Received: by 2002:a05:7412:3784:b0:e2:908c:2ebd with SMTP id jk4csp188853rdb; Sat, 30 Sep 2023 00:05:14 -0700 (PDT) X-Google-Smtp-Source: AGHT+IHdLWrvRxjHm1MV4cy8OkiOO7XH67v1lAh5M/9ypJBhS0iXWBCwlr9esSndr1ViCGdpyQAQ X-Received: by 2002:a05:6870:560b:b0:1d5:cba4:a6f6 with SMTP id m11-20020a056870560b00b001d5cba4a6f6mr7438237oao.6.1696057513392; Sat, 30 Sep 2023 00:05:13 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1696057513; cv=none; d=google.com; s=arc-20160816; b=OWQGmzZHInra1quMFioPdjTg90U8RXeLidq2ZwdeadoPWtqnwjY184xW+QjUyZY0GB o4Zf6+3nlRgeASDmMllwolxZ7oZwaJcyNZuCPSG8mLAUSZgwLTZcimg0d7ky0w7FuIOY H1BBjYdADqdt5Y7e8TJP8WN88u0uyYkN7fNujHXPSX/knKZqlYAAA0tFYcj5lh8j0Ars 8LpCHFVMFH5jDxRpVByXVS+E0oGpKuGDPhRJUbmNuXnFLi69SMeMsDIOT9YBOnZfE7Wv qHXcFYfeYHbu0kR5QZehnYkg0AeXmilo1jMpOS+MHlu/55swTJAbJu73+jiH/bH6F8K8 qxcg== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:in-reply-to:from:content-language:references:to :subject:user-agent:mime-version:date:message-id:dkim-signature :dkim-signature; bh=78wavR185gkeP1uHRFqSinREJSUBi+LIFHj3erVdETw=; fh=3kxp3wC7fPgLQSq4riAlzTioqdNj99fHvbXUSFd+B9A=; b=TdrrECvwfIkViz5jXB7C8DfCWXz10p4I6FF2WD0jo3I6Am66LGQRAtJpXd77g2yfx1 4m0U4YvUujfCYHgeZrI16TgquG2KC1SQEl3j2lK7LENYaOiBHjxWaJXzZ/9Ca2VIFWKW K1nXMz7x5JWA09joMq/kF/227PRaNHOF5crtxCgoZoqTG9SVMAwkuHnPi1fq11toCLhA 5fDudJ2aB3dnnVzyuXk6/mn1ThxU9dulEPgR0KNRVzjiK12kuLiIa69q0UwG+RrLYg1S bsFZ3nTbcIqsfFKMus8ifmanz2FKEJ19mjWzqv7ps6cbx86tua6j0VFaUW+1fMnfu0pI b6lg== ARC-Authentication-Results: i=1; mx.google.com; dkim=fail header.i=@alu.unizg.hr header.s=mail header.b=I705zW4i; dkim=fail header.i=@alu.unizg.hr header.s=mail header.b=tFQOjsKN; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.34 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=alu.unizg.hr Return-Path: Received: from howler.vger.email (howler.vger.email. [23.128.96.34]) by mx.google.com with ESMTPS id u15-20020a056a00098f00b00690d42ec31bsi25598409pfg.369.2023.09.30.00.05.13 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Sat, 30 Sep 2023 00:05:13 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.34 as permitted sender) client-ip=23.128.96.34; Authentication-Results: mx.google.com; dkim=fail header.i=@alu.unizg.hr header.s=mail header.b=I705zW4i; dkim=fail header.i=@alu.unizg.hr header.s=mail header.b=tFQOjsKN; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 23.128.96.34 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=alu.unizg.hr Received: from out1.vger.email (depot.vger.email [IPv6:2620:137:e000::3:0]) by howler.vger.email (Postfix) with ESMTP id 66BF685632BB; Sat, 30 Sep 2023 00:03:13 -0700 (PDT) X-Virus-Status: Clean X-Virus-Scanned: clamav-milter 0.103.10 at howler.vger.email Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S234055AbjI3HDJ (ORCPT + 99 others); Sat, 30 Sep 2023 03:03:09 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:43324 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S229447AbjI3HDI (ORCPT ); Sat, 30 Sep 2023 03:03:08 -0400 Received: from domac.alu.hr (domac.alu.unizg.hr [IPv6:2001:b68:2:2800::3]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 45036C5 for ; Sat, 30 Sep 2023 00:03:02 -0700 (PDT) Received: from localhost (localhost [127.0.0.1]) by domac.alu.hr (Postfix) with ESMTP id 51A996015E; Sat, 30 Sep 2023 09:03:00 +0200 (CEST) DKIM-Signature: v=1; a=rsa-sha256; c=simple/simple; d=alu.unizg.hr; s=mail; t=1696057380; bh=G2wD4umbVVSKPcXNRrlEHF6tCIkcxw/bFL5ZC9a3z0s=; h=Date:Subject:To:References:From:In-Reply-To:From; b=I705zW4i9imuA2wcU2qIWdvidDc37JAsW9Dyyfku1PQgJ08vWgshffesurozmyIhL bzCHHX9s9l1/pTyYqC+LWhGDWdCNJi98Oy0sju3nUV1ns1v2nKaD12TJ5FvoAy2hdM zYWXy2CUOj6zAEgS1UozMQap6yTuyWzI2yv1wQ7vFYDty3+hEXYRq+32CqS2SzSTqK s9OOnzotC6EBkoQS1Ing71NE70x6L01y5nsaPoPGRyYG0YKTXNjHfNaf7S55en2sgn vLPkME4CFXk5Cs6YfqKFNM5yX35exOHpHS2YCiFSeoUn1q9R+klggozPiMeXTQ892X AyokT31F3UktQ== X-Virus-Scanned: Debian amavisd-new at domac.alu.hr Received: from domac.alu.hr ([127.0.0.1]) by localhost (domac.alu.hr [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id hki2nl_CanpP; Sat, 30 Sep 2023 09:02:56 +0200 (CEST) Received: from [192.168.1.6] (78-2-88-49.adsl.net.t-com.hr [78.2.88.49]) by domac.alu.hr (Postfix) with ESMTPSA id 2CC8A60155; Sat, 30 Sep 2023 09:02:53 +0200 (CEST) DKIM-Signature: v=1; a=rsa-sha256; c=simple/simple; d=alu.unizg.hr; s=mail; t=1696057376; bh=G2wD4umbVVSKPcXNRrlEHF6tCIkcxw/bFL5ZC9a3z0s=; h=Date:Subject:To:References:From:In-Reply-To:From; b=tFQOjsKNsf0Uz0FlOEbivhWIj+i5vzDOOL0deSBcZeR1OtZ2GXwucrpU8Tlm3P58e QLBb6ccvetmnQjwqgb1vjtDkY0FUe0EbGjCy+8yKhQm02gkJXuj9AbEmmvP9nOKXEI 8Cn45ovSBFspqmKtiMssEoDQFWScTHZYXhQe0T5EMNP1FOdYlmyZ77e2MtDyNUnuf+ fFtY22LeB8gEDGAOZcIzMnYhzLdB74QNUlWXLXC8qyKkF5MmPmGsMbT+xetRiDRdcI wYa1MWPs63A9CkmgbnbTC4gy82bBAibpC9HTyKSgEdnHi27X1faFFc96/aVdY1uhup LLX2PeZXlGBzA== Content-Type: multipart/mixed; boundary="------------8xPxPXC9BD8kuiidXqh03IIS" Message-ID: Date: Sat, 30 Sep 2023 09:02:47 +0200 MIME-Version: 1.0 User-Agent: Mozilla Thunderbird Subject: Re: BUG: maple_tree: KCSAN: data-race in mas_topiary_replace / mtree_range_walk To: "Liam R. Howlett" , maple-tree@lists.infradead.org, linux-mm@kvack.org, linux-kernel@vger.kernel.org References: <9c1549f9-78c2-441b-8617-3ea3c080a5a4@alu.unizg.hr> <20230922135155.tqrelea66hcj5cog@revolver> <5d908c60-88fb-49c0-a150-bfb468eaa513@alu.unizg.hr> <20230928195926.ucp7it3c3c75erzk@revolver> Content-Language: en-US From: Mirsad Todorovac In-Reply-To: <20230928195926.ucp7it3c3c75erzk@revolver> X-Spam-Status: No, score=-2.0 required=5.0 tests=BAYES_00,DKIM_SIGNED, DKIM_VALID,DKIM_VALID_AU,RCVD_IN_DNSWL_BLOCKED,SPF_HELO_NONE,SPF_PASS autolearn=ham autolearn_force=no version=3.4.6 X-Spam-Checker-Version: SpamAssassin 3.4.6 (2021-04-09) on lindbergh.monkeyblade.net Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org X-Greylist: Sender passed SPF test, not delayed by milter-greylist-4.6.4 (howler.vger.email [0.0.0.0]); Sat, 30 Sep 2023 00:03:13 -0700 (PDT) This is a multi-part message in MIME format. --------------8xPxPXC9BD8kuiidXqh03IIS Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit On 9/28/23 21:59, Liam R. Howlett wrote: > * Mirsad Todorovac [230923 03:27]: >> On 9/22/23 15:51, Liam R. Howlett wrote: > > ... > >>>> [ 6413.367326] ================================================================== >>>> [ 6413.367349] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk >>>> >>>> [ 6413.367375] write to 0xffff8883a0c5db00 of 8 bytes by task 5475 on cpu 24: >>>> [ 6413.367386] mas_topiary_replace (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:491 /home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:1701 /home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:2590) >>>> [ 6413.367399] mas_spanning_rebalance.isra.0 (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:2664 /home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:2961) >>>> [ 6413.367413] mas_wr_spanning_store.isra.0 (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:3894) >>>> [ 6413.367428] mas_wr_store_entry.isra.0 (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:4242) >>>> [ 6413.367442] mas_store_prealloc (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:256 /home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:5408) >>>> [ 6413.367455] vma_merge (/home/marvin/linux/kernel/torvalds2/mm/internal.h:1127 /home/marvin/linux/kernel/torvalds2/mm/mmap.c:1005) >>>> [ 6413.367466] mprotect_fixup (/home/marvin/linux/kernel/torvalds2/mm/mprotect.c:632) >>>> [ 6413.367480] do_mprotect_pkey (/home/marvin/linux/kernel/torvalds2/mm/mprotect.c:819) >>>> [ 6413.367494] __x64_sys_mprotect (/home/marvin/linux/kernel/torvalds2/mm/mprotect.c:837) >>>> [ 6413.367503] do_syscall_64 (/home/marvin/linux/kernel/torvalds2/arch/x86/entry/common.c:50 /home/marvin/linux/kernel/torvalds2/arch/x86/entry/common.c:80) >>>> [ 6413.367517] entry_SYSCALL_64_after_hwframe (/home/marvin/linux/kernel/torvalds2/arch/x86/entry/entry_64.S:120) >>>> >>>> [ 6413.367534] read to 0xffff8883a0c5db00 of 8 bytes by task 5558 on cpu 11: >>>> [ 6413.367545] mtree_range_walk (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:539 /home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:2789) >>>> [ 6413.367556] mas_walk (/home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:251 /home/marvin/linux/kernel/torvalds2/lib/maple_tree.c:4844) >>>> [ 6413.367567] lock_vma_under_rcu (/home/marvin/linux/kernel/torvalds2/mm/memory.c:5436) >>>> [ 6413.367579] do_user_addr_fault (/home/marvin/linux/kernel/torvalds2/arch/x86/mm/fault.c:1357) >>>> [ 6413.367593] exc_page_fault (/home/marvin/linux/kernel/torvalds2/./arch/x86/include/asm/paravirt.h:695 /home/marvin/linux/kernel/torvalds2/arch/x86/mm/fault.c:1513 /home/marvin/linux/kernel/torvalds2/arch/x86/mm/fault.c:1561) >>>> [ 6413.367602] asm_exc_page_fault (/home/marvin/linux/kernel/torvalds2/./arch/x86/include/asm/idtentry.h:570) >>>> >>>> [ 6413.367617] value changed: 0xffff888341d43116 -> 0xffff888340f92116 >>>> >>>> [ 6413.367632] Reported by Kernel Concurrency Sanitizer on: >>>> [ 6413.367640] CPU: 11 PID: 5558 Comm: ThreadPoolForeg Tainted: G L 6.6.0-rc2-kcsan-00143-gb5cbe7c00aa0 #41 >>>> [ 6413.367653] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023 >>>> [ 6413.367660] ================================================================== >>>> >>>> For your convenience, took the trouble of finding those suspicious lines of code: >>>> >>>> The write side: >>>> >>>> lib/maple_tree.c:491 >>>> -------------------- >>>> 456 /* >>>> 457 * mas_set_parent() - Set the parent node and encode the slot >>>> 458 * @enode: The encoded maple node. >>>> 459 * @parent: The encoded maple node that is the parent of @enode. >>>> 460 * @slot: The slot that @enode resides in @parent. >>>> 461 * >>>> 462 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the >>>> 463 * parent type. >>>> 464 */ >>>> 465 static inline >>>> 466 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, >>>> 467 const struct maple_enode *parent, unsigned char slot) >>>> 468 { >>>> 469 unsigned long val = (unsigned long)parent; >>>> 470 unsigned long shift; >>>> 471 unsigned long type; >>>> 472 enum maple_type p_type = mte_node_type(parent); >>>> 473 >>>> 474 MAS_BUG_ON(mas, p_type == maple_dense); >>>> 475 MAS_BUG_ON(mas, p_type == maple_leaf_64); >>>> 476 >>>> 477 switch (p_type) { >>>> 478 case maple_range_64: >>>> 479 case maple_arange_64: >>>> 480 shift = MAPLE_PARENT_SLOT_SHIFT; >>>> 481 type = MAPLE_PARENT_RANGE64; >>>> 482 break; >>>> 483 default: >>>> 484 case maple_dense: >>>> 485 case maple_leaf_64: >>>> 486 shift = type = 0; >>>> 487 break; >>>> 488 } >>>> 489 >>>> 490 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ >>>> → 491 val |= (slot << shift) | type; >>>> 492 mte_to_node(enode)->parent = ma_parent_ptr(val); >>>> 493 } > > This should probably be 492, not 491. I know what is racing here and it > shouldn't cause issue. That seems logical to me, too. > ... >>>> The read side: >>>> >>>> 527 /* >>>> 528 * ma_dead_node() - check if the @enode is dead. >>>> 529 * @enode: The encoded maple node >>>> 530 * >>>> 531 * Return: true if dead, false otherwise. >>>> 532 */ >>>> 533 static inline bool ma_dead_node(const struct maple_node *node) >>>> 534 { >>>> 535 struct maple_node *parent; >>>> 536 >>>> 537 /* Do not reorder reads from the node prior to the parent check */ >>>> 538 smp_rmb(); >>>> → 539 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); >>>> 540 return (parent == node); >>>> 541 } > > This is the correct line. Good. Now it makes sense. > ... >>>> >>>> as above, but the smb_rmb() protection is here, so the KCSAN warning should be double-checked for >>>> validity. >>>> >>>> But I do not really understand maple trees to their depth, I am only reporting the symptomatic >>>> outlook of the reported data-race. >>> >>> This is the most complex part of the maple tree, and unique to the >>> ability to store a range over multiple existing entries. I recently >>> rewrote this particular section to avoid a potential live-lock issue. >> >> I see. >> >>> I am confident that the parent pointer will not be set to the node >>> pointer as checked by ma_dead_node(). But in an abundance of caution >>> and to resolve this potential false-positive, I am looking at this in >>> more detail. >>> >>> This race is to see if the walk down the tree into unchanged data will >>> be seen before it is placed in the new subtree with its data also >>> unchanged. Since we know the parent can never be the node, I feel this >>> is safe - but I'm not willing to live with the complaints from kasan. >> >> I cannot analyse a couple of thousand lines at such a short notice. > > Don't worry, I will :) :-) >> It looks suspicious because val in line 491 in a local variable and thus >> isn't available elsewhere. > > It is used in the node->parent, as described above. It is a race, but > it doesn't matter who wins. > >> >> Maybe the compiler (gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0) did something >> to the code? > > Probably off-by-one line. > >> >>>> This is all-in-all a very interested subject, and I wish there was a way to just slurp all those >>>> interesting kernel intrinsics into the brain, but it just ain't that easy. Forgive me for being >>>> open ... >>> >>> I appreciate that and your detailed analysis with code pointers of where >>> this happens. Is this easy to recreate? If so, how? Can you attach >>> your kernel config? >> >> Got that attached first, so I do not forget. :-/ >> >> Recreate? Actually it happened quite a number of times on my configuration (480+?). > > I'm having issues recreating it because I hit a lot of races before this > one in my test setup. I will keep working on reproducing this race, but > in the mean time can you test the attached patch with your setup? I have tried that on the recent vanilla torvalds tree kernel, and it still shows a number of data-races: [ 157.300020] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 181.319610] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 196.868714] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 201.291452] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 226.185733] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 227.996664] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 228.447678] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 229.270275] BUG: KCSAN: data-race in mas_wr_modify / mtree_range_walk [ 229.889751] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 231.469987] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 234.872378] BUG: KCSAN: data-race in mas_wr_node_store / mtree_range_walk [ 235.159590] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 235.186811] BUG: KCSAN: data-race in mas_wr_node_store / mtree_range_walk [ 239.658108] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 241.893093] BUG: KCSAN: data-race in mas_topiary_replace / mas_walk [ 242.510624] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 244.692616] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 245.122822] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 246.000424] BUG: KCSAN: data-race in mas_wr_node_store / mtree_range_walk [ 246.678092] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 251.742829] BUG: KCSAN: data-race in mas_topiary_replace / mas_walk [ 251.762047] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 254.148155] BUG: KCSAN: data-race in mas_wr_node_store / mtree_range_walk [ 263.442284] BUG: KCSAN: data-race in mas_topiary_replace / mas_walk [ 267.004013] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 270.086804] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 270.116319] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 353.218023] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 962.775499] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 962.783627] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 964.604473] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 967.502757] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 967.539662] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 970.156674] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 970.629596] BUG: KCSAN: data-race in mas_wr_modify / mtree_range_walk [ 970.718835] BUG: KCSAN: data-race in mas_topiary_replace / mas_walk [ 971.023748] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 971.058710] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 971.584682] BUG: KCSAN: data-race in mas_wr_modify / mtree_range_walk [ 973.808208] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 974.993192] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 975.076067] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 977.460561] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 977.715483] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 978.078659] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 978.186831] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 995.034856] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 1006.951970] BUG: KCSAN: data-race in mas_wr_node_store / mtree_range_walk [ 1072.950367] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 1146.949829] BUG: KCSAN: data-race in mas_wr_node_store / mtree_range_walk [ 1174.940825] BUG: KCSAN: data-race in mas_topiary_replace / mtree_range_walk [ 1245.325405] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 1287.939229] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk [ 1523.333994] BUG: KCSAN: data-race in __call_rcu_common.constprop.0 / mtree_range_walk However, for example, this one doesn't make sense: ================================================================== BUG: KCSAN: data-race in mas_topiary_replace / mas_walk write to 0xffff88811a9e0a00 of 8 bytes by task 9477 on cpu 15: mas_topiary_replace (lib/maple_tree.c:304 lib/maple_tree.c:1731 lib/maple_tree.c:2572) mas_spanning_rebalance.isra.0 (lib/maple_tree.c:2665 lib/maple_tree.c:2962) mas_wr_spanning_store.isra.0 (lib/maple_tree.c:3895) mas_wr_store_entry.isra.0 (lib/maple_tree.c:4243) mas_store_gfp (lib/maple_tree.c:6090 lib/maple_tree.c:5386) do_vmi_align_munmap (mm/internal.h:1090 mm/mmap.c:2535) do_vmi_munmap (mm/mmap.c:2623) mmap_region (mm/mmap.c:2673) do_mmap (mm/mmap.c:1354) vm_mmap_pgoff (mm/util.c:546) ksys_mmap_pgoff (mm/mmap.c:1400) __x64_sys_mmap (arch/x86/kernel/sys_x86_64.c:86) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) read to 0xffff88811a9e0a00 of 8 bytes by task 9475 on cpu 28: mas_walk (lib/maple_tree.c:524 lib/maple_tree.c:556 lib/maple_tree.c:1375 lib/maple_tree.c:1359 lib/maple_tree.c:3690 lib/maple_tree.c:4844) lock_vma_under_rcu (mm/memory.c:5436) do_user_addr_fault (arch/x86/mm/fault.c:1357) exc_page_fault (./arch/x86/include/asm/paravirt.h:695 arch/x86/mm/fault.c:1513 arch/x86/mm/fault.c:1561) asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:570) value changed: 0xffff88811a7e6341 -> 0xffff88811a9e0a00 Reported by Kernel Concurrency Sanitizer on: CPU: 28 PID: 9475 Comm: chrome Tainted: G L 6.6.0-rc3-kcsan-00146-g9f3ebbef746f-dirty #2 Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023 ================================================================== On the write side, you have: 302 static inline void mte_set_node_dead(struct maple_enode *mn) 303 { → 304 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 305 smp_wmb(); /* Needed for RCU */ 306 } On the read side: 521 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 522 { 523 return (void *)((unsigned long) → 524 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 525 } and: 549 static inline bool mte_dead_node(const struct maple_enode *enode) 550 { 551 struct maple_node *parent, *node; 552 553 node = mte_to_node(enode); 554 /* Do not reorder reads from the node prior to the parent check */ 555 smp_rmb(); → 556 parent = mte_parent(enode); 557 return (parent == node); 558 } I see both smp_wmb() and smp_rmb(). I don't know if this is a KCSAN false positive because I haven't seen what my GCC assembly looks like. Maybe my AMD Ryzen 9 7950X with 16 cores / 32 threads aggravated things more than it is expected, and it is not doing what it is supposed to with the memory barriers? Looks like GCC did some "smart optimisation" of the write in line 304 or read in line 556? I am only trying to imagine what the maple tree is going through attacked from 16 cores, 32 threads and couple of hundred threads ... Please find attached the decoded but not deduplicated dmesg logs. The config is attached, but it is unmodified from the previous build. > > ... > > Thanks, > Liam Not at all. I am really puzzled by this and as I said it is a great exercise for my little grey cells. I've caught a glimpse of Mr. McKenney's article: http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf and since 2010 things probably got much worse. I would try this: Write side: 302 static inline void mte_set_node_dead(struct maple_enode *mn) 303 { → 304 WRITE_ONCE(mte_to_node(mn)->parent, ma_parent_ptr(mte_to_node(mn))); 305 smp_wmb(); /* Needed for RCU */ 306 } On the read side: 521 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 522 { 523 return (void *)((unsigned long) → 524 READ_ONCE(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 525 } and: 549 static inline bool mte_dead_node(const struct maple_enode *enode) 550 { 551 struct maple_node *parent, *node; 552 553 node = mte_to_node(enode); 554 /* Do not reorder reads from the node prior to the parent check */ 555 smp_rmb(); → 556 parent = mte_parent(enode); 557 return (parent == node); 558 } ... but I could as well lobotomise my Linux with experiments like that. Best regards, Mirsad Todorovac --------------8xPxPXC9BD8kuiidXqh03IIS Content-Type: application/x-xz; name="mtree-kcsan-20230930-decoded.log.xz" Content-Disposition: attachment; filename="mtree-kcsan-20230930-decoded.log.xz" Content-Transfer-Encoding: base64 /Td6WFoAAATm1rRGAgAhARwAAAAQz1jM4KQSCSFdAB7uWgojHQNWKJLOk2fz5wZYRSanX+8Q WhlWdrrYexzR+P0LaixvRCDt371Ek+m4OkhHv8aJdwQyTNFnhBf2p0Lkx6Z7AwpX2Rzy8+s2 DS4YDakXb5tUWRNWs/T3ZhJPQf7EUbxjB+TV7LkO7hUxJ3yosmcTXbz8N6Vw2+pYB2k4uYFb 9QrdnfQwx9wxNU9MvXTcyFxYkXLBLlurM2hzasNXAh6SFt+lzMBBl6RjUyAweMLxseicsOpI I+gJbo1lScqtQ1QUfTSf42G7KNoLFcFF8maAhlYHA8EzrMgb8BWrFAYmY7hfZCdXmy/sYGEx NnaBkXxFNMlL55rDdH+XZhRRgMZ07RBVhl4LNP+5emLBrLDKyZNY6KecJbubnTF07jjBzHOH lMZpCrWuN9rk7RvtsLUI9nu0Q2nkW63R2swLycKgMwn3SNBJ7vHxegYbRgjoZdjeDtRaOi0z nrVbFo9NTii8oEGSEvZjX9dEkpR3eep8oUANG1LgT54/tP0/wykcNynjoUjuIhYLq7gkP1a4 9U7IuEBe2MHoqp7SOW3c39mWD7CqNOGOO4JV/8rkOHcmpBJEBoOxq7+9/fj0FFjMuOUcR6dj VcjzumsbH88d+zxdXK3HJRxNHZCBT7B0zxRzY/0TZ8Fpcvcbzonr1bhEQSQHrhBzg+g8xIDb 2SnPpJNhFkDvOnnEdl4CjaG05qfpY8gMvU1hBCnx49sxacNBOCNV/+NGR1EfEY5Dr7Gj/POS +hTu8QqfL/3rpDTRpGFLHTBVb5D3tO5FV7FajFE/AzNYbTzr5AJt68UvAs7wi4uuVd6UlbZ8 Q/snyXmassMlEs15DJrIsg5fxNLe5oltebs/AXL+jqO/fhzhs2HlTVpD9VRzDle6/Mq1EBCz KVjZybIIvUwtrOY1ibMPVk9kC5baJFEf9YG3TkMjr4FCIQ6LrAN0Wvic4zPfX+H62h5ZjOpX HOmBmpPePEYHJ24vKX45RO18MWh2EeQraCeRWCV4bYpfnRzTkrcFTaPBUaItKHmZUYgQ2Rvx C1p0dDtm2H81PFvX9SHuYspgil8g9PtkE0y3rj9Qx4yqcYTEARkylBYPItmN8rHjs/RRYEtm EdfyEHxHbn6mg1e/Gq0FqTScRRo6CzHHhmFLQ56EQr3B0X525puB1bTVNPMQRwS6L+o34pOK gLXfbSQ2ZC42vUVZLR7UWaKjan4uvFZ2WSO7VaaPl31goOu8OZYHl+2gCFN7uAjxA4TF0NlJ uigX98BLYHe49iSQ9Z35dxmyFCAvNyFEyG4M1hg7UeeKEtQDGOYn9tSxxYuOq52Cib3uGzbQ witzwXklY/DLutBE97hPfw9AtzoxhBQQZeITl/twSuRk99dWjN6VWQ+JPjGOIcY2Xsm2v3f5 oJbDCjS2YOC5QcZ4Aw/Hmw42FRyYiCCjAtAAOxPwUu6bIV5wdUJqmDpzJN/48vuANI1ARLdl 1vC33jeKWzkRBXJrAQjFKcOW6U9k7p1DdG8oKC5Vckvo7HExvGXNGhGPZHHWZWta+MH5MCmY rTFhV9KNqqXTa9+dUoXAasQFqFcrepQXuFH4b07TAR0uajqOuG0UXloc+WkorooSU4pRC7cu s2pFsyZAJqzUKx0lhUnJA0wIIyXQLmixBiWZLxvAAc9DQNLonabNWXvX8PB+ngCl+PxywMzr HgYXN+xENJLauQ6PwAsbH7ISSR5I6EH4Ye9s64g55aKYq3UzAvWVcNR/XLyq7Z+3nKrzJpot UEJ/X5qk45CFZJ9xlQIpc9J2ycNrSZBs3Vk95FhiNOKztNsQit+3mmydwHOABvnaBNggL0du Wk5uL3F4RjEYhbY2Q6qOt48hHYOw08rQhBzXxYQoFf5+4Q9Fa67A3qQh8ArCTCgVLZWdP4yQ /DTzROLEH5glYg0YDKVlWtBuRfENJLJL8RevW1h7Mm/OceHF0THh4weJX2+MpUKCjXFYaALe LDP2bJsHosBC0QSZ9K7MM0EDERxVAkMPwFo/X+cssMKLhahSGWuzYWkSv0ehgX0FOEmTxDnF TwirmP/cgnluuRWv/6s5RZfpAtYW2DY3sqofok7RfTtVvgt4u5XV6A7FOoJNblQgopoNUaGU n0+ND0+7qq2gRqFEhPttFeihzPNg3TKfzhsptUBwNpSx4m+lD7Tg+Ju+WSsYqmP/UBhrrE3o ZZ7SF/7Ynq+IOFipCUP+02r4twylSnBIxt/E9HKVrVMWtfqgroCzYhzfESLOMYwJQy9pbi5c Dn9HgbSOiF1g//S/bDrL0w8CBMc+8YHyvtNITRWLr6S9BZyvpDPqsaQLFM6cIsG1HUaaJ1tf 4WPvch+X9THZzxLIArd7O4jj1mRUJ1O091whE4ia3fXsViohsIPqCz0O5lqofDZi6DyRbERh uwdbMWMx4qtvVvs5Ze3TBYk0O3WvY2m66k/GeVuax5jzT/6rrzg02QtauUVYWWTnihJVQIeG MXxtOM1flZ5GoQKjURRb5hV4NQrNT7NfQllycP11CQxq5lJgeXBi1jBiJdz+CTrMNFE+wsuy o9dh0HxaEyGJsQNsvxK+NjMMKAOLRwl2eGYr/TRlRyZp13wnHF66AQ/vFsmB1XGO2oaH0OJJ MNvegbpOSc08FsyttNBh+nY1HCQSMlSfBwjjvwQISd0ReYxvHYUn/n3NYMrEq2827P85tk+5 1RBc3KvgpK2F9BxTp0jxhaQRTcFt4ZcYlD9Osj5ddOwLEcuLZI7GPzABu2bJAGvkt4Or14Kn Gx3vxQfZDTLlrIAcNCYpXNC8zB6HmLjpLp2iL+97kuy4rsX2PjAL4nqC4uTSeHPJWQo3MtTq PN+CrG/Xw9V/KW/1TvnXcnL7gn1ZtFckQfnHFPu9V/KAd9M70FKl5r/m0PsSXerXYY4UH2Bf HkYgRbudBxGtpG5VGSxjL4UqalHQdWKBPH9Y8OnjUE2bWtVSCk5TBTEkDsod1iqM8utFwU2g YpW82YElbLDBaOZUj6XK/2ttbLqaEjTgUaqTgJebfldgUNblhTORVd54qsK9u6ZMFU5HJibL Kna5zhX+beE6RlPj63zE6EvJnyxKfJvPnpXC5J25YlxoWzT7fvDdQS1WbDHBAAAAAAAMKb+F S2bcyQABvRKTyAIApPtefbHEZ/sCAAAAAARZWg== --------------8xPxPXC9BD8kuiidXqh03IIS Content-Type: application/x-xz; name="mas-kcsan-20230930-02-decoded.log.xz" Content-Disposition: attachment; filename="mas-kcsan-20230930-02-decoded.log.xz" Content-Transfer-Encoding: base64 /Td6WFoAAATm1rRGAgAhARwAAAAQz1jM4BrnA6hdAB7uWgojHQNWKJLOk2fz5wZYRSanX+8Q WhlWdrrYex0U686hAG4AU0w/QUN2CjsbLKL1135nH/H1KZNCPyMUyVluqhox3MQjp4FlIHWK TdPd3DfamHkJSF6lhwUJd5diV1Tma33l4SKwspMZ2aZGYPQxF3xaJb2/Ozc5qE/INILA0j3O EyIn+dnjfWhxMlhVb4YUusD6h+6ASxQYOvkydFHdQ74NaTFuVdx7heCou7uKLGz45rXdybhF BLygnPOLlar8H+jj3jp3b7S23Llj4roro7gX5LBJSdFyMRljd4zQ3CJBI+VPj1hhLI7uY9UC 3HupGW66a2aew4lT339iuqI/f/7/KyFfYs7+tm2uAg/OV/5mnlZCygHxBZnMgxtq7bkx/fS8 Gd84sY8PVnuR07HylaZ2QXdBMlP9nj4aiSATnNAeNfjWOwfXrgF6Nqcx+wqY+1U88ull2AnY P2KZwTiXhGuDtonLfkqAioajwj9xxZG0AR2aa8Dz7fuIfXOqZ6OAzloRPUHSv9wj2gmnzAc9 pssHFZY7NsI3xhbJYdFpxw+jztCSwWOB3mv/KtDA6kN6LDrPiTyfdf9OVfmrlwKakJ7PEbfx HNTJ8g+LAcMBKEl6We+nrGv3yJrfSpj59g+DMJtFhEP9Ghyz0E5rfPeSjkKAj5l4xCNkh0MB 8H9Lqt/UOxWQEkJbXut5clJ00vjmMDvTtCRAKoVnifUvI1xVYP46gV1iM9NMuNeWZYkK2I+i oPeq2srpBh6k+NojOIhhK5TrKPm1rSyC3+RdcxwldF03kSg+SR/mm7z4s4q2wbzg3IDCFKzG s/ft0r4gu8Wjsge0fXrATsuXRI6CQcgzYxmAU5St2sCA7oy24c7Mp7l3yZL9o/BXUQ3f1GpR WF3gtd17uFr5XS8dPeymmsNBeGlFOgn+QYFY3s48kq2qQhv9vPMIQ4UfDRTNZtdxiecIyqj4 Hk0238AbfdckBUx0LEnO/wj6piCg7ZqU8EGQ0hwIdM14S+KXkR5NQEZwP3bQRnN7uqAuSlhB /AEGqS+quLUKt3xE1G8w2RUgSB5k96KurLn8E4rNiFGJeoviOk5Oo4vcoUa1lA9wbmgIEN0i f5R7Bu7FbxfrQLV/hwnntyfJB8gxEZTOHKLw2mIAC6c8j2OCe4Fs0bIuq3m734ngV1+GYJVl yuTyBXWqFm+GXnrSxgTmuKkjYgZOmTbdOOgoXmoEzzUCJwWNc+3+QODhnMVskK3QkAATPoew rWqJIQABxAfoNQAAwxpnyrHEZ/sCAAAAAARZWg== --------------8xPxPXC9BD8kuiidXqh03IIS Content-Type: application/x-xz; name="config-6.6.0-rc3-kcsan-00146-g9f3ebbef746f-dirty.xz" Content-Disposition: attachment; filename="config-6.6.0-rc3-kcsan-00146-g9f3ebbef746f-dirty.xz" Content-Transfer-Encoding: base64 /Td6WFoAAATm1rRGAgAhARwAAAAQz1jM5E0i5ChdABGCgJLNlBI6IyIfgw6SjuZvks2f3y3n Ka3AecfqzkrhG6Tw9/Aoznf97xifKRChF2rP6fw1xyq73IkUttDrdadu7GHxGNoIyTMUOy0W ShN4knn8I+jcNalYOGJpZ1JjBMls089gpu4uic+yR9IykyAE+RGtq6YUg7y5tX6W/nxOyCjM R1h+XwR9mgy2Z6gf+XMyILOFWqCi3KuJKo5jMLjqdIFVX+oFOxkGJFU1Se9NndEmxP19++9N UGmFIVqxq9N+FU1Q7QpQatgme3lgRQ5LV249G1Bs+OnQH35op8IhkozRbgZr08pNllwHNJVE cGQ3id+79hp1AS339wESFGEA5klnM5HG+S4R9ndYMv0ErHoMDRU7Z8fi72X7n+ExfGle3RTB Y6zQtqrkYQyhqy+KhnticTPzJjESVt7dwxrMQ4Vfm2Vc1tjpE+8MOnf7h6p9Ok/TdWys83+p aJo0TN/L0GKo1lWHj5XOxXkmDvurFEHlXUhm5NMSofEkDQZx0PpKs9B4qiBEolnEokICNxvt 6iOwgz+2YeRaYiJSdCRKb791U1hNnh9w2nB6PG+fY+Z3Q2gsf5LgjAr0EdF7fRv8tTvqINO+ JIqxYata77APLJwWspBepkG24kpKBACIM5QV4vE+e9A8oHyIJsi7kBsWTKlY71bhF9/1uJtb Lq4dCnx9HBSeG1zrM83R0Bp8USo+ifzEtssOdp5wShXY2pGoWOYNus9KLgroVZVEqPemXHy7 0JgHzwuyxlznz+Dc76L//ndd+qjaoW0hcjFfpD9ZXSjWrO/xWQbpCF4Z5X1VS3uTbqF8Q1CB 8j9C1uwBZx9hvowfgEpY2a/1VUYDDvUJXDJgUPKpi1pmdsI2w9Ia2v1ebCpDWRd6YiZOykLM wBNi2QEI7yaSwje0bX4OdjDwQb9p5PjG070ogIr1WjcXbGWxmBVeqxrbVxrDIaLol0Ze1FJG TCbiQ0QdF4/TKaCV1vNgyZj7iToj21y3SqLrrQqqL+D4FwFH/CQWdKypuIbvrYWcCxyfAVFb GpF+EihPvyTO8Bkep381I1kk40nO1cAYK2+V+R/coMz24dxbG00okrn6zdEhIV/lIzBG84+s A/O/wORBq/1ksuNwCliAv4eVmrq6LGt8I1PfM0xlNmoyb+IpeiXLTsoHI/sT674c01VdK5xf kKP7BMElSUMCCMRV4up2wzbHOjgVBMsTKPBtwz2g29FyXPXsOE6HxPEeUIIFQDGTDWMCQvIZ 63Vy5e9uII0ed2rms1lc5NFbVe/9Ox0c0qKL7fG8z9cWA9vMuJqtTMM90eBkW0TPM3JG0ENX y5bis359ILGJBeK34pm1goWD3tX3QR7V/4N+ux5m+B0mXpuoT0BkbjBenZ7AC4yiMZYknyq8 zTXp8i9Pp6z5nk2SZubrN73asx3NBteDlaPsdzdDrDvr1osP7sdg88Ei89Nx2qjzUz1eG7Dn hgMI9VOvgxqQMFA2XpMIEZJWGcgW4KK26BrnPK8DLwNFCtq0/H3H6j8PcXXTiKKkzWKBgVqt XUUiyyjQrAVvGOGk132PKPDcZWwYiufTSJt4JikHj4GGsedMeZ0e5IUIQFiYXD+fEfpfjTyl GN1V0tLH13mhMIfh39Oqs6dnQgr/A7IXtZlM6zj/DXgPLGf7mRSsp9ANCQ/cUHJncAy1tsdi CTyLrFprDudeC5tXFOvAytpUX7AKMlLy6QBEthCu6B1PBORSUOEV+Db6+Sbc+jPDv0OCHnsC ZEIvICw1Usf1hQhz8b5zYS4WUQ+N00mb3+br9UtsctilP9aoLVKz2V26vHRar6E8/MKoVRi9 MpPjHStrz6UKEwP6OM+dVvYeDWvi9KrSZ1lhT/ZHpylU18IGl800PVvrX1yX3RPmYe3XGLDY ua/nBfI7Z/rDS9waqGHwQ67dEiyulX2Z9+4mhzjR4DxsTV7kJKEh5zsyoVtVbTsf5hvec+/u Oyy0/qxLzJ2NFHKiDOZnYAxCcikB/2zLacDyYsgV+XS8Eku5JZXDlrMP7QKmdH1mpsTvG6Yy KP+E01dVF2a9jzbkwjx8C3qJ/0OUqlpmzH+xOAOmD0UJ5JTUn4ZJK3pPqQti9C65B4Qx80Kl OVLOhOTJhUCuNATmBp0/xmcvEQPZteDXYK9kc8o+Z2NvhT7lyldL6M7yDhOhFZnYLFxbocKD AGPetidlekEeLXpFQLz2a0MsTYFqG4j4Ajsw8eW3suMp5NZLYi3yMWuVNOFbFENs/9i6mQ6E cva4rWWzR4mThP6zgi+BFY+9uYVsZn6gKdZsN4GtktXUmmXo6L2VekYNztS5rUVPNr3IoiRm A/6f1UPxsXwzCrhOW4OYb7G/1Iym6jAboFBDhyrM34KzTw+uS7ajL3XMHs68rNEVKhH5Hi5g /pzv/Zmp6T7RABoZnJYSkK/tE4xWHOrTArg3Wz1Fz02mDe71XGzxqU4V0eJRBQZf6NIwJgAJ LJ2NnJ+bAheYciUHeeLE1wWgX2kAzedIVyS31PZRnDEO60RQ8UeLCAk3vSf6QSzIGKwVVrEG Rzz6akrAvyKvnIOqCCWDdLAb8WLoUSyYsEFhokOLTl1y7GEEGcqT7D/gbh2D5h+uidKExvX7 eqojDocz8UL1PotXXgxSZpq32D30bA/Twrobb0OL3ynHDjrAABiHRfN6Uhxte01yk5UWUSvx to/P4naC2StuvSHEyUoDKbpvrKwV1fFevoDOWi7ReaCmXpxr71taZ2YlSJOwFSnbHrmuiHts 2DtP6R1igwfiv3FwCzf/pdxq52nKWNygwVZ2MScaaf9gFeGWtQDW8evUVDSPgGo4ERD5QQ1V HcyuhhKPaGuIlZjMHHy8bUZSdZGegJBMBQ8MFyn++bJ4ShaUeTEjzNrhXF6SjhRrhi6yfLI1 jWGROYwfb2aBSu77iIKieJR3Wt+b4f4H0Cg2w5uDOYIcif3bemVx8Xdey3ZGWvg1dlbk4g4k jPWShFe5hX9WsAgQQp1i44Rh4UUjofjlMYOxPcycNUew9V7Spj1LS9RZOeAootcz3xWNuDfu iig5OJqJ9gUe3+JPz2YVWoE0MzrFGbgwOCxICZzAxSa+cMxzH9IadyON829oEVD0/awoN3Ht bRZZaf+MBwBsHIDhfIm3q9tTgE8KljnYmZ3I0aZcqy/+ADFGKvhpHHnHMs7YGytaHIk3K1AK WqpTJMst3iqgFfq7subacsnGOUmQmSSOv0bgD0/7hZNwYOoMj36LZwRGSBzCe7DPVU+g+BDu FZZfiLioijDPD9wxgsweZWwq/5GjdFAkd/CvfmpfnpTgOgd6azCMDHoC8xw3fcLbdxCVYGVK X6YyFNAiZU4d8EphPEDDZCAMnpPLt5nX62FMi2oXEetHrOYEQygqPFKKFndXHw+Ko4o5tP0e Uj+o1Kq2/GD8rt/t2VvXBFny5Q+f0r9tvsKYj6TAXIcf7f90P3Fjw1oIzGSiQYPoH/Vasf/c XjEFTUSG+CJ9cGUplfc7eGbyuwFfWfLTdftQ+GHtWwooI5m+YIA1XwRhCFzMiG3FNknZw+Y9 3v8eUeBxpMTyTwCyQEUo84nE/g7FTTkc8mzcve2kUQvBMlDYKmXaeAZ62mPYcz/IPpiJ6uiY 7NjbnUmzHP9VAMgIYQyUydrUXX8aTVpvMaxPuG9RsBvFlEL0N/radv+V5RypdygMQRjJD1rV iBOWDOJsGixEglw2az9p2WdxKGb7e6yyTY2RhNGJ00EFsH7C/6lnw9aKhnXkzNotQtN0NJ70 re9XnSgQMVO83JYqXbi7VrrVS1pSA008xj+5OsUXg+TYDJqa2dBALQ/YXMB/uFHGYaG/ckjc xYYc4roy+60dHAUXO80Mb58dkm6vKqsNtVZ9kOjHc4C0JncYFknppSjlXLEWC79ht93L0eo9 I4CfBNFHmsfZ3z6+aamg/ec743kxXEMKs0QBZWhvhRup1FOJgZrvWx0fMIbf1RcbeM5e2Ruz C3XdVE4pInBgvr7s3WwO7DQn60mJ0eA0dyPmAs+bocAzDJBu1Z7VBmIqq/j/toXpbf0x6YC/ iXz3VVBYieT1xph4GCDuNCGzZ1F2BRf0ThboQf+AQFV4s8eQN5Pwsh27dnMGC5QewxveY3FI EDHPsMBIUIugWhem6mPRNFhnKPaPpqCDKqfo049d67sCeKwfDxP8gQ9dL8epT5nmEzi2BG49 oPZjHVSZyaQiygeDOfPTLKRXsnGMP3QLZrW0fGRAobs8r0iiB+RP//skoKZ9Oyf538iOEwXZ NNezlQxKdyy0KiOnYVNG/TsqKhcjHYYnTi67OwSOfm9lAAQQ9LDmcQ6ydYLeinYovWiQ2EuW EgI4LPBPA25OLNZR98upHycKi0yZ9YDOlxLiGsOrc0OACHa+pcG5j68iv+aHdP2AbQcAQTjj HptXgELzMF254F8Ulr3FEgV6Ixe7JTvQXCsAQZxAZco+bj1PDPXsA4M2Hq1qJm5mVxuVu9Vr a6nE8Rud7qL6Tyt0ab5x35Oee4yWBttvFMxzgFltrK33Rdk/U4QVU+w/czTo91xpcsvwW1Ke JGGtAmUdwfGCLYtsAzSC64ePuiFZfiXn0hTNvdDHWMyYLuNS6Rg0RqD2fQwBCDUS+0x7dM8O SI+wziM4Z3L6he0FdI+9p1/V57J+JeOsSLoKzE/IoGnBdLwmlKNFh5GZR6jtKIzFjDFeP0Nl E0+EPyJoB3RZ+bA4O6MHbEpGjKP1a3ig8Y1lv8tKXKd733u6uS6ACPJby5+a+hob/8Xb4jnL 91i/1eXHCgrI7qK5hEWFwLfZ7TllNC393WzSNkdoPeJ3ifEHFHSNNiLA1/T3D29tSmirPBwc I0ZZeR1nrnaXYR7Vp6KtLBp+xtNtbTm5vJekr4FlmwC7S/sVbQbJU1SGIFVoYeQuyzH4CDkL sbWzIuvSDYtjXSVR6X5IlFGKfIkTPIZ6MiDLVkv8HswfqU5GyD83dBZrbs24wlupML6nhFkw QUZxU2JZYUMVtBHgb8BneL5dCJQnu+Hvxvku/5/W//NezzwrjsHe1h9ByuxZ9wxJ9VcVUqiM 6SPXIsUYj/x5A4OuOzJ7narg6wZeWDNYzinPBOGC7LHJBbDANJY2B7vjFHNChfvn3ZEf0yeZ 8OORDJFWFZ68ihr9JdcHymNzPRZhIjFfPYP73XorJMeNdzk/R4YghKThkOoMZcTq6DhSD67B 9oN5FC3+oS9TvzYYcc15fZ3v/a5NgtsVVqae79x8zi6aYZ1+IDIw4dlkc2KV1IkepM9TT0Ec +rc4lQz/aHN0I62V2lrApgAZk+QdehQZr8OsE6/NmjnWZNya4Dsqi/c6FMMZNTZkEK797epm YIARJ6OnZhK+biyDVv9jj7rHvJFBfRLSXrJa0oYuWsK6zdeTcXijvSluYFp3gRN8/Y6t6X2c gj0rS8qUmCiaOmp/7Eqg+2wyD//2WOTmxAoCzddXBYBNkP4sm1Y3y7qxxFZqXFV90J//ASCD sd4MAGbcNtLQcV/lxGE2wzpskp5JFR9r/8j6rv0OMapsXGD1Rc2++BJKRSwm6Fp8NeL1wH5D +UP1jgwvEpkBn5Pb/AxkC5ouvdUSxfJo7DlBUtR8wXx9pTdsxmeterTgXbe+jfCG7ddyevvg Yb1cdvPaOk8BDDP4HlbK1K+ijg1+gI2GZ2CK370brSfoRGIfGY6roUvZXHa1xXAQTv4P/Via 6/VkIpbSb2XDR7iVD7RyJfQiRHzVL+jcY3a5T8ARHKLMWiDnHtrSxfshU0bTy5BfKalInR3D 5d1creknLSQa4h+NvbsrYmXK1W0BS6VaDNoaKZlKaB7ckhL6z3IeFocpqTl919g56avFNgaN MO+GbE5Xll5xGy0sTKiExSgZJD6u9aEzFcL5kzF4agex/szqHT5AsLT9Z2Sj7Hs5Yh7rOnH6 iUqfZbFPL1QYKSDrlVK5O4DqpTTyHOhk1P8OYxJVJ8tsr2bSQxbTWBsZg9pF6YoafIyEh1pk 0MhKcoRaHAc551NeRf/AbLSMCjURkFcPm6Pp5QDYnRlGHWcstpiosKSl8IvhF6cEGNP0GUr8 kF3ZHdZgbhmxSgghMtejG1Z55EysIqJGmvm3lIaz4xJSmmSDkBsoqwz90Dfc4dmkDUHG/S7i 8GNJxMsW4jtCj7X5J6hFF6tDlnbJYvDMLthrbkcYfQw+esUOZigK55IA0trd8XOLRiCp16+E sD4Mq6vFMs+8NlGHAanp1VEN+lFnl0oVCRNcKxI0nyKCkgMIs8s9X6J3WG738V8Hye83E6rT OvMqBZx47T2EC5uIL4wABcpYfLqbQqJzBZDJ5DafC1D5KA8rMh3l2Q1e2trhua/8BDwlL3lI DpkbAoTO9S7b1sDjWwV8HVZr9JU8I/l0l4tUz67XsBQ4zikEjw55C+gceQQKzACOnqtMQ7jV wo6sYcou/T0TUxEtsf995X+mMU2BfdtMDldyRT0S01eo+ofkxm5EpUWjOHwS/3g43k5gDBhe Bcq2DSDz53zSnUFB72dsn1GMlXXKLFH9fxWO9v0uHkR68acTuq1S0BT9MlFwh0Bd6pvP34Ty znr4A7oEsznagnNz3UJLpSbRKrKBQtNCHXAj8pLZX5kGwQJmai65dcOxZf78mKPcAhVBBQOJ N93xolOaA3z1hdV05E8EuN0d4f/9RS1VbL6n2SBEbvUVZwG7uGXyysn+ALn6LX3kJ3Z+GboE Ct7WV/ymiBtLkKVJqz2fRxYvwR+61ZYEOXwG1kaOxjhDHzOEWhL1LWYmv4YcsKqGUVbuk1Rx w4sJKz150cvuGMOwfMhChxU/AcsjXgbovyZAnn+TcAY6Bjntlcl0p/jvl7b2nLtGfNG/uQYW 1Ggu4jZc/2TNwa/3r2MzuVweP4fJisPodappMVs/HtdoDB5hpgZTTSewQh66/aN6zz/rEOCt kcwiMfEMn9bWJIkdqXDE/f5HsRKWo/lR/BUpozac3TdbaOWxoZa1WAyEsdR0ySA01gWQqNGv bligQ+njmhvD3L3FX65rYT2p3CjvVynaG11LclQaMlV20uWrMMyt0yufNQA/edpaSSZmZvFE TxfMCw3zsfznubqnkMDlBFz2t0j9n4YihiOW3gnECz2811hUWhlvNZaU/E+OG2Ixl2sH/T2U rqIioPALyQ+fT0UpHJGqrivz0G2VNEdBzGGxYarBLkbiWsDrfY/8nUKgOqldganwVqSYn1Jf qaoYdKYwK5El3rOkEARWmMucrdSqMCsCJzE8CYdKs39ipiWusxI/Wi2vhyx9Gl701hr721ZV TqcS+d02ptVlvyiVtu7loNMcQXCjibdbMzddnqfv6FF7iKWkyVnd5eiFIlmTH2+I1dGiTBL5 ssj2A2lF9uPKcm0EwLo4ZXkq7A4AN13afxycRaoQe/kEl7q7O7UHlJEr0AG1+byAxfJw+lgN aYn4HmbFx7RyX5vp8TDFIjhCWFoJxgFs/EcOHMzhyF0R5Z7iMsLV2h6QEIaifhzsya5ysAgK HlX2V60ytQUem7Ew+tRq91mKkjx/iLt/0l40Wq+XveF418WibOlnfoDfdcH7gSdc5r8eFleW BBUk1KXPrJ5IdTubxj8s3qTLb6bw+PfqDR6GGuRiZE5JBNl2DrhlObJWgcRc+u3NviBns2W3 B4ri/J+Cu416hpquvqjx8GfVLnNpvwvivhS7/eR1/gEfftx+FNrVNDJW6Mpgf5Gt0uwLKFKr GLIaKyexsHPyhmeG7iTd10DsUj3Kj9U9rDfUAwlqsWeTsAJDsMOyns70LMrvhsTonpaREjpf 9nrxTOdiIaZLRZNpxUejPf8XcNsT4qBRMArjeUtmEhMNV4ER/ocgD8RKtuwoa8eHu0Onfc8w 32fM/miFquzqaB+IP1ULH0mzx96S0CC7pWUWBjez1jVftvsIR7lecXzQNoITafEPjX3AGNQs 2g738qqqbtUBxGr5qVBsuZfOUXcoWqr7/zor94GgwIHM9ZybR80903Pz6TnkTn6WbrfVcd6Z eUvNdw6gkMqMB5weo4wvhbImfZdLJvFAr16Q5GO6za/CsyFvo1gm6dwF16qXkrI2tewfP3oK R6s5juX6+swYQoaOTSIcZ7T3pzZVnJnTpLLGlqwzorv6wamkdKCVdFI+QL5ltUKGhDLXXxnB 7i05mPHipPJ2NGyxnfbOi2OL5SfJi89tUGMGmvt7chO3nwGERaMOVGKYgwvLIIU+76b7OG+X +DZC1vaOIFgnZ36tE3+fdL834cpCVvb7F/T5Dz5YWiZbiiJ6DdJHPnjwuQC1z8tN2kOeu77C 8Gxef5/fs1pPWnoeIudgm8lqsXd4KvT0j94VwyyaF/l64OvbsjmXwsEtvrdjldfNS8LTnvXT VA+Nf0I0fxe7NcbjRE5THFbaB0THORNuv3NwHwhU4hGphs3hiuKpbSk1ypG8MRBSabt17s+4 nbEB1iiBVyG4r+Hu+/ZiC80dDwXsZJWqu1YlNhb4l2x+9ShG2/UIdZfeRfF814DgvRqjv8TV uv40NKS90egWHWG4YuMf6YfjmZ3YWm3tboALM4DouxY2B265m/OB6MoGAkYj9OLEkMGn+fcE Izzwms4aRR+hfzGVaikSA/cmKBVkuY8XGuanJhr4nN1uNWH7q1XXiU0dlKW4Hr7lZVP+JqEb GlArCgXdB2FnJ+gspMYgDZD8LmxFXBvkrvMiWiX/zpTCJLKF1mAj+M3Ls0ju/a8o8Ytvmy+C fy9doS8vZPwb6XXhl9SKUIo0/y1/6/c6ZZCht1C2JnZxmJ5kuj5C8WqYeblFiedczCJxe0gD CtPhnB8exmNrD8jFJrmcVLzUY+4iGdX9BwdwFnM1omtRMMkb9L7TMW4EDeLayd0nWsrOn1KN H3/ZleE4k9qSzKWVhi+Ar39LD/xxn38sqyrmw5mvpBbgEhF9b79wgBTnd4uSBKAfrW4u/rTM Gg4g1ADplSOIbL4Nvlkv517OgU+GlKbMrPRQ07skwTK6I9IhBGYTiAxj4PkeycqXjCck8a+Z NK0JCbrjukpcSIR7cwlwcfZfl4QgIIiJUqWpB1XUS+6P7W1NpzlXhiDhAeRbOPiA70X8eICI gm3tITq84Fh7GN+ZOIOdxvmeBUq6DUuhfUgWyqbaSvnesM0Fl1RZHaVOzIwHlfBmt835s364 uyfK1XPFNSH1x2ENIV/fd/fCyZffTyKRjVMjNDJQHXq8TWBtHcbzkOLy8dZ4vdgqgNj9okfq Drrswfl0qDh+h92ngY0OpJeR8aEJWo4vQ4+BOK/CLwIRo5COf7YDrzgGeGBr8JbIxpPZdmKA indi7hvb99j5gSbA7SKKYSQe/8jBHkDPNAEYjadw4mwgl/NWp6m+h6viD09SGy9W9ElHo/rL zUYL18pcU9G4MoGaMnmLhDfIent+HZlsPJipkZuwZ6nGWAbOXbkKH8v2gz8IKRP2NzYwxhSD Rmo3i0u8sYxSE2nyu4QI2v2/0b5ozPYXOe3CAqdsn1hJRKSQ86WB2bkrdMU8fQ66RQ5n60es 5lLihStJz0LN6U9V7UUgMxyb/rtl1jPdZgsrRVb8PgftMCRHPvzzglquZn/fbZ8BFM6pBlJo st8587TwYqBgbSUfECOaBj+E9vfFH+/x2LNEflz/kFmtlQV8YoIZdYXK20kaaM/ntJVmaxbd pvCIfPzr0cwmwynHQH6/zU1yywSpt/0WrhVTpmLTVfxzRVQJoSoWXOhcqgGX8Ocb9ejRu10g +z3qOdD7Xdj1CHPUzpYtNs9vBoVzrrGaZwm+1HYsU88mVsTv9fv6b/oxhIVQekqxbBRBYL4s dAcJhgD+egf7s2MOUaLJjWgPOuSF3LIWHIMeE4vsma+czD9Lnj6xkAK3YJRREHQN9IRWVm4/ XeeBDeAfCwiVU2dYWYzNSqiv7pO5u0tgwugaSX7gw/vkU8LU3A45HJkOMI8VwJt9xErI8ZP1 +S4cTgq2Cb2+u7DK6iorLtc5SmtVsf31m/yZOsWuY42hgH31Y5+q+6DX6guw5vTiB1g3c3SC 8wDCAj/u4nYXKB/5IKE6hA5+vK/sWl9GKQFsQ1UTvLdf4MDEKnLBgIuUgFRzTXYrrHKd9gGJ mz7ICJ9GBpkw1fALyK8OFP9OpLojoTN+0ZojLNtfvlx+MeJ3jrO5NOgiSH5PqbVkoL8wLL5l rb9w5cm9NEsmlButIcXsTsEfmw0L77Y97NKrbIjTwjEgVW7GExz6wCUoexzzqped2x9VbULL q1NfGA8e5K2fDhalI6T5mdalVuaGoDUu6DZHVqPTaQHqJuEqex8cVmmRfEdQK7nNDGLcj29U G1VZ5aBVEQPSqQZC/rmjRewmzXS09WOG976vUsrQ8R9VIVCvsqgZjGA7t3CpEmLEb5E4xiVW Bi+jJdc2rZSVDUSRX91Ea2ZN7kaNd1Yi095p3h6Bi+G9mElwOGkgRM3qWMISGYeppoEHEi9Z +O4WV3XECrdjMqURblVTtNheAIGZsgv2WUcO0dCXoVPbqn4o+ArBhG3cT0LM1T2EPCF5Lslt 8LKMJ3ZGTIGgOJ/v6qCDjfWc9RKUO6/L3WezjK/XNCTUPb/fe/zNHN3MJA81cA86D5A6hzSQ R2HshqdGm/eoaeHIfvJK3nA3/0n0LL4UB/Ixm+yFCtTpqzJeYXFjrL5uA2GnvfD5v1Fry77f JfadWdmZWICD2DhkJXHUOowbpnbtqoP13VbVXKCxU/UI5Xdq2CjWIjEFtMyIcv/nVlzd05hp h3kyo7NM/tRdO4eoREYNof77a0lApclGAqGakOxG9XZOSxTDoLZDAQMNShybZ1oWJ78JHWaf 9tlr54Vt/zgwqklHtoIQWIXc9mhK7i/BMEBtux40PJy59NRKd6585bY+wKSdFrDPIdWI4DNl DNlkEYD8BaLbFG9hMZ9B7URjohhih76UoXUJ38TMgsUfx6RXl/8RY+C6NQ9SlKgJ02I+3Tl4 nd07iCwxK6yykAfFJd3Tgx+YV5KedJiek68E9eakD4bXADH8PPPDghI3CKgm8ukh/33FRKOQ TbvDd8+tGbzVhC0vO1bzb7plxoX+emSjXMFRFeODZ5WU6KY5/vmeO5VKsT8AC0jG57KQZe+/ BOgnT3jiwfKjKBa6Z5DbRVGZMyiQ+tiLXj612XUOjEi9UQbUaORk00gnkojXebqI6MX/DPXD uVjNGZ4SwSboIZsZwhs2nJv42mZ0nsra2H/8kf1knCoYbuSVNvpEP4OL2NdDc5NH5fLiVIiv f9T6b9/je8TJ+di2JRAM4qy63b7rCtSSCui7vvjlnmjKCMIwUR8EkxVHARgab/BKnsHzj1Jq kTSY+1fVYT8ES1abe3sYIz9W7OOHKugSOhb1RNjZf8bDVf2x2MmcyRMD35AwPPXPHBW30Zi1 nFAC1aJ0SqxLz6Gq5op+NJmSeNDweUJAFd5yMP+UoLe/N8i2W1g5UamQxzaVHL9Hby0i5z39 E7ID35yKW2YxO0HaS8/N0012KpsDvycQTcVjjE6V+NokMce8JWsTta6b6INr3jHLqZuCnD+3 X/pOzjJmcK20BR5l/myj2MU+7gVc5F5fD3A9vVBE0ng5wKIoaJIA7cEveae/pWUnV6TlH6bH bZRV7OjbthDnuuA9w6imibBiL0c14oktxVQnBvBr0ddC//SJGSMHeSI/4KQ6PesIm+HI49yN JvbQoUPOmTdW/pO+TYuu+hKRlT8/wsI6FwqwXYF+5R6IBi+ekPE0XuhiHvQVMXa4AdjQEPTs gSGP1Drj8jV+e2Tjcjr6/c4/0T/W3wffLkuzZlOpX0yss8L1kSyz+/izqlUsd7REw8f3nmlN mvmt5rEcy9lzUKoe5ZfxNVIalqlrNU9SId9jbPc7MBsdaZ02CfS+dPhyFUcKaeapsMYPJH03 ajO+QwcQz4wDKqvXGcLimpjEdWMu0IZ52d+C53FjobV40Oij0wJtzBjhJdd+aeTRrKmZL44t 9WGhPzTrgd8u2orW9Rm083Tz9WWmbLGhNtTzCRtcoYAtQvuquoqsfpYnP57p9UMC+y+3DF0W 1hhiMYCCPbvIG+3INnvgUKQwmEfb6Lb6JeNAKVZvFdx4opExz8FMO5inFln22BwoOtl2FSzH w2/rL6Im6523Q7nfzMU+fM/JIgv5TBITGl+zARUDQNTvP1LzuPaUagwB7hX4prM8XGyHXufw HkMUYONS1+JZxcT0uz4Gkc2hov3WW+1UagOyBw5hwn5v5cFBMERh9+rg16/W9baWRqNJQZwG q+3wKoCsIA8Sgm4kL+Wlk3LY7aOi8SH4U9BQu5TVToRxQS3zY1GNlceAwNkcfQK699cUW+9a F3GOeD47/oayev8yv+MPB/VOkT4DPXWgOP0c1mvmL1SKYPbTm84/lD01P/z/hIByY00DmH8W b1m0FC8c7YytRy5zIgXzZduKclM5P+AZx4y0EweZ+JV4CMdKQh1xdJY5Jh4uI8EFkyeqixpj UoAJkS/lLbq4HnLAHi6hO4eODAv1ha833bnBFCfpVfuNLzWZRg4lYsC0oYhqcwd+wnGnvYcg OOG5vcMYNZN24ZdbVNL3wnpDfQdMATfaVbCyf/IeNkS4+ddVil1chI3E95rh6KCl2GGGFCHL /FzcS0e4mTJrFCFsKx30YK3wWOnA5gZAspo2h0P2sA6yzjyobXL/GVjZF79F+OpW13o/q9Us B4H1a1UpaczmaafB4RqQpRDP03YN5lrt9R7DQRSfzu8zVZ5oCI26LkH32CXG5q+9yLAcORgN GtwjvQeWk0IOdpiAsiAbISc7SE03m6x21bDs++X4LI5MQ7hsQHv6LKK+ZIYP5qqnhtWp1AAL VLXKu//oY/nmarP210ji8SUd/P1ZmKSZUAN0JZXgrgdJsF4+4AGzUOj1RW11up11eDOcOlgQ WhMNOZdFivKY6O8Ev/m8Y5mgKvMCfEw7JEJ8m1H0CTQtblqzbYRahMw876NwrmXtMJ2E9PC/ 70v60Do1Kvb/1lOCva2H/UVDx7DU7ZCFVsxzGBJhY6hrUFglzpd19pYRGt1XpRkGE4TeDT67 lXehH6hjbPXFYWF7fSy0oBjzrZuFZRFOExc1xGmGWcV1htiQclIV6pe6uHitRxz+0NXOsmkT DdFhBqGevxCbnAaf6fpDXI4pZLoXZUiiGrxkY4l2NBJig5Y/74w+H3jy3ge5qS7jBThN10Gk a8XyfM/oEAG2UB3uBVzuTUNZ2rGq4788bx9gfvLWXIoKARyc6Z+sYSJvoVSlKZWv34oWXLu8 0viEuj3xiTem6D3V9wMhd/Tzwv7cF65rs1mlbK8uRI5vsDM3mcZTASEsvzHDsPBJFBa9Cnbc V0Qjxs5Xne7lVHdRm/eIQdVMwUOb6wVhfZZ+LU6prSmb2StUObSmwMpJrybtnoKir9q/7Dd8 wn57/a5Uzyqgcggg71oAxAODy09aYJUDOQjDusIKpIx70aQAKsJW5Zi1BragvT6mhb7wlVB7 h5So17ItWWCOINc3Dzetw56fIcCy9VVkNTVXoxI5M02pBuucJ26Vs+feT5uFfiL/3lgSf+YG teFEtN+Y5KTVbKdVQftwZQaJ+G5v32keV89hh3i3quyxJn+WqqZzJvzMlasSa+wJFP2A5ttR 3ML+vMG51MExQdO7od6jn0C8PgTqG416j7p7eI2aBM45Ucki7UxgggpTFydNvLncnJzkWwgg 7p/rmRYSLac/cPhvnBqfBQaHuXM7g3PLmk1fzA/8plHkbUQrcmyEl5OxWzFw4nLEgEscNl7M PoTXuOZGd8+YwVtbP5R1xqlvfsq2N/FXXB9XEb9t0TJLtRlOPMID2sNbWMssyl2tNcFAKYWd aY/QLWZsE8sDSembDM99ow3VdYau9WLWKMp/tD0nLFfN06uxDUAk84inBAIUhZQk3cgSJq6c hc4c5r9KsAXXSg92A86jR2pUxy5Gf2kJFFSegxy/7BVDhEuRb1PKZCxayJ9L0g+KZZaiTGJc 6Us8OQY4JW+dh/yvLg1r5J4iRN++DiFjThjvO/VP64HpIb8t17BLtoxbxQUHlusk7ebMQKaL GTpIZkhlSDM8zQLHCNviWR6dYAXlMNL3fmEXr3EB1xtFXVOXpXxfNQYV0fm2s9tgmeDQJX5o SLMM0PuHfKqCWv7INfP+GEr4Qrm/dWu0NQoCj9dgFeEIYdy0KZVjPfIWdHMxJf4dsZKITj+Y ogWzEfKh1b1rfDEWf5fHalr5yZyKuKQlMeymSriTkwNqhEfelER1aGTnr+lOenUtOd3kQZgh QzMi9vhlOmatLvONBDMvrVYWN3R7AdY7mvTr4eHmwsrpMdyD2WGiSTMQRuEwQ65teVtCmYv/ Yym5g1xOFoElpLTFrDCQOxdljzW3oN2yUEYnhnr9f/ys5kvtxJhjeHZCoZeNf4zwX01oW4cs OdvIi1aAGdezcoNL64N11O2gNZCnYqDZ1gnLW1wInkXueFAJnFw1CYAvXNSoksoo24Nk2hWz o/IY81y4gDjDP+KhyQECD26JPbFJZvZtPoPgz/5s823bA4iUFCdNJx5so4W7NQIk+ZuFm3Mo Yp1GpJnVUSW52t60FzE2SRo6hU3Z55kGpsimJgPZCflXHUaPFs4NxxOT4kSp0ssYutjyehcl GLyUyjuY/23B3lpVeehNqTj3e46A8lVpdgzfPlz7/i8LIdS5pTEFwO//pUeyQ8SpcDfK/OsW d2XOckfgULwZIrBpINzFFWQlnS/O3HeQNS3uNuTYe2wuoERcnrHCgbGi9lu548YP9pMsaKyi K/4GRjYnGBFaGC47/ABG/IaVCbsaEIQI/y30+Xn7E+rcuMiU4A5sa04INrCV9rFiKaZwEUnp xWWQ3kHpuwLqRS6y8YFc9WFivEOzumAPswj8Vfk/AU195TTs2Rfw3xhsXsJvgqqE89xMQ0GF HUXvxz9MoGbPnpHdA5phq0m7Hitv8rctAHFy+MT2COjPg1l8cTvyNuSbZuveUkxqdjJJXNg5 WVj5kYNL9IVob2jig+QsSK7XXC6temNC/6FmdvNOn7+ErcwsPBkUj7TRu/UB3EbTr2iP7PkA ef/LgpK+bfgXr6qBhE6mxEvUKNt6weOIBSbJRkr1dM4Ao1C45Kcbc5DvXGC65Avy4oR97xor D2hn0dHCK4Q+Oq+rnL7CJcby32xKV75zaVMN00ueC0B8pyxuxWhXz+HsYgZWiFvwnN6dNXo1 QWWk7kQWYkbGwDVSnGu68ISbJYAKqxrY3Di+hfbw0v1itZ3P1kts5bDkDLxutn5IQszKKVAh mFXVr+kDPHFAveS5/T37twkanAnpAefjeKbNh4hm/QbkQ0cagBJvonYFDQfu3nRXZuC/qRWs 56dtHeBjHbwYavYUaN+gbtDBk+X+2c/2M7GLThlQ7MgDVpGX9W+epNx+s0/04WX9LOODBvgl BAOH8aVunMGUBXagMXhfTOoC7adAQHHv4D4dvWxfOlXt73XucLyjo8tpOEGwJbSfgQxtK0HS XosoioLngar5d8yh1MRJ57BweZgazSqdxQ1pDWvmjAHVlp4IcmO4MorswK/J9c2auCpgFO2N CH1ix0TWdWjxb0W5liT+Rd9vxSwNOA3R75tRygYFDqh2MQl0u8sYJ2E9UTf9/l+BaoO8B7Xp xh1VwgUqiDkTDBiEQUk+S6uAs3Jyj7zWrJ9928Bi6v4sz47aXf9Pg0R0L8QaZ4gFL5y8k6CI pBgpk0xWSHhmF52v3/DCx4k3HafFLETC9yrP6fpmm1MIFj4UfQOiboxyymt029SpFMbE7fxN GxWnnbWgoBUIsd9+jh8qclrwFR0MuWwNQ1gaZLHppioquUu0eICc/I/pJjrhcK08R9dNpgvv 0zgKzF0gqbDTQVNjaF7aZSdKgcHPC78Ie6oDNtaL6nnWPg0tcmTJETjKmoWqjAYoLdLhYpCm mFIWs5EEec6B8+jiyBS3PUzpBb1dSo9+Dy8AC6UD0UcXbbxvg6mBz88WvK9GWfUmY408/faj T1peLq1Q+xyZz/FuzFO286P5TLSRZEy+HeJwn5QzaE5sUWtEkf54k5jpNPLvB/poWmZWBM9D rGDyLgfYLI+wwganF17LdNoeYTVpfVczXh4a74DMbTTi4rcIfEi7VpmDt6DWQdiNQVNnGlsp k/bpAyiqfofllnziiuGzHQ8EVyp0Jak8JuEjeLqq1hn8TfbskTZg8lRYEsLXPr1dHM/8Xy1m 3+jrfyblIAaEu+MAvPwYykHli5esSgmQ/T3d8tAi/DlVLbBHnBUHD7qYcLcwSpI1Afdx/vhb ijlPwItAknU+h7TkICM6uL/t72Pk8Y2WsgLoxBcCm7bIzS/XRXFzQ7JYciOXBcZnIE6MYPOP OXa3kNxa/43bwgovGnNZlBBzCOrdR404xnvUSBgfdDW7ixZq42vQFVb/2MAGH3x9SbetFpCN pHbRcc/AGdTIwMCQOaCuiISL56fFF3YUCaMF6Cwb9zxIAHfLHmXEv9dad2JHIqjYTGL4BCyQ Ek32R+hT21V9kp6Q3YbXRsHP9uqAn8GUYgid0sC4fs1Yp3/bWSATajx3cBoDhbRh4D43b9ca SrE9kuMZjqFRbr/bLV4oClpMyWAIYgrW64zT6Ylz3+3h7ggnsReN7NW3Px5CDHfv8+tYjJyY 3V9P++oqqttJbU9BZpozj7MCw+6io/8pszsXQeHXm904gEAEqOavZchE9WL4Uzx3HkjLG3kr oYCYXpinOdgkUMSddyVYzfsExqaL3mWinuniLvT9cgiH8rx9FHu5YnBMS+n86rDV0IgGpUKm aJRkAdKCfCp1BCQTtJ5x/k62qFPrF1h0sSfCRf07qAPCaSZVi9eSpX4hBJOT2R83rgidzf7l 0O6cvi095Hl/JbJSxfF1/Xt104BQA7ppjz5DrdZMPqMcU4Y15ChsPterU7+HuY61SUeJSKp8 3UN7XgMEBLczpaV4jFPQXnTdXVmOB2nyCBe8XAY1AuJwh8iUfXz2BEC9WBH7rG13pBmPH+6+ LUIxVaTb3ejuXYhpI2ykDsIokY44mz1saKexOLxyC2a7fDJ9/z6pyjlAGMd9E2HKCjn4vt39 b1O/fEZG0mUyMSeBygDPmEEv4CmLgT4K4xRmf2qOz3H/RscsKXJABtLVsgFciO77xJzbzh4J qIPt1ZS6vRnH3hqPkrjhaBiJ5DRMko1hCFHpqyAshkRaIar9GvNExbziYylEZFiqKof7oi0z yZg+oI0htyqHNbPeanxRDTfGiISyZNPQEYXAMMLlb2jEXYttDrfN3TkyDLWEjqvESZd8bLgd nXycOJOaaGAFrNDEgUZCdnVJYU5QNMtr2XzS3xuqU9EddsV/+b0MZOSr4k9nlxf1IAjF8RqC A7Z5cWhSa0CvT5tfks1S7RGOLeb2Exi1sx/3XuDd+a06AaMxQt6Cz0E6zOQ8LuoqPPlOfJ/B uuLfm+Up5YswWo5qQN7Y0d137mXcoLMPZtdoE1uqNh0OG2BhokfYlFNV2BZj9i7xZKK/0Wnj 0g0QZVDTntGVpg+cYLH7JXb2P493DXQ4wCPQcOQ4MumvulA/NdKoX+TfsXJQ+H4cqNW4GvuG LqYj+JvftgCheyCOOMK5BGFpWjUEzds8mVvIpujVqRN1PC7N0qdvoHCVWMEQq6ESwCl6tbMT sb9z68855UHL7RfchW3HaNAVFnSeUE75XFZHcKqcOk6h2k89/ljikp75OmwVCxeFdVB7P24v XTiJkkR1MTG3TeGa7BjzZtES732DLOf3QKESvmxz9WPjkqXWY/+bzZEwPVo+dy4RhKI+zPE+ 5eINFEAIHXtqu9+QHYz2eFFsVaGzbrZtsLd3EBqg2c8Ad6OJqSYfxqb58O1O39ysCb6oxp95 tO1XTmA2z2jP7vNm5qMrQzNCETzWEGVa9aTs6O7CEvKsyMRXNngkxWrnwwxLM8PlernJ+17D 56qRqP3YXx7A1kkWEyi/GaaG301HJZQcTUOuN9Zc64nhl2WssPz40NO4z9OHzIBqpAPGm5IY 9rEmWZKG+wH58TZ1snU4+X2dY9IKAd9Lu1kLFjwmDXn5vMsmmx1w4KLlRvKGus0KmeKrJ0o4 doG0r+Vkszl8V9xBrFDDGnwIpjCbJiAhn/6Et8GTsCxOgGupnISpDhTyGD23qPQkDGZkfwPc RFicucpvZT+Vaiu1GLY/UvRWIgSGOL23VWZ7VbuN+V2QmUSDymEqDeBhUW4r0wvP++pKC2RM Q9OLDUaR//+LzVBm07d14GG2s+XlROZPhKmNE6JOMOkrRzo9EbFGTVTC14l1MZ7LLYCNSa8a 3QtnbDSI/XYStcUPHVtYMdSIcjzghGia2pFtk8YfXSSB/vWIDHJp/yCDKm3zmDBLHPNB6Hg3 b2uKnH1tV7E5M6gZAYjM3pJFQaspFisSJt5Nj+XBhR7iubEFQwbB90jGduNGC/e6xle7oRja kPPgSIjURfg6tJpX+Lfizwg/rmIXTiH8K0S8S8TSQLHDORXaTDGEVLoLVkhspTvOEZe5CqLv qjV5ptAUEZSZZHKJRVDehmLaiDleyZ0Xlq4JzNgs4HJyiWusTMs9+mhwqXcrQspNiUjpf9qg n12jOW1ExGoWRg0L2CUDm/mV1e1qdR9ptNtiSn28GUS2jEKiRYooUGB9PvWYPpVpqfYju5qX zxxOMiuSII1QRBmwKhBjwF+0CvW5pq9xerLVSd2tS44wlRLnbhKoW7UDY2SZ3alRhLlQXIeB uy9IdWlH8B2prBRudHtsBFzUPpzNakzcz305vWOsvB1L9O0iaQmN933keqkNMZNcdHHllGFI CDmkiLIQXRCQE6teZYEJ+FkFf7Qkkj89poW8H5K9xCf6VACLz7O4yZTrb4tKoamPYDPxwSFF dezrdGeHNnOpCUq/VlIrFJKG5EtNTfjHolmf3tnCieTtajJivUfNEON1fwweThsA0SoDrEPg XVvQwcEX0rCU//AuWOWaMqfxSPyr6wezsDk0qv3CkwdhgzX5B5a47G3cKBGV+4XY1J4Cwh36 Sv6z/ZTNgqrGUfoOKbSABTcI/vnnk+ZGAV/a4aV6DNz4mavGshq7pP5+fZhmBj3+4fPEKKgL +NQ+wgFrR8TIm1rvzeplkxqGcM8CooBGEt/FQz7d9yBV1OB6GsEY/kfhzxk3Q4sG5upHGiYD QG012zeGx6Gg2CCMDWevetxM1DSpVQkzKkewQ163d+3F2f/HGfaXqIYm9OrhHIsouUfhPnS4 ELhZIMFjNLZAlfBWPnwrinPvDTltCNJAbK1Vvelk0hkUfAEN3s8DbpVn3eZb1y1Ga4ONrcxj HX9kGJyvAEgKncegk7mlK94hvrDIkRzByMJh4RMiyU79MypXG6pEiJshkNVO5ZBiYp6hqEv3 VRs0HIPTEd+nKOQSB8Y8FINFJlez6DvltixSrNgUb+yb4UyAiK+tpLnbb3XVG4mlh6IVpqOc QF02heysMYbZmRS12hR9rDWfKVDA02K3+JhXzRufkjjhDHw7dKeFhBM8WSdxDWcZdGz1yJcD /pkgFgzgo3zPkCl6ZrBaho1sFpSLa3GgRD6CYyLWlE/T0DbWQqKvlilfb16YEO++Lc98txK+ F2r0e5/XuMVAGqIx72I7qAB6A5vdYNkWb+sLA9Gv56Q3RXyfBWfphchQKOG3/eM03iV6OyLe 7lfv2ZUatCd+PpUoaF/MHOHAWjAR2nTLXDRZ68pYu4760ht+L+WOMzxDj4DfLzn8lc9n9R/d v6VjxsWEu6uwQZ0s2E3L8rpwLZITRfV562eX1radxwyJ+CAy8Ck6+hpDCnY2mR66u6f21PaA slcfjbiHLc+meACGrm1HSaXz4Y98F8SEATU0NGcK0fdA6d3SWXeK8GRIJM0FMd2MR1esF/OG YW1DeWXHVhGXBGcGI4PuzisYS7qv3Uf+O5OlYZkhu6yvaTCdjSzZAFAag048YEezM0k9DV0P +i/jyVw1dlk91rrJgfcHXbjt5pRBT/D5OHMeVXywgbe4c7nSwVp38VT7MnPqs9HxQp4mjNwc lj3ZUCMnU5dmIxQfLpf9vZGVnH5APHtVyIR1a4nJaggXCMJ5VK4FkOd8U2Upmuawt42Obhhu 5Y7HcPwT2e/IrQSeAnFLcac/MFreBsyTvrCuW41w4IsOcnIFzT8p5uVi5sbsNaDzbgwT3zdw k8wLIM4+8Kqu1LdEbX+VeXqTcHS/8QEmz4CzC2Ovin194EZcuHvLu27qrsSdXLOwWffV/ylx QZqtIGi3YPEykskcuo3p/CRcSKgc2tgvVSgAm35BBPttmH535RTekVzS29Tw7z00bmmIbfaO 3v8QQhSIuoOKc9/2oBqSE48/4FaIwAiMCwDEY3cGG8BWlyNn62RawPnlFDZy7+cQXHtFVCVg HxoEuJRaMyvew+rF1V8dwErFIXjIecbJj5jk7wfqNBOTov24zf8TYzSaoE+X5/fQcDULF21O tgi/wvMBpLbOCnc+o2WowWXvgbA3evdTBoSM7GvqajP5oE5i8cpeCFDP6wy2GYC6Ptj09mLl vp318oHaBhVAVZgLMqEuWlrNB8JCEP1zfriTxyvXQmc2FGKacCgWzIdDrNUDQlzsJLdvaWbS 5KUICJTTeLIN8ltZSswme8rz+kf5Jk9aliFh8u281mXwwKxKVJrIaM/XzgpazI8gHSZbkyfl +boV9AILBZoqpgks/7CVdCpbhXK71l3wetTDh1VO2HotPZzWEiQLcWAwqVy+8GkdmfX84ApK QYyNFBKBPA0NrvH0JzHTcsqMUOPh99tId8xhnqF6R6mdGzS9HBSyws7yAFnndCVobwmomOra IPLn1f5RET6lnC7N8qgf+/4C4aom5r1aaq3l6X6yL8lvmHusPOuNq9f6wmUzn5b50rDs5cvd LAGJmjWYsPHhXmJZP0eGbXXQicxEnaHfAGRz6QPFx/1YWCxK0pQzH9ESukmrR5+afCAZPgui ohp1w1MOjPSdWL+HLaGz+ZfzOdLQZCNoNEYxqGm1bOTX20QmN4dpnkGUx2PogBnXSIstex0a kr2MD++Ki0uGSPqg7TtNh1Uzh9kfrYDR8SIc2E2xcTpIW9UDxvLNIw5QBm92dP+HQFWU92wm bq7PMJukMhEy/p/LqJdU3ZiOy+YOidSUzYbiuc8eGbQn0pJy2aGzP8rh0f/EcZ4D8BMrZkDK tdJeFqUIgF/ceSoDs7XdD+rX94NxIB7DexNTQsql07TJ8s9RhNSaiOJ6xJhrH89IsSkWbCBk SFG7YQJgWeKZmkqx2lWefQhlKZ+SbhxkR+LobTBD7qI0Rl/E2aT4qdeXExAYaGJG4cErHglJ uUtDXdArwPkg7Zz1OwVwlHFQ3Jy17FIw6WoowU8ztPMEQiao/ZDX0yWki3G7VsyuN37p3LWE PD/PlWWMkjVWKza6Ofdx37ctdO8yWn13VBsScCRvh6lzIkFFB75N19Ow1PusVutqOVIWNk39 NKU+FhJ+a24xoNum0CgxV8Jf+ZivweTNXqUV/8waAtr163h6xzFzqY3WDfHrUv7ZXVslp+UG c4ncWYhlYMWBKGK2YU2m+BHzt6GWChHuBdYrUszIWMCGZMsZDa8lgTFKKwXntnFzKrXLCTdQ 9zcokr9yMP0O7OT2tgccV4WIQqAGHHjr9WzlYaZI+Xkb5vOOJmURrt5cGs2rBTwaYjBfdJd+ X4NylryrKgIax+5i9EgwlLJsdhnnXGPIoU2qBLEtATtrW8dSkTY7XEkbvE/N1FWOQXRs5SSc XAmkODCe2CsEv4+A2jhktB3PwRPOnTKr0bJW3lfoP7hotmtksiqdDp8grAbhonsB9NQoAPs6 jPn+dpR3nqLIuZ/bPt+QMwx95kqhNge4GIxGoNZIsueHDq7WNbwMAlhPS8/AnNr3oPSY4WCr LanLWzAACdyIm1tZZoUToYI4zurKjVjSbKqSpSDZZ9FEvS49hYz/YnWas/8ro5gBjPeuFArY t8qRSunc77kcwgqTIciK6z5QG6lnyiSCyZ19ALHvlgJAGAFuEV8u7mpc4s3ko98iE9Md08pZ NtbOiqmT3O2Rm6s/weSUezLriPUfUuD81xileTchO0q7yU9zrPr2swXqsREx/qlC1f5NzCVp 8KvruNOVsQsb+CR0SjXak7sYr8/lhi9g2HjB70hr8xS8kc8aH7xuxolZZaZQxWaZbwkRA0Em rv9V+39ZvvHLBg/aTxhyo2yTiFWtoDfos9BaUbIYbrZ1hpzO8ZcaAxi7jdW4cmzteHeQooWE x02GAWw+SQXBTf4onhLC8efA/+0jHIFXr5mid/WN4pMPHJlRm2AO7uNluoc0+oHGgQsJo30s QuHfKOSUSRY/mFOjCDWQnc8cTIXLFGpg/hRuDiFSiHRL54e5Oro6myOCShiH0X6PrYNaGrx+ m/8omhE6bfIXUMAYWNpOo4k1xq56MrcRtgXOO/o/8MDl6KmAq4x+H1atWuo96fofZkYSOzrd kaJSTZB4kkn+5/HYIZjsIGWe0t82IHKyzD5NYnu4Pja3+/PgDD1m5VS8oWrHNM9tqiUzHfsh JeghoU/s7J2EjMnlBfocWQ07cUvA/Q0hqMDP0eo0RWagnA7YVTOl4i8EhuIvUiKd+/rA0qg5 7JBVhJDv5zv5iUzleA8noY/hU3CQxWM72nRqhiay9iMJlXGi1iTy+reaO37ckqbIFEY1fyOJ UP/OLsXJcGPLeieAe3cRnwTxMWfSzumfoBUwCkj5usRd2jqGm8wocP9CUtxlabVnqTcwAgsC HbDOahUD2QdHldKUz9ZR6bKJw4WlTBbZ9tkIwqkqXUPCGtZHCaWnpwiKyk2ANQ5Q+okjAOy8 abHXcelvPUVf5NFotnCgvbJstI5EKYB+Leo9RfOi9nltovUtQ2aZvfEr1NkOmqtdP/XjjI+y jv+7ueYM+lscCIXJTENn/PG0MqmVgZjE6SeV/HkI5F59uuC91N3MyUwMjJtDNc1qQGfJ9Rd8 VhgBxwrkMyyG6bZcu0ej6SeBpA33wazpEJ6PTOrkI3XiOCauB6bKKA9J7JKsZLdHBq6tiJWo LZ89HKStfuEs/q+aAGz2SkQORMIELfCbmBf7GMSV0UIjdsAWanXrSJ3MN7+b0U4imfw1aKQ1 cajEy8EiYt0InjI9Q5wCRasGfetY7Sk/5vnKg/d3yeGb97w65f66r+NaNsNwwzFPl6MMfeMy AtC06OdGShGDveKxDR98Ut5xomU/TeHLgJ1cocg30NMPZgd3m881jt84LeyvlegctQ3uV0ZW NaOnwfS4DhpFzM+XUrH1aR/GorvEGON9dUs0QPrG6VmTD4sGjKUhwScZ3SwFsKIaBvuSPCbz xwOsZLWwW5PtWOA2VmaEM2eU0W99/vtFDuKKYYzOzwWcmNljCFB/zPj/7MlBAd7FQhhNP1j9 kyzYg70KInbWWoucgQlCTM9nW7RpWX6wcrWe1EyB8RxIJOs4brXrODMaXaX5VbO9lRk6pJjB ghcIdF3zhEZJkJRXwbKyTEnuzOQ55F+KQYXnwBg2FPBbnJicm4nWUN3y5l8Rx73xACnNeG+J PLDN4yIhPZIF5zc3y6PxwofteayKkVJpPZ9VKpEh0tKrtQKLhebaEUrZ1wN2RCbqoQWN7Bki DH43T5p3ubRlzPAQoCrVNuOLcI/IFqaoEyBmeEa90so/05sme+W11uh+VlIdYACmXlYHQwuR +wotUMhHbBzcQ0HmIHXPIMaEWo64eCxZYmK0msORP5R2/OcbJlh2LuhEH4lM3zzN0cty3SiK 4aDHutjpYK2Mp58NGpeAFjsQ7MGq9gykxSZqmOcXVcKxRYfLCo7XVvQxsz8r4eQMFvJVPc0z z7r0H+8gYvJtLWL6/Mhq3ypDkCgd3vaoSIqxGKCtk5awLGViGC1H6SXmHODfU/R4kL0HY4nq ziigql5jtoMJI1Kqxh6XB6VGCybTjjF29t2XguZT0vBoCw9AmtvZohgcwcYEdOLBm6GTIKzS N0DCHI8c69KDoHOJEgRXTULMEnHY030RiEYNlTd4uOvkXHLhDDVJ2U/L3mCYxixIfXrog15k LhmpZclKLoVg9bPmDQwOYu2Bdi4b3MG5PP+v4bvKdELNlk/+MUvb4nOw5OCirlgzvilmj5V4 unLVLTnf1CXhNxLphCRbo2YqIbksefrf+889ddk/n0JlchKH/9i5zqfUJhPu91/I3tdVgd16 4YefaVjUlZXXEQ2hPP2/VIDcZcMvLtsoTDcryfYe5uepB3XiTv2so8j62Frie75OrGkhGf87 rAbXF4bEmVT6zQDAteM5jxwx2vpkHh2GzziVXbQTlmZB3qrYNraTGkqA3/nNS28IiUOPjTSi vhCEG2AfUaX0kZAktFAqPxIyNFNoWxAhsC7cxANrWJYfGJadKZ6UsSpfEZv/vMIRmiqiUNkV 2JUpR2BYAobsKTpS+RS+QMjG/FJbzOFl+DG0PYZZYUc+DzbCrz+6Vzf9PG58cWELm4qpo+3a R4gXsQQXJkEu3ay0W8LnLC3WGdSdiEgk8QlSOyX6vpuWgYi3SJ59mvsBjRAKe17Fja8Va+hK OfKpD1mODmbr+cDrJkNUZIIYlyQA60So+m2aa4oro8RTpCPiqefZhOOmHGPSwB4w8EYOOSwa xAju/qbApGragwGifVDsErvU+EFRDwOY3pyY0D7dmdwZ43b6ZePcUy/0flulrKJVapSCGaZL rDBJbHg3omh8SOG1RWE7Z20q2I6Ltj6DFP6tus7rYfqhSaaaWyXIcTzxPpGZ7nGKU+lglzM8 DbOp+6YzBslAZTG7lkF6iP6OIXtII3lSJhHjJYB3ES4xr8s2zNZJWQSXUXWXhqobjODr+qvM ImNlLsCocHF4BwAz0vQotw7yG3vpyYpAf5Vkq7BPTQalHzLIkcUdE5jPRMVSLftiRRRHRHyb gQrg/auSB1DZ6Owtx5unhzLiJOrBWjcCdSw9BH2L3xInx1Ol4zn5gh5aeai2/oaGASTM7UjK NBo44SEjiuvxky5hPP1M+dMrV6aHiw99WWNCzpgjAHD2WDj8RXb3mnsw0nHxH8/RQmBb2yIs YeOjI3S4RT7RwQiqCa6SZvjZjRilZ8EiztyBfXpkEaYAXEMcRAIZey8btTFVfr0Qk/idwavY ws3eDSQu3KxYpQk+Zh8ke1Pr/sVpN2W1r1zFlCrqD3305D6QpKzYAlZsCzJnd1hiBq/GuFAB +PINIjss/AGcHGE4rKaXgKhsqzCKd2nH5p9lFIODZ9Up1gkVcxULWdOUIJv1iM3c8gVRiyeS MU+lBT56YCurCnj5csJh7rLlib4e5GuswAJt2Lno4Qan+eav32mhMxXeDLOVeDCK+YMUmtd7 E7nheUHPGeA+91ODLEW93u7c5RhJseNzJuDFp3z92UJMYf/7CYIMg9v4lTDxXzUcAGFX3xf4 pcrQZKKRtu0DPMFTdXWIPqvpU+S3GD9AR+9LCsCAj9M//o5PC12riORBuoNrIPkjx9dj55vl gvHXkBU6yGzCJnG7MdV4X8nGlySUXkXt3Ykqfk7nSXwH81pdzd2IO3fVYo580a3yco9cx4za MZ3vFWXJ6p1EbC49fAq8XUM57B80QE4Z03iZOkMCr8anY9ZGbebd0hYo+ILVEk861K11HIHI 3xMraqI+4jWh2kBXp22+SaI7h3D3uIZuFnn+7xxm8HSq9a4lURL55aiwDTZHsW26NUcbRGKF s9WvS21FcBHlzStAIPQnntThz6iepAMx/9bVn7daMFUOtsf+ByRslfzOgSEL69UBCy7ayegM 2F3FbsBHEJtUamzEtm27SF+qrJOXL/Ojc+9nelzSr0qTz5HFDENWhOBnmBttvkOTdbHeaJa+ kOIGFB1EGGrPYeWzjC3YX68ZlMvNUHXjP0KBx2dvJmQBa+8rOgif6dOirOXId4mWh+IYh0iK K3Kx2Al1+A/XCzUzQOezj9bz3I7FTahcOm1C+4BnVfjWln7UcjT0+kA5P/rs+hcRc34vfKAn E0OCLC5uGRfjciD1orY5YcRzKCLC/7pI31aK5jbrrG3xEWVtjsYYAOSEjvT/7XaNPa3rkBmG b4Ixu+PP0CK4HbuIXehYF7grC8QTzTFey6OwhLvkFOiwWEIQ6B/mwCpgqE0bjh7RWw+e+un7 xGqdcHvh4SiQxo3vOHepA6mvJcy08hj+chqnGg/TAGOybchOcRTPXST/502aIX1RjoqWOq3s /vpSXP6g+NJOFtgBITqLLf0HQiHdvVtxyWgdZBnx+ekpkPhTy+2jF1VtXM/ycxoDxlUIPJUs 9rNUivWYifCdoKyWu5+Mrs2cdSeUByVapezRNqePqngaCqlomdqWOMzSciUVncfuaWA0/M9/ 5ePsw6D92i4SYI2tkZkjQZuGupWqckLQi9oSeCavE03Xj5mqwOud9pWp/BezoQZnwcg8HWQV +bOGTqEtwqRuVg8hpmKb634o0Y5u+R73Fo4unEpj5RUkUsbm50KHXt0lKr6lQt5SswZPEXcv 9PPOVibesdOgbl2PJozTkhVS4kDoI7jYMV35GC4bsf10cWRd1FlgPkguno0QwLjqRZBgXoJc aNmRdp/kPYj1lLIOX9DKztTo5MVIIn4WQYgLn3BORpmZvf5ynfdlXYhUab3kp8e60fgAUpgB RbyJr7d6vEh1z1Tk9CWk4P1BSszNGq46D73tgydbCPNcDFayVceRrKS/wyw1Qb6FNZJMB/f+ 9gDD3VDRF2ybUiAmgXu7MZOvuG2QuBZqktNjgDy6bpKcC32WpAEUM7SmSBRkJ+SPTBjsdS8O aHr1416Sg6bqFHa3EnvHL2aRcxS5WgQuKH8n1aRLbBhufOXgQtitS66E1QsPhOiLTxBW/YaA NxaKvoR5d4+iv8ivKddUVDc5V2Rg5tkBqndmRDShcpxlbyjqVO/qjfNH9/7PKgVUzIYZILjF j94kfbf0Of4S6ZDmxNJ9CNCBoc6UXrBYjmZWhomwsDnswF3/MMVdQYuaceVXs+Org/VM26cU kG63HyADIrLycuWcvgv7i7HesCbmtdwWiFC/kCY95SED+1Q09FLzPJie7OJqNgnTQI7eiJmL 6yJxN9ImRkZFGd6Ndwz7bWg4p4vNMygDIpwUcPzkuC/e7msjI54x2oEknJf05eqsQLzgOfTc a5nyiE4N6kXAMBPKl0FQjadlpJTP3aBaYeLsgHBbLbYzYv59bgMW64Cr8idHIYC58T0Mqphb kFK4z8QhHa6nsIqp/h7IcPLDompO251bR9Sj3t+EssC7v6KJ9yvQko1aLPJO7sjAZ+bkKDBE tldtfgJ3UHxWfsqyhwSxydWSmY3XEy8FZDvz+Rn0VR15TCnwUzqzMRMRXLG8pvjGLRaWKq95 iw/yE/NK/q/V3o3lqnLpR8gYdztq7bvvuRYyY9MI2oTUvVxfjd0Xr68sMrhsMOjm061iTl/Y Q4+LS1DFRoK5JxOgtSPKLqcHT2g8yKwDoBiw619I6h56yWMAKojN2issQOzbzyKWQ3LPQ3+P Uc+5U/U+AFAUiuADNtjU/nK3oe788PRjq+5viZ8DSae7Vr394o3t7OZqwW1wRja2mxSLOjoU GezNqM5X4SBqsYloztQFY+oMr4VvzJ033ULNUe9tu+HAtuGjbd2ovJdGc3HJ7bKf904UZkyi n17BSCjX/qt42G5IQfKH6BjG+cEDGWCR/RFg/xutvoF0PqN5mVqN6MzJq38oAmFvvhNWCG8Y O3SIZFGFaKP/5i4dWP25+D268cXckQGvOJf7sKbE9VLRFI61inxT5YjVXrKrS1Hfvtpd5NcP 4MJ68aqKqxCgn9+a3kTaxJwOVzOnUYtYxA8vgOLPCjAEubYu2s7WxSv34cOj1NwyVkw/Bprb nTUFh9pi/pDJlwhKyHQjzcYrClSgVayn8GZoyqfv/s3sb7bRyQJjowf9q2c+KA7+nb4ynJcD ndXGKglfoJZ4Bn6cwCYEl3xyd53wA2P4ZyrQUjRk+SjzhHXydpTHpWTeGfaKPKKNeen6mfig 6n8+K2b1nE2WtoX8wUY0kP7Gt4gmO4/NP+Geb/rO4deHrZ0r66iJlEB1nBIjmLr/QRpjO24Z 7S15Qli85p6VRpToz8XGENOaO+eMn3NN2ywiuUbGsSBb0t2zwsH7sak16iO2nhwIDCbWZdnb AalLbrUKqKFvffDZpgNG8PDLCO49Vw1L2K4KJB34i9pvMbq140SzxtbAvIEwi0shNzZJINTC /5Gvw2sXiJsg59aLVmKtGTT72XuNsuWsPEpDOEDOusnHjI7TL9afDsjw2iM/6RA4hpbRkyxs b7VCKdMJd38H8OmEhT5hCJFD+HHOru94uQXnPwZIw5rvvhPXvdG5luOxjXA6py4PJ9ohbxP1 76BS7nxdJyVuAOLstU6QiT7R5705Tfo7nmCztq/c5KSXGDmjMciYb5DNReh82daZFvv7/tri /Mc2nRL++Rd+R9WFluqEuQ3TDRn3xTwR9Gj7E3etxWCA6PTfIt+rehmj4LPz8aA4V7M6BYas MDdHIu1ab/+jIhmo7GEUeuyhd4ZBwG2rHSrmIN1LlfsFR4ErxrkmXbXV4yUBDklCd0E3dpNb OyzwLZvhW90UI3rxvw/aAzwpwE9F/AIj+5HIUNGSmU1qq48i2lL/Q9KrJqQVfHN/JX80Sb8c iHSul78aIHwpP0DYrgJCS3GNSiMmN2pM7sbI2VMSUdFzw2uCw4A0tMZZWj71zg61lMCEJOEM d9ZaWe/5oVFud6f5yMARmfUfjb4IQj4DGvWU7K70jRHHBvdzeMwzf5NFycDpRxLWg7KOgsM+ tNsJQh7270I929ubpYIQV0X/8Yth4Y3oQ0UHctAQRyYVRQNa9HXj+7I4gd1oq0dpnhZrjx8/ /AUkPT17VwN3L7kGiRyKh+1gHdRJjRsKys/WPWU++j8nRcW4XmPOKbeH2k1ovY4h+aarTyXg kh8ub9bAHCp827WbcHibAOrUiIASyXG8Rvj3UTZ8pdIOO9XtApxP4DRg7w3lPxWY/2FqBrQk 7z9wVe5WR4ZAIt/GX7rddv84ds8+vGuApZ/iOaStJNw1+bYQlZ9GF+FZZQcZstLXhjr6032+ zetMGomW1p6Rq6jeBlr0Ww1wvQINOdV+C9Kh3psL/GKboVA617Hv7N74uPizpWuXt9MCAnh/ bFU4wpkAbnu1uSLb4EpHYWGIad+zqva5lFbxe1SwQujT53yiSe5d7iiLZBbCt3Ju06e1AuGV qDsqpe4Gj62tN1y8lCgikbaEFWFzlOvaFcK6EiUgYxxbunvC4QbXm7RSu83Cy3vzkXWus2YV gXaBmRPXZ9taq3jkU0KrTJJxTyPa1KlLF0E+ZBNXebk1iekoJ75IeC6TBTY6VgAWPeopERLv f0d40oqBAXPQ1NBUYbbrAWidxgq/bZFHOrFKsBOHigHuZ97fF+ebJu/jolIMEwMvEqGEe0TO 7PIC4Hp9r5X0VsBzkH5SXGISWqqAdyLaZy7/4n0ALU1LEysE1qiV8j1eQ/Jhazo9EINW1IKV ECRefZWsOG/IYnmFxs4bSvz8ZVyL8+P8eDD1YoJU8TQcfQgNmihmey/4/EtQBq7ciCGZCP2b dG6YOSrbP2fsxgROo+bzuQNoj0m1W13ckguSMRikVfAzur6OlObIzGLjaZBoBw8OtUQkjZ1j WZ1ZehMdz8W7wdyQxXcJ8FIQ5I/p4wIaphsxDhO6VBDwzQle9kvahfpfRmm7nE9jEii5o/ff IqEFUgLeykH4PL7/rkb6K0MPlKi7bLG9W4tmGL4OrqSR5GRhWigrCDpJoactbD9NtPJQy4i6 10Uox0EoslyQMpOF2eTaqAdumVmCN1My6OpbeaV9hdqyHdtvaZ6fXkCQwV1l7KP+2tmZiwZn Vx08VfaeJ5poeuRuVjJ1T4PKLSxIK+kEFLoZRmWsakVmsgTOMmtOuyCAMOUhmhK16uzCHGJP TmbDdhj4Cheu+e8XGEBIzAFAe+uGdiBKFqK36LU4nOC3N4vKiEiqTO4JsOBKN2fUh84FChg/ EF93Z4s9K8XKCLypo/q0dRCT0EJ3+VdvDum7Fyup3pjhfIMIzQHI5YgNq9hO0K30/IjtAcFT WFYTBph9OiRiFRULW1pSeZCf81q76TddTgC0syI8f8o2oBeidB6ZEUWdWlPX+of0LtcEewcI saW77/0QMJ4iM1h4OIr9vEzkq3sppnlNWuPFLhyAmau1WgzZy3nepEzRIMUcYTIO0rAym22X hPTFxLyprUKmoaBNt6gpCvHs7JFQqfEGOAXe8v8YoetPkJB8k8fXIR6n3bjfKdoDpNMyOHAG 2d+oqoNz2NGpZY/MlsluOOSLMRaG/owDsYG+b/f5OlXk/VgIo0OthIBwGFRCZhoDR4b7DnrF LSJQDneHxSz98bdwo2Rb+C5pBW9OUsWogFieFdGi7IGaMWU4SoiciFF04rv5lLgLntnbAbQN GRZAJZJ8I32+db1bTttOL6r8CuH4cP1Q7pVICueS2SU1gffancsZmqWjXyfYnHLLvnwdh4P8 kYYzS2exqasXGS+wVgqI+KoMC3eu5Drot83kbBjr1PQp5tEyWTQHQc6dJhAVMMH2LleAlmNJ yZpdfZif2C1OJOBcNOi9Ypng/6TJdmHsS/3/TlMhyLw8nhvnahjaaAyxJa+vcBtFT1zwbbuz zeYnlbVwxrr9jRL6WxqIgFbjjLWI7UKEbIsKS2HIcCrBRNc2SP9CBvsTjI5EG0tgNTUxIukk f64Jawd8MxLRomIBkgvyG+UDWfcWAiE37xS4/sLD5SSdXmfYdwanREJtpUw3pPjozMDbdqqx cmIf5Xp0BoOxgH4+4DNpC4+y7vKxSCkUtruvv7JCOTgo7HWHMUHlrqasEtOzQBm8hHpULyis yoDig9ju7Io2kMJH6L4Gw8RVTDcUAGc3goteCULyBXXDndNA/udxHPQho4UEsvxVQQVUPPDz QghUCGstRO0+ulB1P5a1lZtR/7rWZVSr/akkIje6kPNfXw2JMic3OHJQr6yWuHJPzXI+pqFi jAlAI5voi522To4BQzxY+VfHNv8oxRanmo8DT1+Nym/w/ETjbh4Zzaw+gMsRjfdUvOMuU/1R 0sjtOmSYvRzSVoRsShPLUOkmPKIbu2OvwbK4BnL+g1vPURBwWAetgTwYuwm0C1pWjxGREYLW eDn++EAldjodX6KPAJb7RaBFtZy/5xZmNaftMueTuZz9NjgmCz8PPZ7haoWH16jdFpjEgOUe cJZzUJt0AE2JNn7lF8PvcA1Flel8MXHswaYod5PcQVczHlP0hx4iEhoK6DSXkP1KFA3WmpRl GHw4CE6/GP0NCBPKCKj6mlamKJ+i+0tdciqTI1ywyNx+zxQtPkt6Id8pGguXngjs6ub8P8GO s3laaEu1NPEDWhFL6cf9U6Ep579U3BDn09+FM5iMjYRB4aJ4hSDEmheK/SB65jSlKaSMLYUo YslKkMpy8RuL6OKFBumwCXjtyG8/6GjH6v7ZWzKCS7S+EOct1M56VWktrQHOrDc8lNTdOVkp rnqhojy6n/RO2YAyDVUppack9edOayQ+IbJLXVwi11pjSfPxPepRIw4a1AVGjAj/GF/pLqmo 9j3KhzjhhcifYJ35f9B29AmJxh1ZaDF/vuk82Jw1j4SOpyDx4O/eXn5TQVI7A0Ey2ct1YL3e v9n106s7oupfv3PWtUn2iBCPikz+e4Tw058raRD4NSKQwujhsObiTdEKk+OmVIdhN2DxoFw+ /FQdPxp2zOKlBa1+aSJsgNIO+Z+29HnVKYYamFJ0zZa/z8Ci+Xvcyd7wNzvMfN+b7Tnn0v43 BfjF3EvOekttHU2cHY/NuAa9QgXpqx7NeH2U8CSEjTQ6LkeFWu5WBlkMT0PMXyt2RSoDVNu9 QnyVzsuwbwH3+rWNlEd59O8LOTPG3+H6TCS+Vfq+DlJ1tyFCqlA4+zTsfADX8J+12wk8r1Q7 qzcJ7XT1PCOZNaf64dMcj7CQGVDBDN8vcSUylFX/0byKt1frwB+7RqybZxx+pqQkaBio4m4+ doninxv7WvFnAqHMmDclJyngauEfchg2ZEsKQGnzG7EZAs+1eBz5hiPMI6YNCoclXsEwLN6G SRQMvElAdxnXwi8E2tuBu/Yl/7zRQSiI5spMi6qYI704Hhc0Lza0o4BC4xjMGUHJpxF305Nu vVtBKUqr14punLDYYTobZq8O2+aoXxd/4i+aq+8fZ3sabQSklcXylOM+35EH9/iEtx3j5IjW vviAlT1XEFWiVZRNFy8IWX57xJnENgBxeoNs1Oum/8k8vAKVry0WQOp7tN8Am2DtLrxsUdbO f8Bv/5emxP/D53HFeQ8dI6Jm2XVMPXnpYomCIxyBnhNMUfC6kKbBzz09+VNTr4J01Ra81KEp Cd2+x6IA/6BiyScB3gMSHfHrlG66J8O8TnBJWYJmVgj7qgU9ADHF/vr8hw79anmzCz5UqW8f aXloJZpcubIziiu3fFI2ERJnzNjtEEml0IM5/ftrzL+Bg9/d+fUz+DiJXJDLD2XEENzNnDZ/ 5Iajmycn/exOlBe/TsY0iW47TbaAlxVItF5CH7pUAXNqdBLpNjx1Z0Suq0958EOiWyhAECB0 NgYLiefJnmNHW9JEVHA9Hpy/lwOVwZUdf8zzr5Os+TYqP2GaTNitDQWu2O78IkcjKyjGMvcb sycS1cIM6jynnEwToecgnOra78pTojgSdHOcYY4blGygepppO/K39mp7pnau74J+knhcET54 TIyX+bRI5kJ63G7S8llGcnOIt7pfS5TqCl0AWB0ImuaPX/khaBFPUI+n2zQUtdiAZxAONg5B LqH+6OSMjaNAhkTxejC5M9CtN1r+z1g+4HrrCTwTPQoDGYXlbttkrvckwVfQ580gd2hiV8jv tDhPosja52jSdsaP3xI6Yw1nKC0HSyfTRaiWwdwQDAHOSMI0eeceJzGqImHj53Iyjrr3vAaY 3l+1f+exCNTfrOY4+gTDyU3riw+6vTz42l1RuWOIp7gECZo6o0bU3KkE3HaU57f6Jrs6JFvr De0C6czsM6y2cjht6pLZQTvl3/6A6G8kM9xu4YJFS67b+LB5eshNereR9vVYt6PolPvczoro HArl5jnQHDtNblnTWqaTLnee2PShH85hx3Jt2BgUvRa7ZWhc5sh1y0pwPLqEW/h7qfGNGRVB 0uDqNhGZAZ3rvM8PyKzyAMMOPlhUpQmuEqeDTyijJ9lRah4+Hazqp0PItjVPYSdtZu+pVPhW FemVJwT39f1gJG18F9/4ZZysTDgvR+IxocsDKoL6eUUp3PwaiRKVVVoNN1vg8Afsaxy+V1Lc ab7WyDP1TPx7oODZyIlJj47L+IAhTZjvtirgs37rtn+7umPRTi+nZ4pMBhcYDimyThYZcZGy VgSBAQjWDFRIDE9TWx1FB8AQT9umHtV1CghrwR5SPlH+9TsYfWkXCum40UQEMWHOpOWl3mr5 j9iZK2hRt0ErdVX30sgcljt/JP/3wdcC1ln6oYe9ZuL4EQnUM/xD5t9D2Xld4/1qoGqGlqU/ uibnlICRc12ugr8EgKNdkAJ5mvfQCKsgGSkJEBy+5zvwGLkzRseW/JVh43a4nQ8bhKcjw0xn /YhdO0pqqAKQRPy9z3h2kAOCf7IrWm/sNaqHbRW1eQfY0NgAlg2jyzr15S875vnbJpD4O1jC /kGOmctgBy8huFDgviUAGOLxgJHyxXlwWCOa2AbYFZF8MSNNbPwOShZE1/d4gwyu3Ls9LZpM QawIguws1Hf9nhM4Jncej4e6d0p/wY52gDREdAGyHSI1nAUToqm+QOUIHXwQU1x8eIDfLHxV vvo8zhESQBmBDjfQJAj9reK++i/qHgd2OeJl1UxJDTwuik4dAHZXgV78RuoX7/qHTTupBOZq N+Pb5TAYXe3N6JwT/PaM7MsIy6v9G05MFFm3LPeZ6FY7eNU1cHldQzbMqYHWeLttUvrOLp5x NltFzkxdBZl6kEZCmRlsIj2ykqJFdLE/70CuCmOfZehi8HURRVnia5vA7LB01nu2NnOH5T38 8ZMVJuRFRqe789WF05HdDg3BUBZ+oJnStjcj5s+8kpRkDKjPOmme9SszKdjoAzCwhubUfXxI viPl+fcCdIJ89cMG04A+I9Gh88X5CS1h3Uoa+oVr2yWrEJCJI7GRjhPVg7NnAgr7mRctzc5H ninxEIxs/Oe9TVb3RvKSZsOBjhbUrUnrg82sRx2kWbaaXb0tpdsAcDzpnT9szrCErlDMr7sm u7sdlVbr2KRlxDQZx0/ezsEpwipUrxQoccRFNfR9Lqy2vOzvwllvNl5hWTgRtMGP34vtWHEC JpTKxHT3I087pAOkWW9AEnqz1gimrGY7BmB5Atl0shzwNHMBjI/NQ9y9G/jqHZcNz+rik+bn Vvckz+uywyIgoQm1l4/3o75YrghNEU66aKhx4EUluirvhiih5hXGeJXNtrkz9liiXPJ4HE+Q x92+BMq3IZV3lR/X23HOPsiLXwJW/1MuMMhmEMQubaWJ6MGGaURMd2MvFsDi0IDLkNxTW5ZU TRjPL5FTHx8JuW82HW1/ZoZ4ogtIgKZNLUUOWKi5QiVUF2c5t9RSKAg68J+eM1uDukniV8sS xTfuw58EwEKrhOEz8f1BZcDyeUxp9YWEJRaTl890+zOpT5jN18Bh79Yb+PI3xl2AEGXDGC+t M93mcIy1o8n0oAKyJbm+CBXOuMWEkUvQqf3a55EHVELfwuKm/4H69sax+eRdSKcoWST9j41g fFjRStdcRm93PrCitFVtDgfgpqtmfeyLXv8Fi1f5GB6l8F4oamBKwmyyx/p7t1+HbMJD2k/p ZIeTzeuGTGdLmwx9E/Mljyit1bMKmMIu3WOO6CPaLuiOddZADqRKBhsqtfXojpLtyZnNxA3h KFNG2Zm70Z6uDuQo9MZ8WEImuvckhDZ870pN8lXF2rDAngGkO59U3ttgqJTQIs0VIVTNIecd X6XfWKkapblfvJHXZ7nxgIq/p7ZRZTFPx2GS1ZAdoiJfOsoDnUyZ7VlhMyCDU62/iIvrrCU5 F6GbVupzqlFI9f0QZzEeC8jEwD4tkZc7RPOKeXPVsEKctPwhzWUgd8LGu7NFu9V6RPalFjud /IgmJxAKK2uAbNd7Yfzsimc+hnVqWZGfJAY5/j/UcpQMUjgb01r/XDnkWzNjc88BHxhZ6Yuf bGPSoS8EsEpyp8c0CiKXfQiETwYcrDfHmiJG7GK4mf4yweYUDAMf+mumbfFeYxfvZagXIFmq bFzI/neDvUL4LoeHpOpto1HHqY4u5gCh9xsbPAEETY981N7scWULf1pL7J2sK3l21Tv75ybi ijUHpUodWVPmUTE/fuvWq0TCenM6jqtTYlBXzNQh6FoPIKA7jKXqeBHXI6XG0d082TiKkR6r 2UMfa6DRhK5nvBB96aky1C25qhx/FUhmhQ8ogG71CjuyBQWuCNvYBWqyha9D9NazVuS9GwXf ez2qGJN6YxwfHwQnYrp7ytIuJRQ+j3YQybtF7cJ0SjvG6I6PI6nKdkG6rtnJHBtpowjsIDfN gHWS8U5392zt+qzGL/E89qBJ4tjb/rCPxE/Ef2/JPe+jeRUbvBRsKqnmnnKGq5+89HOTxiMl sWFSFYvglB1lSV86F4iSZMosXfzRtL2Z+bLIg4KL3awQFm88tpgWZxaimF3uP5ihuINqkQGB bol94fifZkO4swaYJCVExcea64YDvIR/FUr6OlTnP4evRo26bcfSuCh0ZqctYU5FMiyWIUA1 qrQqt9GzuPHXxh4qSuchMUz+so2gLsjrGt+tPJ/1+7F+RDZ4NLAvLthWsctlgshfdHQHSJbg LSvDvZLNabPvVlgHxdpUdya72Z76rN61KksGH9rTGm/0s3ikNSpDoy7GX8I8w4VD8pn4vCiy aS9SHqNyEe0LnqK8ncsFHAi0jNccp+YGEO0cMMHOtizLFifKJ1vz+2LOs19hz2q0o7uNmAJ0 3dX3ZisBNO+UYLYba2l+GlwlY3WcDqzmeFooZFbu5qsVrVuVUB6OkrUAxhojZV0fSdOIpTnI kpFPYiZkroj8VIkdxzUJscLSeZ7EKGOXsAcv0PfJzVonEQhtXMX82Ze6vagIvjGs8wdvJbLR 4f9QdDEE+3Hf2StyawVnXX3QPUEt7hhoOhyK8AptJVRa8/ZrPAHbOHPaQL7O4IX51EC5L4b3 XEYY1MXYMcZv7Aa9NFbO85r1nMy2fPQOSFK6ZOiddeNiUDoUA/2kOd5x5MhRUIVQLhbFvraR kSxJ5jpjENz6qWFJTo1umfL6QtdAu52/an+W63WEZWvkon7aGCYtVrV60JT/xa/CHVRq7GLT 4Xyb2wBIL3VIzYr0NfFp3fzoRn8dhMEbzKM44Jk+Sg3ab590CDksEQGvsJGZeOzySAb/amTZ u3XbRitg/9RHQXjB89XfgTb5YcEtBw03r0rZ+wPkWxhrv4kG3OjLCw1vtJ80amBEJY3drM2B IwxYLVkMOW2Tfn2Z6LBFq9IUmaOOcTCPCrRCmKzMAPH5/dXSBAsoZAuXbhybjuBEQLd9exfX vvfCthGSah/AabmaVn0BKR1KMtQ0AzZcPIMQ5qkxDk270uqts1rwHen8xpTKlTAfQPCgm+fx m06ICgqmsknANd5m05Yzt035/hwCFVCDBslGo05eOYfwdvT3Zh3rUPmUsOld6vu6/7ObuWcm Lc6CUf0G0NDznlptI++DDZqAkrxd65+w62ho2nl62JhHVhOtD43Tc6rErSCblv8i+JFsfk3W HETkLy0u+k5ArYl8olAwym6AHU/zC69i2HEAIq0x+ok40CbjOxu8Av8Cx1DtSGTnm0O0y7GD wPPXo4qaD8L0+dZZEkGPm4ECAwCHOeMDIJYmJFjIB7ekc7kSDAqOy4hWpgG0XPBf8tHBtoh4 QKmQQtA29ecIjNrQjs/qZEVeEqJY5FytrkTAjE446b7/5mTBaLULlhX0ppyvdg5mbe6tWpJB F32vmtyYVkIxIa8HTAY4xIaLz+my7Hi+RCVb88YJ5AF7Hd8DmXCB9qMGEw20FDid2qRHDw+A 9xrWhHOPYX+rjgATwbeVlGV1/Yhyi7FdxG2d5Xmmbujd5YEu4sAd4ChkGAbw1iGjsydahVrc amcGWpb1b/3x5qe/lKCTwHiK8zwXMeF/N18nlgmf2cOwqKNr+Uf1AAX54pNVNW1cKpBViU32 v5/zygdzyWxYwy5n3FN4DSzTG3qIe0V2wpmxY4z9trLqLrr+l7Xm5uWy38HayDMG7r7Crdux Yk2l9XEST48RSt9nYr/dBBUJvBFxHfc5g2QjTNo1lmhZYTwc8VPXTx4Kv4Sr1MQtAV22Bizy 5u66UFqmw3T0Yc7Rw+BsY4pMF+ZppxYPSq8QY6M5eqg7kHmJX9mpdiXr9Y0RyDXVEba6Xza7 YtAMRz7bdvJG6xeL0rVgMkRs2zCn7pAb4rZdUllEEFddnKBMSiEbNNWdE27xm6HGX1tahAvj cFHQisvbHidPAN3SgZFUAKSXXRrmjKxuhrZvWgxFj1lDGiHm4RRVEIGzlHyqjJFjShczXJW0 v2nVrLBC3CyZfwKFAUznSAGKXbsL2eZNGteXOlT6qHk6HAmvuxsduuPr9IBpFx831cfCxZE7 0iIUcAcr6q8/bl07ZzIo3w9b/lFjhMJY/BX2FQWSC9z7rNHQdEQBiUm/h5UnT92JaNP7uuYC dhCEBvy/20aoMkTedsbm8FjJQTYvO+Z1AXnHNHOXBVDp6EzP7wC4/uIcp6oeSjVauUAwvcQo j3pU4e2Ph3Dv11sereCaXN06AqqzOM8m1TFMbsq0DfpwGAhPYcmxDcFNMLsGD1/kLodhHoVi vcVkX67d/KB0e2YPZeYIG/OXEyRY02n0SQap95PdOXJlDtrzaweaGwFeRksWg/6Hbnx2jYdq ygJ89FS5IN1JiXKasOVbe+MPWTN/H58imtGszNfdIlI77tip8GCaeElutzsPSvtJFC+/2mt4 aYWXaBEmrHcT0SFaWvLQ7tK9lDAT3SnZecvdPV+oOtS6lO5aGPHv9SK1jm/eGua1Dh+rf9Hw uTSYoIW3JLdMDL+lHj7I8/gUEJTMNa8vTUZxt48o4vq5KBPxw34Swokij15wyOBvoMAzE2R4 x6gOI/BvYlBz/sdnI437PqJLFq4fAgFIj6fhBhWtttPH10ISt9C2dzdzpcTGY0KjwQaPbB7r u5a04Bb4wgBlaGNt6Ataz1etNoPSBdA93wa0RKGJaSSkNWeWiktpNkWOd/V1bh4b76t66y78 bWv7d2QqQobmhktAcI+QfArETarrNEWvXATudQ+YlTpSZHqyUXq5MtRJPfRXy4UuEW1OTEcz wKTsuXClluPo+biFhoeh1x3EMdNbUz2hNTiURL2xTEoijBIv26LmY8+pSzr1IGT0GmbmU13Z 95boIFxzi5kbL6ZPBPtMmObqXKYRNrYaavAqZxmdIxS7mVPKhsiof4d4he/0FYcPuRkUT5ae efRi2/PDNq5ZLf4EHAH+lgzpt4wPnWg3LcjwbJf61iT+Cz55DfJv08T/kGGnHNr05OUfl7ve BKx+xiELY6tbdQJ4hOX9l6+SU6jWSWW2uMR0W84/zCQSHrO3eNqBFwrPGJpWzFupOtwIUMTs TjNQRSK9HRbcGMo0H5ZuD292roWcyqdPztvLM4dVoV8F5l9RO9MYCYZb+SVfogZjiubNOfw/ 6VPJdOu9z/7W8U3+G/sktFMkpXJAyUcDTESiPtjvKjMVJPFVMv7LOTsVdduPuMI/tQi6jkfY JjNmBC6Rg9VFlZM40QzX3KVraBhFnMA6ihnAPZPI6IJ88TZP4cnac7Mplilehcv0Cbfy7Ufw SQSnWKRtplbWXlkMBX4wg1QdcC0QuElEX88ujZAk5D59PUnMSFervcS+46xRSZEoEFYIUgWL 7PwNoZ7lJyTdBEqS3RfqBKdZmdCIsRvJBoQBB6bt04a8Rs5Hp4ZjaN72pdwe7QsI774WQPso Ch2ZJP7nvlBIWv6CbfJ71MSr1JhxyfOjymDsS2B5qc2F3UG5uzCDoorUBMSWaxMMjOEd3v/9 +TNUkyqCFNs9bBPyHSqsWqocwpNvwiBfpL6TNXFnUQ/aWIagEb71/olFaSJxJpy/xYTEOhng n2K9WccG1pwC3u0gXvVJO+r3yNsbkQvdOOHKWld5DjQe6b4s6eNAI0jIKYJ7TjyN+4SSyvCa Q84vTJIsb14RknXbaibpddSK3oAt1AqOYw7UfVwhqhMyUQ7zAAmplAfirv40vu/K/+mnAdfn +APTwdZJBO5ScaTdhQR9P4ENmmVoQ5cq+5F5cRmhVBGf+x8j4fucT4TPZrHx1hUvUxx9s0/0 iPJtZWyoTmeRDFWms4FcxxmNiRYGnGI2EPSwks4sOYLi9Qo9yyJvrlHjnWgWBkUs1CJnYdI1 Y0FfCZwEGNZSicmyEI1Zu70hRK6l5sd+Am1B7hmpgLO2y+olx6FanvAyJz8McEy68gO5KigX xdaYfRpEQmHG5NMxXuG1FagPfzkYVDziOHMTYURcT3lslaOxFSX8E13hhPzmT32KcpAaYbkX HDzMWwQDetx4FDdUvG77tYD0LhdQTaq+SEhyx8AhqIAsiOjMGQeYMPywWoJApfzEbbSMdyri J5QddQE0JKUoP4mAfQfyovkkPlgys1hu8ND5wH11j8chTS46umRccj32Jrhngz1gA6H0rEhv /Bs9zuScQbAZVj3UUewXOkpHDH11LXayu9l3tngNjDK/PNUJDUFSMV3xDh9WGIgVxdsJUko+ gvCJYweQiR8vb5AR5j5xKO104zIxJwUuTUgLklR2VfmFnrBx3e/IZkWfglZBWiLBUaUWDZgR 3DOTxo+0AQQDmXu0U0QkSgeVRooO0w1mT0CZLsDBPNQaguDa4s4SsCelzqZqG3hi/ejZrtnm Se3ii+e13Kukalg6Wk4nrXAbYvYAluXIokgTLZ6akVUhB09US/fK9RbteWXdoRQlVW+p6nB0 xURmKqcwiNzPIvBReEELa7KnlEudzabgkLDxJA2Mfs4YBUF8xuzmzdvIadpwnOShPbizyJsY qP/48S/ToecZYxKYQvtiU0SaRKAfaRRXXvbB20FqY+NDezjl2UUI+fId5gu3BhGkcuO71tDA MDnOPu8IQOvCkmg7LCDcefZaiRJ+GiS/dEqXVlgaXTw+XSo0OqZY4yzU5ZYjHCsGt5+D7zCf oORxRNBpU9SnKdEdREl/blriIknHGmvOc9OSEjdQmLzLX2S86HhF0by9jKN/4ed3KO6VMY5M dgn1PuqET21cc9tonePwQpT91No0E9QLqNISZtxuarQ/v+sN2g7h5dBobc3QK8TzmkPOe5IE cz+SNejCWozDMaSKGpmeLikLoRwTkvVMH0jztVXtCh0vU91+GHbMDXV3GAKvE6BhXZCUCHrh n5xySIT04YlUVbVGPvrOmuR9SXu01fo7uTDSFeIExWyY9F4wanagKI2dWMNq4Q4LT2mErE4Q 069Z6Jb0JBmP2Q+FZG1J2ejw/sdNp5sUYSaax4j3ItjnnBScBKaoDBFpwPkzorUahVIYq0Do 3zJbvSFCJ3bZdO/ycSPM0+hhdXr8rzPDvmemBxAWEgoEpbhXcmh7ipboVjr82hnxujqLD4JO fuyXvtG53/XWut3sulYrF0/jMV+aRQeISC6rKKxaeiENrHancP1RGQ6fi7VaiQQUvQ4gGJlV v3k3XNMvfKatNPyHly/SJsmTf4qH9pr7/yWMfoafLGguxkRvIHvFiZn8LrlvOxpvNymg/hbr LOcCfwX0Jsq5OfrupVuok6cUNnV5daEqPy9eDWKXkwDaI0E4nsYQRkEEXaLEGV2jm0o3qEbW WqmvXxIzaSPC7fhzgWIG4oNbXsE9b8ttf9sN/kVkmb6mSxVqaEI41dh/GHmDn5FjRF99pZrl WMNoBnWs3OO4pJmRwVKWmlgHp2bB/tOp7RbV8PloJFSTUuizNHeZ+4rLq8bB1ARwxtF/Imcs Tn64R2BccE13mqU05l53DqMONngDfA6IJGLcBtjBTZTXV4SiTN42wMrn4AFfZR2f6Ozkd4jw ALOtaKv2039xLyxBMqyydGV1opPlB2vmnv1esppBkCC6iuh2B9s4S2Xetomf0IW6RsYiOrVy I+Mvs0mHSTxaQmOE6BX8f/YszbDVB6IG5IfY40EIMNZZZ91U2aFDyFyeRn5v7xRsPyH0jHcs KZFggtwDToEQQmZHJG5yLw46Q/IvMNpfjJgoy9rz4N6t4voas7ZL1dAdECJOvZpdpf/Sp9eu zpjQ5YsdwVht4BDff4rWUkeFNcSGCCyp/PLtuzp4Gsv9fOvpX9MKEqhHSjoRKIgnDKohV7eM pfOua7w1TOXeu/bIQ86XhtXPno/9NO7USmm8XeDa/KP9S2i9KHZA07k51Hr2YcjwhDNYUy0g t3IyH2C55CKzl4DHm16PUi72GfHd1pbda55aOAszaTpidPHMqdupH1EBs+czGsYVpkxfXRl9 SgAnCxp3mB26xmS0Eoh6ZG1u+XpfUDqNFCBvXu4mjL13Zqz+sj1FAk36Zh8TipN+lv4rlyo8 qLfHpRlH/3x2qloeo7NDhSXmc1Pd9+7IbkAzD/2fGD8+QMGn3xTdEpYwefWOIk6IlrHDpafG MLA3NI31Hy+TVouUi8APyTLiT+1Gblj0F2tjAG+Qf9VL/bSnULg44hJrZKyrofh/Doi8Gltp ZOpqw/GCnhGXHSfW1cHLakF72eQOSEhDe3+AwmlfNxS5NLIM2Iy4faQ7Gqjie/D+j/jjNb9x 2TQP/k3sY6i0WIdFF6K9+IvqWnK4UHAAJvOhX1VCrEbqjIfQk8jHjYF4X5+3VY1t/YLeiCmB WY1eWJ7mdOiADulrymip48ERD8XJbeG0yzriIXFQOds66u+03Y+QGj9XiqwY9GE7gp3lIzvU Ah5h/FK7JYT7XrpRk5e+Dz6ZB7WHdv99eWoLVff3Je/JJEZqB6cc7pK8GGraLRuosPg16c/Q TINO5yt+MaXW4ksI7MrijLNEjBUkdZPOAxEkGdcl6cV/75aH/RdZ6Yky5Sj+XgokC/zJxA1o DIxDMII2864AB4FBgMkfo0ffZ0uqn6LjlTDZvIxMxY/JsAXI3yh7fvLBJGISItxCLshIMzIw IdlJVqg9W+J2826HgF4xL1hK0NbhP9mlz+YSBDdw85f/vD++36wcghzayKntBs3UZgrEPyx7 F2YiGUPsGWshd7TmRuZjuEOHX6vG/zerVmyIm6LTL8jgc37h1C8XGI/Je+cU6HukfRZUSrcK AMPuZE+tVq5k98VpYZYtIXi6coUtW8zebwFXFFmaGh8k+yDBbsebJkeHWpKGb2HHaz4WLwx3 K5OZJICQOm//Ynpf9722f2H4x3HLRSwP04/ZBxriV1dPUpG4OGqx+ItplGlYVWkmOdr+x4iR h+plHiL/9eoOwTa9khaEt+S/OHRjUq2sXaVll+6Mx9OF3yuxCfQEi6z+ZPVaASu0SQl5g+eE 52vNYs7qLyUyMManpnGVkzpGLFZo2k+x6+VAKm6w7sbYWKBW/uzLrfTbHYcdY+zv4XZq6YFE VAP47zvwMukOrlZUP4ekFavlG38zl4Sjqb3LUZwWDFNjNWvTPgrCiF/QWjIuf3xbVwg17+HW KHkGGq3+jZffymtZ6hzmDusTik0uceTIn0mUbdGu0JrUYDfqBNwBrn7bv+4WoJJIGxB4SXOA QHoXUbLRR7zdBGn5oVJYzr0nbmAoUd7OiwkXZ6JwgLqnctbyOiqNibnFx4AR+51USHKjZuuN chzaLgZ3cTdKbFfirvYEi4dobQh/sbufKAr/a2YOVs39J3Vl3fhcm1mffBgmRt//I79uRV5W k54+edRK4o+aO+oSdY14FbIRbVYQPqE7+1+napPoaOTwZVgxPCZ0OAdmqxTMXeMjFMXdeE7x 04UvTjyYVD/7lJU1ubBuDSSkR8/MeQ+6dOJtldf+FGm10IccmVHDsaSiHzrj4N+Sspjb33PF ouEDnNHioeqflMXErGjrhD1KcDbfEotoRl1cCQH3vAedjIHWjwwSq/OVM9PFshP7fQ/QIds9 Qqs/T32RheVSPWJwFIFNSVtaCTxq4VfYXfXmiEmNgLD0UPr/k6tF/AnzJQon0F35vpov3AXU X8XlFQ/RrOXPPFI6OcBISt8hKgujgSUHSKmHwhPzHaLPdwL69O+SYST0tn0GH9o8+2lLbIl2 VKWwiL7nXjM25ACyvuDRQcswWmQyBv1JNqb2SHN/PPzyH2Tno3jPP6TcYrm2Lzu9aQO9Um+f a4FfECHZD0UDL18v3uQDJh/9VGWFMdPqkpxWTdUYvcZnlIuoWrgziV2VhZQEN5v9eZKQ5Dlc BsTMorVEPVLjroHbGWmOWgV2vm5ol2t8kklnq0OU0viBWF6mns3bZGfD/uuTmvcytghVi0ux cur17EcrHzfqQEbC5lt3l8ShGLcXNo8KqTkNEkrKZtk0D+M2poC/szvLaiRxpkB7te718RFP b9qUTQ3n7zIKCZCKKOI4r0CNjHK6oDa11x1CL03UA5C1yB3PEt6aGbgHX4PfGOtsB8yxv0c+ ZxE8vrhUAuC5nZOjF8pJmQdEB/rnKmArq6qQDYVt3qrXqjxbdtN5WIy97yU9Z7hn0lwaQ900 u2U/eJhMeOXc3FRMAZ3ZZuLays0CWrGWdz7/wK+b1KbagjUQrGz6cVFM3EolDm2h5G8XXfQK TjZ8ysVKv7lQL519xmwCjjpElB6S+fzkMdA4davVeOWuyNt1v3ujr624HV+aUAU7j2tSD43Q 3Ups6PHOopVmJoJ2dk/zHzncxFjPB62f7Q8ZJuwqlfBBYG7iAdr5GSf7GzRpIJSxB5tgKseS 1B2kN0hrr7kpu3jZUMz8XJTjM93QSEZh+DIANrH+HzGwhjpwsJf5C7TMCjDxae8rKd9/Jill BwuGpWQgQh9WJgI8XHi0H7B/PxfNdMLUHqvzFqZqvT+/xLnSOfYqPZJLIrXw+mqSiN4bkAoR 5Y2uDIh2PrP4HVeAe1dywVbd+Yh+sqGkwf4DfyeVGG3B9+zvawJW4s7DkP8Rphol0Qb/yUuO eAeZX//FV2Hjh9ymj9SFcnMMDchGWNh/TCV4qt50o9B0EOaJ/WoWLyVJ2jsWRa83gxo0zgvJ +m4WQ48lqwS/KJAD56ofLDvg66v2K0GagC19cwWmF0g9CuGBh7JR+jI8v9rvhGA/mWvt9W/g jw10lhDk5faDIcnOLG8MxJdFiLff9UGVdTbhZfxZMZaZAD47tkjKa2zyyQt7Z+dboopnvjCa Rll8Ng6PSpSLIlUHjuXgJzYH2afkUB0kPsRLf8Wd7SgVJ/HLl4FYU99bFxaKtB56PPAFTttJ RJErW4Ie23unywgf8YAvA8HiuE3CLYKX+sOS1TOiDpAEEcLfBOu1ueeEehxkQOGRj0wfNm+J 6TOoVLCBzzo6I3QdjsQCTDPuJ1wFJoMWPu7AAL6T2HztApi8VnsxwbYIuwEOlW6olPtvLXV0 W8o0vlgamXsUGxTWMQMeSbj0qn5I4JKsE+N4bqJXmIzI1MrjY1nDTb6unEuH2hGXPkD/bfuH r35TBMk7+iK2JD1HSjse4bC3z9r5ioUAbDW0GvpdPKRM8nnmahs3WjlrNJn0uCaR94YSeV76 FnQ3xmWQeM7aPJHh7OkPuYkiBXqPbkjVUBQT2UsM1lDKt4sLU42Cw7OgkNUVSjrCOzUQIpvQ vMM4kt/FOnYXgOmHoAwz1wYSGlZIrRf5F3ZDDF2+bc2NMH5tsma1mgfmrNo5LFaQSoGAOH39 2zr28V8qkbfS/1C0+sBMdoUgzKz0qQ1aurLO715lXQtj1Xh6BgU4pGI/spF/IwS/K6wKAA+6 uuWZiPa+HNfLIdR1+6KroR1Ujdy7BcpBZSc/Lrc1j8PrhIoZFdhN3R/gdwGs3xCgDt9QuMKK TKY9/9ZLm8KKnkwgHwA6hzgmnSdw7F4xAkJhn8Vj6E+kiO84C1No9fuPbZhx/311O0r3c3sL N+c6OpoTmf2R2bQaynHSLh4Lj/YTewRVYO9DWXhePvYBOavQXyjwx7GgvtGCFIcPuJYWnAII RbZyg1lUYY8Mh84HWfoSFIYlRqPT7HdeL4fb2ZcMumi+cL+imkecZP0UjZ+ZVHOTY7V1PeV1 AeTUclHJjmKu/eZdTBuauOvJVu8LX0bnqx4GMyimj5jt2m1LtTHe1+kyytaLiHGrjz1iYhLI QfBnPsMbizvSWPoTjNUcWbif0GYj9FgfVTCrbVmuzhYYNY6q0Z/wIcJ2dBj9cDS5j3E0BncQ F4xFIfz7YPltAM79+xpzvwPWTK9ssVIg2YQ1D7d8SYGOBNxA8OpvlPnfEwtEcXS5yUaPjxU1 EOMHjjlalGXOw/IVfaPDJV85m2BZ1+Bp0yOyTQNfAwOhtrUSMiQMO91+xUjTdhmkEXY1Oscw 6ynoQaEvsO3ymeWFVQYpyME445tSKeFlnKDWmQlGp/hzV0vpq8iffg21Z8GDahZdTTbUG4gH 21/yrz56h+Eg9RETyk91Y1H3PfBqVSaaM/O3hQlSZ791z03NNSWEExdPzhyc5ico153c1Tki UpKodW3v7vdrDCzQYajuK88SP8PjpJslOpbkEpOv1USoOaivjS/KDcaLSxunsQpnXGL8bOgH /7AtqCbh6aG/WIjUrLSa7NaKIIa9TRt/RdklAon1rU4mmSmQEOKlS8Cfu5oXJ9JAFPdx7Z+a IimYv6c9XcoCDlWuMKNO2X6XIzoBp+J/BBiu2SMMNOeAycwukgibSz3E53r4z3yoEwGoNYNM xFntAZi4umDeow5lWKGsDKVeEN8cU/exBg/VM9NK9yEfaHQkbXrJeRflpCR0gucAktbcHR1r 5yC3BiGnWjqh/q3Qj1hCYLV3g81yOIr7RE6XlS5XzA2QXpsUPvPB/59/nzCt2MP3yzAvHS0C k96KBc3haa+E1Cy8+8Pf4phbTExQE9KgRTzJbeidaDB67FG03fHPVgLOl9+x9BqoGzhn0VSg HSGyiQEfu9VL36k2aSrw/y+81MNpvT1YYlfy1M1RFLf4WFpE73/luO/sDdcrR4FTOFg8oZuZ CrqJKuENOmIhyOy7xqFSdUSmE2PjmjN5945NUnHe96SLyqXuXq9tC+NpdK6NpyUk7TGqZyn1 +edsqT0vtWJdNrltfGNohR31xuPfGwdoCoo3dVnE93XxUBgjAKIkVPPL1vEBjThFPJMWZvfz YYF1RaDcc1XkrUdSZe3C4BUxYIvIEQ3/UKn9yA3cu7dE2qU+oiSZH7t2Zl/5dcVaV1rOl/2l jhBYR5UMKBU7TysvJiERnEy3Jl0e6S1pybBmMeXZ5VbXyWo2GqGpxGwYdnvFulbaNFFDbLYn UdsI+/o3xP/MAjZk9Rt4VtcHOex6yhi+tKZioD/BGKZby44Ju6nuArT+A+3e3eW/mZdkaFxV I0UxWbqHnHtYoXubl4+kx7Wnbn6Sd8haMGSMFJA1rjU7TX1SBy4qWOQTqS7ZTz4MeirbdlCs rFjkFcDPjfagXMpo4TRTo7+QZnZK/CSsFjqcbfb4oCOH55m3ODEGYTmbRz/bgtB9GFDJbNq7 sw7Onv2CgzBf1py+ddOFQUPVY651iHjhMegJb63DVly8Xb4g5mqwy998VsP9Oh+nwkZL5fbD A82fuC1+s7gJja2474wp/Pr8732gJKKF6ub5EEis4jTLP/wxkBkYbM444RgcHSc0u2eJMzrq 8RvlhOphdxqSH+2anH416kGk22M8MhQP2Nbu3lZUf0ZT3J92sVQINyBheSEbviEPMeBfVasc liEwHH874FbkrKzYw61NQAVyqcXAMQ8o3uz5ubnANTLV+nSpwVj/lLkh41j//J20C9tS6PI7 +hXNW/9h+AzB4AI67zU6waM3BYHSRC1Y/O1Oq5Vca1uwX7yMY3JDd7AApFHlMmRzLDxZFSuD gGj4/RSTerF2dY7PVgbL76FS/G/ZcxbNr0zU+ddAmBp9bPPON0Obevmhyd6N6qS+upU+r63r 6wOlDQAlQOy9uYALC76CmXkrUjFYI1f+iPHLpa1qtGhrm/cIQCGAAycS2ed3TSO2etMCwBL7 2DXkEpt2Z+I4cAecKN2Jwnd+L8iWr61JlSyAj+M4WkjwuAUu9sgIR3G4qdl6Djxnz/NvmGdk opOFdo1DEa5B6+DUKcUdGMOI/8zitdncLN3ywv8/mJiduE3/0sxmGUys/8BTmOwbKbHdB6qO mX5PDqSImDPo/yZJAFNVipYa6qZvUU1PQRuxdOMrePAYSbOeLJ+Sq7M14dskhLO2qmuXxdW4 04MsQ69Z+Skwn7bYM9JsbVtNsypsWQPpkpzk7BN4CAlauZoGwJ+NFKT6Xu758rLSWeUBFYjZ rA48sHwZShtskJ7ARp6FuJbhq5/X0DtVfa6amZhoulT1Lr1T2DdOkInTR/6IrFTzmjgKXLci s3FQXn0eLy+lfyoKajsCiUluTrdGiiM+eRAO1ax+qTMRMJJJPxIfiBKq9MY/4MB3b6GAOT7A 5eX6FyxBmAfp3cQkjHzoLLjZtXwG1LWCKCOcCMr28NzodQs7NEcMSs6mhsnagu6G81QjPzj5 Qr1uLA8BD1r8GXyGUtD6s4O+LdX/kU7VS4a7aQ38MW04PuDS1ueWw6znuB1nMMGIQAS34lX2 wbdPXIiaPNsFPmwY9TFOZPvafrNF4jIOVU+giL42BgFYkqHQaGZLy8zIhfK9MvV/Ma0yGAGJ vQNgC6DbcU8R8j7W0WxzG3W7TcLceZhypCGsMiBCoVP74I5GxzW94HJ3ee30t4wN16gQFWc0 sg93L6ksteDC3qUftqrYYSwFgmf2nwmrd844/JSYkJxMaVFEBP4U/ZmvtMg1jzaXxZRVMUts B9fr9Jjdj+PO63pdnsKcnHNJ6WOPh1ms3HySDdCtf6q2kIIGZymWBlfE9qcAq/KJSNIFlnOc I3tooz6KMCyCZSUtqs6PoieKlLywENMhLotMBtuLxZgNoliTv6fUPrpqOcuxF4MzfSIzRRdX IskZiNHiHsXKfKCMp6IxqD1OYHmgizWWE4KELowbHsQII+PiBGI7I6wrszuNhE3Qln0uzJqe CVOVNR+9BgX7EeWtm9R/ZCb07pU++MrVWRSfSEBuqqKWSeKCYZQgJF+kOEGi35opkvqx4qzW xZBnJ/JJHQB7H17gY7Te8CyKJDMST7cAjzisCEGQqdyNsoZmhr1BCVitRffqiML0G2hZhtOV V72rFCSgnc7drI8Mjd1YlBtL/sg6YsrVkDk75zPEQXc8Jr+ilLlw7mWz4nHF9Kc44Jq5X2WX g7WIr10jB379d15tyyqo85qBg7CBtw5PYDlRCoN99sAs0VsIfJJbhjh+fXbLWeZ8Y8EvjHtG x/PruZooLUMkmVLXf5EGYdun/pgpYiW/AhQ81F7vCakTehXmaaPRg9mI0nuPksjDoNL5Xws2 D38dh30yAVVIpOSo0kzuDJy3w5PcGL8cVG8tHodV/fv2aBw7X9NrY/+rBSBfK4gPaKNqYj8q ebYFUBuxuAkNlkF5CmKiVLKMUjZPSeXi8BoBss3iN68jNSDgQAiFy1zv6RJ5NJMzBYYmdkpe 1lumt8F7pBYG8XKdkLLuYV1xPSkyu0jCFeHOrK8iKYJK+JwOQ8c85OA+4uK3ap1L7QZEevKk uYZwQ8JJEqtl2QSHmkO7QIpBndeoq91pmC5lTLadJ8t44A4vKZ69jAf8UYkfIJ0GKQVTXSIq rnzDkee7ONOk6mrmnRDFAqJ9vMiB3iaunEI8+rC2glT2fLx9G2EdzNN56lSjJfEMotlQBETn fGJ6IroTjkqg+Ot4EgMGKYAFr/uApfyBPgqz+oSYHTNlBURLfQ5kHQf5bwv3uiusSHm7qg77 2w1NB74QQ069MUVVp9hsvojfWOgLAdNTbzUQ4A5vm1Z2JsaCJ2QhmNeA4YSe8rcWrEqoS6nO ahkAAqPnnwf+XFapWTV9HyV+Podlh4dhBp5MKT0rQ7KV5AaXnixbaBl+tGP2Jk3Nv0FgZz6Q UP1dQK+IEhmmtTZKzxJ/+yqA9XGde0EmGaE5CfBWEwnfcY5CQPoyNbc+VHgy+bavVi/KdMFf /F6KttSA/p99MtK7PbO5ruKFfIL9hrwb5mfKzEwd6fGIEbeh6wQHuczOVTjjoitFdBootAPX gEBLtV+qRbtXiqaDvcKECtuVY0WYDeHXMRNF3goOc+/a0FVqHtqpFeNNfpIZ7LWYH2bfsS4B 8QS0okPLjEFeM57oerI8TYfsjuNOOXFf1PtSIV2iOG94wRHJAgnCIaXCQZ57LxIXVGz+N162 rI7QsqGRq6bBMJOcYFVPGUV+zRGYMgWHEJlTNVxWKNLZqJ/zokVdqdqTenWuTMcXolD75MQx BZr/n2MBHaEoOI/O7Y4/k2nsqIXOzZaXZ6STXA25iPo/9+7YyVWRRIHcwRrgn0HUlQ3Z1OJZ w/eX7WZrDypTw8cjJY2lhu4yVDrpAGPi5P4VUnKU6a7EQ/wGtyobMtgnKMUM+z7OFiNBk1ms fZ5AMdn4gr2fzpBMN6VsltmQzQ9NxWIN7pj2el+pMt/NCM9bEhgxhmELewgXWZR+FV37vgW3 EEnkd0rR8+/lMa+dKqw5aSnm2De/CAC8xZrkVhUbm95GTZ8m8hkUUeY3KrEJAjfzVC7II3t3 IiOpLrwonnuguXWf2pCW/7IPY41YfwyLmWZZ3/IwI8CJeLOjz+KXPfdaQyH6flrPNVsA6qmJ IIDewePbz0D5v3I45mHUldHTbufJFv3idZphivwYeMhDJDIslRRVYtJtix9GQTnw/KoGP0P1 Nv9JAmOzB6bh9d0zIj23LO7sf69IGXMtq80zMRROfrVOo0zN5jfTJt58B5vh9nEONyvE6vVI gPktqUZfG/j5p9jzaxNBOjK8S/6e/hjiz6dlxZVMTbH25b1kA/LonXkx1+LPXaag/8WANphT h/axsgtlzj6krebH4z+owy2R6AaqMYDp7/6YBjV3c746DL72dkuZpJ7OwMK132IVV1QwgOhj VYqh25rqFVu0hcGxBh9ahiyOBITWxZmzeVDfA+aNd1hDlQb/z509yS8OgMp24up09S9EwCtM MpY0ddrXx+seB2oofhQ+tQFga9RkTWyoE9JL2jnhH/mMOJoNhKyI/yvN4T6To6qzZbZTmtzW 3bNftgQ/IYqt1bg2QPeTvFtBUgIcMCnm25QiE0x9Q6jysK5KNcVysLslc2CDphV2ucc/5Wmi p1hcIZXU3HFINwNpEYqi/iHK+UH1qky5zLbl1W9z4AmHXvEqYCzxtd3I5jM+8SswAMPFs7kN 59WpWJbVH/jN6xSwL4P5yIG2iekiHFvcte+5/UeX6Zw/DAC8DAw8WS+IFysd9rMMMjCtxPF9 OVkkq1zoB6bH41fvuvefqhdavpsVar6dpViArZZCVCW/tYyDBUDAD3ChzOTRW0WtD0h7KZW4 Pg945lUUBHgL3dbbbQOZwGbKBVOvyN9erJHYfSw8nDNHe7rmhXNgnzmPYhDNDnBSCFOeOT/R FyPbOv8szTwEf3eUrScnP3xW5b/uj7AhD/YfHB5coqgqNt2ardDAtTIWDLfNFlzHytFqTS5n 3x2Lj+0jvBxbLfc2vlXr+ZUIvX8rpWsK/tB7ePS5gISPtmW6jI6BUMa8jAKqIB3wHU+6l5zB gnp0kgfUXKArrkyq9E9AxJhMsJypWoqfZRHvvZXi9+jXK+4WV9M4Oq6+6oJxw30CY9PSxPz0 Mak3o7EZngF0AWlWS2MJhYVfxiqHDOiAQuIGgGnl5q+7stCe8mAOPkzftavAxliKCc+F+Ymq b4YUNlWI9Pfihn00AhisavHOFbp0ZLl1VZ1uAGOSI33oprHuQcvKhRg7wMR6LOxrBFX+mmOM tMTWahnpr4gF5RaApG1Zg1zFKUTuIqogQTdNN1L+kLiGH1CWqq5p5EcpXdLTzQdPluDW+jZQ uj+e1CuEH0ySmYM5Yz65Whbo2+kopiN6Q1bX85quoYH6Yq7gB7oxs4/No0EwNXWpFPKJVrz8 CUjxctfyAA7wCPDgCoKl/aHqYYFS0YQZ1LMCI7SsYHIaD63zS1eO5An0D0tm/AL3osUVS7o8 hS0/XrPXKfcyn/2kpCP/XUx4w8NVhXOUdXRfeDv/j9l954HIhGdM9NoULbi1vHCHZ8MAyGFp hPAEeVjHmN+5Yiio1r5EQUWqJd0TS3EIcqfJNzotJ6LCKUTmWtdXkXd7ASfXyJoP2pH+Yaxz Y3ztTAW5U2lfIIDIJ2ywCksz07AHj0LDADuYX+8kyNFIdWeEZSkpjm5Fz9t6KxpY7VDY7U6j /5Wii7fpK4TbW/FPZ+XmWeVheU/t8Hb9c5GWxyXWJzDU0OVgIFeIV4FnFO4KWTk5wVL4peag 2fDb33Nnhi5nGoXYbIoxsNqtmLq7EIIZR9JRX+jrPVvD4Sk6ES0YsuNx5vuhafk9+hl9ucky nYsQ3Br1cduu98gPips9dK/vAqvlgeasc17IhBlWaA+mTD6omc/BZEkci0w7K69RU08+X+P2 GaByeLUKdYIMLySxgO7+DWqXWPGy3CmUmZRnXLxhbC8UlZhtQ2eUFtyTTMTCJPcMXSwngT74 Xzr7whnUTvzvrvpKieRGJrZUeRaSmjKk/QkJH2t0Uf+XNa9p+fguND2Yb18CgksTI8Um2E9R rCdhDnWa+hJpHe9IMfYtFHzwe53VJWNCAO02zqdmtanOqzOAQHq1orA0kxezUD1t1ey8xEYH x3EdFFQhLyqwTmeKx8OLPkfT/alIQQTz1hxG6IVs5lcctVCHLBfo0yUK5vhrMgyA2NZHgYab yIuU0ZQvD9a0sIEFH+uLTM/dPhb2dTyQPj9jCGm5JH9VwAPgpiKHMBHwPueQfCTQ2Re3neQj 10gsdFQAIdXQC79p6pl19FtqjjaOwS/sShw9Ov54oLmPrXeHFdFiRG1dXHi95Bg/WmXonWhm BZa5ROWNd2e+8lRdXeFW52E+UxKPM8Yafi56+N1CdZomaHFhBaqeSfkndLtS8jyukmSMEOxZ tVPaUYjsa9XkjlyQl7GAgslzE/IUfA7p2oc09glggABpFJ8mJpX2SwQ/N1qCbqDrDEIa8h3n JEHpYmTdnuthhjbEiSeDPS2WB89fs5MMzCnixqesMQMPMA7qJXeVJ/ATplflR1r3+M+0+a/P UamgXgjkmkWD1W5JoyUW/rDbD7eXByOOsXQsRxE2bd5oAi9BQHN7Cp330KC+Q0i7BhdUudSV kcC6k/NalubVskvRGmThheptTdlCATgeonBlSndMh0rE3gMp46bhFl/Bd+gUx8ejcfQQVnQ5 O5YunmoHU6ataGtTJM5UsjE6x/Yh16Zimu3vjvK+2XXw8IYBCBQKPSAuqevcT+3ky+wFeZ9K liPwC/9vVE0SSxQeHLumVcpk3z7lRMFK0LBg5qwgwC/PCqNsiPJ4i3zJcsPzIb3Hz7boA8mH dBDbuM27KduZnJTbUDAt3H65oRNzajI5ByrFM0TAycrWjQFTrQpJX9ZLBaocHT21NdcgVAL/ CrotQ2EvsDxP9C3zFS8skZ3twLfUI4p4JaMqWMbDUkw4OetwFAEVc5Cq3kkeDVqKQr514fdX +h7XYB+W2hkYJUjg3BOmtHcD7KNCh1VWuo+I/+fk2fZDSUQjjYQNBaeVtYbMDxP7zLpX+jTr LCisZnY8sXCicfcP+tVVMJ06e0XS+6w3dtdd3vqjWAQmrYkDJfBqjuDTjW6xsxmr31NlfRqU zbv576NlfFoPCTrsjJOAOQsx+DqpibHH5W9XMBbBA/0kVVDMv8jWkouiAhlUl5E+qRi+An2V 6STfaueupL/BaPfvFeBIEfyShDLCmKA4Txdn1ZgpH+hcfVXOwc8yjFFBLrlMFI77TMsqxgo/ NUUFiyOEx06bP9B3X8KV3rfFWrYb95tbnSYCGh4ak2DnbQuHHRcESLZinekWeuK+x0itnrbq 2HEkQepQBf/Vr4c3qGKFsdEE5ckKXo/N7RJ9qh9Rl3c2/CjmH5x2oB3iaIvHag4LxKaksMFA 8aeBLMbxtFqWv3g9SYkkaHbdEfnEgSE2ndObaBFCOoFsNnG/0nh8fBUiSGdKUG7b5sF08l04 aXmeDwBGrYTfm4yhABNj+TEOfRliKakw1DPECz0zTRTgRwHFhbFESS4iTv92B9mgQRVzGVLU l1Xil85DkPKNA+sg0nSAPJKZmHAUhl/1MWhYwkNXfVCyGggqZYOUkxau9bzscG2kRZdFSd2e TfvNMqZQbELZV8761ZXfwNsgvWJ1eILCTpPdfG8gCob6k9+IbrV9HgtmEncL7LnN85VYmA/5 NwjsvnaYc+RnPGI7UnYoxqTNX4VQaMvmqm0ZOjcvckBd/m6AqrYBk7kcBx66Tpk0EnLc7uSP 2aBCnvFaQUI9iz7vw6W0Lr0/PuOVHItsaG+jMSxr/fzGdZvyREOKxtyudENVUFiVPynVPD0C 70wdD7HCztohULbWbHXsTeKqK4VrlkoQsJaMzWwcKRJkJ+hm1O9nGyqFnuXCs9b58Fa2DsWH OQ257WXiVuQNaKQz8zsMADmD+tbV6km/R57vPoF3whb2nJ9w1Om9381les4SMNw9j/k15yOJ 7stmMLDgFnamRRXlzKF4k4IrFlYWYUj7OV53+YkqbG/AyztP8iex/yCyA1cfVujmuFnePcBX 5Px3SD2God6ibZQI4bfwutMFOGJG48/qIldygj2RLs+QqybKUWe7CZVAiTaZWBpBxL3A2Oqm DpDuITOfrpYzHPZb9Mu2ovPZcwWPRv3iXeK+VY4qzinlR6SBIZwzTHyfDNNMIQ6sbh4/7JRt bZPmttoT2hnzC4FHpOVL5i63++ljA6YjPs9m2lZO1GdkSSdjc96895yZcqw9Sf2UxxomaDXh irvdjRnnx8EkjyLnSgSSMVJlluj0FlZiEn/EOFEO0PF8DnxdoISS26WN9VxVxB8TdvavsRSx i4K5qpMzXUihIJFz7gqlx2DFKb8pLaycdqwVWW4/IJ6NVA+M4JOORKfGe6MiDpbxncVl8tCK W5fRAh2PH6v6WVCxUmUJXtG4ily72UT1SO5mqJkn9e9gqhJv6gmxXaWzG2P7tPYGnZjhpTpe sSRrMdfqupPqh3783DX+ByI13DwfFjCxwSZUjFRVJF8UBky6Ps+n8Xuqm97PKTdnV8e0KBIa 5RoeDG+z3XWQzG9SyJmq1LV2i32l27+sZvM06G+OzavUo62545dMP/J7uWd1LnN8i9N4okkv VUjrN2WbKxN+ZvpK7NF75KWPARUfwmCaulpBsJ8gioGVWhCfBfa/EGGCg4Tsx4NIrPnNKyD7 zinvN67LX0pKCE7wBPlIKfogBnyDxqbeqTPxPpsdl/doQSWgtsVR7aySHGWqiwuK9Hc8Z6FS nHUfcYJSwYanGfuRsmMtDald0GhA8nMf+L0iGkBND4tyhll7I5VnAy0CWOsV6GtNKMu72wPr hz1bffNSXIfo5waVIO9VIPPVljAUsPj1ekgS3TzxYuJR/f7s1yNLGsGKPxd2YmsnKyuS7VXd RmAY/SVsIhO7qOp3QoOfGMaFroIHMZ7z2m76gQR5Ecn7Iddhj9ieioLqBi/HiKLHxg2dtsd7 6w+nFHaQj83I+nsVGCAvcuBYpaltE+RclhN5qwNP/h9Tv4yoQ3u5fQhTvYJmXew/lQZjBm1W Pp45JDHRMGvKWPl7ZYOFQ6+e73Muvv5NPPuzzkw0GC1oT/SCoHybnuvJQSFM7TPyS42odt/m ektRa8N9FEkaHqhlPUuGSiaiQMatKftcCLMcKkOk8bVyKWePpzCJOi9O7Y30UXuI1FWrw8u9 34uXztaf+z/uA77jLm52r7POUv0KseBuCj5WKkl+A9h2/PfYXIr1J81asg3V3yb+pTU/2tgY EOxNpA8pNZJkulpWcaZ+b4R39v46CuKFb75zqKgv+4PIeEiw443Oxc1WGSLM+E6awzeIMbAi 6hTugIGhMBYgOTfdxy4bLLVjvGKfBHRIrDZ1OlwB1hT535lkdzDv92I0AP+AonNjsli9Wgio ptYJQcl/+8fv3TDbA5xq6iRxpP9ci4/MZ9bcHZpBzkr+S4gfElRS4q29c71hgs0wZAuawN/x JJQTNRQ+TaiLC2F7s7fOxOrkbKpWx9rwY+QWLe9J4Vc4D8Y8ghZh5yHgzf6LEkw5VLwwT3RF VOr5IMHF4F+CIQY5w9TyIrFKrcfdaEFaW46CzZ3UfZ0ZoOB7ENVvoehcOszY33c7cBhTn8yq zyqMkTqdGTNbehxgP5E6YyQVrPTk/50nKXLN9rW7j/pAe/X1LSV87Wvn5erL+U6xl4szoI07 3qoNSkZwRhr+ZO+JHLFQSosM9T7LYkZpdB5TLIi+o5TrBu7YDSK7G5qA37K6MCI5GpX8R7Rb b4eExIUEGzqi/4/dl/Wl9M7gnB6QCknXJkbpwmlzeXvoBKRl4rZhZg0ah1VT1Zc1OoooDCCb SGa5UxmCC0dK/3K9VeubGNUBhTvjoazWFQY9DhT0i0QRk0oKPTkIK+eQ3kG3xZ6qZwpmKctP nt4GAWBJVShg18RMzkLeYUl8kvg+z9M8XrzNzldhugAR+CnG5XsExQOt8Kq6OsYqU3kdMZYM h+M+wSIWRu6ya41N5ydaTpkdzTl2jCdmiKLdM/qeiOi9lyBNP5JEocG3XeHKzIdnoBFugbKX ml48qTLGP7fCXao/lrfmGZitUOBFiZCi1FQrDndAMHTgF0Bl+lxJi2tGHOhBCR+R7bLnu5PQ 45CRyEQ5zzeLUDFiNyfX78Ll0zQglsFtbFlx7y9E6yz7v3vEcETNM8pgoRBm0Uwj29GbYRg2 Gi9gYZ6OmsWs0kzIJcZautgyXDL5UyOYKRD5oiEtxIg1GF90S4Z9eyytpoFelI8g7mD6+esH DiZcSLm+wBJNnDUqDfMi8hmqwObvtkgzdie2jhro3luz7wLZmOBI8mIBVqsBd/1XoWyDwegU N2geG7KAWpilsc+kUITo/G1FRPozOH1eeQG7jykU1C/zEyYX/jUawN0GhFzM+tpo2kWdURYx 9YKSrX+lt+o1mGGnxozuGyLsmgzV36d0bA4csnxkEDqsAo0Jw5WH12LFDM0ICwKcT+lEaA3f u/EL70OdDm38ylw/5lyVMi6p0i4aGamuvwDuHg7ol5P/ifoR6QztKgySpAaeh6BWhkVK4sr0 xjL5AS8Q6peSVvzfFx4szTjgvQNI49nSGwzatPu3ILlnuCAUYnXu0IsMX1DHSeYJSGta0SOG AeTghBclaAhjlTVJQdAj9Z/WJgMuzt1ZKIMMythrXpiYXNOWY5k6w9bcUBb56qHDFmE4z0R7 ZmNNoMSk4QgkKipDp9LFzBC8Vwwxu2BQchHJzmoVuJVGWUCEZokXyH7g1fxZpHDZPDOPKfmc yy4P5FNxFlWe+VaBkypbhahN6IjK8AGq9HlJrElUn8qy7c89wgjXOa9isHHKoLgMRXAWyqCU PYiIiVhLdGVvH+zKWFI1+t5FHMztqnPcFRk1HYLEClR2z9OS9crA1jdKsSHa+44pWKoq/a4T Py0f9Hwv1yis7s+UIIe8AOnEoNmd+VRXne/Jsth1eJmS8jLWeatt9KEZy4/sSpqd9AXH27Dh IGJhsZN9moDH74rhNtz6bk6YXbvesHBkyRzJ5EKbngeTOvWYOLcEKNNp6iNs9mGwK0oJmhzY 6iYJpySvGT80l1xchs6uEaGUfiCDdVUtheWBo273Gr5vRK0KVLxTLC0vY5yhKE1mcvPGl6mQ I+mZTeip4MYH5ksxrPJR0MLAphkIHuY8YDKWWDAmok3sqsm+fmUCMTOyDaI6ZTrC3rsqp+6m 3f/1qTKZACMkmr5MWlCW4tRAAdZzsYTkqfXlyVED0VBZA5h6NwpbyQnP2AqfhsXZaPGv3AJO aKKBlln0DwbpkbtbTvlTzxmcbOLM8tqLJR0s7H1hmk165IxgZkKKTYahNjDRqOVsbtwccVMO l5zChdfRsv3h+jPSwp7orn1soDOOOlqT1zW8OqdwMaLW6aIjTItN9Qqoo0Udnf2GnDH8ddfA UV3nW8EHN+0zdtrTYDDJ4lNDI9EDGOvHOgCTMx2pj/A64Kvs2ezySbH3Cp9qne8yLcEdoARM twRDdpeZAnT5LfTjLfCrBOgbItemswm8l3okIYFgw7sDD8usjpfrVEO/YCQ+mJMIDG2Lw4Fz tkIxb7xTEle1iNkI8VseVCIhTCxKv8WyEcyU+QpsXUWCZBNW8FRNY4s4gX8RwVQ+aOqpBkPc q4DEa2ukPio4Qx7DxEdj9ZaFMWXT6j4NjNY22zmt2v9OvMm+u369PEyKwZmwanX4TZQMQcEt N3EK3aoU/uClQIhlaSqHmeicuaX83ydJQEsAHggY6ZDIXRInw+lG2hBhPOg9wDVNITYFwWIh 9E26aaLgKX1nHuBLzCXX/1OzR3eA9oXeIs7qiMLBGPnHylZBZNQ5wD1vW63EHsF3aUTW59O6 fdrDQnFNysQYxdeZBnPcR//aajvpnIorc2W+z6PDzS2RSztqAivXGNnem98oBwVulCPfkg1t PHkOZZcrkKD4qLxTsUSMP2l7Bl4ahrSex2fZAvn0sAUjOhUXfObRQwUFHYZmLn8kIpUKpVe+ OdsUTKhsm24PiuMuIfI9SXcP+0I2e9mMyECysJERySrF2oTVigCHoqiitvOCXZnzQrGp5O3p 332jBD3l+b8Ks17GQbyA1iHi58duiLLCo0aL0zlu1qd/ke95zx4AEoNgvVtftj1SqB5xG0Pr /X0J/gMsH1E3cJLVfxu9Hiekp2cLa7CXKoA+bA+vIfghqu+hSDmTbR1yrE4r1793B6tRWPoO NyTPQ2u2TLY31WNsBHIJd68S968hhiF62b8M2kMiHEIWAaJtmcSZbfe8juvWI3VlpAzXLt/4 FtEuxsr7H8YZ60pEldawhQlRGsdXxuSyEBseaG+3jhR180CGBqNBEc/jYsMOCcbU2Jo0huAm 9YiNAaWgr37Yh+N2lBptGCrv6XsMz742jKgZeqb/rAYFMrFV8CtfyNeBYq568ppkWG5EFeOT J3UbQv6XS0JUC7BQ7qhX0VUyNlIkDVzCp3H3bQDd7RrsVC8rtxyaxP2vw4Lyq64VIl6gqqjU plcUzc2KEwOnDSQ0gTqpRRb5kbT1FPriIdrDbY7h6o4sWUBRItUkgk6+Do5mz+JhtWYMB0k4 PKlsRI/SfME4BEQqdEL5fevYC0kHQlipt+BFEaLblVGmJ3u9Mw0d4Bw/Dfnw+CO2WtDPPrVr hnCkZbwYl7i6Dadj+JOIbmgAmf26qrJ/gZgtMwgI0MAgjT4eQM7ArPaT48rcPFOQDP2xxhzK NIR0HTaOldIin0ZGhy7Lv5U62uEJXCH3ogBJi8Zsz25UC0sS9zlN3xNkPAFSMas4swQhXPET A+Jr72C2GER5/YFlq26Ub9w7sXM7RaH1UvLljmn34dvPZu0RT+7oxh97L12fLP5W0PArZbjM OVdZWqg23nhpJEdOFsbYRPr19+Ff975KMawoAMeCUmpD+KY1jJREb9WA1bJTlxK9/jmOkFRJ 3qiHZE2IRsRLIIBDzNTRjF8VEUqqKu0Lx0J+V5BWkcYFiYP3LbndIeHY46BBgtaiBBVHvYlz sU3ILhd/5O38lxeb+90x8qsp4s0jWOy/rCKowiMZeo+yIghI8na1pYmHxi2S+iP5bMRJkQQI ZovmKC4xWaEpdZo05lnc5wbZCCMdyU6CnvltErpFg2v4CdMr9i9CfUNZDN9e2TbOHpG748ec mZYK2A1APhhTcXVe/0tntWrXBNkzih1lx0VxbG2DPbWeijowtsHEb8imOJ6L3ATrovsTsi6B +1r5UZu+4NSS9lDw+UwNpksP93vXaMWPwbqkCDStdW7svTfX743p37FpPl2ndcrDMJSx/J/B RWkGxArO5wvkFzTtfq7Uex0xVba4biBdHJFWB6wY48L1HQR6nMAzhF6jdaHtwHNO+9vozhQl bUVWOp+7q7K+L+4riIwYShR/FN+xWaw9SXhjXQRABg4qRGnL9EMzrXzSnsYloSF21JkINd48 ongA+3rXUJQMA6PwIpUZUQU3Ag3SXDKlT9JKy4fufqZ1AKRLd8mQ1+OwSdKIIcF3R/6wBRMe VLHYKSkRX0MBfQQ2SwQ/+tpVm1wN9Gfkcug02TMaZ4068NOpWgtajZumDgHdUx863EqpTV2j CXOiHSAE2QcxBYcxPLHVe5P0xgbKSNCac/F0Zccf1TNQ0cuobvwS1MIvg6/vPWI4Sow5tfGH ON8XEI54m/89eXrNVs+D1cIoh7fTuN4MIzvaciGOIro1lTnidsPgNKmncpYioTET2qzWNz81 p3bjfOmkGO34Y9BN9fZCoTdLjM43gXWRCG/XIx1iGcbrm8i1jfUbFFn3luA9HK0fAVU/OwEO tXYCUGIQyrLk3QeaZGTfsj/HQKe6mN7qYFYmufVkb6ptfWdx+8mO0q1uqmowNztiWPuWxSuH QUQjurpnRfU26uhTgdvmkQH8T1vfm5gZUnz+b3zYcIsRiyf9YaxoaYio78+/lJr5yBv0xISG eRIvXsm26h1p3IbtL/AILP5z51oeo+eKRzAwHFAa7z3GHwrqlNhPhd1fxX31dFbvGrjB0iFT qarKcYRkLJv/9jm+Q23MvwCTr8QRIjqMWewdLJ2w9pGXR3QhUe/7S9LDN7Q7SPsflRRSE+rt c09MBD4PLKv+qlQ3C2ofET1a+igeK5UAKpIW+mHrV7SzMJHPnfCloBHd98f+1mfqxKJeZn4n lDDEJbnCwVuUxD9BhdyPhHjwXcd1QM50u9jE7Ra9Sb98zz55j2x+RzDFlJKutFNAm9O1zMCT Y7+q5RX4cj/WLSqncjI+try2AaKPvw+FEimULvNKvgBOya/EMxjrQ4IyRRmCv2tCAr5rXYIO ilepNKTghen4nUqZH1aAng/03CYbwzZ1b52P2VEu5P+yDgWz0neFQLMb28RQahFTlZ+fg1Hq 0dr3lTqEzhkOyvpItwf4OzUy0mItYQgHA0FjUUicaLN6CHsQMbo5+3/G6Y7YlzTRUffGE+4U GgDqPaBivHOWtf3e9xT9UIn1gzPDKh3GshA9RPiQvyoTWScTNMlrTTR+QytuWs3sxhahFN1H 5i37dsdosg8Psvw9jd02nkcIYo8TuMWVa7NM9IK6L+TwIqWuk+C5gTGsfxVBMQwz7VksBZys metCGOY04eo4x7nZsnNa0ljTJEye2FI+dyvpa76o5jRthSBosw2zRg9iprEsmDqsqe3w2ulg kI+YUon5+CHgEWdI0pg0X9fLtUORU3SstfjYwn+cR1L63WUMCbxiWwzyPgyTJI/c58XxU5wD slOYSOqEW4HVBm3HQkk1y6VUTknm5uiaVvd5sRzYDzF9jzBwNawFN+B0CdDXRSFsNtAAyj/s ep8GWWQ5Wm1NFQO2+XNF3bFJHEEK3OREHKXMaLPy6ZgKatxZ8YY/HiuHs9j4zc4iBYdKROaj WXkp9fFU1Vl1NPw+WI6guO890kRWbn7QLfALwN9LvsoLm9yrHEZ13noghQFuTAss+hZaaKf9 hUzAKnBs+nwiBBWG47Ilv+UuwZHD3rfo9lqZD24162E9u2FXSMCjHLZrjqR+YWPrFrIvV6Ni /zDD4hidRAqhnRP52sZUjHrGNyY03BrX34BG/xkwpeEki4p8LIa4Q9GEl+C1YdTNxLk/ysRO 1ON+BETBNfqUWvgG17zY8RVkQHm573PhYzWKdwb8ZMo/SZgeDLOteP58o11TqV9naF3vT1h9 ZVuwuNMsxkrXs9tspi2p71zE3OeVDf++EReEk7HDN8zkPLP+Xj3a00FWHTWk4/3rbBl/Q+1+ Y/wT9gBxV6fVv02azUCtY6J0RFf5QQUYtzjoa6BB+p6qPxS+3CSNed8+4K1s5MWaw6Yp0nwd rwX7xcDIxnQ0ut9BsQoxxZQqlGIKXY7bfSxtzv+QCL/ONev1akQmxICsaMzHF7uTLj43Iso8 xQn77IG8urxke9QP0nZumVKZL31zucWLb+xnPSZ/GEMWszzKDRl5LJbWujRCDDNrematmgrG lupzZ1aX7tEenyI1IDhUSSx02Z5hjgGXwH6qSqs9OH26z04vshbbmAooRUtxrxgjQMXM/gKF xNI12kMZZKGR4Jq4R3iWhLGDTy/rxO4xoRg21PM3kp4OsVhWb01gW1Rl3rlBY0WnikTT1P03 lVmprF3hAHW2EVxTt1veBULorR+Dn506iUkeh9otXR5qhCHZnF244lgKL9BtSF2k5UeuJfRq g74jJY/3I0+6d6cV0kDpnWsa2qvN/HBZl1pXk7+OIb9c8zXN5iCvMQeq+KNSTTtjvlEDIk00 njIuWk2z0Htd9seRFusfny+1pT0fDJScm1F3QtUayIR6BPUkpnNU+8Po5o8HW1wIFiIm1HSN zT6DB7nZBGdAy/1QGnEaaGXnq4OaxCGkSh132w/vkcKDfeIO2XnnRDy8FMqwWC1uOq0xtVN4 iPRsZxxLzLOCzKfJTF/vBTJFUneK4SwMwNtKgn3AWRbJtktsK5lKLlL7pp3Zq5nI66kBF483 oA1TTlOvLEYIwJhDOBRETWX0Bywa1Glu4Fhj5vx+1CXtcM5ToLkDUi9oN5rza3kxuirkPlf9 mRBfPjzEXKQjTayi/WNNXRRAWJe9NfjyT3Q/aoiIV/e/cEJ60xptv8VsQkSm/VDh3GG7L6pE vFKoW4Xwn3iTJBZrwEDSn27fTvzMpQxgl5pEtGKRxs0eRyLGcuM2/fuP3j3AzFGo9Qvkb5a0 jTWVmesBEGAw4rlNeTwz3RJza01TULCFgTZ1/mZrZ/3MY3x1Vz0URmg92Lckb6XAdXO7skSI A0fG5jULDU1keZiP0qWZSGLxIpdFKL3OOOCgWuQ3lj+tyWTj6UmcjkKuEktx0CRB1REb2Ivh EDIehZoEr+WMsKBE6VfjZYRBjz8tW2GYio6GeMMdQt+RqYWoJf08wYMuiCg/Vli2LkLhCWJm MFYw4EF8F8SFtMjwBBb6yIzlFAILhlz2IJK94XDA4bs6Yb+CyM6pWlQyqHwuLcoRW1rWKsPz JpXafedu9p+qIxMgBuhhaNlqaYys/oU7sXX8C9jxCtC4iqjsqBMZYnJTytpKtJyi/7ikltIB DeB0jS4JEWaLrdRYP3aqiw3wm6j7xTuiNm4qkZsWUPoH98sKtOssWbElfTCxNCqExQkrQXkw OI3RCLo+2/QOKVUYoZ35iRk6QY+Ozyq+kcVQf2bWwQl0s61t3m6GBl+Jcv7RazEwaUfFD5es aU5k/M3nv8qjSfPNfHkEvSfJc8SOFh1UFWpz6Dz8Zon2s/+SOMlIhRjPHfMUdJdijKEsMgDU tjkp3ZIRVmvM18skTeBfsAQSwWEV1Wu734LqzNsMXPvptWlLzq4tz4UypUS0KiovJZXiF+8r rOTYRmrTts2i4JSIpaGut0KsrgL6nyp5n0LtnkR8GhkVHArjlv+uJq1yG+neW38gyDRYDhJ9 NNF8oHeyza7szm8nZcNZ6EvdEEZVjRAL1a9nCiriJuNdyZH+ZBMymwStHzwM8is+iD85gTl6 Uv5Vi6xItD2hSmMbsW6oQ0+hq24lEEbwy1qYvM23x3J4ygtZzizBAoo5ur16Gk6Dxnh2G6wh mZsMJ4S1+cUHNwMKp84E0l2MNKClqyF4YEushSok1uPQUQ0PRwvtFdDpoBxRp378Y9ydHGSI z2GdYPsPDclFRZwQzIXfArux83QjaIzIPDgI3A8kj7P3o/EU8FaU60EbOTP9K+It7H6UdgRz xfJGe3v0LluJhQQ4y7IQAqv5xhm9rwMzaIpOzQpuaJKM+xMq7J3NJMX1C7DCIL6IWS0PSRXw fbD44SaIwPeTdPOxqLaM6gxjYG9qQHif0mk1r7CmNJndv2dS0ZVxwHyy2UKp9oOLEIv5fCFp 9tCj7DV1OK8v02liWcPiyDRbuufzPwn4JyysNbi5caW1OQbxeyCnkhLEgXZW4Dtj9Xlisg0B 3wpyJS9m+aAWICswrdM7IwrjRRKZPHhEX735dtIC+QT7GHqtRq4AJZbh47DjMy+vlGgsTY8C HI5/swMW4NYzKnsWmtDALaTrHf0DPoRhhAhVYIL2Rx1/QNPhc2keKSKm/aHzysS+h/49kEtO FuAXxaqFRPJBF7kNnVz2M4toEgdaWd8FjIWYOnI8oe9y7ESuiSt4hlhTKtmHdt7eZ0kB7Vs6 RNIttUk7Vy8B3A7tHtfITtncpqlP2wXJR2plsBjPDIRJn7IcEnmTRMAX0MW7yneKIycI8zb4 DdN0vMoFDB84i5Rpqi9b25mi+n+z6i1EFQKVUI5626Q2gdaR8A/TWFeSeON7Dkd0lBhpr2Ao E91UcbNYitiA1d/MfFG4rqJHrPmTfL0gJPVkMQdsonE93LX9BNpwLSjKDgMxS9mlP9b6+3+U tOovziL0pG0c1NIC4tecr0vgD/DS7aY3lxXTLEJbusig5ugI4UaJYH2WzheFuRzzMY2ZSBTi 5odgxELB+dnl7t4MYufMyXiW/EZA2cVBY3JxDMzgEc8g301thxmkca3URtdJenZMuf31dEUV NBDQzZ7dqzIkxJV+uujajT3b4YDv17MQpHHjrm1BQePj4/TwbSdDV32KzYICzVVmATMQEQLS bSXKDUHrlgxm6VDWQrlkIg1XZiWoa1SIqIPKsF7yLzv/eZh24zSAz8u5XErm9ZgUzyNh0GIW /3D99E/GUCt0mOvUaiaS+5TK2BV2XdRm+97OBAshun6+W88oN8zqJC1S8JaZy8cNg88+oDMq UfrFi7RVlnp5DxtVRAH0kkbWLJ9WCr7yIjCFu8peiCxGxps/HuE3lT74akjEdYcJcaSl5SeY nwN5L2gtIUQvAYjPgM+OzK2v93vzASO3emqPAEGxUTlx8rRtZVyD/pMGOkp2rPP5jCBwnRz6 LVobO/fJhPVTbitAaHvGJgXGJreN/evS7t/rnC6BhcnpP7aMnOA/VwOtWA6PxRXIQDfP23Vd eCbUdmRKRHCFh0Bw4TZVlNjhSRezRQvjciNLULZlwR9N/zM4po1EU/cDvMB8834G3P1pMCrr qTQw5mOwKhW+udGqHmmRXrLfB/xYkDxqh8WuLobqwAa2DqdIoz3M3T1u0+237ttc9suAB80/ vzFpSkGpJtejiv9nmNhMst6ZLPH0v/twmGxd0Zsumcorfe8qYyN1A/PSTVaL/U2s73n17JX6 e12etT+YLQcPSY9ZrNoPKe3x/GpqNntp7lMbj+vBoGZE/b6OMtD3Dt/3z7vxIP65iJLos4ec UdmBByuFpu/JQk1OIU9xONhl40nl8jmq/7Y7AFtz+8BPyV2vnxyv1G5/Th2huEw4i5xaBM89 8dZOC/ltEYbm57F7yNMjxgcuQTdrWbmvVmoQlvqXIQ+c7vIG9Pa57Gmfvzt6Qd2b5RMFK2SW HCUq5vJlfgwAmKMLPufZPvjv73xvLiReXtjF5wV9VoJODg/TsYPLjybApra6xKIgGajrksp7 yAx6+BRfwUrC/0LjPL83sZLsg+ahOLonZCJFBeXfcbLYaZ9gBU+YXkt1IkgqoD8X0Zexqpen pCj0nT/fX4ELFNzwydPD+KJY3p0ZV4UGtq8SHk8/Ht94vTY044yeSIz2Eyiwq7bIbWM+oihv Fm8cpK5okB5rPPK4DftfyzwuQYuJl3yyR9mgE1e9aW26bpG0/0C+2lIN6vxyPG1FGAH6He1A jnIUn0Ehybxz++eM0G2XHQq9jCN1Lm4QWmYt2hmvfiUEpnuSxTr5K26vJbxM4kmJsJwIKp5q wMVFpPOnOfcjG/75LfzvxEtg2yKA0B0mhJM9gGDsIuLuFzqAPyV2Q75+8q1QMI7CJwduUKKt HKf92sb4bx1TN6bCsZFb9hpeKXmojBHpzn1FozToZ6vyi3d50xwVfyrMtMYiA7KbUJRBMbm3 yojH+TUdIQ8rFFo/aL1WXlh/VVjxwxj7fT/F0rhS31gmZl8XSIi19jN4qtRTAwSYOopxIRgB lUUXjRDj7n1wCMxcAD08CCSmI2YvQiTkodkhYZb+EwhZjm8/fermRTiqPQIU/CIC52g+QJjw 6xmJmzWBT1jVzwgXNo+vyKVqPyPb1IFx5Ssb+jyGuyajXbxNgy5WCiraLETfW2emUPXELNYR L8CIllL0DLDBTbkA3lSaIdvqrknsZpLe8VE72CvzKQyAAacGmPphQyMC3759BPPJq5e6Jkys TA0VNoSSjgVTUnDPmJnzrglLaoqNU6vsTXnqlrI01fwfCyP+sRMusO0e76dTvF/K44hgjamF wx5ExNIXDiP+yth9K6VEjrNIs7qTlDrfSpeggO3ONh3YmDRo7oJZKMomLgsf4bCW9/9XS3He sofuncoMVc9vzVudmU+IJu0xBYbUHOiR8J0djVejmG4xP8BzrCeh4hlaITYfbcDk0Npz7cDu mo5eZvEqp1IcxsKJyzrpwpGcnHJvicCaqSM7GqD5F08Nhh1sTsYJNQSwBkZTi6EaaYYVPl+T nbzu7pQGGSoDiNJT6OOY3PTgG8x9kUHdbNKycjz9S0IJy1vtsMMbiWIpaKASD1rhjRNKc/8Q knFERmvXz1SJzem8OMCatYgkV2wKDIZei7Em7A/LtedBi9OQfgnD4sp4h1uiRiCSX673zCSv ms/xpMJjV61V4AGMEt4d3R7T5xiyI4a3MkqFKK36tggxRLju603kBgpm6x34IflqwhA5ODGs TjKA+1N7FEXvDVwYUV/jPbVA4yRIQiPVusABfP+4VJFDNfM+QH/xLtRR0A9wMUJhfKHsCvC/ oshE/GPLN3TGeR1jfB9hm4zrOhGuv04Rub85+7PVUuO9KDq+vjoQcHou9drTSfKMyU//bicP h6Qq6AuVRemw+YTAZE78pmJHCCzXzgEa1+cRe++anbV4ORTz6rt/NrE1nottPOdgLAgmR9uf i+4GgbP2HL0IHXt09JiblJ2K+KH/rh752wiZHD6sjngTtIrg3tPKj2NcVEI4wXyP2FC9B/yh 0dKE488fbnarEDSFTni6hRRjPm1a5P6Y7qT0osP7jvGn46X5on8/X6Cn/e9AqXmyN9SnfIVu VBVlFPha2boGAXfwbwr081oZtzddy9aqVydAysIcompOZUWJ4MxuHOgXBPtz8Zg40qcqu+GX fndiXZveL3zdAT9/4mljAvIRTT6RqXUI26UZpIveZywAMbJltBfbvySN0iYQfNcG3JOURfwT MwZzkM+gFdlLeCWqQFPDIvP9s2nI6LByRWixtiIsisb/Ju+h4xVRWcKglcl27OMaELUlFibf 2M16opuh8pLBFr6ZthMyM8sQrsRNIjpsi/EhJzBR1hWtxjqo/vEzcml5NdOdZy0DXVwGcg0S 95G0jPuS+Xa24N9jUWoHxm3JoJKEduIcu5xl5Rsg5u9iY7lMa5t7S/g8d9xJC/A/N7Ndgvha 6uso4eJy04enO++bRjDSOXkF5o0i9YL97UYdwSqQDkKK02ZOEuTr1Ft/aRI+4SL2iGs3isn7 iWhahBIJMon5lxNGy7QA4hHFewZQ5QBp5yZRXc+sWU9/BTnIfMYvKxZfJS7P6I9T+PzrjGG+ yps0MrRBD1AXWebOy5GQvQkDEw68GgLJSSENUcQDb1YTKYHGo0vcQ5tEkTUn90hBie3IPusV atwc8V7NaOrbiWY2yXKlEkwL0tfSPFfLFvnbFrfgLDFBDZwB7c0ICSG8TT6e9I5ZllQpfSkJ KQ1dQDaCNbV+EvG0xFoqs/7dWcvc0Od5CmlkVPetlM8kSE1hu9wB2sAgEAFqwiE6VCa3v7YL cusTvGfZP1gtEFPpHb+5Im+EN7wmvbt2KnmMEJStMTjyG/zNFdMlSUYNmDLyOHRWM77E0fTP +Rvit0LLKBDbgtib4t5LT26lNRKT2AJ69g73c9rZzDUQ4Gq3cIiQP1wAY23xQuaUQDVh78E1 7M3Nw7gl0SwFxHn0/Bf6kHj3x2Ot3to5IjOZvcvuEJefMrLZp6TEllM7OuEeAi0fzHv4ITAB QVhv+eOkmUwpcEI7uoCv1t6gjVJOvAaDdnGQdiZXbsURgC0MPAJHlPiGZKudvUdH8VYIuivF gz0otQn7vY3Dv14+pSy+cH2UkYaRPFZV0vVv9AnHZm7OResT58NKGfp3nqoO5zEQ8jAVZce5 FH+lea3vRRmy1cjgCAG3KE4Hz/A3j1pJXyXAEPz/Rf9t54iFezEa8xa4Jci9ZPS6PTzXlB/j 1r+SKL3CNMEwYl9MsDd2o1P0VAKt2G1gRL3F5TFyR0WbWe2JkVdi4QALuGD928ikrEfZlI7G ex572rh8+IwWOTFovkO44ffrLb1IZueohwJW/xoTnvwYS4FuYnW2pyC4XwcSTYv1BOgzb/H6 ZSPG3LGedANo7k0GYvcO2VLlw5YZ1r2guQvHXr1nZhxVSFOc1oUpmObDOQiX3C88kCz/ZETX WWKdfStqaXQEBR0+DJP9Gt7PozLu3g84fVF5guIOUdiEgAbgaz1QFOgUBlyAV6qNgybpdi/B tIoCvsqm3gooaItiV5EgkaHlPs/+eBlR8yZpnXELJK2wtGoTgPwe4kAlnZ/FfK7mn2orWIOT KjveBpBRlCZIHp2FKyfmOfKyzM1CwsfEZE7DDPzeffHlWQWz0KytpW5heos8zIJX2NkuwF/W KMQkGOY7jox1dE7bS052Xrbpa9uwydaKaM+64Lfeb48I4fGsfoyVV8lsjx6YdFN+S2g58pY7 R8PncRFTgDfA0HQOH1yCF9eg/w7+kxHWe82EEFwsgseZMVuuViZGSGkHNCRuyKB1BeH9Kb1G ATK4gUUM+PcRofBFmdjn/S8EEMMmiwGUnu3J4tAXhqzIZjq7TuyoalGrIqx4b2yqFYZXPkGi BwJoUfLoBc3i3b6cqOLY9ZKS6YJlLNRjifjkuMJgWIKcIH39BqCYF4kfzMcpg6Pbs9Eo541N sMQ7EpoFuDiBc2gncbpf2QUrcoy0fO1VdXZpvAsitWvpm+cj9Aq1I2RkGaysd8Z8gO22MSjC a9p25frlcnMRpnGROS+nTDxe26c5seBsgWOBi8CuZNAk09hJqRtBGaf7QmNKF7fKjCDK+V/u UzxGW2v1HKSUtKwiBOcekxs8KlYwxxcmkG3rgT7SO3b1PDcLgFXoEgTg29evUcd7aW5cINma euC9BCoW1vfPkTAbSXCzhBmn00RE9uR0YWwXhNnV9kPId/NQdvYXKJR7O1OO5OAI2aL+b9gU sfiJIMBIfUXG7yR13WZG/HVg83pfZgvyOXhCbac9Y3Z5gt+mtZJH4ihHn3/nHUH8lPISF6rU 3DiwpftGu1aXWRhkXvZVUJT1TdEHOLirfIlCAIXFfa56iiOJbipaqggQobDitVNh4+jaUaDt F3B16qzQYJ8nMSC4hnhipw8kuY9765l1YZA/CIJ0wbUjwH+6bAzclelHNMq7QkNu3H6dRp7H CVRBtzYvLA/E6bYo40OlJiwDct8+45gfAYa31ld6E31RYPc1C94zQhnD7Hq1hY97bTTIkH1P e498QfUc49FsJFFou/XkQw9gTy2g9Mw/1pDWU0qm/ekoDZLoYXZK+Zg7T2Zj8t4kCE79oICG tjCab5Wb5SI7ztQ5hC601ht42Di1VEvYxvIk8Axw7c+Pab9MHot9tzPOtGzioGjeqGMgpF2w NFvn6x0rABM8cliH6WDnfslQQ93A6R+ASfwXWya4nUQVfN2PErKJmcbuJcRwBpNDb5qSIS+w UnVjeDsgrv6zyGOWk1A40feITYacx7tWPwz771xfiHuQN57nuU8jYfvRyPEkw1rAOD1MBBZF Hy6CEdRBDL/3SropngWyf3sBH5AZY2pf5gqKyC1ET1EfNLSja+vbYaGa99y1WPtky5c80A3E mGicJkG7cGnqsg63o9KBb3snhG/bRBoG3Uhcrzp9ISw+Tftb8G+ha9tXLumGarAMtPzkyCjk 6XMBJYnzHorUZIXwAfhy1Ubt7ZryptKtciiGe0mYvquTUrewx14pslGp+giMoaTjTOJBoPUw O6KhRz6/a1paZlBLkALTpYr8lRDG8DGCodRRd2qqDz41kTSLNhywkWSfF697hc72ACVu5DyU 50wXGkj+PIw2Az2NT8lvcEFQWebEV5eG5IDZ+4nJGeHXZpYNkhgq7Z2/mJpD2JNNzu2/BnDY 5UwNk5H3uknrYnn9+0XxkMzAkCV50BgFpSoeAPFX+rhDRzG7jMM9FsZGXvCQpyi9mb6hNTWL 0gBTVi9KK9FcYX0i4EMo6ZJLOE/9JPlxYGjLfty1fpH+kmVHBm0WPc8zPj+A+limnZ+zJZY3 jnq29gXbcAtwjz6j4o6QteL5g1IjzlUagllCUtSUQ4xiDPa5SGiofLzpN6IXwXsAban28Rue K1fTxtgMp9Vbx5g+uERLqssP417rAN0geu87vcdgTCBxs80W+ND64TEGDxRjFnL0nmm8VVq2 en2F7SSF9DztfQ6fNx9GDyHunRQbga2k3gKPTNA++RrOPJBxqEn2Ci/S2o3BMuLFT/8jCkAa 6U4skkyujpQ/phwP+WvP9ylGxzCl99yHRqzAcmdjzA0yOMVFEGeyzkd5K4kq+gkMBpmEbRhS 2GZiZ/i8vl8BbCNJmIzFokV647knuZhicRiz1H9Dp1j5paAJuefxHHZLMHHoN3rEOcf3YPC7 vQPWgoXLNaiYGee0xjioNvnugzNdDwmdgAQ7hW0HOp7HFvyjrmrzs7tEzt4YqNxly+jbxCdl aBX3PJXtR4MfsFa5hT6EuWxDLb6g0CkQ32SlQz1nZv/EqIEJ4H7G6VOblBLZF1ozxQln3FE+ IyWuoc05lep2uftje6gvOdCN6AoIKw8lu7Zp0ksUUHfmbjMFB6qLSCpqNoWLEPYacsSR7EaG kTULV52cXxbbu1ndYzwGxXkw/CfotykBpCfstG9nUfr8j0qL+pcLg15Ryuno18uND2MQ8hRJ XgPi4zAb7ZyixJ0S3Tn0FxT7v6Y8hAitj55Nueys9qucAeJ7bQdfrlbouwCk8vju5teR93qh x93nHR4uc79lkZxBfIO4peIdwet0mP1oos8/r86Jl2PrFyyJspXYhlZVSoB2QdP5fRqzPiUM NmyQpXY1b5GXwmbAAmkSHk/yM69e0HDiINuqZ+CEEGiMzJ8pLNgJTPA2NiobBZbR4RxfKd/T tvmHSjArm1JNVg6NKHAf4wnHz+6dSKLhDRWfXTTWknXKBpWDcdr5+zpAZzy6gmcofEVacua3 ghnTb4wsdZRuOUG0LSWtyNvBSq3KQACX6LpI47e2ZRZ/7zgYiRgqiYA85BTKZdCO1QE1zzwV 9BmJnikgRtrX22wGTaWsJJbyTq+X1R2h+lUSqvTivS7k2Wk+7FLIXOaoa+BUNAQYTI4tHpk9 syUcVf77/6AkwHLPb6RSvvWU09IAD5GcgPYGTE2XP6boLk1A5iB2xlPdfhkz13WLO7h4OIaX CGWl72J6du4lxfPVzkgrl8XyxEZf2Y2dQ7rFKWZFJKTY38ppYnpSTYZ81ppi3Dabhy7Z0xXN 0RTP6dT00H8Z/+4hg5FTxSUNGTpeDTkNSjiwObsfjlM5wke8CfLzrO0HKTczutkfCulBhag5 P3yS8tZlXw8FngNRWvYBNcnFpUl9pBqmgGD+vyk18R7g64wv3SAbEykzgKFe66o4f8NSkiMf S97YbuovzYQiEV2d8deb4dvH+lDreYY39Auyrxe/jtzklTlyO/r1EMVOCeVXyNYKVEL5t+3c e/7JdThl/RTUpynXhIYcU/+kHdpequs8fMLopE2L1zs4v02YmLLT3yjC3+Wllycd8yv6j0n6 gyhqJEDdfGbSuEk7/qBe6nCVyzTs1j3laEjq+MdVNmVOKRCf5bbRp35rNpNOUMx1GISQ9Hhe V0qB+TYvx+60FoEzYI7iOQiuUhca0Mq3H78VaJjBqMJnHmUAsGi3UlmsIHIodK9L8P4aNOg3 xYqP7lvVqP6hZALA1IclGJogkh/ruuHfYULGqF3l1deViMUwMz65/BPMu5ApgOj3SKFRwkK9 qqOwrr+qJGYfej0ur2yShPqAWn4khvBlduROUhi2daTVVCiaYOkOQXadpVqB4qbl040Psu6C zM5soI3mbMtohajyJhq/sJRaO82j7gV9ghuvueOJMFqDuLiSGGKhrKKdyufN7+bfvtJqokMD LRcCo2UUDlaUvSHWdzYfC4g6iy8CuKnJ9Rjsj9MMw/qjpLDl4Vaf4h9lhVz2vP4vm9bHT+yn EmjPX6BZJ0t53SyN/v37QwkBnnfDT9hkRjpClSYW2z3PrkFFaylSE44mIg5LaytZFdscZDik E2GaPWiGMuIwDYdxxM9RyMPPbzr1lLx44yIs0Dr6f9I92T3YtyoalgC0QF0xfWoa8JS759GR tgEjy18rPyoGncqGLo2NjX5o26sH7DuYBIB5JX/7DkqIxmAmk2NEL2gG+S/RUGrLv6oIOZfo gq6NXQ/iSseH5+6vj4HvU/78pDbJKacqxWt765xPhLkgQhm3XvdRfDUpZblw1wHHWMgv5Jvt DdUxifrASrkxfilKxxARBBSQvML6DclX5s5S5y+O3Y8m8lDC/BjwOLQLMBEQRlAzyE6THQsN dojIWUvwQBwYWbbNP7YnmeTnJHemSeOEmFoTn0Vmy6MC6SnWaXY64IyEnEVnoJDBYcGZgGyq 66aY3ndVosTSMcuXGTkvu/hp1GU/SamN9mW2W9Erw+OJTj/tM6DwxF6/FNqMBU5Cio69HWpv rcU2jOkT0dE3Xj7x7gp+T2FIoE6fSFPQgw3C6hF3sxHZmUvOajDI5r27XiXikCmOy2O2s6wz HaRfSGlWlU/g9ZbaLaNlix69dtwDm/AGBNr8/poGkFRQXicrdN6k6mrCRff7lNqR6CqrIFRt smrccgdtxMyXxJ8EeTuy3hPhLQ9Tdj5GRXRfmKJWkPWe6+K2AwLyGr7n4F34PTxyvfSv1BaL oD4EcCOQ/FTdLv7M+boVejzoG+odrug3XVnktpd25uwvKu89qE71uXEszSHGgcIsyBzHjKhX DzJ0yVnJkMHkDvmh4osyx/C8p2QNRobJQTZuwoppc341+JNA7wlwR5sI2qJsRe2G8EyzKWiO WkELSDRG46iDFxdntnfe+agCq0cnMiDiJgEjvQ4c13q404lOigMjTulv9iDpyhGcP1ldMJjM +KorT1RwuA4zJLO/ueS0YvzVJ8LfzdpjpPcd7EcWnWi6kAErdwtDZe4xITsdaPLK6tD6EfEE uMorPkowIYaKnDhHt1qpx/zrjpmTveKb8jovcm9ZT5M4/r96qO8MmqXEbxBC7rjSHM+sdnfl QsQzZ/SvZXHJAGtnxPkulGqlf+Ma2vp6hqYDbfsLtFLPyfoWCl6O8ggfTkT36mId9vPlOIOt JPFMDFTxe1Gi0TefE0c5Z+LW7WlfIsDFVQGg9S7GulQCSUnb9b8/QvIHCkNu8Jude/vyDVlq TMOha7KHsu3jUdYJ/H98a6GEUKG42DiE9Nop7TLkqAtjFs4RP/8OJhucHZlFWrPJn6kQ6uO0 YldHlwLP5hUt/FVBcEwk8KnWqmi8COPKOv1tntwyv3cUdEpt9WiCCYWEBqD4D/23GpuiERIN vHxM3Jhj0DdXZH6Jtrb9BZLAF0kDiBS9dnmMK0N4YAO2XGoRmjsFSsXzAQ+PWwiuC85Ybjav 2nnYzir5hnLN9VPHhaDfA0XRTVp/iMnbp1z0iuCJ/1XzuK/MKDFe3FvT9ockwhsnWvz2TDqA LzxFndXDd2BUgxp3g8KlbqXzLdfLkvub4jUh+ZZanrsFzx/wpW9Xy+WRg3N1EstlJEAtu7/K DAaJ1A+BWQOcR8amqdJEoTHAMUL1JliZpzzAV7qSBlKSrlk5Max1cGxQAyN1MOex4PJskihT IANYYUy7IFZwfy+PEu1gx1J1IpJH28uyt2UMOGAQkTJLlyfMJrIaqIz1oM5OCLGmxBiKvKYx gshTMZYCzCwiaGjZnOjkRdxj2ATTis7uzhCKUsgFjVTgqEI4fFWhIT2SCKHGRU0rOQWAQ2Kz HDryWGlZICcc1O4C2OuNk8C95BtHhiSVOfkQFiW89+3P2hR5Ec4yyZXqs4ubcHY5m6hNdaf8 BHoBloBzR3OhjHNC12Fnvb/X37JttJra8fcFWETGT3HG0/A8rqekGAkO9kVv0/N3jZWhiuva JgwKIBIohjF12+P8kQJxOkmcfdmf2uq+XbxN5+ddtNIh0R+ZRfgbd960yCLoJyhwRzkNiAlA +jucmLfA90VNfDSrGqW46MFeIdWc7ujRds6xVS7OMSFrrQhxnB7p/hIdvUqu4zcw+RIvaqv3 MQFAR0Kxs0S6bi+PtItPyjFf+i/1tJMsVPxmwydj/MPDFaxeG4VvFPcMmDMM3AodRnCsM973 506frQzuKhvv6WOp3dS4WDUES5/Q8zdq+TelqGXbOmXywLfRxgTtuUPcfbv9aZxWVkg+rOvD 8gDOURn31PNVhiRkz7reALdQ6qzR6bTXLnjDbbxDQx5MHXihj7JzddwbRPLpw24nHJMnjRKF t70xXMmwwFyINm+fQObB5JrMllynfE+Ea+H+adyvfApkyqL875rxA2uTFnkVCL+nGhwjFq+8 eiC11YINu2//hcuyC1H8yNwICKjaxuGTFo6Z0HlFc7wwx7yULKC0H4tTxvxoQU6pYPpO+EED 8GsEcz7mR55I6Q51JtqT+bMrZ8UkFdZOjYLC6NGCRqL6vB67EndKuB1DiBz6ENZ26CITXiwi HII6yhfdU2kLj1vGoB6XWlhQhdQHQkuCitb5xUTrsmzfhM9ijRcmuh64Yl+s5N64an342XKn B71q3DrH4uVJMKJl5YyPqkJbrpTdJOs4hFMrpVL/XP4JwJJattWhcol02hAgXoy2PF+gg342 +ep/z066QcsjfqtqjmXyE94punlr9saxDmeWg+r28F40whlomVXWli3xODVmnli8jEF1Zg18 ZtjOiLHYFsyipgF6k3zg3/vH7ELpggRh60kjLlUOKIQlNVPDVmPcQXe+sK2aI/UPejCOIAwi LQO8hK2qHbDb21fvvv/0/Zcq8ngk5vgVpoC2ryoUEeFEdbiJ5UPqhjSjdmHjhxOZ3VaqZUky eiNeAwrEvJMeTde0BH5GjkiyGyzFDaJ1SME/QmIwmcz2gNeUft9tNyAgk+8CdnN+ANQ6QycM 5Jc/X6c3M733wUnKkO9vlsWmvc3R5sVfkf69WUK7LnRj+gGWM1h4MZ+WYXdiEqtui5TpRwFe GuKd02NtJp/wy/TFKQ53NU9ETft9qr4H7CWVvns3oNK12eK5XOIdvoLoJKQb/N9HYdHuoEna WnF6vKFEN5/YHWsrG2UyOzhWzaHO3JiMMZjf+ukT/eAJIXp55fQH8PQPqw9VMMsSsX/GioHe LqiJE31gDHiW6bfd3vtN744W9qMPIkZlguyxO0I/lcLKYIWaAtV4zutzV81BLWJne5mOouxW 1ItK3oEHeY2jyawotYN8n3FgACx3OXMwA1mX797GlsDL522goc6uz7zxUULBUKhP+aRURtl+ ToS56VeT+NIGeO6SRxqs6u5MOq0gOiDMDZe430VOmiI0NLOvcDJv0xcekIolars7dUoW1z3p oR20YDaw+fMvDIMxFlpq3K6x3S5oUCfIN6D1J8uQ+8tv2x+hro1pgIXgg+yRA+l8aMorpvTI EeWyvHfqnYgqxzDA7b3/Zi718DIf0ihOHy901WKEed+Gw1SNH0UgyuHA1issrNy9Ahq53XUD OjLcayHK3a/U42QQQKHQcspx61HVcDB2BFI5MTV5NwMg/JJ7M2XhKkyvmXArBdp1oSg5XCvb 8W3wx78fxB9fn593XDa7/+K5GJJK0fSKFGU46dav0zJegtzEhxlJIuS4SuZAXq+1hZbSPM48 e5WwPqL7AKi4jRfTlFZinKu0+n8XR7GEsDYN0FZBF2EmE7IRAqVWe5gz8fD+i3Elbe/sulwp kxLsfZzEEnccq20OThSGmcEl1vJwUQZSEhD3+svGM0xbMCIHxjfo0U+d6FPCDM+nqccSLzyV qNeRTYts/rVah0SBKZIdtGcZiuDd4RdtsPlJkXCpxLssJRDk/fL1rTE+4+TY6aLhH7DPinVF a2ngvEqDZerjEmbflq6T0uVOLLen1cD9lGOzEdnm+if5W7ERngEBjP387Jj6f888plzgmNym kv9YWvRTgF+QQzsFFXOPsUqazwovRzRdj8Mp6agzHMMtrXbb/aWjJNXSUtV3tD7Z2vE6sYBE Sst8Fp33IX9GoOPEFWKPAyKU0N+P8L5dRHF+wplef23nzhmvQlfH0sxzL6csPo2kQhefA1Uv tRKwyPL9MYWTdiFGPZ8zK0I/hOF1jN3GLrk99kpKHQziOVNiozqME4v9Oo1wP1yOlFYRhJWh llM5wbK0RW3Bik9jEdrdLueXBvYWTiU+QgdQ8dY9rlfExOSygVDFmDLg/Iv6NVu3NgvJOeh4 l2zQKW5Uqy1rWk/tOyHr58x+jFgGfQqZo5e4FZlo8XXRSUunVs7Xub7gLcEtqPYUfabKYrhv Q0e3anpXwVtvBf+TrKiFT2fJKBpt6Yiv0817BrC3b+bMAUuD1Dbf2VF7UeyxZi6up2iWhhYY l9kKuFwJmWqjXjddq51H6j1DZyILwPxDWmz87DZIZGSc3DdfeYV87DU6OUbF+r/NXY0TRPUX FoAYL38J9QRetu43OpVuCVG+1ewUeqP5rBRF7hpwWwTk27HiQ/B2qRMV3BJlP/f6loMjX2QK ioNjZ8jPGwSuZf4Dr7ePKJvHyUtdnXExN8jG+Z8dSCZAxoNXElYlxF8OuR8tfWTWhUvpxk3a H5Et9IimHFJb5HhU6KOdn7ItDDVrm9cTMbPJx4uvuVxj3qfJrgDbxwAIt+MSzPpfr92Fpep8 p2i+ACo0vJKHt+270wgT2bLlR4U6Z0jBl56koHL4DtWlP5JJQNXF7FK/tjD15s3BrWsZkxd2 D4flpkBMy3cgOnbUHHSjtF19BvtYNcC7vBNG4t2TfIHZ3UW8IKc6mPkK2AEatnnsMT7BmQlY qIRPv4ck/NwhjjcNw6I2WqWjD1r/efctK4DaaIqQmbyFSfMuKGmhecVZl+AQwnLk7+RWzTWO cE24CwA5jq1IyJBvM3kbKIuJKfEvdV7mU4w54WBkeKPCTbJZpSyFoy58u+E3Gobv66krwpU7 Btg8UKloaiTB8K6TC++sH4+VeTUWbzGMDJKYGJCkEcWNd+oDDmbp7bzqaT1y1LTgQRRQFar6 REzPj/TT35K7N3l9qtjMmLk4kfnzZ5XOD1jE8XcYBmhz25ByXLaYwiY8cRP7hzANRCpSOqR9 lHS0mRGFL4cLX9cik6HpZOSFhjz4O5nwL91q3n6OJVn4YrH+/nfRJZob3Z6k+CFhOqJJC5Bb tevpOhAXHb80C8UJWCwvFad7wiJDV91ru9u9KbsLer34TpJLFlxH0bEKdrssnS9HM8vp3D1V sY9huXjJ3nlvFTMovr4lr3WDJhj4Uqkr0xSJc2kNiVFY8XM1XJLQ3eTeQfiTp6xmn4KxfPCM uWA8tEsJYgSMSRrp2OvnyoxvnlS/1q1dRhD3kGycLvwh8CU+/nAxP7tdVyFvfFtnzf2eJQxs aQWuuvZ/+zW84Fuoldfq3/GYN2DfBkz20ChsR4LovNIEnby7Y6fBHtWjUQq2h8DXcg0QN4A0 CrFmktwPdfi/TM1po3roPy8L0AzL2a/7x31FRmhSHwBqm6hb4kTqK0mGbEz2grR/cw8NYpFS 1398ovtz2k4uHshXlEa3Gz4IShWGrN2ZEjzArRYS/Hvw4tqAUnq0QwHIxcfjlYLp06SX5chg fdwICRIk02EiHSpVugybKuL0AEj9Kv37YrOhmdTf2fbYvP1jYvVg8ICcdNi2qq9AwQ0oq/4P d2/S4FIBmwCAKOpFgC+ovQ81Dg4mNwpCIT/xp8rR0AWcfqOJNaaUZDJSDAQdqX9qpM4GFjeN u9YsrJfTkw5y9+XClmf4lf34AAAuEqgMMgjGQ+h34lGhMhqi3j6Dn6XIcDO+Tqs8DnYhAnlV 5lRnnESiCChSUjfXDKNKKaaImzhXLBlzKy/8NyzRjlJZO/rwH2lRv4zxeO8YAgbuX+RzL5iT dIsDaPy0oGVig2wRpVtLjJkbfXu+JlSvzOv3Ggmb7PXNMMM8oDAuvPB8MZQP0ZxDPF9yV+cW +TdMBPKsGFaFpa6pw8S737FTlH8in8bXZ7bh8jPfUqFhHYvZYNBBzY1hgHAtJb3bSiUWKp28 tJLKkerTELtsDhRRld7ikEWF/Feq+oNrGY4y89WOMNDmclZrH5mV8b9BPYThadAuOW+y7ZzK BVX64SqyW37JXXL8+DV/Ajp3PpW/ZOg2IXqtC4xwIw7/tUDmiU25E5iWOmISPUBgKNq4soD8 D0kNFX3did3jmo/BTXR6R3GPk1Z0v9f2yxR6McM41FBvbxPk8FfVrVzDeAgBZSYt+eIzFeMj cA9dvepPYSTsx51x1MK/Ark3kIitvGEoVBFRe9TY4xuqCKHkF2NyPzTDLFmXNac6HlNFg3Oh nYUvzSEVS/cIcqbUnaOpom5yi70y5ZMWNqzRk/1zX/L/szQ78GgJuV6/uTtpOsjU7NPLocv9 t9vCKIIZLjXib/wA6bUmBRlmdd4AAcTIA6OaEdAl3LixxGf7AgAAAAAEWVo= --------------8xPxPXC9BD8kuiidXqh03IIS--