Received: by 2002:a05:7412:b995:b0:f9:9502:5bb8 with SMTP id it21csp7892556rdb; Thu, 4 Jan 2024 10:51:59 -0800 (PST) X-Google-Smtp-Source: AGHT+IHQ8qvsJVkdzTlX0MWdKhZ3AjMHC7wJIbQ5LNIe5SlZKHpEQF7cev0bI1EK2YTS3a0bQyNm X-Received: by 2002:a05:6a20:840a:b0:196:d045:9d9c with SMTP id c10-20020a056a20840a00b00196d0459d9cmr1028175pzd.50.1704394319265; Thu, 04 Jan 2024 10:51:59 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1704394319; cv=none; d=google.com; s=arc-20160816; b=pVQ87LrRX1XfiaOSxRk5tzd7Esn+QAA7hkR8Q1TF+lC9qxrfXQmf6Q8qLHS3SpcO0r HczlNpXrtRa6ayDn5BlmKvvEcskIFre48H7gRRaiwwBJNXRkXj/AHbmfdET2+KsSvTzt y2T2HyTB2grRZAWfaE0196tLzFSiQoiX03N+f3KD7b3LmnqM/nYwNAwMrt0+S6Aht847 cmydk4WnENleogxDl/fgI/xrrOXG78blgu9iLkksiZK096RKplsybKoMB71ZWFvpnKIi aYwFwtRJRbxZjOcm8TTECITHjDT6ODgOIvbzT51xd19844ohROnnx/69xWVl7HYimTvs PfDw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=content-transfer-encoding:mime-version:list-unsubscribe :list-subscribe:list-id:precedence:message-id:date:subject:cc:to :from:dkim-signature; bh=GXcAixOgj5wC6KzcQWhj3DdvTpZWvVXGr41CZAGmtyc=; fh=PUOEjgX3nkzTLbPQsprGNOxfl0HD9UkDjxyMERsTAs8=; b=obXKWwg+88+5KA1QuU1mdZG9Ta10c0vz5F+slE8AocDinH3WECCmp2dvzfF+HojczC xEN3xYUpfZJ7vTC0PRmWcUO3xTxX871Mbhpi48Wpsm4o0KJj+tniZKK+YOpqSBJKGQB1 zuGOjsEOxZ6PnySt9We72p39dbyFjRmf4XgPVy4hl9E9LtXoaPjBvQiETS45MCw2gkYH CyHT3k8NgRd9SX+VBeTE52EjFMem7MThtq7ykKj5/GIy1Wub0pRSQZg6MjxJEUSk0Pup flTMhB1twRPVAKW29NFMX8BsdH+8YCr4w888Sz6fq6DM32/qhiOFG2bZsS08iaUBEV8c 7BFg== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@chromium.org header.s=google header.b=iYF+AHN1; spf=pass (google.com: domain of linux-kernel+bounces-17106-linux.lists.archive=gmail.com@vger.kernel.org designates 139.178.88.99 as permitted sender) smtp.mailfrom="linux-kernel+bounces-17106-linux.lists.archive=gmail.com@vger.kernel.org"; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=chromium.org Return-Path: Received: from sv.mirrors.kernel.org (sv.mirrors.kernel.org. [139.178.88.99]) by mx.google.com with ESMTPS id ay18-20020a056a00301200b006d995661f68si20609727pfb.51.2024.01.04.10.51.58 for (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Thu, 04 Jan 2024 10:51:59 -0800 (PST) Received-SPF: pass (google.com: domain of linux-kernel+bounces-17106-linux.lists.archive=gmail.com@vger.kernel.org designates 139.178.88.99 as permitted sender) client-ip=139.178.88.99; Authentication-Results: mx.google.com; dkim=pass header.i=@chromium.org header.s=google header.b=iYF+AHN1; spf=pass (google.com: domain of linux-kernel+bounces-17106-linux.lists.archive=gmail.com@vger.kernel.org designates 139.178.88.99 as permitted sender) smtp.mailfrom="linux-kernel+bounces-17106-linux.lists.archive=gmail.com@vger.kernel.org"; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=chromium.org Received: from smtp.subspace.kernel.org (wormhole.subspace.kernel.org [52.25.139.140]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by sv.mirrors.kernel.org (Postfix) with ESMTPS id D469A28788B for ; Thu, 4 Jan 2024 18:51:58 +0000 (UTC) Received: from localhost.localdomain (localhost.localdomain [127.0.0.1]) by smtp.subspace.kernel.org (Postfix) with ESMTP id 314C228E39; Thu, 4 Jan 2024 18:51:50 +0000 (UTC) Authentication-Results: smtp.subspace.kernel.org; dkim=pass (1024-bit key) header.d=chromium.org header.i=@chromium.org header.b="iYF+AHN1" X-Original-To: linux-kernel@vger.kernel.org Received: from mail-pf1-f175.google.com (mail-pf1-f175.google.com [209.85.210.175]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by smtp.subspace.kernel.org (Postfix) with ESMTPS id B382228E1B for ; Thu, 4 Jan 2024 18:51:46 +0000 (UTC) Authentication-Results: smtp.subspace.kernel.org; dmarc=pass (p=none dis=none) header.from=chromium.org Authentication-Results: smtp.subspace.kernel.org; spf=pass smtp.mailfrom=chromium.org Received: by mail-pf1-f175.google.com with SMTP id d2e1a72fcca58-6d9f9689195so529305b3a.3 for ; Thu, 04 Jan 2024 10:51:46 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=chromium.org; s=google; t=1704394306; x=1704999106; darn=vger.kernel.org; h=content-transfer-encoding:mime-version:message-id:date:subject:cc :to:from:from:to:cc:subject:date:message-id:reply-to; bh=GXcAixOgj5wC6KzcQWhj3DdvTpZWvVXGr41CZAGmtyc=; b=iYF+AHN1BmR4GEG3XyjJPLMW6brIbLOta6YzKvy8ifpUGAondiu8OZ6oenZqGXBb9R Dvtsge2D9/ccEYz5NjEr3X9AYyI+vhEUSqv3G2CNrGdM/em5v66VtA+S70SdRQ0Ufs1S 9rKPW08Meq7pkDdd9SPKKg582Q6iTpsjhFDLs= X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20230601; t=1704394306; x=1704999106; h=content-transfer-encoding:mime-version:message-id:date:subject:cc :to:from:x-gm-message-state:from:to:cc:subject:date:message-id :reply-to; bh=GXcAixOgj5wC6KzcQWhj3DdvTpZWvVXGr41CZAGmtyc=; b=gdSSCYVCjMurhDrB9zk3xO/rPmzmE3IK3KOMJ1O3j+j5IIHs956AVJkQ/FB3nGJfa+ IyXmGlbaQ7/SbGJ1SpmS3WiHaFGtkpJinW43l4D40OxSoG5/E7YSBzOUaltvqZaLD7fD UBy2YXEdUaVqNB2plBsG0X1k4JesmHvB9gig0TFiFGfuHOvTD585FrwYhFyaGeozaZT/ yD4Id203AKqV6GioDekVx9FNcAeshtlUWpMKXwJeRTfKjcTE1sjcYaptjOz48eIh6Y3k qLzfVOI4biw0OuB+/t/eQGy77lGqG4jhX2rUlpVxvjV+2nDL0zEeQNGJr2tTg3KKJbxu EQ4w== X-Gm-Message-State: AOJu0YzVeiNx7daXcWb5V/Su9M+CJx2fyxNd3urm6nbQxun76s75NrWZ FXRwllsl9uj/jKylv3POBgxuC4J9ZJss X-Received: by 2002:a05:6a20:2584:b0:197:5779:4d26 with SMTP id k4-20020a056a20258400b0019757794d26mr1066925pzd.64.1704394305805; Thu, 04 Jan 2024 10:51:45 -0800 (PST) Received: from localhost (34.85.168.34.bc.googleusercontent.com. [34.168.85.34]) by smtp.gmail.com with UTF8SMTPSA id u7-20020a056a00124700b006d96d034befsm24782446pfi.30.2024.01.04.10.51.45 (version=TLS1_3 cipher=TLS_AES_128_GCM_SHA256 bits=128/128); Thu, 04 Jan 2024 10:51:45 -0800 (PST) From: jeffxu@chromium.org To: akpm@linux-foundation.org, keescook@chromium.org, jannh@google.com, sroettger@google.com, willy@infradead.org, gregkh@linuxfoundation.org, torvalds@linux-foundation.org, usama.anjum@collabora.com Cc: jeffxu@google.com, jorgelo@chromium.org, groeck@chromium.org, linux-kernel@vger.kernel.org, linux-kselftest@vger.kernel.org, linux-mm@kvack.org, pedro.falcato@gmail.com, dave.hansen@intel.com, linux-hardening@vger.kernel.org, deraadt@openbsd.org, Jeff Xu Subject: [RFC PATCH v4 0/4] Introduce mseal() Date: Thu, 4 Jan 2024 18:51:33 +0000 Message-ID: <20240104185138.169307-1-jeffxu@chromium.org> X-Mailer: git-send-email 2.43.0.195.gebba966016-goog Precedence: bulk X-Mailing-List: linux-kernel@vger.kernel.org List-Id: List-Subscribe: List-Unsubscribe: MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit From: Jeff Xu This is V4 of the patch, the patch has improved significantly since V1, thanks to diverse inputs, a few discussions remain, please read those in the open discussion section of v4 of change history. ----------------------------------------------------------------- This patchset proposes a new mseal() syscall for the Linux kernel. In a nutshell, mseal() protects the VMAs of a given virtual memory range against modifications, such as changes to their permission bits. Modern CPUs support memory permissions, such as the read/write (RW) and no-execute (NX) bits. Linux has supported NX since the release of kernel version 2.6.8 in August 2004 [1]. The memory permission feature improves the security stance on memory corruption bugs, as an attacker cannot simply write to arbitrary memory and point the code to it. The memory must be marked with the X bit, or else an exception will occur. Internally, the kernel maintains the memory permissions in a data structure called VMA (vm_area_struct). mseal() additionally protects the VMA itself against modifications of the selected seal type. Memory sealing is useful to mitigate memory corruption issues where a corrupted pointer is passed to a memory management system. For example, such an attacker primitive can break control-flow integrity guarantees since read-only memory that is supposed to be trusted can become writable or .text pages can get remapped. Memory sealing can automatically be applied by the runtime loader to seal .text and .rodata pages and applications can additionally seal security critical data at runtime. A similar feature already exists in the XNU kernel with the VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall [4]. Also, Chrome wants to adopt this feature for their CFI work [2] and this patchset has been designed to be compatible with the Chrome use case. Two system calls are involved in sealing the map: mmap() and mseal(). The new mseal() is an syscall on 64 bit CPU, and with following signature: int mseal(void addr, size_t len, unsigned long flags) addr/len: memory range. flags: reserved. mseal() blocks following operations for the given memory range. 1> Unmapping, moving to another location, and shrinking the size, via munmap() and mremap(), can leave an empty space, therefore can be replaced with a VMA with a new set of attributes. 2> Moving or expanding a different VMA into the current location, via mremap(). 3> Modifying a VMA via mmap(MAP_FIXED). 4> Size expansion, via mremap(), does not appear to pose any specific risks to sealed VMAs. It is included anyway because the use case is unclear. In any case, users can rely on merging to expand a sealed VMA. 5> mprotect() and pkey_mprotect(). 6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous memory, when users don't have write permission to the memory. Those behaviors can alter region contents by discarding pages, effectively a memset(0) for anonymous memory. In addition: mmap() has two related changes. The PROT_SEAL bit in prot field of mmap(). When present, it marks the map sealed since creation. The MAP_SEALABLE bit in the flags field of mmap(). When present, it marks the map as sealable. A map created without MAP_SEALABLE will not support sealing, i.e. mseal() will fail. Applications that don't care about sealing will expect their behavior unchanged. For those that need sealing support, opt-in by adding MAP_SEALABLE in mmap(). The idea that inspired this patch comes from Stephen Röttger’s work in V8 CFI [5]. Chrome browser in ChromeOS will be the first user of this API. Indeed, the Chrome browser has very specific requirements for sealing, which are distinct from those of most applications. For example, in the case of libc, sealing is only applied to read-only (RO) or read-execute (RX) memory segments (such as .text and .RELRO) to prevent them from becoming writable, the lifetime of those mappings are tied to the lifetime of the process. Chrome wants to seal two large address space reservations that are managed by different allocators. The memory is mapped RW- and RWX respectively but write access to it is restricted using pkeys (or in the future ARM permission overlay extensions). The lifetime of those mappings are not tied to the lifetime of the process, therefore, while the memory is sealed, the allocators still need to free or discard the unused memory. For example, with madvise(DONTNEED). However, always allowing madvise(DONTNEED) on this range poses a security risk. For example if a jump instruction crosses a page boundary and the second page gets discarded, it will overwrite the target bytes with zeros and change the control flow. Checking write-permission before the discard operation allows us to control when the operation is valid. In this case, the madvise will only succeed if the executing thread has PKEY write permissions and PKRU changes are protected in software by control-flow integrity. Although the initial version of this patch series is targeting the Chrome browser as its first user, it became evident during upstream discussions that we would also want to ensure that the patch set eventually is a complete solution for memory sealing and compatible with other use cases. The specific scenario currently in mind is glibc's use case of loading and sealing ELF executables. To this end, Stephen is working on a change to glibc to add sealing support to the dynamic linker, which will seal all non-writable segments at startup. Once this work is completed, all applications will be able to automatically benefit from these new protections. -------------------------------------------------------------------- Change history: =============== V4: (Suggested by Linus Torvalds) - new signature: mseal(start,len,flags) - 32 bit is not supported. vm_seal is removed, use vm_flags instead. - single bit in vm_flags for sealed state. - CONFIG_MSEAL kernel config is removed. - single bit of PROT_SEAL in the "Prot" field of mmap(). Other changes: - update selftest (Suggested by Muhammad Usama Anjum) - update documentation. Open discussions: ================= Below discussion were brought up in V3, and did not receive any input: the one important to this patch is MAP_SEALABLE in mmap(), which is in current version of patch, list here for input/comments. --------------------------------------------------------------------- During the development of V3, I had new questions and thoughts and wished to discuss. 1> shm/aio From reading the code, it seems to me that aio/shm can mmap/munmap maps on behalf of userspace, e.g. ksys_shmdt() in shm.c. The lifetime of those mapping are not tied to the lifetime of the process. If those memories are sealed from userspace, then unmap will fail. This isn’t a huge problem, since the memory will eventually be freed at exit or exec. However, it feels like the solution is not complete, because of the leaks in VMA address space during the lifetime of the process. 2> Brk (heap/stack) Currently, userspace applications can seal parts of the heap by calling malloc() and mseal(). This raises the question of what the expected behavior is when sealing the heap is attempted. let's assume following calls from user space: ptr = malloc(size); mprotect(ptr, size, RO); mseal(ptr, size, SEAL_PROT_PKEY); free(ptr); Technically, before mseal() is added, the user can change the protection of the heap by calling mprotect(RO). As long as the user changes the protection back to RW before free(), the memory can be reused. Adding mseal() into picture, however, the heap is then sealed partially, user can still free it, but the memory remains to be RO, and the result of brk-shrink is nondeterministic, depending on if munmap() will try to free the sealed memory.(brk uses munmap to shrink the heap). 3> Above two cases led to the third topic: There one option to address the problem mentioned above. Option 1: A “MAP_SEALABLE” flag in mmap(). If a map is created without this flag, the mseal() operation will fail. Applications that are not concerned with sealing will expect their behavior to be unchanged. For those that are concerned, adding a flag at mmap time to opt in is not difficult. For the short term, this solves problems 1 and 2 above. The memory in shm/aio/brk will not have the MAP_SEALABLE flag at mmap(), and the same is true for the heap. If we choose not to go with path, all mapping will by default sealable. We could document above mentioned limitations so devs are more careful at the time to choose what memory to seal. I think deny of service through mseal() by attacker is probably not a concern, if attackers have access to mseal() and unsealed memory, then they can also do other harmful thing to the memory, such as munmap, etc. 4> I think it might be possible to seal the stack or other special mappings created at runtime (vdso, vsyscall, vvar). This means we can enforce and seal W^X for certain types of application. For instance, the stack is typically used in read-write mode, but in some cases, it can become executable. To defend against unintented addition of executable bit to stack, we could let the application to seal it. Sealing the heap (for adding X) requires special handling, since the heap can shrink, and shrink is implemented through munmap(). Indeed, it might be possible that all virtual memory accessible to user space, regardless of its usage pattern, could be sealed. However, this would require additional research and development work. ===================================================================== V3: - Abandon per-syscall approach, (Suggested by Linus Torvalds). - Organize sealing types around their functionality, such as MM_SEAL_BASE, MM_SEAL_PROT_PKEY. - Extend the scope of sealing from calls originated in userspace to both kernel and userspace. (Suggested by Linus Torvalds) - Add seal type support in mmap(). (Suggested by Pedro Falcato) - Add a new sealing type: MM_SEAL_DISCARD_RO_ANON to prevent destructive operations of madvise. (Suggested by Jann Horn and Stephen Röttger) - Make sealed VMAs mergeable. (Suggested by Jann Horn) - Add MAP_SEALABLE to mmap() - Add documentation - mseal.rst https://lore.kernel.org/linux-mm/20231212231706.2680890-2-jeffxu@chromium.org/ v2: Use _BITUL to define MM_SEAL_XX type. Use unsigned long for seal type in sys_mseal() and other functions. Remove internal VM_SEAL_XX type and convert_user_seal_type(). Remove MM_ACTION_XX type. Remove caller_origin(ON_BEHALF_OF_XX) and replace with sealing bitmask. Add more comments in code. Add a detailed commit message. https://lore.kernel.org/lkml/20231017090815.1067790-1-jeffxu@chromium.org/ v1: https://lore.kernel.org/lkml/20231016143828.647848-1-jeffxu@chromium.org/ ---------------------------------------------------------------- [1] https://kernelnewbies.org/Linux_2_6_8 [2] https://v8.dev/blog/control-flow-integrity [3] https://github.com/apple-oss-distributions/xnu/blob/1031c584a5e37aff177559b9f69dbd3c8c3fd30a/osfmk/mach/vm_statistics.h#L274 [4] https://man.openbsd.org/mimmutable.2 [5] https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyXgeaRHo/edit#heading=h.bvaojj9fu6hc [6] https://lore.kernel.org/lkml/CAG48ez3ShUYey+ZAFsU2i1RpQn0a5eOs2hzQ426FkcgnfUGLvA@mail.gmail.com/ [7] https://lore.kernel.org/lkml/20230515130553.2311248-1-jeffxu@chromium.org/ Jeff Xu (4): mseal: Wire up mseal syscall mseal: add mseal syscall selftest mm/mseal memory sealing mseal:add documentation Documentation/userspace-api/mseal.rst | 181 ++ arch/alpha/kernel/syscalls/syscall.tbl | 1 + arch/arm/tools/syscall.tbl | 1 + arch/arm64/include/asm/unistd.h | 2 +- arch/arm64/include/asm/unistd32.h | 2 + arch/m68k/kernel/syscalls/syscall.tbl | 1 + arch/microblaze/kernel/syscalls/syscall.tbl | 1 + arch/mips/kernel/syscalls/syscall_n32.tbl | 1 + arch/mips/kernel/syscalls/syscall_n64.tbl | 1 + arch/mips/kernel/syscalls/syscall_o32.tbl | 1 + arch/parisc/kernel/syscalls/syscall.tbl | 1 + arch/powerpc/kernel/syscalls/syscall.tbl | 1 + arch/s390/kernel/syscalls/syscall.tbl | 1 + arch/sh/kernel/syscalls/syscall.tbl | 1 + arch/sparc/kernel/syscalls/syscall.tbl | 1 + arch/x86/entry/syscalls/syscall_32.tbl | 1 + arch/x86/entry/syscalls/syscall_64.tbl | 1 + arch/xtensa/kernel/syscalls/syscall.tbl | 1 + include/linux/mm.h | 60 + include/linux/syscalls.h | 1 + include/uapi/asm-generic/mman-common.h | 7 + include/uapi/asm-generic/unistd.h | 5 +- kernel/sys_ni.c | 1 + mm/Makefile | 4 + mm/madvise.c | 12 + mm/mmap.c | 27 + mm/mprotect.c | 10 + mm/mremap.c | 31 + mm/mseal.c | 330 ++++ tools/testing/selftests/mm/.gitignore | 1 + tools/testing/selftests/mm/Makefile | 1 + tools/testing/selftests/mm/mseal_test.c | 1971 +++++++++++++++++++ 32 files changed, 2659 insertions(+), 2 deletions(-) create mode 100644 Documentation/userspace-api/mseal.rst create mode 100644 mm/mseal.c create mode 100644 tools/testing/selftests/mm/mseal_test.c -- 2.43.0.195.gebba966016-goog