Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by smtp.lore.kernel.org (Postfix) with ESMTP id B5B6AC54EAA for ; Sat, 28 Jan 2023 00:20:15 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S233510AbjA1AUO (ORCPT ); Fri, 27 Jan 2023 19:20:14 -0500 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:36812 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S232923AbjA1ATM (ORCPT ); Fri, 27 Jan 2023 19:19:12 -0500 Received: from mail-pj1-x102f.google.com (mail-pj1-x102f.google.com [IPv6:2607:f8b0:4864:20::102f]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 4E6D278AFE; Fri, 27 Jan 2023 16:18:02 -0800 (PST) Received: by mail-pj1-x102f.google.com with SMTP id lp10so6129778pjb.4; Fri, 27 Jan 2023 16:18:02 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20210112; h=content-transfer-encoding:mime-version:references:in-reply-to :message-id:date:subject:cc:to:from:sender:from:to:cc:subject:date :message-id:reply-to; bh=ReDv27JER3dWLJIRB93KpZI6obffj98ubYVenNueosw=; b=T8n40ErxF3us6xFV14zV3IG3WNSgwVq7BpumZs6w5W6Mim2fos8m3FrW4r7e4BNh/X iQO4Dbz+8zUlLhGWkRoz1TLqHvBu69CufLHp8+/bm/xL6iS7lFhzqQCHcMPCbuphC8Uy QMjQdZgR1hONYwV9EVg96QSZDP3CFnmgR0WJu6UZ+LOu2IKXA4NFqqsll0082PtizkJ7 wv3byKScU+RjC3XzA7bmJdy2MVpJYjW55XkLP9jVGM2z9YhYGoXAdVCyhUDdyKENtKAa 9+PJ1ifQmlfMqW6oMQahF2LsdbGGXd8LY5i7zdgil5CXsxc5E2Nja/zS2TG0xlgoDn6a S3ag== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20210112; h=content-transfer-encoding:mime-version:references:in-reply-to :message-id:date:subject:cc:to:from:sender:x-gm-message-state:from :to:cc:subject:date:message-id:reply-to; bh=ReDv27JER3dWLJIRB93KpZI6obffj98ubYVenNueosw=; b=5pHWWNiqzOD4ER7nAWp1CYl6ae4I84unOOtWl6e8W4u91GuFNFfzib7pHz51pnaYwK ZCYAf/RqaBJDC2Fg6kbll9vaOe4sz+ygfzOyz0INBTPbAdGwUqVV60AaorRpXq8rrPI+ oDZDygBqc/nJeji1b5bOVyiybUujJiyGZIiVhprWcg676Q7OIatUy822MVtmZexFnzWN dS7FIm9ideOiORPrI9OVjz7mdDcA4G/nojKaVuw6kPaSQk41UhtRKYesjzy4e7Nn/mXI WTQDcVLMLoD052bbubKEsvc0lcx1yLgQMBdKpWckyAutSwbTEKvoXk0XVMKc/4omz1YX jkjg== X-Gm-Message-State: AO0yUKWrnEzH848O+aIoR/04bTf+ZEwHLd3d+Mr+ETaJBJsNM333yYFA aGbsOT12G7ZjXNC7X4suKAs= X-Google-Smtp-Source: AK7set/Bqw3EA5XXnZ7HF3WGghw4ti5lpIaf8L+rC1O4eoc3Z2XhUzCzV5vfQFoEoJq6TP7BHLhzoQ== X-Received: by 2002:a17:90b:4d8b:b0:22b:f622:56ae with SMTP id oj11-20020a17090b4d8b00b0022bf62256aemr15630542pjb.23.1674865062307; Fri, 27 Jan 2023 16:17:42 -0800 (PST) Received: from localhost (2603-800c-1a02-1bae-a7fa-157f-969a-4cde.res6.spectrum.com. [2603:800c:1a02:1bae:a7fa:157f:969a:4cde]) by smtp.gmail.com with ESMTPSA id bb8-20020a17090b008800b0020a11217682sm3307187pjb.27.2023.01.27.16.17.41 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Fri, 27 Jan 2023 16:17:41 -0800 (PST) Sender: Tejun Heo From: Tejun Heo To: torvalds@linux-foundation.org, mingo@redhat.com, peterz@infradead.org, juri.lelli@redhat.com, vincent.guittot@linaro.org, dietmar.eggemann@arm.com, rostedt@goodmis.org, bsegall@google.com, mgorman@suse.de, bristot@redhat.com, vschneid@redhat.com, ast@kernel.org, daniel@iogearbox.net, andrii@kernel.org, martin.lau@kernel.org, joshdon@google.com, brho@google.com, pjt@google.com, derkling@google.com, haoluo@google.com, dvernet@meta.com, dschatzberg@meta.com, dskarlat@cs.cmu.edu, riel@surriel.com Cc: linux-kernel@vger.kernel.org, bpf@vger.kernel.org, kernel-team@meta.com, Tejun Heo Subject: [PATCH 27/30] sched_ext: Implement core-sched support Date: Fri, 27 Jan 2023 14:16:36 -1000 Message-Id: <20230128001639.3510083-28-tj@kernel.org> X-Mailer: git-send-email 2.39.1 In-Reply-To: <20230128001639.3510083-1-tj@kernel.org> References: <20230128001639.3510083-1-tj@kernel.org> MIME-Version: 1.0 Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org The core-sched support is composed of the following parts: * task_struct->scx.core_sched_at is added. This is a timestamp which can be used to order tasks. Depending on whether the BPF scheduler implements custom ordering, it tracks either global FIFO ordering of all tasks or local-DSQ ordering within the dispatched tasks on a CPU. * prio_less() is updated to call scx_prio_less() when comparing SCX tasks. scx_prio_less() calls ops.core_sched_before() if available or uses the core_sched_at timestamp. For global FIFO ordering, the BPF scheduler doesn't need to do anything. Otherwise, it should implement ops.core_sched_before() which reflects the ordering. * When core-sched is enabled, balance_scx() balances all SMT siblings so that they all have tasks dispatched if necessary before pick_task_scx() is called. pick_task_scx() picks between the current task and the first dispatched task on the local DSQ based on availability and the core_sched_at timestamps. Note that FIFO ordering is expected among the already dispatched tasks whether running or on the local DSQ, so this path always compares core_sched_at instead of calling into ops.core_sched_before(). qmap_core_sched_before() is added to scx_example_qmap. It scales the distances from the heads of the queues to compare the tasks across different priority queues and seems to behave as expected. Signed-off-by: Tejun Heo Reviewed-by: David Vernet --- include/linux/sched/ext.h | 21 +++ kernel/Kconfig.preempt | 2 +- kernel/sched/core.c | 12 +- kernel/sched/ext.c | 196 +++++++++++++++++++++++-- kernel/sched/ext.h | 12 ++ tools/sched_ext/scx_example_qmap.bpf.c | 87 ++++++++++- tools/sched_ext/scx_example_qmap.c | 5 +- 7 files changed, 319 insertions(+), 16 deletions(-) diff --git a/include/linux/sched/ext.h b/include/linux/sched/ext.h index 01c846445243..d3c2701bb4b4 100644 --- a/include/linux/sched/ext.h +++ b/include/linux/sched/ext.h @@ -315,6 +315,24 @@ struct sched_ext_ops { */ bool (*yield)(struct task_struct *from, struct task_struct *to); + /** + * core_sched_before - Task ordering for core-sched + * @a: task A + * @b: task B + * + * Used by core-sched to determine the ordering between two tasks. See + * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on + * core-sched. + * + * Both @a and @b are runnable and may or may not currently be queued on + * the BPF scheduler. Should return %true if @a should run before @b. + * %false if there's no required ordering or @b should run before @a. + * + * If not specified, the default is ordering them according to when they + * became runnable. + */ + bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); + /** * set_cpumask - Set CPU affinity * @p: task to set CPU affinity for @@ -611,6 +629,9 @@ struct sched_ext_entity { u32 kf_mask; /* see scx_kf_mask above */ atomic64_t ops_state; unsigned long runnable_at; +#ifdef CONFIG_SCHED_CORE + u64 core_sched_at; /* see scx_prio_less() */ +#endif /* BPF scheduler modifiable fields */ diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt index 0afcda19bc50..e12a057ead7b 100644 --- a/kernel/Kconfig.preempt +++ b/kernel/Kconfig.preempt @@ -135,7 +135,7 @@ config SCHED_CORE config SCHED_CLASS_EXT bool "Extensible Scheduling Class" - depends on BPF_SYSCALL && BPF_JIT && !SCHED_CORE + depends on BPF_SYSCALL && BPF_JIT help This option enables a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 47334e428031..a40b74a2fdbd 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -163,7 +163,12 @@ static inline int __task_prio(struct task_struct *p) if (p->sched_class == &idle_sched_class) return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ - return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ +#ifdef CONFIG_SCHED_CLASS_EXT + if (p->sched_class == &ext_sched_class) + return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ +#endif + + return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ } /* @@ -191,6 +196,11 @@ static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ return cfs_prio_less(a, b, in_fi); +#ifdef CONFIG_SCHED_CLASS_EXT + if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ + return scx_prio_less(a, b, in_fi); +#endif + return false; } diff --git a/kernel/sched/ext.c b/kernel/sched/ext.c index e981b7111e0a..8619eb2dcbd5 100644 --- a/kernel/sched/ext.c +++ b/kernel/sched/ext.c @@ -447,6 +447,44 @@ static int ops_sanitize_err(const char *ops_name, s32 err) return -EPROTO; } +/** + * touch_core_sched - Update timestamp used for core-sched task ordering + * @rq: rq to read clock from, must be locked + * @p: task to update the timestamp for + * + * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to + * implement global or local-DSQ FIFO ordering for core-sched. Should be called + * when a task becomes runnable and its turn on the CPU ends (e.g. slice + * exhaustion). + */ +static void touch_core_sched(struct rq *rq, struct task_struct *p) +{ +#ifdef CONFIG_SCHED_CORE + p->scx.core_sched_at = rq_clock_task(rq); +#endif +} + +/** + * touch_core_sched_dispatch - Update core-sched timestamp on dispatch + * @rq: rq to read clock from, must be locked + * @p: task being dispatched + * + * If the BPF scheduler implements custom core-sched ordering via + * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO + * ordering within each local DSQ. This function is called from dispatch paths + * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. + */ +static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) +{ + lockdep_assert_rq_held(rq); + assert_clock_updated(rq); + +#ifdef CONFIG_SCHED_CORE + if (SCX_HAS_OP(core_sched_before)) + touch_core_sched(rq, p); +#endif +} + static void update_curr_scx(struct rq *rq) { struct task_struct *curr = rq->curr; @@ -462,8 +500,11 @@ static void update_curr_scx(struct rq *rq) account_group_exec_runtime(curr, delta_exec); cgroup_account_cputime(curr, delta_exec); - if (curr->scx.slice != SCX_SLICE_INF) + if (curr->scx.slice != SCX_SLICE_INF) { curr->scx.slice -= min(curr->scx.slice, delta_exec); + if (!curr->scx.slice) + touch_core_sched(rq, curr); + } } static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, @@ -619,6 +660,8 @@ static void direct_dispatch(struct task_struct *ddsp_task, struct task_struct *p return; } + touch_core_sched_dispatch(task_rq(p), p); + dsq = find_dsq_for_dispatch(task_rq(p), dsq_id, p); dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); @@ -702,12 +745,19 @@ static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, return; local: + /* + * For task-ordering, slice refill must be treated as implying the end + * of the current slice. Otherwise, the longer @p stays on the CPU, the + * higher priority it becomes from scx_prio_less()'s POV. + */ + touch_core_sched(rq, p); p->scx.slice = SCX_SLICE_DFL; local_norefill: dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); return; global: + touch_core_sched(rq, p); /* see the comment in local: */ p->scx.slice = SCX_SLICE_DFL; dispatch_enqueue(&scx_dsq_global, p, enq_flags); } @@ -762,6 +812,9 @@ static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags if (SCX_HAS_OP(runnable)) scx_ops.runnable(p, enq_flags); + if (enq_flags & SCX_ENQ_WAKEUP) + touch_core_sched(rq, p); + do_enqueue_task(rq, p, enq_flags, sticky_cpu); } @@ -1201,6 +1254,7 @@ static void finish_dispatch(struct rq *rq, struct rq_flags *rf, struct scx_dispatch_q *dsq; u64 opss; + touch_core_sched_dispatch(rq, p); retry: /* * No need for _acquire here. @p is accessed only after a successful @@ -1278,8 +1332,8 @@ static void flush_dispatch_buf(struct rq *rq, struct rq_flags *rf) dspc->buf_cursor = 0; } -static int balance_scx(struct rq *rq, struct task_struct *prev, - struct rq_flags *rf) +static int balance_one(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf, bool local) { struct scx_rq *scx_rq = &rq->scx; struct scx_dsp_ctx *dspc = this_cpu_ptr(&scx_dsp_ctx); @@ -1302,7 +1356,7 @@ static int balance_scx(struct rq *rq, struct task_struct *prev, } if (prev_on_scx) { - WARN_ON_ONCE(prev->scx.flags & SCX_TASK_BAL_KEEP); + WARN_ON_ONCE(local && (prev->scx.flags & SCX_TASK_BAL_KEEP)); update_curr_scx(rq); /* @@ -1314,10 +1368,16 @@ static int balance_scx(struct rq *rq, struct task_struct *prev, * * See scx_ops_disable_workfn() for the explanation on the * disabling() test. + * + * When balancing a remote CPU for core-sched, there won't be a + * following put_prev_task_scx() call and we don't own + * %SCX_TASK_BAL_KEEP. Instead, pick_task_scx() will test the + * same conditions later and pick @rq->curr accordingly. */ if ((prev->scx.flags & SCX_TASK_QUEUED) && prev->scx.slice && !scx_ops_disabling()) { - prev->scx.flags |= SCX_TASK_BAL_KEEP; + if (local) + prev->scx.flags |= SCX_TASK_BAL_KEEP; return 1; } } @@ -1373,10 +1433,55 @@ static int balance_scx(struct rq *rq, struct task_struct *prev, return 0; } +static int balance_scx(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf) +{ + int ret; + + ret = balance_one(rq, prev, rf, true); + + /* + * When core-sched is enabled, this ops.balance() call will be followed + * by put_prev_scx() and pick_task_scx() on this CPU and pick_task_scx() + * on the SMT siblings. Balance the siblings too. + */ + if (sched_core_enabled(rq)) { + const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); + int scpu; + + for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { + struct rq *srq = cpu_rq(scpu); + struct rq_flags srf; + struct task_struct *sprev = srq->curr; + + /* + * While core-scheduling, rq lock is shared among + * siblings but the debug annotations and rq clock + * aren't. Do pinning dance to transfer the ownership. + */ + WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); + rq_unpin_lock(rq, rf); + rq_pin_lock(srq, &srf); + + update_rq_clock(srq); + balance_one(srq, sprev, &srf, false); + + rq_unpin_lock(srq, &srf); + rq_repin_lock(rq, rf); + } + } + + return ret; +} + static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) { if (p->scx.flags & SCX_TASK_QUEUED) { - WARN_ON_ONCE(atomic64_read(&p->scx.ops_state) != SCX_OPSS_NONE); + /* + * Core-sched might decide to execute @p before it is + * dispatched. Call ops_dequeue() to notify the BPF scheduler. + */ + ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); dispatch_dequeue(&rq->scx, p); } @@ -1516,6 +1621,69 @@ static struct task_struct *pick_next_task_scx(struct rq *rq) return p; } +#ifdef CONFIG_SCHED_CORE +/** + * scx_prio_less - Task ordering for core-sched + * @a: task A + * @b: task B + * + * Core-sched is implemented as an additional scheduling layer on top of the + * usual sched_class'es and needs to find out the expected task ordering. For + * SCX, core-sched calls this function to interrogate the task ordering. + * + * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used + * to implement the default task ordering. The older the timestamp, the higher + * prority the task - the global FIFO ordering matching the default scheduling + * behavior. + * + * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to + * implement FIFO ordering within each local DSQ. See pick_task_scx(). + */ +bool scx_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) +{ + if (SCX_HAS_OP(core_sched_before) && !scx_ops_disabling()) + return scx_ops.core_sched_before(a, b); + else + return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); +} + +/** + * pick_task_scx - Pick a candidate task for core-sched + * @rq: rq to pick the candidate task from + * + * Core-sched calls this function on each SMT sibling to determine the next + * tasks to run on the SMT siblings. balance_one() has been called on all + * siblings and put_prev_task_scx() has been called only for the current CPU. + * + * As put_prev_task_scx() hasn't been called on remote CPUs, we can't just look + * at the first task in the local dsq. @rq->curr has to be considered explicitly + * to mimic %SCX_TASK_BAL_KEEP. + */ +static struct task_struct *pick_task_scx(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + struct task_struct *first = first_local_task(rq); + + if (curr->scx.flags & SCX_TASK_QUEUED) { + /* is curr the only runnable task? */ + if (!first) + return curr; + + /* + * Does curr trump first? We can always go by core_sched_at for + * this comparison as it represents global FIFO ordering when + * the default core-sched ordering is in used and local-DSQ FIFO + * ordering otherwise. + */ + if (curr->scx.slice && time_before64(curr->scx.core_sched_at, + first->scx.core_sched_at)) + return curr; + } + + return first; /* this may be %NULL */ +} +#endif /* CONFIG_SCHED_CORE */ + static enum scx_cpu_preempt_reason preempt_reason_from_class(const struct sched_class *class) { @@ -1795,11 +1963,13 @@ static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) update_curr_scx(rq); /* - * While disabling, always resched as we can't trust the slice - * management. + * While disabling, always resched and refresh core-sched timestamp as + * we can't trust the slice management or ops.core_sched_before(). */ - if (scx_ops_disabling()) + if (scx_ops_disabling()) { curr->scx.slice = 0; + touch_core_sched(rq, curr); + } if (!curr->scx.slice) resched_curr(rq); @@ -2232,6 +2402,10 @@ DEFINE_SCHED_CLASS(ext) = { .rq_offline = rq_offline_scx, #endif +#ifdef CONFIG_SCHED_CORE + .pick_task = pick_task_scx, +#endif + .task_tick = task_tick_scx, .switching_to = switching_to_scx, @@ -2560,9 +2734,11 @@ static void scx_ops_disable_workfn(struct kthread_work *work) * * b. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value * can't be trusted. Whenever a tick triggers, the running task is - * rotated to the tail of the queue. + * rotated to the tail of the queue with core_sched_at touched. * * c. pick_next_task() suppresses zero slice warning. + * + * d. scx_prio_less() reverts to the default core_sched_at order. */ scx_ops.enqueue = scx_ops_fallback_enqueue; scx_ops.dispatch = scx_ops_fallback_dispatch; diff --git a/kernel/sched/ext.h b/kernel/sched/ext.h index 099e17e92228..c3df39984fc9 100644 --- a/kernel/sched/ext.h +++ b/kernel/sched/ext.h @@ -68,6 +68,14 @@ enum scx_enq_flags { enum scx_deq_flags { /* expose select DEQUEUE_* flags as enums */ SCX_DEQ_SLEEP = DEQUEUE_SLEEP, + + /* high 32bits are SCX specific */ + + /* + * The generic core-sched layer decided to execute the task even though + * it hasn't been dispatched yet. Dequeue from the BPF side. + */ + SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, }; enum scx_tg_flags { @@ -173,6 +181,10 @@ static inline const struct sched_class *next_active_class(const struct sched_cla for_active_class_range(class, (prev_class) > &ext_sched_class ? \ &ext_sched_class : (prev_class), (end_class)) +#ifdef CONFIG_SCHED_CORE +bool scx_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi); +#endif + #else /* CONFIG_SCHED_CLASS_EXT */ #define scx_enabled() false diff --git a/tools/sched_ext/scx_example_qmap.bpf.c b/tools/sched_ext/scx_example_qmap.bpf.c index 7e670986542b..7d851fd987ac 100644 --- a/tools/sched_ext/scx_example_qmap.bpf.c +++ b/tools/sched_ext/scx_example_qmap.bpf.c @@ -13,6 +13,7 @@ * - Sleepable per-task storage allocation using ops.prep_enable(). * - Using ops.cpu_release() to handle a higher priority scheduling class taking * the CPU away. + * - Core-sched support. * * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. * Copyright (c) 2022 Tejun Heo @@ -59,9 +60,21 @@ struct { }, }; +/* + * Per-queue sequence numbers to implement core-sched ordering. + * + * Tail seq is assigned to each queued task and incremented. Head seq tracks the + * sequence number of the latest dispatched task. The distance between the a + * task's seq and the associated queue's head seq is called the queue distance + * and used when comparing two tasks for ordering. See qmap_core_sched_before(). + */ +static u64 core_sched_head_seqs[5]; +static u64 core_sched_tail_seqs[5]; + /* Per-task scheduling context */ struct task_ctx { bool force_local; /* Dispatch directly to local_dsq */ + u64 core_sched_seq; }; struct { @@ -81,6 +94,7 @@ struct { /* Statistics */ unsigned long nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued; +unsigned long nr_core_sched_execed; s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags) @@ -147,8 +161,18 @@ void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags) return; } - /* Is select_cpu() is telling us to enqueue locally? */ - if (tctx->force_local) { + /* + * All enqueued tasks must have their core_sched_seq updated for correct + * core-sched ordering, which is why %SCX_OPS_ENQ_LAST is specified in + * qmap_ops.flags. + */ + tctx->core_sched_seq = core_sched_tail_seqs[idx]++; + + /* + * If qmap_select_cpu() is telling us to or this is the last runnable + * task on the CPU, enqueue locally. + */ + if (tctx->force_local || (enq_flags & SCX_ENQ_LAST)) { tctx->force_local = false; scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, enq_flags); return; @@ -192,6 +216,19 @@ void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags) void BPF_STRUCT_OPS(qmap_dequeue, struct task_struct *p, u64 deq_flags) { __sync_fetch_and_add(&nr_dequeued, 1); + if (deq_flags & SCX_DEQ_CORE_SCHED_EXEC) + __sync_fetch_and_add(&nr_core_sched_execed, 1); +} + +static void update_core_sched_head_seq(struct task_struct *p) +{ + struct task_ctx *tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + int idx = weight_to_idx(p->scx.weight); + + if (tctx) + core_sched_head_seqs[idx] = tctx->core_sched_seq; + else + scx_bpf_error("task_ctx lookup failed"); } void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev) @@ -244,6 +281,7 @@ void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev) p = bpf_task_from_pid(pid); if (p) { + update_core_sched_head_seq(p); __sync_fetch_and_add(&nr_dispatched, 1); scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, slice_ns, 0); bpf_task_release(p); @@ -255,6 +293,49 @@ void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev) } } +/* + * The distance from the head of the queue scaled by the weight of the queue. + * The lower the number, the older the task and the higher the priority. + */ +static s64 task_qdist(struct task_struct *p) +{ + int idx = weight_to_idx(p->scx.weight); + struct task_ctx *tctx; + s64 qdist; + + tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + if (!tctx) { + scx_bpf_error("task_ctx lookup failed"); + return 0; + } + + qdist = tctx->core_sched_seq - core_sched_head_seqs[idx]; + + /* + * As queue index increments, the priority doubles. The queue w/ index 3 + * is dispatched twice more frequently than 2. Reflect the difference by + * scaling qdists accordingly. Note that the shift amount needs to be + * flipped depending on the sign to avoid flipping priority direction. + */ + if (qdist >= 0) + return qdist << (4 - idx); + else + return qdist << idx; +} + +/* + * This is called to determine the task ordering when core-sched is picking + * tasks to execute on SMT siblings and should encode about the same ordering as + * the regular scheduling path. Use the priority-scaled distances from the head + * of the queues to compare the two tasks which should be consistent with the + * dispatch path behavior. + */ +bool BPF_STRUCT_OPS(qmap_core_sched_before, + struct task_struct *a, struct task_struct *b) +{ + return task_qdist(a) > task_qdist(b); +} + void BPF_STRUCT_OPS(qmap_cpu_release, s32 cpu, struct scx_cpu_release_args *args) { u32 cnt; @@ -306,10 +387,12 @@ struct sched_ext_ops qmap_ops = { .enqueue = (void *)qmap_enqueue, .dequeue = (void *)qmap_dequeue, .dispatch = (void *)qmap_dispatch, + .core_sched_before = (void *)qmap_core_sched_before, .cpu_release = (void *)qmap_cpu_release, .prep_enable = (void *)qmap_prep_enable, .init = (void *)qmap_init, .exit = (void *)qmap_exit, + .flags = SCX_OPS_ENQ_LAST, .timeout_ms = 5000U, .name = "qmap", }; diff --git a/tools/sched_ext/scx_example_qmap.c b/tools/sched_ext/scx_example_qmap.c index de6f03ccb233..02fabe97ac9f 100644 --- a/tools/sched_ext/scx_example_qmap.c +++ b/tools/sched_ext/scx_example_qmap.c @@ -91,9 +91,10 @@ int main(int argc, char **argv) long nr_enqueued = skel->bss->nr_enqueued; long nr_dispatched = skel->bss->nr_dispatched; - printf("enq=%lu, dsp=%lu, delta=%ld, reenq=%lu, deq=%lu\n", + printf("enq=%lu, dsp=%lu, delta=%ld, reenq=%lu, deq=%lu, core=%lu\n", nr_enqueued, nr_dispatched, nr_enqueued - nr_dispatched, - skel->bss->nr_reenqueued, skel->bss->nr_dequeued); + skel->bss->nr_reenqueued, skel->bss->nr_dequeued, + skel->bss->nr_core_sched_execed); fflush(stdout); sleep(1); } -- 2.39.1