Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1754370Ab0DQMqV (ORCPT ); Sat, 17 Apr 2010 08:46:21 -0400 Received: from mail-ww0-f46.google.com ([74.125.82.46]:56799 "EHLO mail-ww0-f46.google.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1753068Ab0DQMqT (ORCPT ); Sat, 17 Apr 2010 08:46:19 -0400 DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :cc:content-type; b=pbkcsmRGob8fgvnEfotlL6it02D/YS0jiyKMyuN1rb6kohgL+Sm4QXRq191dZIPvBt EIkU71B2qL+jAbmASR/hfNUegLWnAIQcKMpPJTw/0uigduJYe/LpNS4euDVo25ozo6bw krXJEvUYRDGn4W3u+jEf116LK5Gn3RfYg9osE= MIME-Version: 1.0 In-Reply-To: <1271420878.24780.145.camel@tucsk.pomaz.szeredi.hu> References: <1271420878.24780.145.camel@tucsk.pomaz.szeredi.hu> Date: Sat, 17 Apr 2010 14:46:17 +0200 Message-ID: Subject: Re: CFQ read performance regression From: Corrado Zoccolo To: Miklos Szeredi Cc: Jens Axboe , linux-kernel , Jan Kara , Suresh Jayaraman Content-Type: multipart/mixed; boundary=0016e649d9b62cd22004846e1d52 Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Content-Length: 20257 Lines: 310 --0016e649d9b62cd22004846e1d52 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Hi Miklos, I don't think this is related to CFQ. I've made a graph of the accessed (read) sectors (see attached). You can see that the green cloud (2.6.16) is much more concentrated, while the red one (2.6.32) is split in two, and you can better recognize the different lines. This means that the FS put more distance between the blocks of the files written by the tio threads, and the read time is therefore impacted, since the disk head has to perform longer seeks. On the other hand, if you read those files sequentially with a single thread, the performance may be better with the new layout, so YMMV. When testing 2.6.32 and up, you should consider testing also with low_latency setting disabled, since tuning for latency can negatively affect throughput. Thanks, Corrado On Fri, Apr 16, 2010 at 2:27 PM, Miklos Szeredi wrote: > Hi Jens, > > I'm chasing a performance bottleneck identified by tiobench that seems > to be caused by CFQ. =C2=A0On a SLES10-SP3 kernel (2.6.16, with some patc= hes > moving cfq closer to 2.6.17) tiobench with 8 threads gets about 260MB/s > sequential read throughput. =C2=A0On a recent kernels (including vanilla > 2.6.34-rc) it makes about 145MB/s, a regression of 45%. =C2=A0The queue a= nd > readahead parameters are the same. > > This goes back some time, 2.6.27 already seems to have a bad > performance. > > Changing the scheduler to noop will increase the throughput back into > the 260MB/s range. =C2=A0So this is not a driver issue. > > Also increasing quantum *and* readahead will increase the throughput, > but not by as much. =C2=A0Both noop and these tweaks decrease the write > throughput somewhat however... > > Apparently on recent kernels the number of dispatched requests stays > mostly at or below 4 and the dispatched sector count at or below 2000, > which is not enough to fill the bandwidth on this setup. > > On 2.6.16 the number of dispatched requests hovers around 22 and the > sector count around 16000. > > I uploaded blktraces for the read part of the tiobench runs for both > 2.6.16 and 2.6.32: > > =C2=A0http://www.kernel.org/pub/linux/kernel/people/mszeredi/blktrace/ > > Do you have any idea about the cause of this regression? > > Thanks, > Miklos > > -- > To unsubscribe from this list: send the line "unsubscribe linux-kernel" i= n > the body of a message to majordomo@vger.kernel.org > More majordomo info at =C2=A0http://vger.kernel.org/majordomo-info.html > Please read the FAQ at =C2=A0http://www.tux.org/lkml/ > --=20 __________________________________________________________________________ dott. Corrado Zoccolo mailto:czoccolo@gmail.com PhD - Department of Computer Science - University of Pisa, Italy -------------------------------------------------------------------------- The self-confidence of a warrior is not the self-confidence of the average man. The average man seeks certainty in the eyes of the onlooker and calls that self-confidence. The warrior seeks impeccability in his own eyes and calls that humbleness. Tales of Power - C. Castaneda --0016e649d9b62cd22004846e1d52 Content-Type: image/png; name="access.png" Content-Disposition: attachment; filename="access.png" Content-Transfer-Encoding: base64 X-Attachment-Id: f_g84etyt61 iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAMAAAACDyzWAAABKVBMVEX///8AAACgoKD/AAAAwAAA gP/AAP8A7u7AQADu7gAgIMD/wCAAgECggP+AQAD/gP8AwGAAwMAAYIDAYIAAgABA/4AwYICAYABA QEBAgAAAAICAYBCAYGCAYIAAAMAAAP8AYADjsMBAwIBgoMBgwABgwKCAAACAAIBgIIBgYGAgICAg QEAgQIBggCBggGBggICAgEAggCCAgICgoKCg0ODAICAAgIDAYACAwODAYMDAgADAgGD/QAD/QECA wP//gGD/gIDAoADAwMDA/8D/AAD/AP//gKDAwKD/YGAA/wD/gAD/oACA4OCg4OCg/yDAAADAAMCg ICCgIP+AIACAICCAQCCAQICAYMCAYP+AgADAwAD/gED/oED/oGD/oHD/wMD//wD//4D//8BUJrxz AAAgAElEQVR4nO1di7ajKgzlLPz/b56pEkgg4aGAqNl33bY+KsxxN5BkE41RKBQKhUKhUCgUCoVC oVAoFAqFQqH4Fv7+g2ygTXIKf0yhuISDWngrPopPUQIqBgAT8M9x7tgXEVD5p+iOaAje//dv+8Hj ExxGX1MoJDRyMNpy1whvwRT6s86QvbI7D7yydvrKlRkC4iN+CFYC3nHpl3easosOwREBCU9f/mdZ 6NJv77QbsNm3+JRzLbRiiT/LOpf+Sqdb543tLSi+g/H0UAI+DnhyP+YL6KvnvrZUC4rO8JN7ZnpF t8KcSwmo6AYI6capr2QLeZ1KQEVn5HOvJuXouVYufXuNFhTDkOZe0WZ8igCbb+Fs16qhBHwsMOVS YweTwIttXPv6Ei0oxoCGc1kCXhedKAEVAnJp1oueB27l8hXub0ExBCBWyWTATuhZklZ6dPXmFhRj wUz9Ol6869XuaUHxYCgBFbdCCai4FUrAXtju7kA/9BEj2HwEGr7a0s4pfIKA23/c3Yd+qBAj+MVn ohjBKgFngWPfo+lYFiOYPxwOZAgI9Pu9ZYmoBLyC7cDd3RiDnBiBWXyG4a3fzj8l4Ai8mXoBjBjB oiN8HDoMvvuH/B9JCdiOb3DP8GIESwnIWUFrkP1TNUxvUO4FKlJGvoGfnBjBGzeRgD/7F+Z/RWdY CXgByBC+0CSyYgQLuyUCevqB6Sv4wkrARgSiYc69j368GMFaqkKI54AWGTyrBBwAweS9KwwTAXHM FsQIyP6RcThz8Utdq8GrCIj45z+8iWsFFNhkUfDZ1o3ASsAmJPw76PcVEpasWSBgPBGUoQSsx8bw 73hjzp3Tpamo4J/7YOKJoAwl4Gl4H/j/2xv5lqCSfyQJXMwHKwGrgcdZEore3mnwYhQngO6NnKYE 7AYSf9mkYy9Glksw/YtYWlbEKAFrIfKPzcu9j5E5LmHvgx4oXlYJWAsUd2H59z7KYdgsl0LMpdUA KgFrgUfg6MDG7H0Z8kzyBjA+q0KSqgSsRAj8CQRkT38HiuaPt39KwBFI+fcusnEojb47ARmW1ojy lYA12Gjmgx54/RQww6OddQf/0pOqFoUoASsgz++2KCcSDozsz1RkFxeB4pQ5SRcldYOs+jsywebV Lkg++gJGkDlWd3klYAkZ2R9i5sQOzUXB/ln/Uv81AiVgAbkECHPS65B3QPwYHB+p5Z8SsB5CAIYn 30sYmZvIWRf/S8/Jh20olIAFsAp82GPCNPAljItQHIB597ehBSVgHij+wvKP3XgNCvbPx2CiIy1Q AmaBvIxEABPEqEww+hV8LNs/LvmhBOyHnAOM3rd3GsC8/kUo+9JGPyVgJbgEXJgB3rQmpPVet16+ nAC+5H4cUALmkKyBQ9vBA+aywaMZGeoPjGshd8i6/G98pLkZJWAGYpx5wxGYGwwgId8gHoqXtRbp X2q/JEIJKAMvgouHYPw6l3+WBt4qU67tzcgEZD8WviRCCViBKMyHVsO5o+xXZmAU/bIGUGr8VF+U gDKQo0tXxE0OAWajccMalfZb6ZRzvwUloAg/w0v4R8Mzg/mXcTYG+iEim5LaG8Vv5KEEFLExHzeW jyORmYsNG37lVlHt3Zh+JzujBJSA1hrFJTnwFFBQ5HehZXA38U54GxiFEdhESj9znToBJWARaUkY t+V2jTOBnMxJWIDbt12Jf/5Tcuh0W6fpwZan5p6h+HgCOkThvpwWqw+4US4MgIPTINnupEHw+QSM i7PGFVtfQkDsbXAHNomDV4nJJDrmUM5WkDvu3JWfwxV64BqtEQFxefULLdwOWPMh6RLmZUHwTZ5v /gi6xP8AF4dg/5icffP4dBwlJz6PhMly84h/CSvn4Y7hNxTfsB35d5UamHnwlj5B53nk+yEWQscL 4zb0Ofv9ZlheZiLGfzuDuzptvKf9uzwEs6X830PALcq6GWL6xgy/ggfqP4y1f+z6cpJ67jf923HR CaGUQ4Py9RZuRbzenBM8D5n/8eE9rvjtEBTXl9vo0OXuXA3DsI/0fAEBj1ep7gE52A9FB3T47I/h H93q3gENRHOIhX6xBwyC1MwVmtvMmJNpXkdu6jko+qgE5ABBvsQA4vDfLA+YPHxjcFPZHUOmn0pA DtQAcrUp+/KvJvqbM5HdOpHsoe3H/ekAJWAK+ekz3iIWU8Ad6Tlp/GWG3+z428kcKgFj+MBfFHkx NBgzLQMyi4Bxu/lFcd2GYyUgheh3kH1zMnBM1mFka7nNcT1RAhJw6+CiHIipmgA28JMT/fHnDUQy wMZty+HAa1ACIkRPP5KC0FNGX8YlGNpcdjvxf5SAYxFKPzNB6G32QswDg1Nwucby3vE1KAEDWOVz sjN9UAN7ra49Gwq00BztIVsDua8ETMGvOQrZuZdVIsqyi4tQduWjEjCAcUCY6jCdQ9D3qktZPUGp R107rARMQJe+wU441jcCc7O2meNSccDt22cloEdUcGNjjplyCgS+cKkrs+wi10pp+te5Z0rAHyTD JjwXbjhmGUbWAJLPVyvwFqEE/IHJ+pIlITgk05GDYpptkvnL8497Ak1/j1gJaOJlbmFPEgoMy5GK l6w5qele9iYly6Ro6V3H9b8SlICG5t1S/tHKCP0MYLbqULqrOwELO5mlUSOEEUpAcQBOVDFMocor yNCPmXjNNoBMenjIzFQJKA/AJry6w/X8K58nF2ApuKZ9UMG/6JiqYQYhLb+B9KhxZcp+zTb4H93t n+BLZAQHw/zyzxOQRFZCCJCTQ08JQZeJMaxtGoEhW+P88q8TkCUa4/8K556HxIHx/oc0mIr8GyrK /jwByYb3PXj+NRCwdCpPAmFvfbPnESlgpi0E+DoBCQL/cum4HpCMEHtqbwNY0Qgi4OBVAR8nYJpq 46QwcKxfu+VBsHDq6YbL4ReDXfHhScGvE5BsRDO/8wNwaQhuMoAtzZZQ2XB4FNLwkfjbBMySKuZf vxRIhReQ23el6YrdaDHeBFHEtwmIgAUxY0MwYgAm3T9l/mdoBi7wb8qa0G8TMMqyRSMwObORf5nT pbvK8a+t0SLK1N8/TjN/5usEZDE4Bi3eV4aAvdrMtkxDfqWze+PTBOSqDnFLQybM/7gDvSlQHH8P 39eiUXg8Pk1AgqQo6pBlSPUKrAECGG5faMbP/CaFvg98moBYhSCK788Nv/xXJFKxay/aG82jyslx JOzdtoxPE9AD61yOVHCikOmBhulf//GXK28gjPoz1+opARlQDVa/EVjk33gFYJlTvCsyHJ8mIFcB IVI9nxVBs99pMYAn2hTBilzT7Id7mVuR8NME9Nhk/s3wQMRMWJ9WqyUOdmAdQAlfJiAjhY4NXl8F jJSIZY1Rv2Yrzzv837n0+zIBtzQKGEuh9+2TV0/23BOAltQvjPtxT5mQDxMQf2aSbzQ9fB3VHkjP OVit7tXa+f7vgc8SMF0Ll4y3FwxgAjECmI6/PTlQK7F23bjBCH6UgJvEv175D/pdWYAlCaH6oNIA Bv1Lx7Yr8VECIhARVkzLZ9eirJWfgvpZCXgDkvob6MjkWtCT1FfiinN1QuYhdoDTMhxdl6GXHeCq h3X16UuckvOvSsAbQEre0wj0JQ8EfVUOK4/MfomiFikso2GYeaCJD/6Mbo3J/oefe82MwTEL4I4O 3EK/bxKQj0CnEpg+LCzKQEdALn2ZamJu496ODxIw4p/PfqRh6CuN5A5aMvMfcf/rLnkz93Z8kYDw DmYu5V/HQoCM5DMqgtEdJyTN9/HwcwRM176lddg6ilDjknvjY23NVu3eQfh7BIR3mn5LNDAXObh/ fbyxS3GCfmM6UomvETD4vyaz3OO5j+Mq0Ymm/haYBX6OgPBOlVdJHawRDnB1WO58e0X+2XjjQQT8 +w+y8Zd8+dhHjy1FQM6wJY9f7ZKDYyK7fAj4akOFBjKtrWAAG+hxUAtvxUfxKWsSkOUV8zikq/Sz lrnCcANYvBhTBPBu/l0g4J/j3LEvIiC2lb262gE4Asi6H8x2MwSrUqdMudJu6WKkBMzc+gcy2uhB LeD///3bTsTjEz3RsGP1PWBEgCnfrhDQZuhXqU2+1HjbCSfihX3RSo34bMw8eAum0J/Vpa+dsW3x h3Coiwd8gxPdMgAf7sf99q/RCUl3+H10CF6UgGHtG6q7kZ51njzNN7Tr8qPq49b5vwvwr3EOGD7Q ITgiIKHqOgRkdVfxKVc8kMwdrdKGXkHDpSaWn8StRu8OLQQMQRYTv6FzzLIEBGyGDwAe5OtjAOM1 Ifz53ShQ8ZhzGz5WfWMYaLsn6NHoUixDQGbcjegX72qC9PgrK4aHe9q/huNOAn0HAZkmv5YJMVFB hEQC+MgcXJFM2P+wVd+YhQ8REJXfgD2JAuY8/yTzl7nRvThQNmaJ9v+eAZhbePIZAjIl8Ino5Rr/ kht6XCd3l++R4d87AdQhONZDb8QsnuWfGGXOecUTJ4DJ2qcFUnCAzxAw8TtAj29QbYRzlxYXvbV/ 5VTr+WvZxP7x9QJnQC0giQUmBu+0AWTayfGv6/1vEmDBvltcYDb6/RUCJgUQttQonhyB2VKP2Rs8 VQKDT4UJ4G0hwPSn9xUCHhAc4GPHWfvXzr+J958xgLdNAC169fgSAfHT4BgNwskRmOdf5lJ9+dfC 9XsNIJi/y5mQRixBQOfx8uV3N3N6+se4AIVFZn3tT4FMSfW38lcG4ssWMPY44hTcef41f+NcQ+eu ZpmtG3MgXMvfIGBcApWEYAx8biQha+rAwEnX6nz7C77OSgbQ8tb/EwSMTRyqPclW5RiEySvAhTps y4SgD3yBgBvorJJR+JLygM9+XLhgRyTLPTz37yMgP/v9AAHZpZiMEKsFbPW9+TUuTjR34wzQcoHA 9xMQJAckBpgIE0ybOSzeRm5ZZuf4s5xQ455CCH241UR/MBV3PPtIWPlGJagt/Dsz/M4L/4mu0Z38 O9aBJh1/OQFDiCUq/3y8k416AkoK5+x35g1+aWjSH7h9ipp04OUEZMEI8tsScRXqly0+1FN+kFWz SM++vnsVpuWLsb6cgLz/QcSnJ7xhwQDmSNF0/VPNQ0Pp0ds1CKEn6S/x5QQ03AhMOdeYB5HqWcx7 ysLJhtagX8LA1xMw0Zpu0eFOtQCj20suOVF8L+67n388Xk/AHVEImibiGu2feEQ60Fl+0HoUAtAd +3AeX9UDJqvP/UYj/3I0a/3KKbQpDb27ssAiEKEDryfgxqc9UHym+lKZuzjr9p6l85iHQbT1wIcC CV5NQOaJl7EupoV/bV7uEIHDWf4tYAEFvJmAaK6H9kXLMmt5kl1jOenuXnGA7yegZTvyYgJyIyyd //WqwzFtAD7/hbtHYMOl4X54MQF3bGzB+82h4UJNqYdVBmAvQVjAAIJa6DsWEMAJr5jBOYfsHL7J L72Ccgm2ePt+CYKHJW8BbycgdUDQ4uAW+3d2lW/n7FfbtWywf0sQ0Br2D/liAoIHjLQHEIFpGn7z i9zEouRb73GvVIKDXYK0iP37wbJZzHcTcGNdkGfWAMwjfirdMrQr4b0EdNM8pgDMhWWYMcS6RJNv f1SAyPKH7gbXk9cSMFmKTsxfH/9XVgZyT0oaBYtdpGTcX4h/hgtHvpaAYOrIjvRTCYUcVrMy8Dwe q8I6YN284DtiBJqG25wL0joAFyb+J7T5J1FWO3Ch3oWmgi4ZHO9+LQFj/hmYEfYcHAVl6oCbntHh nPvaDbBcf95KwCgPd45/pQxCtjJb31ng2Th4105chOWWkr6VgDuIAfS530oSyrM/N5VhC2ONuuXt QsQVNFgIRyA63f9SAvJLgatt4Kk42rj5Vm5Ut8yn4ztrmT/D/2ZfS8D9hRjA48Os8Mjomea+H/9O +OVwi3GQwTsJSHnWOviuhppgd+r+yl9cCi8kICituDLQs/vSAVVmjOPfcmMwizcSMDWAbQPwmTsX T/i7Ub0q/sLybz36fSQVtzH8a9FfrXTnsjU4wqdYB7Mm/1i8joBcIXxfi+NxQ3A2xgKfYv4Jyrs1 8TYCepalIphuEph5yOTf8pbxMfx7HwHjD4549UtA8vJTaVCMd/ap9lHM/zJNLzr/k/AyAuKSQ34H DQrmsY7rKBo5GpZOTluWf7wa4WUEDPM92IS9FQQs3Do5tzAk51V3RSYduGz8DxRZBC8jICzCDLw7 dpbpdyF1xX3v+hBcF35JznpKABrwJgImj4IjasACCjdNTMeOWnNWVe2Iy74tNIvAODLB784FewUg LYFaFwLM655F9g3xPrL9ycSfQfG0JI5+9SPg338IO//+8MGJQ7CvvhvvrfiuyDDeG2DnM7jRiiZP 9Ae3yT2MYV3+Sf+gs/Q4iEa38c4bCBgTLYzDRQYup13K+DvcR/S1tf4dZVwlINi6iICIm5MISOpO 4u3mVXAX+9GjrZwUVj5njRIIjbhCj/8sc5Rzg+7xyR0KZ3GDdV+kURasBbzggQhWptVgtnJSdECy 56xmxlngTl6jBp7uhbdgCv15F3pbCxJ7iepxXClDft6ibJmtcqvChLTsgDS1Mx3cv+uCExJeTTwE TyZgqjaNlsOd418v+jW3W96fcu0p079emRDkawTKhYlhhxbqEZEMGUCmRm89bruhVQSkR7jKe4tB kMieJ2AIudC9Zj4B/cv+ITgd1XXYuFsnOgL1fToBiUY0iEv7Zp+R/uBlim8IRAsrQAwbFWTAy1tq HIHOqLViEf/sExxgkCK8PBccDcCmxgBy+dQFnshAG7XSxkOmfjAEv1GMEI+zWJJaQ7+mG1hno84E A0Xzl0zvEjIub/4cXlojmo14uPBLcjgBF+nLabKaO8TvSdsUQy+J3s/GBx9BP/fveKEF/AHLDqjh K5lAdvwVTx6lfKmbcdL6V0+xew6HqU7+4M8nIGEYWg5cF39mBZ3y2VUdMluTF5yvQS2fh5hY39h9 gOdVv46AAPzkj+00//KyrPKdxoN+nQgnf1HJ3oXJ1FMM4cG99zkhbBJ4C7WIsl9O7V+OgDX8a3Q+ SpeUVbDJp8XhJqtJbx9PQIcQ+que/ZnY3KXjQ+7sbG/Qa0MH0sNu4h7duWxFonVhX1kfkFsF7AUI WQ4mfDtnjZjeHMa3IgJeGH4hxpIk3vynco9WApeNezoB6SI4H3oOc0ER6W3N386Gsa5qHM4nL1zO gKv6jG7hkwgIAaP3EDD3vMGSH8pkJTvYv6PlrSYMXXB9+aPRUPy4AZhLMT2YgAGcHDU/AjdF/8qH UcuxNuIEpCletB79Ke6Hg+X1MC8hINmQysMAuMlfxWTsZH/4y1Vc8GkMK+AYgl9kASV3N78Wk9UZ lG50CxG20jL4Iq/geKabzxp8AWyfH0vApPra/skHYhgScGFQkxEBkG82dMzkPOCKkRNcXzFH81jT 2FOQWo8xLbBGZvMeQMo//q7VsK/nAFy+lIu95L76UPoZdq7zVAJikPUfhx8ak+DCmHXmi/XOT3KC FdSIWIRwokerIKHgUwmYyv9CEg7450xJrqZf+V623W7IAErXKhNQisA8nX8Q1HyJBcRlX4gCAWsA r0/tzhhOJ4RgLlbOe+Q0qeEePhUvIiBxO/w+nw/+vRbMmzDRYs5q61haonX/zAS+46Zy6wAghPFk CP/ARxKQRGBo0M8thOsSVz41cQx+UP2FfN5N7ok58WtYDMdv/g0WUIgAojmgfLNKVa3ouad6lywE KA69UuAvnPHg2EsA+yN7IAG5sn9egFDWANbinP3j2q+8jqz9q5svPADvKFAZV2EzSJfwM36S/Wsz I6cNTroQqjD+QnNsnBKWvZ3szErg5xHPI2DkgBA91v/Jn5wHa7qJl/gXZUKyzpDNORiCIPChYEsj PJCA6SYKBQr8a3sA8MVgRxyEkSek+emfzUVmHgfLm8DnEZCC5v5/9/PiDLAqOp3vUfQbkMhMir2w h19i+Rze4gUTF5hO+kX9Ve2dvMy+MCVFjQtdskY6x9r30c+AF/z0ITghGXGFmbWYLaS6fsu3eDmI taksJ/Y4CNWsvToFWBPCD+ppBMQqrPQYNwWsvZWdKuxRNVb6JMuEXHQktj2s8JIQoplPIyABZtx/ S7MlNy6fXwinnYz6cV2iUjBriotTonbfOPYCXjEEB2yUf5W1EBj0veGhWxtlP+eJY+tnTWoeX4f3 EJBWn/zZP4Z9hbtp8xKAc71CfjktapqSjzoi6PWl4Ga3DyNg5PEeky0LfmenJNwVYD/o+FvX9Qm4 +GYC+pwPxsMIeCBa+Ob/RUSAUjGvG3C3wfz9fhoNrQP9Xj4CM/+6hxEQqp6S8dfEKuTacXUEAZ0t jsjEDsC0J2+fAAqaimcRkKjvo/3eKtZoAYcVlg+ZQQu6bO7nINb6ezkeXiMaFlwS+ll/q932nTdz 29Dc1O1KTkrj0G+3fjuer4ZJkyDGxV989K0UTO4TbM7AaXN8BIZzQahrbN+a+ojg+PfcQDRZ8RHg 4n8/IWDxNs5QlsQ/BJvEouNOvjjyjCHMeh5DwC3YFrwQ6bi/lSGYCffZOSEZncsn2JbCukh8bASe Q0DmI5oTOirmMMX+uUUp1s0CGePmd7ip32cIyS+5fyIB/a7NZ+By65AOTLrRhy0OWoR4wgB34Auz vggg76Z7H0hAJH8+BKgw6xJgp97uEKW0JlViuR59x+wFODHMYwl4gGr/XBJu3yHf0Zn32u6LUqKZ Kjr8rUGXgv+3P46AKObiQzDyAFupx+qD3194gxlBSsDPMm+Hm3w8lIAh9oxH4u2IcGzx1BZyD3dI O70WK/TpfoXECgAvON7/BAKSBejh1XkgJvF/b7Qz3iPfbA3zPmQTvVV4oBqGK4Wwu8C7w7nMTXQh ybg8oZ8ipOLnz6SAd1h2RvQAAuJFv+7T8SYo6G4ipGs2IWDmG0P7sxrcSr9nzgHJ8o+gNz7+SVSH da9B3I4odPlJxW9e+sECojBPtICGJNtgGgj3z9/m4UKDLED+fNAvXZtumbM/hadWRhC09i6sjke7 O9kXGJUsjWI1Et/j3w7GRLTQ4+8Pf/4hPeO3jx67SkB4oR7I5ujnd60wou3zgc1zkM5Y6XlzO7YE IBJI9zbQ448SMD7oXtyBvgQkH/bx1/yyDmisW+CW7rRymTgUt+QqI0zu2RIQJkj19PhLLaABm5cQ EJ16jYAo7wF7jFMeBPLdfE+hxJoBH9gfoTFy5wV+k38maG/J7vND8P6/f9uJeHyKTmXH6mqk3uSu QXBJLxdkO331LvAr2owLFREn/caOLQcb5UJaqcEMu5558BZMoT/rSpd/cJE1PN0z2C9Z4Cb7P6xf mB6Pu20FCl+I48eY/gkuExAf80NwNwJuJiIfjL9+Yebt6QTCK8+//TfybcrF8GMwwQkCYq5RysEW YeoVAm4bY0zcoePt/nschZQ3mCNQPeDt3bwbkIg7rweE4Ar1Pugo7neeaiEBEwF0U6w9/1Gb8hqH NLl0WD+3RurYY74ad6Fg10efokejS3GRgMmu3b4cI90Kk3wbD8EQHHepYfM50QEPJwZ8lhwrNXFB l7CEzi6NqWzut0GiL5N7tSj4P8PKBEwL/jn5n93WGNdSC7yBG+w2jfIPIJT8X5mAjI2DKZapWwg8 Fhy1rKVhGHll0sdghXTBwgQMMd2wYwOd/aE5vhGCnspix30/Rfm3QwrLL0zAeAqYCFJvhDCeuCE4 zh0qDBcC3LEuAVMHZLPowI0jMKvsdbvJokyd/SHEeTiHhQkYcQwkqMfAvOjMChnAIxLIPjv9k3Cx +ccoomMDGOXj7ndBeOBU8KJdvAsuE/cUAiYaGL/oh3sgyCy4Un78+GtgTQgIZo2S0MNpUR8Tholm 8iB+dvr8e25r+PnG6ys9JbEPojNAAsunhFYlIMWG+GfPPo/mErATF82lwyY4IcU1cV+E8ADGdQlI l4D4e7zA7C9ZX+7eQZLvXA+rJMQ4VONPWRdM2eclgNwKi/GIps7kbxj9qCEIY7dATGXhD1YIXq1I QBRJM0c4Aw1yZnIIMPXb6CIPtGFcqhCMNH5VsHLUFQkIcWaf9QDxgYGFwLNuaVq9nsrKqVkMknwl IAfL1UVYkoD7C1qNCb3eB+C5xq/6uFsXZ50LssBEdTVIdSvWI+APKO27GWcAHf8m3dp0uhJH8bkn /SZ6LAelozgJXI2Aif4AjYJ2YgQmZ/2YBV6Q53T279iptMOAWlKLZ0Ki9K/B621ngX+yNHI3kmO4 HipnARWiMHcxAkYJX4uDa+Y2bV2u7pYzhz5RiALRGo7GcFUhVreAO8KaX7Rp4/TcIJx42lz4oyZq QCUgAKKpaxMQSf2CG3Lwb5YHnPd9k6Agndag2jAahKEQCuOsRUBy74yrADOFeNnC+pb9yO4IU0Cl XgReE70WAT0298h7C+bPcoVHJyH8askMhsuu+zI2av9iCIto1iIgmTyh+qdOWXcT/XwaPRBRspZg /3RNSIyQB6F/tLUIuANN+rawAHjkqJbzcnPfYn7RB/k0E5LAzf+W9oI36oIQ4fOwOyqt1goniF9k dkJ51EiSr3R8ggUkzu+uacIHh1iViuIKrAiaX5Npgg8SBWKUgD5esLAXnJbhcEV+7KhMSH3VDCQI y9IW1dJU0hEIcsCFCBgvwtyQ9nQE//iIS3KSTSZ7Wdo6NYzRBZkRLKwLXnUOCEOvG4fD+OtSwd37 VWX99tB9MvrKQF4wEpQpjM+wL+uEEAUJPAv9hzEDcM3sz/8X783gcNY3jcQkcORbeA74g1vWHaor WztmGVKBfjBhpgJAdgwhIGIEBcbqc0C/BAQ7kXt1qW1AEKbK+7Wx7avA5ikIJFQi7gAnZFULiBTQ MAPc7eAg81dW2/OCwCIJN6PkE8BOAdch4PHq7B/SN43pVBZcvOqgX9lwbuCIqBNCsX4YxiBnw2Vf wf71toICjcJD5RnFHyclYhCWxakVJIAf9aIWEJZiuhtn04OTYNkBuj5iDZmQYAGVhJXVm9AAAA5j SURBVDsEA7gKAb31c/IDY2YOw5Z3e90xoR6WBAgEKukIYABZ1gKGOPQhxR8mRaXlDIIYgbdyNg1F ZxG8YAWBFf6WaxDQZ0+dEMsMLEIkTQC5cdcFDpr5p2qsBKwLbJYhILwf8j+ce+t8NyM2WX63/IUS tqQygnLxAKcqMqsQ0IUvDH7EBgoMdoQln4pja6tSdUvXxSkDHRaujuUXcrsY4P4QEFAldO2MH1IF S5ic33h98IGRGEH5twPkgEtaQCdjP5IfRxIkTAu7QdQ+S/ndusgfAZoC+vCLMnDHymEYKKgC5s5G 8ugOkCtriKNsM/uMs9ipHEE5yCqLfliDgO62Bb7RBcJdQcWlYvSlIu3GgVpAhcfCj+ryVoPuMb0d EEt4ZXOa6LP0w0Ow5kAI1s2EoKVwxpfCCkf6gKl21XR6A0JdhEBApaE4Bb+bgFzY1hIa9kAspcpH V86aP4NTwZqMo7CCHOZ2AsIb2MEBeQTQuOA9uZMvENAHAsO2Ygf/qMLbCUjLqGxIEN2JhTDPs7X2 71SRhABQNMI/SgnoAD/sBeOAUe4A5NB9WgeXA/NPZhi7dLoFSAmD44BKwyO1vloYJhpsXezPdpv/ hR9cFf/Eegf12HxEyRgTRwO/DUHRe56Af8xX//5+e//+jvdSC0gAGDxHKETUATTiEu3kTr9o/n6I 5VhKP4fugeg/SsB962Bf2C63EEkP3M3rcdcQmYj5E7O+V1wPj814L3iQmuKpsJ0fVvjnKAa2LiIg YqfQAnV2kfqqj9UgtVzSvdwXOvAP5NDUBVEGmhGLkjDl3KB7fPIH4bw/ZrRGud7YRHQwGaSWJLc3 +UIf/oELQiygUQoeSJUwLDVq4QjomAdvgZf+vMw1/CgVwoE9/A8h5JfzPvrwz2Bb7v9X+pmhFpBu 1RGQy/yabvJnWP0SxZ04jrkg9WXnw8GVJcJDsC5Q2tFfjMBQDraIXc2GYSj9etwoXwIi/ccy/3x3 Vi/zRyTRXgyo9DP9LSCEWugo7raKBEShF2L9OhGQP8DQzJvK6+06wIoQ+Kcp+QDriREc/8KcyVHw ynwsI2JO9sNS/X7s+yHV5CsOLJQLDqswqf07yrKdZ0RORsosuzSnVPdZOPOHZ4HKQ4eFBKk09+E2 IHx2khFSZQN/FG91HncRwP5hhYVS0IzwgmshxgANMoI4ftsbnpcWEuJBodCdhDACU020UnAlORbx QEB75T+eM4B83ZHsN8aYQEiF4PmF0s/I0Yk7COhfyXrgKz6wTTR/pS+MGYD9mhCSBVECmqWGYGIA jz1o/G0kBl7tzMX5hAuOoZ+J54CKAMe/+y2gz/+GYC0yGldCMMnCI0o098+33V1fDPSkGgWG9Eef TkASgoHpoB+ArzAj4R9hX79sbw7xkhAFQCoxO5uAkQdybJyfAAbVVUowLIix8KzGU620IKKgUtFB KnI8nYDwipYjBQ1MI0Fy8j5KwCnc+4E6IfseJeEPizghiHJoAN4gAtPCEiJ5pouOEPvQxG8GwqJg BcUaq+L8AIwS9Sf5F5A+TAveRqU7ZPglBcrAGFCFO8JkAu4vwD8IQf9umtA9EVA8N51XOGdfLoc1 FO7fNLHFh+CYAqYmYSoB/TK4kIujGujrVGkOSffGBoqEfQMFpD+OJapj4QggNoCuh/W8cR4VI3Cx 8YxwNrxjH2inbsiBuELPjpkEhLuCliJRCUI9//idlvuZzSUjiLwp5ZSAyALSGzKVgO5lCxvxozEr 0GLg5oT+MLiFzUq/H+4PRG9+0kc22iaAlY4KBJ4b+3oZbFBdCfjD/QUqMf9CEvhXC8ZW5mcrfFub OzgeWxwJVPJ5WMvFxeYRMNIfGCKDrhuArbjhh1ofeL4LWyrDVxIar1hPMJGARH+wv6D5UkUUmvY/ Oh2if9VTyVFIUnGKA3fPAZ3x27ABPPhnoX95xOKW6KiR890z4UdepSCFtFx7HgHjAdhN2MVnREew GfPnfl73Um+HXxVndOSlgExIfJumEjAZgI91mJJ1xrC5+Z+stZiNDRXo1XGYwAVp7yIgLNZxn30O BFTaTeTB0hfpH3YPgqevgoQYYP1uIiAWABpv//aOFcPF1H+KnJFZStMqhDVxyr8IUKDyHjHCtqUe iNl85KTIP7JJN24JOIvgnGBlosGS/FssYDQAb7EBlL+eq/ayzMjrgWoTKSgEfeYcAqKIH4rA7N0q DaCJv4uk9qvRz8SpHoUHWMB7lmWGObnnn/198jUzZKQE9J8WCb1gbJHAUeFh+QFrCgGxAdxfYLMU g2YIZsOh5ehnvHOvcoQY3gO5JwwDVgEMoHWrQI6+SV/l6AecXdD8OWhpBA4s+8wsC2i2aADeI4Ag n5cJKOwpThxvA/WBlYQId5bmAItAVPjAvpyPK150yeH3B34IVoSKKDcQ0E/5ggMCdq+VRSXW3o4g M7u7J6vB8osY5xAQr0c6JAhF3R47/zvH2pk4fmfKvgR3qmGQEtAFYMpESvUu3vot630Yp7dQ+nE4 nOA7UnFYCQgG8OiR/CXuGKgOBvWzEzQTIkBYMjuHgI6D1iD+NQpgUNpuZQo6uYVSMMF9XjAYwP8d wBr8lvyHizovb/58llvpF0NK3E8KwxzS+2MG6NTzue8kgnvLrjlfD5t3tPatm3uzEqT1EtMIaP3d Ka9aS/l3+1qjemy0LocC0PmJ6dX4M27ed4Sft/IcLnGALTt9XRGqRRBx35qQn82DkineA5GRLnh7 xuzPIxBQiYgAWoRo9wwCWsy/kv3jAzCP4d/m1d9+W7HD8gqmKQQE/tn2welx1g8t/lMg3CrJdwSs 4F9EtqcEXxA0ESzAzwHp7mm54CMFVziXSQCvHXfmoOlgDtawU8B5ueDfTLDxmw9IvMUgYUAFhnAv Z+WCN1u+LbSLD6SfF13osqQUFumZECal4iomgMz073H8wyv/FBSwKOkORbQt8S8tOf5M/vlAtM4B E1g+EjiBgDYslq3GQ/nntQhKvxhWyKjOIGD+jjATg6fSz1tAFSOk8JLoPhbwbwe3N7y5fTn+CRne p/IPLXlW8kXw97QXAZnt38v//90bHGkekR5r/7weWvNwCfyKpE5D8F9k7GICojNFAvJEe+74C9AZ IAPwgHuFYaixcwPy8cn8JUNwSyvPJqCbA6oYIQb3JA52GtcAzDx4Y4dgsUfs/ifzz2mx1AamsJDa p7svEzB8FueAXGfEFO+j6efScMo/Bt4H7ueEYK5lCNjezQdDw4AS+OebnreAXMSFD8OwnZF6+QL+ GTwHVACs90MI5j4xPXRGwAsIqIuCWcDK2nj/PQSU8HT+Hdg0DpjCiVHvESPEfREt4OMJeAy+vhKY r5Rwa6eWAFsYxtxFQB7PjgDu2HwcUEEBUpg1LCCLF/APLGAgoFIRINTmWIaAUumGh8GXYlfmRWBL E80noBSCfkjtlyJQLeJjU+Hg1Vg3LMvEveBPEkonPQ8ahpHg7/CdBGQ45uOTr+CfeySPKgJTCGPf TAKyHeBL1jwXUAVC14VQQBz6vkxI2rZl5RGPBogRovCfMjFUWL5rDsgXPbBhsdQrsFE1oCIAnlV4 VxwwtAsxcSj4/Bby7VAxggAwNDcRMDzjjfTgRbbvgD4oSQSEYaLdU71gS8n3Fs+XIOgB0QxQCekj gLdZQJOavpeE/jBCgWjlXASuNJaZVZojFOeCD6+b/B3AlRGcGVQm7rBQ6jvCDAIepjdM+F5Kvh9g 9IUwjAoDPYRo72QnBPXmlfBOsAoBYwj5rlkEDA3zhTLfAucFk1ScsvAHd9dvIGAUaOZVOS9BiMIg 1ikBDQp63C1I5TrxHoTKMIiE6ogY412QO8qzxd14NwG5TIgSEOLQyf75esAX+8CGLEzfdBaIYCHz ekeFVNSJ91LvQPSwuHRC+FXA2HeDGgYa/AD93GNqYAhWdXQArAuO908i4Gsk9wVEeRC/+6burARB kTorE/IB8u1wYuhNCRjjTifkdaorEaDF3zQOmAAUqXTvlCH4I+wz7kmZ2AnRWaCDFUJwaxUnejyc D4KLwujqpB2w/iLerwTsCvysaqDjnf1ZCFB6QC3gYKSqfKXgD8IKSCVgV2xkEuiqdCgBd8CipFtL c7wfOBOi3EOASLAOwUMRZUL8PoXl608pAbti84Hofcvgt49D0OEpAXsjfVacEvAHWJWpc8CxAB+Y DMEKw9bnNUrA7giPStI1cQSCHEUJ2BVQInpTJyQFWwlDCdgVoUq+DsEUflWmzgFHYjN+YbBBqTil IDyweonHNLwYG/+gECUgcE/FCGMRasPoxI9C0sQrAfsieU6cFspy4DNxSsDewKPvBnpAheoBZ2FL MyFqA41h5fg/KAE7A+LQyjkKaVmGErAzDg1gJEZQNv7gykTSnUrAvogKVOK3j4N/UpcSsDPIYwqV gAi8GEYJ2Bl0SaYhRPw0pNIYSsDOgPQbWpapML5E9LsU0eMuffbKYV1w90uXsfZfWnCDh3T67z/G tjD60tcJKHJwvU7PuvS0IfjHvsDA1f8sna+cPqprMyQ9smKnZ1x64hzw2wSEeZ8vU9Tt0iWs/pee Ngf8Tz40Bv8pFBkMIeCfGXJhhaIGdAhWKCZDCai4F4OGdoVCoVAoFAqFQqFQKJbHKJ/YXXfM5Y9Q Uv8rj+v0qCsflxtx9XFXTpoZR5FBl/8bdOVxnR51ZaBH/6uPu3LczvMI+DeSgGbI32TQn8MlVQdc fdyV44aINGHAtftfHi474sp//i8+4NIjrgw0+ev+J/FXGvTH9lcfJU1wf/Hul0c3ctgQ/JxOwwyt /9X9cDDmNuJmBoluBl3eyYR0DugvPObq4QYO1Q+MnAOOu7wSEF94IAHH3kZ37UEGEGY941yc/ld+ Whgm+it3vLofZ0beRoVCoVAoFAqFQqFQKBQKhUKhUCg4/AM03KjLJBXBMwAAAABJRU5ErkJggg== --0016e649d9b62cd22004846e1d52-- -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/