -{ - unsigned int new, val = atomic_read(&r->refs); - - do { - new = val + 1; - - if (!val) - return false; - - if (unlikely(!new)) - return true; - - } while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new)); - - WARN_ONCE(new == REFCOUNT_SATURATED, - "refcount_t: saturated; leaking memory.\n"); - - return true; -} -EXPORT_SYMBOL(refcount_inc_not_zero); - -/** - * refcount_inc - increment a refcount - * @r: the refcount to increment - * - * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN. - * - * Provides no memory ordering, it is assumed the caller already has a - * reference on the object. - * - * Will WARN if the refcount is 0, as this represents a possible use-after-free - * condition. - */ -void refcount_inc(refcount_t *r) -{ - WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n"); -} -EXPORT_SYMBOL(refcount_inc); - -/** - * refcount_sub_and_test - subtract from a refcount and test if it is 0 - * @i: amount to subtract from the refcount - * @r: the refcount - * - * Similar to atomic_dec_and_test(), but it will WARN, return false and - * ultimately leak on underflow and will fail to decrement when saturated - * at REFCOUNT_SATURATED. - * - * Provides release memory ordering, such that prior loads and stores are done - * before, and provides an acquire ordering on success such that free() - * must come after. - * - * Use of this function is not recommended for the normal reference counting - * use case in which references are taken and released one at a time. In these - * cases, refcount_dec(), or one of its variants, should instead be used to - * decrement a reference count. - * - * Return: true if the resulting refcount is 0, false otherwise - */ -bool refcount_sub_and_test(int i, refcount_t *r) -{ - unsigned int new, val = atomic_read(&r->refs); - - do { - if (unlikely(val == REFCOUNT_SATURATED)) - return false; - - new = val - i; - if (new > val) { - WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n"); - return false; - } - - } while (!atomic_try_cmpxchg_release(&r->refs, &val, new)); - - if (!new) { - smp_acquire__after_ctrl_dep(); - return true; - } - return false; - -} -EXPORT_SYMBOL(refcount_sub_and_test); - -/** - * refcount_dec_and_test - decrement a refcount and test if it is 0 - * @r: the refcount - * - * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to - * decrement when saturated at REFCOUNT_SATURATED. - * - * Provides release memory ordering, such that prior loads and stores are done - * before, and provides an acquire ordering on success such that free() - * must come after. - * - * Return: true if the resulting refcount is 0, false otherwise - */ -bool refcount_dec_and_test(refcount_t *r) -{ - return refcount_sub_and_test(1, r); -} -EXPORT_SYMBOL(refcount_dec_and_test); - -/** - * refcount_dec - decrement a refcount - * @r: the refcount - * - * Similar to atomic_dec(), it will WARN on underflow and fail to decrement - * when saturated at REFCOUNT_SATURATED. - * - * Provides release memory ordering, such that prior loads and stores are done - * before. - */ -void refcount_dec(refcount_t *r) -{ - WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n"); -} -EXPORT_SYMBOL(refcount_dec); - -#endif /* CONFIG_REFCOUNT_FULL */ - /** * refcount_dec_if_one - decrement a refcount if it is 1 * @r: the refcount -- 2.35.1