Received: by 2002:a05:7412:a9a2:b0:e2:908c:2ebd with SMTP id o34csp1499024rdh; Fri, 27 Oct 2023 17:10:53 -0700 (PDT) X-Google-Smtp-Source: AGHT+IHLLLlPWOUBbwoVc+U13xileZQThK8vOHIZNK84kCGn4NsvTXSKeV94cjnJd4VGwhp9mOj4 X-Received: by 2002:a05:6359:7297:b0:168:eb96:f495 with SMTP id uw23-20020a056359729700b00168eb96f495mr3784274rwb.16.1698451852814; Fri, 27 Oct 2023 17:10:52 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1698451852; cv=none; d=google.com; s=arc-20160816; b=BoBCj9ivV5qbQSvMwttP83t03AP/YRi3U/SneBA8nj8f0ngOHG2MMqAVRaxuq+da9V YBQDxyTwS9VmguYb0HKLLGzzuZdJO4b6lG+yZ/VkO3lxjk8DDrgk/vq+eFvuZ4AXEXsW aCnElIURCmpNgTRIbN/72cIpqpwyyWAPMQazrjr60tTD1K/tltdenI8Z9CdDTgcLW+TG 1sHQOD9F82GVUEmQgj0o6KrerG4Go3ufLWBLjegX6xxA9zIjCZBTmokMMOF9LRPzt6Vc fCbEo3iHW/RpEgXUAxG2t78udCxqUGYV6iiEMAKhBIQD12oBBFDI2Dra2winaTOR2fTF oyHw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from; bh=z1CDgPBGhGslcSULKXQTDWeInFAmX74zdDIRHDgnakc=; fh=sS+J4OyOC0EcVLWJpS3mBHGeO+0+dYZJ+ImCUfzsrH4=; b=spcwlRO4P+3JYXztpXCi3eWbxYiY0g0MPOGJjeas+xYvyceksCzRISNqCMvFEvYq+W /ZUDjNTeuwRdOvXeVVTe/G7a9ZU59m7NXc1D4IBGybrochkIzNQm6iOE5VQ2/nw+ISid UvhRxc6Z73AN78/PM6BjWDJEMX/TaaPyUnjhSa5m+UCm3CK3RVCveuW+taZ4J9P8umaW H1qFsZ1InJ+pmslqVPpBWzmRPmyCkZfjPTBnFFRTS2NI9zRwHjSssyMTbcTfVvuGjPpn R2vJLl5NKrCBlmtZD+LqeNE9M68a7cIO1uLUgO5jKIFt+gxILADv3ypDtZeyPJuqiKhC YH2A== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::3:5 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Return-Path: Received: from groat.vger.email (groat.vger.email. [2620:137:e000::3:5]) by mx.google.com with ESMTPS id m125-20020a632683000000b00589fcc39ef1si1766745pgm.365.2023.10.27.17.10.52 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Fri, 27 Oct 2023 17:10:52 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::3:5 as permitted sender) client-ip=2620:137:e000::3:5; Authentication-Results: mx.google.com; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::3:5 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: from out1.vger.email (depot.vger.email [IPv6:2620:137:e000::3:0]) by groat.vger.email (Postfix) with ESMTP id 3E2BD83F8C45; Fri, 27 Oct 2023 17:10:49 -0700 (PDT) X-Virus-Status: Clean X-Virus-Scanned: clamav-milter 0.103.10 at groat.vger.email Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S232804AbjJ1AK0 (ORCPT + 99 others); Fri, 27 Oct 2023 20:10:26 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:44888 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S232896AbjJ1AKW (ORCPT ); Fri, 27 Oct 2023 20:10:22 -0400 Received: from 66-220-144-178.mail-mxout.facebook.com (66-220-144-178.mail-mxout.facebook.com [66.220.144.178]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 894ED1B8 for ; Fri, 27 Oct 2023 17:10:16 -0700 (PDT) Received: by devbig1114.prn1.facebook.com (Postfix, from userid 425415) id 7429EE5A2556; Fri, 27 Oct 2023 17:10:00 -0700 (PDT) From: Stefan Roesch To: kernel-team@fb.com Cc: shr@devkernel.io, akpm@linux-foundation.org, david@redhat.com, hannes@cmpxchg.org, riel@surriel.com, linux-kernel@vger.kernel.org, linux-mm@kvack.org Subject: [PATCH v2 1/4] mm/ksm: add ksm advisor Date: Fri, 27 Oct 2023 17:09:42 -0700 Message-Id: <20231028000945.2428830-2-shr@devkernel.io> X-Mailer: git-send-email 2.39.3 In-Reply-To: <20231028000945.2428830-1-shr@devkernel.io> References: <20231028000945.2428830-1-shr@devkernel.io> MIME-Version: 1.0 Content-Transfer-Encoding: quoted-printable X-Spam-Status: No, score=-0.8 required=5.0 tests=HEADER_FROM_DIFFERENT_DOMAINS, MAILING_LIST_MULTI,SPF_HELO_NONE,SPF_PASS autolearn=unavailable autolearn_force=no version=3.4.6 X-Spam-Checker-Version: SpamAssassin 3.4.6 (2021-04-09) on groat.vger.email Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org X-Greylist: Sender passed SPF test, not delayed by milter-greylist-4.6.4 (groat.vger.email [0.0.0.0]); Fri, 27 Oct 2023 17:10:49 -0700 (PDT) This adds the ksm advisor. The ksm advisor automatically manages the pages_to_scan setting to achieve a target scan time. The target scan time defines how many seconds it should take to scan all the candidate KSM pages. In other words the pages_to_scan rate is changed by the advisor to achieve the target scan time. The algorithm has a max and min value to: - guarantee responsiveness to changes - to avoid to spend too much CPU The respective parameters are: - ksm_advisor_target_scan_time (how many seconds a scan should take) - ksm_advisor_min_cpu (minimum value for cpu percent usage) - ksm_advisor_max_cpu (maximum value for cpu percent usage) - ksm_advisor_min_pages (minimum value for pages_to_scan per batch) - ksm_advisor_max_pages (maximum value for pages_to_scan per batch) The algorithm calculates the change value based on the target scan time and the previous scan time. To avoid pertubations an exponentially weighted moving average is applied. The advisor is managed by three main parameters: target scan time, cpu min time and cpu max time for the ksmd background thread. These parameters determine how aggresive ksmd scans. In addition there are min and max values for the pages_to_scan parameter to make sure that its initial and max values are not set too low or too high. This ensures that it is able to react to changes quickly enough. The default values are: - target scan time: 200 secs - min cpu: 15% - max cpu: 70% - min pages: 500 - max pages: 30000 By default the advisor is disabled. Currently there are two advisors: none and scan_time. Tests with various workloads have shown considerable CPU savings. Most of the workloads I have investigated have more candidate pages during startup, once the workload is stable in terms of memory, the number of candidate pages is reduced. Without the advisor, the pages_to_scan needs to be sized for the maximum number of candidate pages. So having this advisor definitely helps in reducing CPU consumption. For the instagram workload, the advisor achieves a 25% CPU reduction. Once the memory is stable, the pages_to_scan parameter gets reduced to about 40% of its max value. Signed-off-by: Stefan Roesch --- mm/ksm.c | 159 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 158 insertions(+), 1 deletion(-) diff --git a/mm/ksm.c b/mm/ksm.c index 7efcc68ccc6e..e18fecfb359d 100644 --- a/mm/ksm.c +++ b/mm/ksm.c @@ -21,6 +21,7 @@ #include #include #include +#include #include #include #include @@ -248,6 +249,9 @@ static struct kmem_cache *rmap_item_cache; static struct kmem_cache *stable_node_cache; static struct kmem_cache *mm_slot_cache; =20 +/* Default number of pages to scan per batch */ +#define DEFAULT_PAGES_TO_SCAN 100 + /* The number of pages scanned */ static unsigned long ksm_pages_scanned; =20 @@ -276,7 +280,7 @@ static unsigned int ksm_stable_node_chains_prune_mill= isecs =3D 2000; static int ksm_max_page_sharing =3D 256; =20 /* Number of pages ksmd should scan in one batch */ -static unsigned int ksm_thread_pages_to_scan =3D 100; +static unsigned int ksm_thread_pages_to_scan =3D DEFAULT_PAGES_TO_SCAN; =20 /* Milliseconds ksmd should sleep between batches */ static unsigned int ksm_thread_sleep_millisecs =3D 20; @@ -297,6 +301,155 @@ unsigned long ksm_zero_pages; /* The number of pages that have been skipped due to "smart scanning" */ static unsigned long ksm_pages_skipped; =20 +/* Don't scan more than max pages per batch. */ +static unsigned long ksm_advisor_max_pages =3D 30000; + +/* At least scan this many pages per batch. */ +static unsigned long ksm_advisor_min_pages =3D 500; + +/* Min CPU for scanning pages per scan */ +static unsigned int ksm_advisor_min_cpu =3D 15; + +/* Max CPU for scanning pages per scan */ +static unsigned int ksm_advisor_max_cpu =3D 70; + +/* Target scan time in seconds to analyze all KSM candidate pages. */ +static unsigned long ksm_advisor_target_scan_time =3D 200; + +/* Exponentially weighted moving average. */ +#define EWMA_WEIGHT 30 + +/** + * struct advisor_ctx - metadata for KSM advisor + * @start_scan: start time of the current scan + * @scan_time: scan time of previous scan + * @change: change in percent to pages_to_scan parameter + * @cpu_percent: average cpu percent usage of the ksmd thread for the la= st scan + */ +struct advisor_ctx { + ktime_t start_scan; + unsigned long scan_time; + unsigned long change; + unsigned long long cpu_time; +}; +static struct advisor_ctx advisor_ctx; + +/* Define different advisor's */ +enum ksm_advisor_type { + KSM_ADVISOR_NONE, + KSM_ADVISOR_FIRST =3D KSM_ADVISOR_NONE, + KSM_ADVISOR_SCAN_TIME, + KSM_ADVISOR_LAST =3D KSM_ADVISOR_SCAN_TIME +}; +static enum ksm_advisor_type ksm_advisor; + +static void init_advisor(void) +{ + advisor_ctx.start_scan =3D 0; + advisor_ctx.scan_time =3D 0; + advisor_ctx.change =3D 0; + advisor_ctx.cpu_time =3D 0; +} + +/* + * Use previous scan time if available, otherwise use current scan time = as an + * approximation for the previous scan time. + */ +static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, + unsigned long scan_time) +{ + return ctx->scan_time ? ctx->scan_time : scan_time; +} + +/* Calculate exponential weighted moving average */ +static unsigned long ewma(unsigned long prev, unsigned long curr) +{ + return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; +} + +/* + * The scan time advisor is based on the current scan rate and the targe= t + * scan rate. + * + * new_pages_to_scan =3D pages_to_scan * (scan_time / target_scan_t= ime) + * + * To avoid pertubations it calculates a change factor of previous chang= es. + * A new change factor is calculated for each iteration and it uses an + * exponentially weighted moving average. The new pages_to_scan value is + * multiplied with that change factor: + * + * new_pages_to_scan *=3D change facor + * + * In addition the new pages_to_scan value is capped by the max and min + * limits. + */ +static void scan_time_advisor(unsigned long scan_time) +{ + unsigned int cpu_percent; + unsigned long cpu_time; + unsigned long cpu_time_diff; + unsigned long cpu_time_diff_ms; + unsigned long pages; + unsigned long per_page_cost; + unsigned long factor; + unsigned long change; + unsigned long last_scan_time; + + cpu_time =3D task_sched_runtime(current); + cpu_time_diff =3D cpu_time - advisor_ctx.cpu_time; + cpu_time_diff_ms =3D cpu_time_diff / 1000 / 1000; + + cpu_percent =3D (cpu_time_diff_ms * 100) / (scan_time * 1000); + cpu_percent =3D cpu_percent ? cpu_percent : 1; + last_scan_time =3D prev_scan_time(&advisor_ctx, scan_time); + + /* Calculate scan time as percentage of target scan time */ + factor =3D ksm_advisor_target_scan_time * 100 / scan_time; + factor =3D factor ? factor : 1; + + /* + * Calculate scan time as percentage of last scan time and use + * exponentially weighted average to smooth it + */ + change =3D scan_time * 100 / last_scan_time; + change =3D change ? change : 1; + change =3D ewma(advisor_ctx.change, change); + + /* Calculate new scan rate based on target scan rate. */ + pages =3D ksm_thread_pages_to_scan * 100 / factor; + /* Update pages_to_scan by weighted change percentage. */ + pages =3D pages * change / 100; + + /* Cap new pages_to_scan value */ + per_page_cost =3D ksm_thread_pages_to_scan / cpu_percent; + per_page_cost =3D per_page_cost ? per_page_cost : 1; + + pages =3D min(pages, per_page_cost * ksm_advisor_max_cpu); + pages =3D max(pages, per_page_cost * ksm_advisor_min_cpu); + pages =3D min(pages, ksm_advisor_max_pages); + + /* Update advisor context */ + advisor_ctx.change =3D change; + advisor_ctx.scan_time =3D scan_time; + advisor_ctx.cpu_time =3D cpu_time; + + ksm_thread_pages_to_scan =3D pages; +} + +static void run_advisor(void) +{ + if (ksm_advisor =3D=3D KSM_ADVISOR_SCAN_TIME) { + s64 scan_time; + + /* Convert scan time to seconds */ + scan_time =3D ktime_ms_delta(ktime_get(), advisor_ctx.start_scan); + scan_time =3D div_s64(scan_time, MSEC_PER_SEC); + scan_time =3D scan_time ? scan_time : 1; + + scan_time_advisor((unsigned long)scan_time); + } +} + #ifdef CONFIG_NUMA /* Zeroed when merging across nodes is not allowed */ static unsigned int ksm_merge_across_nodes =3D 1; @@ -2401,6 +2554,7 @@ static struct ksm_rmap_item *scan_get_next_rmap_ite= m(struct page **page) =20 mm_slot =3D ksm_scan.mm_slot; if (mm_slot =3D=3D &ksm_mm_head) { + advisor_ctx.start_scan =3D ktime_get(); trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); =20 /* @@ -2558,6 +2712,8 @@ static struct ksm_rmap_item *scan_get_next_rmap_ite= m(struct page **page) if (mm_slot !=3D &ksm_mm_head) goto next_mm; =20 + run_advisor(); + trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); ksm_scan.seqnr++; return NULL; @@ -3603,6 +3759,7 @@ static int __init ksm_init(void) zero_checksum =3D calc_checksum(ZERO_PAGE(0)); /* Default to false for backwards compatibility */ ksm_use_zero_pages =3D false; + init_advisor(); =20 err =3D ksm_slab_init(); if (err) --=20 2.39.3