Received: by 2002:a05:7412:251c:b0:e2:908c:2ebd with SMTP id w28csp2433484rda; Wed, 25 Oct 2023 02:34:31 -0700 (PDT) X-Google-Smtp-Source: AGHT+IFjmhaGXvmiu8ygKVPFvEWGoJpnX5t/MqVYg2xCY9uG6Wpoy9b9QKih8BnwRdMba2UKVvXV X-Received: by 2002:a05:6122:1829:b0:495:bf5b:7e49 with SMTP id ay41-20020a056122182900b00495bf5b7e49mr10756708vkb.13.1698226471023; Wed, 25 Oct 2023 02:34:31 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1698226471; cv=none; d=google.com; s=arc-20160816; b=EsCx+ZJMaidrhArqnIWFLBI6UwRWMESGoXOOFBiQFd/6NnhNNdyfChVKn676PP1OPs ryntXfe8/4wBbt37TLy+n2grW1A+PMt44zIbu9zH2W77mfALfPg1Hep8SAIrEAWn0AIt FJPjo7cywCyxl5aJ9uLMvtIk4GCG+mylUVDjfwlKOECqzbrIW5Jsywy+v18gCCGfsOen FXBo6QkLSdwWHHBpK042j8JDOVFNUUG3Wgp8ArvSk7x4k/T+td6Zt9Yb8fLoTkSh7ySb KjlJmRA5X3Rpgih2YN3IXHh7z5bCE+pPMgoFcbD3pk/DETnc5oVKsRETGl3GNh5VDDNq jbZw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from; bh=KdJmZIran55B3JvI/C5pXY1BQOJeF2oLnxVnMVw5Ip0=; fh=4OYJ3K2D0ofBlGhh3O4YuBicy23CNIUxbo78mZx4uJc=; b=tYtop0QKghSE1SwaoY0/+5pRDaQjHe2kHUvXbqHbJXno/p4AN8HOfBS3wnSJBG4B/l xQzTW0vaFQEpO41v2ZDCrjvF9/Qbr9WZYxRDVMhduli4TN1jVBZ3DclZcNMFSD61xbzR SYohK29/UbnBViawaN9N/r1z+FjyyLDJcM2/9Kb5NARE0GNoxrJCCNK3J7ILlQKJB4DT rh0+pGfmKNtC7tf2pBED0hJtZ4aIxjYKYwe0P7CpMIv6Yjh0mD8/exhUPlz3Kil4yox4 pfLEiDrV/E3UzG99FK6YKXPqopz302qFxum2velko2hu9qdTa0TcajNvP4bfXwWzZhtT nbTw== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::3:6 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=QUARANTINE sp=QUARANTINE dis=NONE) header.from=huawei.com Return-Path: Received: from pete.vger.email (pete.vger.email. [2620:137:e000::3:6]) by mx.google.com with ESMTPS id i184-20020a8154c1000000b005a7c565010asi10694193ywb.276.2023.10.25.02.34.30 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Wed, 25 Oct 2023 02:34:30 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::3:6 as permitted sender) client-ip=2620:137:e000::3:6; Authentication-Results: mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::3:6 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=fail (p=QUARANTINE sp=QUARANTINE dis=NONE) header.from=huawei.com Received: from out1.vger.email (depot.vger.email [IPv6:2620:137:e000::3:0]) by pete.vger.email (Postfix) with ESMTP id 1641B802923F; Wed, 25 Oct 2023 02:34:28 -0700 (PDT) X-Virus-Status: Clean X-Virus-Scanned: clamav-milter 0.103.10 at pete.vger.email Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S234484AbjJYJdv (ORCPT + 99 others); Wed, 25 Oct 2023 05:33:51 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:39480 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S234397AbjJYJdq (ORCPT ); Wed, 25 Oct 2023 05:33:46 -0400 Received: from szxga08-in.huawei.com (szxga08-in.huawei.com [45.249.212.255]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 0D4EBDC; Wed, 25 Oct 2023 02:33:44 -0700 (PDT) Received: from kwepemi500024.china.huawei.com (unknown [172.30.72.57]) by szxga08-in.huawei.com (SkyGuard) with ESMTP id 4SFkF60pgzz15NlK; Wed, 25 Oct 2023 17:30:50 +0800 (CST) Received: from huawei.com (10.175.103.91) by kwepemi500024.china.huawei.com (7.221.188.100) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) id 15.1.2507.31; Wed, 25 Oct 2023 17:33:40 +0800 From: Zeng Heng To: , , , , , , , , , , , CC: , , , , Subject: [PATCH 3/3] cpufreq: CPPC: Eliminate the impact of cpc_read() latency error Date: Wed, 25 Oct 2023 17:38:47 +0800 Message-ID: <20231025093847.3740104-4-zengheng4@huawei.com> X-Mailer: git-send-email 2.25.1 In-Reply-To: <20231025093847.3740104-1-zengheng4@huawei.com> References: <20231025093847.3740104-1-zengheng4@huawei.com> MIME-Version: 1.0 Content-Transfer-Encoding: 7BIT Content-Type: text/plain; charset=US-ASCII X-Originating-IP: [10.175.103.91] X-ClientProxiedBy: dggems705-chm.china.huawei.com (10.3.19.182) To kwepemi500024.china.huawei.com (7.221.188.100) X-CFilter-Loop: Reflected X-Spam-Status: No, score=-0.8 required=5.0 tests=HEADER_FROM_DIFFERENT_DOMAINS, MAILING_LIST_MULTI,SPF_HELO_NONE,SPF_PASS autolearn=unavailable autolearn_force=no version=3.4.6 X-Spam-Checker-Version: SpamAssassin 3.4.6 (2021-04-09) on pete.vger.email Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org X-Greylist: Sender passed SPF test, not delayed by milter-greylist-4.6.4 (pete.vger.email [0.0.0.0]); Wed, 25 Oct 2023 02:34:28 -0700 (PDT) We have found significant differences in the latency of cpc_read() between regular scenarios and scenarios with high memory access pressure. Ignoring this error can result in getting rate interface occasionally returning absurd values. Here provides a high memory access sample test by stress-ng. My local testing platform includes 160 CPUs, the CPC registers is accessed by mmio method, and the cpuidle feature is disabled (the AMU always works online): ~~~ ./stress-ng --memrate 160 --timeout 180 ~~~ The following data is sourced from ftrace statistics towards cppc_get_perf_ctrs(): Regular scenarios || High memory access pressure scenarios 104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() { 104) 0.800 us | cpc_read.isra.0(); || 133) 4.580 us | cpc_read.isra.0(); 104) 0.640 us | cpc_read.isra.0(); || 133) 7.780 us | cpc_read.isra.0(); 104) 0.450 us | cpc_read.isra.0(); || 133) 2.550 us | cpc_read.isra.0(); 104) 0.430 us | cpc_read.isra.0(); || 133) 0.570 us | cpc_read.isra.0(); 104) 4.610 us | } || 133) ! 157.610 us | } 104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() { 104) 0.720 us | cpc_read.isra.0(); || 133) 0.760 us | cpc_read.isra.0(); 104) 0.720 us | cpc_read.isra.0(); || 133) 4.480 us | cpc_read.isra.0(); 104) 0.510 us | cpc_read.isra.0(); || 133) 0.520 us | cpc_read.isra.0(); 104) 0.500 us | cpc_read.isra.0(); || 133) + 10.100 us | cpc_read.isra.0(); 104) 3.460 us | } || 133) ! 120.850 us | } 108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() { 108) 0.820 us | cpc_read.isra.0(); || 87) ! 255.200 us | cpc_read.isra.0(); 108) 0.850 us | cpc_read.isra.0(); || 87) 2.910 us | cpc_read.isra.0(); 108) 0.590 us | cpc_read.isra.0(); || 87) 5.160 us | cpc_read.isra.0(); 108) 0.610 us | cpc_read.isra.0(); || 87) 4.340 us | cpc_read.isra.0(); 108) 5.080 us | } || 87) ! 315.790 us | } 108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() { 108) 0.630 us | cpc_read.isra.0(); || 87) 0.800 us | cpc_read.isra.0(); 108) 0.630 us | cpc_read.isra.0(); || 87) 6.310 us | cpc_read.isra.0(); 108) 0.420 us | cpc_read.isra.0(); || 87) 1.190 us | cpc_read.isra.0(); 108) 0.430 us | cpc_read.isra.0(); || 87) + 11.620 us | cpc_read.isra.0(); 108) 3.780 us | } || 87) ! 207.010 us | } My local testing platform works under 3000000hz, but the cpuinfo_cur_freq interface returns values that are not even close to the actual frequency: [root@localhost ~]# cd /sys/devices/system/cpu [root@localhost cpu]# for i in {0..159}; do cat cpu$i/cpufreq/cpuinfo_cur_freq; done 5127812 2952127 3069001 3496183 922989768 2419194 3427042 2331869 3594611 8238499 ... The reason is when under heavy memory access pressure, the execution of cpc_read() delay has increased from sub-microsecond to several hundred microseconds. Moving the cpc_read function into a critical section by irq disable/enable has minimal impact on the result. cppc_get_perf_ctrs()[0] cppc_get_perf_ctrs()[1] / \ / \ cpc_read cpc_read cpc_read cpc_read ref[0] delivered[0] ref[1] delivered[1] | | | | v v v v -----------------------------------------------------------------------> time <--delta[0]--> <------sample_period------> <-----delta[1]-----> Since that, freq = ref_freq * (delivered[1] - delivered[0]) / (ref[1] - ref[0]) and delivered[1] - delivered[0] = freq * (delta[1] + sample_period), ref[1] - ref[0] = ref_freq * (delta[0] + sample_period) To eliminate the impact of system memory access latency, setting a sampling period of 2us is far from sufficient. Consequently, we suggest cppc_cpufreq_get_rate() only can be called in the process context, and adopt a longer sampling period to neutralize the impact of random latency. Here we call the cond_resched() function instead of sleep-like functions to ensure that `taskset -c $i cat cpu$i/cpufreq/cpuinfo_cur_freq` could work when cpuidle feature is enabled. Reported-by: Yang Shi Link: https://lore.kernel.org/all/20230328193846.8757-1-yang@os.amperecomputing.com/ Signed-off-by: Zeng Heng --- drivers/cpufreq/cppc_cpufreq.c | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/drivers/cpufreq/cppc_cpufreq.c b/drivers/cpufreq/cppc_cpufreq.c index 321a9dc9484d..a7c5418bcda7 100644 --- a/drivers/cpufreq/cppc_cpufreq.c +++ b/drivers/cpufreq/cppc_cpufreq.c @@ -851,12 +851,26 @@ static int cppc_get_perf_ctrs_pair(void *val) struct fb_ctr_pair *fb_ctrs = val; int cpu = fb_ctrs->cpu; int ret; + unsigned long timeout; ret = cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t0); if (ret) return ret; - udelay(2); /* 2usec delay between sampling */ + if (likely(!irqs_disabled())) { + /* + * Set 1ms as sampling interval, but never schedule + * to the idle task to prevent the AMU counters from + * stopping working. + */ + timeout = jiffies + msecs_to_jiffies(1); + while (!time_after(jiffies, timeout)) + cond_resched(); + + } else { + pr_warn_once("CPU%d: Get rate in atomic context", cpu); + udelay(2); /* 2usec delay between sampling */ + } return cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t1); } -- 2.25.1