From: kbuild test robot Subject: Re: [Patch V5 7/7] crypto: AES CBC multi-buffer tcrypt Date: Fri, 21 Apr 2017 08:54:09 +0800 Message-ID: <201704210854.LvJGSJti%fengguang.wu@intel.com> References: <1492721440-3698-8-git-send-email-megha.dey@linux.intel.com> Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="cNdxnHkX5QqsyA0e" Cc: kbuild-all@01.org, herbert@gondor.apana.org.au, tim.c.chen@linux.intel.com, davem@davemloft.net, linux-crypto@vger.kernel.org, linux-kernel@vger.kernel.org, megha.dey@intel.com, Megha Dey To: Megha Dey Return-path: Received: from mga05.intel.com ([192.55.52.43]:39614 "EHLO mga05.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1033943AbdDUAyj (ORCPT ); Thu, 20 Apr 2017 20:54:39 -0400 Content-Disposition: inline In-Reply-To: <1492721440-3698-8-git-send-email-megha.dey@linux.intel.com> Sender: linux-crypto-owner@vger.kernel.org List-ID: --cNdxnHkX5QqsyA0e Content-Type: text/plain; charset=us-ascii Content-Disposition: inline Hi Megha, [auto build test WARNING on next-20170420] [also build test WARNING on v4.11-rc7] [cannot apply to crypto/master sparc-next/master v4.9-rc8 v4.9-rc7 v4.9-rc6] [if your patch is applied to the wrong git tree, please drop us a note to help improve the system] url: https://github.com/0day-ci/linux/commits/Megha-Dey/crypto-AES-CBC-multibuffer-implementation/20170421-064210 config: m68k-sun3_defconfig (attached as .config) compiler: m68k-linux-gcc (GCC) 4.9.0 reproduce: wget https://raw.githubusercontent.com/01org/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross # save the attached .config to linux build tree make.cross ARCH=m68k All warnings (new ones prefixed by >>): crypto/tcrypt.c: In function 'test_mb_acipher_cycles': >> crypto/tcrypt.c:1082:3: warning: format '%llu' expects argument of type 'long long unsigned int', but argument 2 has type 'long unsigned int' [-Wformat=] pr_cont("1 operation in %llu cycles (%d bytes)\n", ^ vim +1082 crypto/tcrypt.c 1066 * Initiate a maximum of MB_WIDTH operations per loop 1067 * Measure performance over MB_WIDTH iterations 1068 * Let do_multi_acipher_op count the cycles 1069 */ 1070 for (i = 0; i < ITR; i++) { 1071 mb_start = get_cycles(); 1072 ret = do_multi_acipher_op(req, enc); 1073 1074 mb_end = get_cycles(); 1075 cycles += mb_end - mb_start; 1076 if (ret) 1077 goto out; 1078 } 1079 1080 out: 1081 if (ret == 0) > 1082 pr_cont("1 operation in %llu cycles (%d bytes)\n", 1083 (cycles + 4) / (ITR*MB_WIDTH), blen); 1084 1085 return ret; 1086 } 1087 1088 static void test_mb_acipher_speed(const char *algo, int enc, unsigned int secs, 1089 struct cipher_speed_template *template, 1090 unsigned int tcount, u8 *keysize) --- 0-DAY kernel test infrastructure Open Source Technology Center https://lists.01.org/pipermail/kbuild-all Intel Corporation --cNdxnHkX5QqsyA0e Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICDpU+VgAAy5jb25maWcAlDzbkts2su/5CpVzHpKqTTyecbTOnpoHCAQlrEiCBkBJ4xeW PJadqczFO9Ik8fn60w2SIkA2pOyLPepuNG59J4Dvv/t+wl4OTw/bw93t9v7+2+TL7nH3vD3s Pk0+393v/neSqEmh7EQk0v4MxNnd48tfrx+m736fvP35zZufL356vv3nZLl7ftzdT/jT4+e7 Ly/Q/O7p8bvvv+OqSOW8zqfvltfful96bURez0UhtOS1KWWRKe7hO8xiLeR8YccIzjI508yK OhEZu+kJrMxFnal1rYXpoYWqpSqVtnXOygCc5Kz//UEVIoQsPly/ubjofpVzy2YZ8BcrkZnr yw6eiLT9K5PGXr96fX/38fXD06eX+93+9f9UBYMxaZEJZsTrn2/dAr3q2kr9vl4rjZOH1fp+ Mndrfz/Z7w4vX/v1m2m1FEWtitrk3gxkIW0tilXNNHaeS3t9dRwW18qYmqu8lJm4fvUKuHeY BlZbYezkbj95fDpgh11D2AyWrYQ2UhXXr37avzxevaJwNaus6gcDy8CqzNYLZSzO+frVD49P j7sfj23N2l99c2NWsuQjAP7PbdbDS2Xkps7fV6ISNHTUpJl6LnKlb2pmLeOLHpkuWJFkHqvK CBAn+H1cIFaBrPsr4/YG9mqyf/m4/7Y/7B76vemEErfSLNS6Z8w0XyB3AzQWRVOlqRG222te Vq/tdv/75HD3sJtsHz9N9oftYT/Z3t4+vTwe7h6/9J1YyZc1NKgZ56oqrCzmfT8zk9SlVlzA pAFv45h6deXP0zKzNJZZM5qr5tXEjOcK/d7UgPOZwM9abEqhKVkyDbHf3Azau0EgF795wB2G mGUotbkqSCKrhXCUVjMuSJJZJbOknsnikpN4uWz+IPUBm6ewuTK112+mRxHUsrDL2rBUDGmu PGWba1WVhuyULwRflgrYoMGySguie9QlU8K8jL9qlTV1QXNFJYqgQBh1DFfKJIYqhI2hDMwh cZbAzZOmuTGpAftQasHBaCf0RqMlJ6Y/y5bQdOVsnU5C26dZDoyNqjR3Fq5jldTzD9KzNQCY AeAygGQffFMPgM2HAV4Nfr+lekdjCpvXGMufv/yfb2d5rUrQe/lB1KnSNegI/JezglP7PKQ2 8EdgHQMTxwowwLJQie/oFmwl6komb6aeCShTX26imjpoloMplygu3hDAiuWgrG4soJHB4HAf jmB/52HUHYbotTHjaBu1N48lEJubPBD4DlazmVFZBb4fJgIWkWB6JJ2By3WCZeXK9x1Ocb0l qjxjKrIU9lR75I5LWvkTTqH/zWDdHazmebnhC59fqYKlkvOCZWniG0WYvA+A8KKwPgC2kFjz Bfg3Tx6kJ60sWUkjujbewuKGOi/tswc+M6a1dHvdC0o+E0kSUdaSv7l4O3IabQxY7p4/Pz0/ bB9vdxPxx+4RXBoD58bRqe2e9703WeXNXGvn0gIJQK1iFuIeb5tMxgIvbbJqRtsbIKxT8AkY j9Ua3L3KY4bJQiSaMMtqCGpkKsE+yYiTAT+aygwcL6W7mpnFQGyWYiN4BztycaIyfTuDwA2C 2HmBxpOjfya4uvhhzWCB0KSXTMOednHZt8DMgIcER6KVFRy8CMHKdZurpOFpSsFxsp4MqKTK IFABAXEagEpzEjuak2O8gGWgfZJhoGagvKUkRqfANYNimAoGViRXfcctgnE7nDOEQhC/ixRm IVGEILIiO+7HtoLgv1koktDRoAFWoJ+weboQGWQqm/+KuAuC441ghWAQEC/av9WHR95swpC8 yRq4Wv30cbuHlO33Rge/Pj9B8taEkGOOSN/KMyxOaJjDleuCW0iLQJQXQsNaU2EeaJwsUt9h woDRIPruyRlSk6MZuxiIlr+37UTBB3IMrFhCdNjSVAXio40bNDk7oGtViZablg8Eq8dsJ7JO HWUYOw7RXZgQiV9lDoMF9UrqJXouMg4KcuRslrDUW1qIkgw3ElQTUiJjQwzGTzMzJ4FN6jMK tqyYa2lv/KXtkJgn04uKFDxPwEiKxlzpKNl6RiuJmwgsgypZNpLzcvt8uMPKwsR++7rzPAl0 ZqV1u5SsML4KZIKBES56GlrbIAw5TaFMSlN0HHIwVD2F540t05JC5IyTYJMoQyEwm0ukWYKy CS8SyCEY3dSmmhFNIFSCzk29eTelOFbQcs20CNgeZ5wl+Zk1MXN5hgKMoY4tbcekKoKxeSEf BMtn+Is0MoLexa+m72j+nqiO2zcpv5qY2992WMrxAxepmrSnUMqvxrTQRDDH9/phiOHp+3G9 pAEeB9WBkTcxnw7dsrx+dfv5P8fEJ39/YhAecnkzC4O9DjFL31OSbYo33mQKt2hYtnMGli+x 9OGnRg6vYQAt/hSObLsG0yNijX1k2/o4Dwz6PggqAMpzrw4BP1DqvEDDBWuepill0Z+54klX rynvtwcMbI/FuQb6/HS72++fnp1NCkuePGOQGPJA5iCkSSWZ6EOLi8uLY29Hvubr7vbu893t RH1F27f3XTr2kkIsJHK6fNKZQ0ozIJQFx9RWyfiiKpaB0cRgAcwC/LRyDlS1KLD8SUW/MAAM K1iSoIurj9WKblfKqptVvr397e5xd7TffXdoPekpoPmkXSujazkMUy5FolY5XR5alFcXF7SJ AzmhA7T3by9oa3bVzXb2sp+Yl69fn54P/lyPFUMIiiGwGlmdZLe/+/K43j7vJiWXkDjBHz0b P9VKd9vDy7PvCVNIdoPEEAE11glwpwcFcAEq7xL9EgShqyWEASBqAjZ02oAk1JTLDNKZ0jqN BGEw12/DYnMTv9NZ1eKmEZzaNmkRFfpAesi9zGolIbq0ChOKwF2Y/ITBzDH8B1fpOrt+e/Hr NFiGUmgnx0tv6XgmQHkYWMbQxoBGYC2b6OxDqVQGpvJI/GFW0aHSh6sULAGNciGyitQpkwwd 1ly4WudykI462RB/7W5fDtuP9zv3AWfikvGDJyMYqucWM7mg7DFMVfF3nVR5eVxDzP0WYLsh Iqa2qWFruJalDQLHBoGSGEtNmar8mLVp4IAPA2AOJqkH4hhxiL5Q2+AHSO4crVKnk8Xu8OfT 8++QGk2ejvb0GEbypd+8+Q1WkM37LjFmCiOoAcEm1Z4Q4a9apWmbqPhQls2Vv04OWMWiZoeF KK8G6yY5VSp1FGBH8cvYiC/W+aWxklNb5yhkibrazwMXbymCFKAFdZ0QnGSz/l4xurEwnBk6 4AeCzknVGjac9N5A5HB141H9MnBZl0U5/F0nCz4Goi0bQzXT5UBiSjlYBlnOURfAy26GiNpW BaTxBH0PMjcFSKpayuCrpKNbWRk2rRKaZaqqEaDv3uOLO1CzhR+wAUCYcgw5ymWIGQqCAzoR GQ7MYUhgI4vodsBOFQa/vsYpTjOYCTFsGypcMwpeUmBcTgKs2boD95LYcYaNNlarG1JesR/4 82RodaTh1cyvsnV2tMND9P7y8e72Vcg9T34x5IcokJapNw/41WoMhKkiDbWuwznHHVE8oGm+ OKBZqBOy0IKLMh2J03QsT9O4QE17iQp7z2U5jcyzlhkbcomK4DQCPSuE0zNSOB2LYSAuPt4t d/sFZ1RF9mcWqLyDGGlHawOweqrJLUF0gaG5C8jsTSl8o7YiVgOBgUVykMCkdJC+8WCvujjR HYKIfXlEQrcQcbwR82mdrZtuzpAtYiE+rD0emwAqnjO9JFYJlbm0Zesx0qEbc60h+HSfX8A3 5iVd2QfSVGY2TJePQNDoWXWymV+Q6gIZLROI33rOD+15AIzzITyBoO2we44dpek594HNCAV/ Qa68DBxGiGoOCpzAN+ctThBkyjOqBX40KwoXkwZQ/DDefLkfgYFRIlY0jxp31ZuZj8L6YxD4 B1jM2CPfAgI69+Xpb9C5cxsVHbuMCJ0gUeLgE7o622gCFkcOSU3CeYxDRxJoso8w3I9vfAy4 QcjRRGRFWc6KhEV2IrVlBLO4uryKoKTmEcxMg3/AaDCCB6mYSYWHGyIEpshjAyrL6FgNK0QM JWONbDP3wT61ChCViCMFJTs9XcHCJSgwT4dU1DcVLTi+hz12tPeIIjYWwcMtRdhwxxA2XBmE WaoxJGFSC9qgQPALI9zcBI0aJ0KAmgSCgI+tBYSwG7tIdAjLhWUhRNvwd1Hlc1GEMD6gMRgj zvBc0RiOHznH0Jm0WFwJuTbftUPgwG7a9uBeOAlm3g8mgSs8mAcbtFKzf2McGMCGZtyB1GiJ xL/FcAka2Gg/bPttPoSN1ySVsxFgvLlJVZI7G4On62QMP4ra5ihWzqFuXBFkP7l9evh497j7 NGkPZVLOdGMbl0NydSbhBNq4WQV9HrbPX3aHWFeW6TnIjDv/Zao8wraj6iKY01Snh9hRkSra 4xPDy9MUi+wM/vwgsIblTr2cJgsVhSA40VOoG0TbQgzUlaJJzw6hSKNxkkekhnERQYT1FGHO jPqUne2prDgzIDs0yBQNHqU8Q8LL3JizNJAT4RGGcqgiD9vD7W8ntNHyhSvWugSH7qQhwiNu p/A8q4yNSltLAzEqBIRnaIpidmNFbMo9VfMp9SzVwPDTVCekvCfqBIxIUXo68rAcQYgh6Mke wfy6056nieKmpCEQvDiNN6fbo885v4QLkZVn9j5q0ho0URcdk2hWzE9LaXZpTzPJRDG3i9Mk Z6cLCfMZ/BlpavL8oFJCUBVpLH88kihzWivVujizL02h+zTJ4sZEg4GOZmnPmpBhTDSmOG2f WxrBspgz7yj4OSvjAvmTBMp9pThJYvETwDkKV/c7Q6XxpsEpkpNOoCUBX3+SoLq69AtRbTwV /AbKzfXlL9MBtIm6az9PGWICjQiRg4JgeQzvKYYtPFSgEHeKH+LiXBFbELM+djqeg0NFEcDs JM9TiFO4+BQBKdMgZmix7hSuGRRPy3o1vnUiy3/9jQJYinV0zVyd8G0kcx+hGqUZw7uscwDH 2JzJoquhj7BdcjRCYOIyhrrcJ9I1fn4apkQjWqyXDQkRNiKMDKxJ8SOTpHAOiGloJTRLqCVA JLkyEKLS7LByg4dA5bjSQBe2HGZY00FgWHkCYQK4LIdFhQbeBpILGh4EIT5Cl8fqLIG1Nhsi aPJj4B4m2AFyXCFp0EESE7ToNyZCMExvBoMZZhHd1PBEUKRRG0TLGFNiIbsUYLxWmq2HIJBu ev9YbCcA0Q+5tR9/TP9bCzINhCuwICGqtyAhvLcgU0q5jhZkOtSTTlEHiFb/B9DWgoRdU6Qx xp25mI6UKTZyCkeYhUHbziyMptuaheAL5jSmuNOY5noIUcnp2wgOdzeCwnQ0glpkEQSOuzn4 EiHIY4OkhNdH2xGCqLO0mAinqInxsZSNmdJKPyU0dErYI589bZB8iqIky7rNx7BQVtoPZONK bosYVyub+5cDVt13trQWs6GEtThA4AeJyo6bIcqOljxABuvhYd5dXNZXJIblyg+nfYzv3D24 jIGnJHyQIHqYMG71EKP0yMMZS3e/ylgRm4YWZXZDIpPYguHYaho19lX+8GIMg7qdBx9U9MCP hLWO5ggI74+SNOcx8ZMc5zLZjzyKH9C6dkh2Of4sTNJd0Sed2gTQu2JrodFsjvV9Tl+/cRTd eXJ30Mh9OsejJMGNuRidWbA3keu9kRaFKsijoEg/HkEMi/0OTi41PQYndnRigh+Yc/oLhKD4 ikPWFTkmbKnzom2Zpr8EAb/rFbVVhHKMhE7OIeQ1eJY/uLHvzjw6WTNseL4OQPTRZdA5NC1v 3pPoBAIwQT7nkPFgPhm/jEjmhmjNLMuCwiLeAGJlmQlE0AcVL38h4Rkr6fua5ULRQ59mal36 lqYF1MWCk0B3covGYEQQVnh97EKVNCKMWHxMrmYywytSJBadSlA68ZFVQvQ2B4TYgONPND2c +amWkufkSH2u9OL4FGHYRFF0zrIXGyEESuUvb2MHdZo3Amih5TNi25PC4HsICh8a8W8PQkrj Lnj53ffQ7s8VdTTZo/IvtnrwhFkSXnASnLsjDJ7qqlIUK7OWENXR6tvkD9Tp2+64QGj18jIb nBZFSD03KqQZi5qDQlQ9Osi1MPTRYrdJbuig3ZGzVNkVBnnNmafV0GYV3FD3ehGlN3hO/6YO r8HP3meDA9mTw25/GFxYdWe4lnYu6LsDC5ZDxCnp442c0Y2kTmj7GrmQyCAW3ujQhfSoJffq vcZqwfL25qO/7muJ7/9ELn+uZc7oCyY6XcrIpVNcmV/p1zY4kymNECV+QaBtcJFSMywNA2EK i7e1TD1Ad5DPu5naQtqXJzqdNhA/tFcpWtBcKxhTNpRyEK/w7FrObtzN8x7R3pL54+52N0me 7/5oLuf1Dyjd3bZg6spU1bw50HwXIi+MrGxept6oOgiY/KrwrISxeLomA+flXRnQDftU6tzd rHQPz3jXcdbuSnN4nvBIDFl3cyucGBdYYM2OpMGDTkemzQMvzdTqlGXZbHDdvZPcDB/JQlc+ vkCBr0LVDPJF8KZartzpYjULbL65MfUCcga9koZ8buD4UFdZYS9y8HgN3iaH0E/jjcMqTcNt ON6c+uQ22Ps+DP8V7oEDfyy5pV2LopUAlBNL2OQF6+XQtHU3nosqy/BH9MZys5Jr4o2iAVEW 3Bj1oe5ukjswdP1uiOf6prTKtX0Y4hI9S4L4DH7X7R3RAvNk+iTycWqzZMxTs3w8SAC24+uf QPJx7r0a/14VT7TK0X7zZOV1EoDb/Tcw595OBQRrZzXoyLRWKJ7CfTQd7QesA23pVrloixIj scvv9ree3PUCLwoQdIOfMq6y1cUldSwbtCi/cRdSvcGIgmfKVKDaBrWFRw5OG1hA2mZfDqW1 ueIlQCfzyX58t7DB1L9e8c101Mzu/truJ/Jxf3h+eXAPs+x/2z7vPk0Oz9vHPbKa3OPtzE+w DHdf8c/OrDKsp24naTlnk893zw9/4uXET09/Pt4/bbtzVR2tfDzs7ie55E6LG0Pc4QwH5zQG r1RJQHtGi6f9IYrk2+dPVDdR+qev/d3aw/awm+Tbx+2XHa7I5AeuTP7j0Kvg+I7s+rXmi0js scncYxdRJEurzriqkgoJXYIok+AalwwvX7YThcCrEVhPGjqpwgchcuV5H81kgg/iaS+hRqqw SACtBtdSQ+SpA7BNn++ph1B8CjylXafHS3luGu34J4dvX3eTH0AGf//H5LD9uvvHhCc/gVD/ 6N1gbHXceHPjC93AvByngynjQ4+t9djKGV2D/06UJhgHt4WO0DDe9ycJf2OIYM1oeTM1nw/u G4QEhmOegU6Y3nLbKex+sN2mlO0GD/tMeYOIjVa6fwnhqA3e7W7hg2EytIkz+O/EVHR5umMI RdyTml4hyMFtUJlzILzB17w2NhpK7CYG3seOyDidqDmcMol7402ywXtK/rV0orc8GYtU7jm/ PKnxEQOmAxCq5cUI8mYMGRO9/WUaREPdhW5m6dnlbXBAX24DbPudjw51Yr74GIzkLt6FdHS8 DEkehCl5xEr4FLE9dd2kUg0YOvLmoRz8rMHmYF7xB32zB5lIfOEBYlivxIRvnuCLP7AIEMbj 02ABzoViAcQUrDQLFQLtAqI5MHIQIEP81WTn/lBjCwkoocMec6l1GPICEL93YKzvnlqg+aB0 BIw+CK1Czp2kDDemg9fv6ewzoInc63X7QT/pCKgmCQtzArwgvhS0YAIWH2iLiC3uwqjyEi6W ezXEDCZ6fOaIusPZHav2zyRYDo2al5gCGD6kJVUIK53R8SuvEL/P3LWSUfDZ+/jG8o0I+vy4 T6e8nHl4dX/2/409WXMaSdLv368g9mk24vOMQEhGD36oPoA2fbkPQHrp0EiMRYwlFCDFrP79 Zlb1UUcm2ojx2GRmV1dV15F3ZmnArHrkUoeOhj9qEQPjbjrigQwoEhfSxkESATwGQQFCArDw XpSyFDIlH4fFbBHrEGfK8jDVaFDc9USMkXW6osA3DVMIqEw3CJMA4691/HproFGMXWsvWOga f2i8DE33ObzwM0td0sKa4DYViR4MLJ2pdJ2Y1HZlMtNtWhXwD1NJUNWUHKe6rxM1a7kiZApk Ml3L2hKY0jghUh9JNdIgFzyaDHGwBxli/+c7Zgkv/9m/PTyNxPHhaf+2e8CEJBp5t9CqJSo2 jC2P/VTMVgOf0scdyihPdcpE3JESrUGjXcPIAKiFome3gZtuu/BCxWiHPhtl2jcJGyUFduBT uuLzpmo4z/mGfBGEKZPFOEiZc0NrPrzzlxEZQjjQ4MFnrbwOM5tcbbfm7DUAm10zXy4RBfBu vJayI4v8ggn31ahSUZVhQmf70clC2B9pxuTy0QjxdEOdzGd0BWx0jonVyVCFz6vQW6pSJDBr NHOvk4UhbcnTaTB9G1yLxacjLSucYVoc1clqWiuukaw/X+Sb6I422Olvuk1BtL01MzsGwHCp C4wxBN5a+ukOkWsHL/zAVHimUz4CgZuMDb9nBPbR2xosyXNDnylhyNDYYu2Az4xmK/PNmenb j81J2c0ESZVqpRsMy1h37yhj3aqJuD5rpB4TKhElbLvKgsmLEf913YnVqDb5cto/7kZ16fXy NY5vt3vE+g6Ho8R0JhjxeP+KfnOEXmkTC/eOCF9klqHNHi0Yv7mZdf49ejsA9W709tRRDRfD 0DRnqSkDIiPfy+v7G6vxiNK8NtPPIKCZzzH5FWuBUUR49VrmL4uilJadVSJow4siSgQmPLSJ ZN/r0+74C/P87zER8l/3lpKxfT7DNKBn+/E9u6XtdAodrlVEhPVUuLaEKW0+HVuK8SQw5V4m CiOnZgcDOXjFKFp7knj1KUkabiomQ1hPgxZWZHTpj9iTlVW2ERtS8Bho6hS6RI5na4/H/TrG kYYA4PUnxCMKB1JaJAwzrIIrJ4qsZlgeReT5ydXNV9q0rijW5Xa7FfSR3XYAOM8cEz81uNfP LisMCKH1eopEutExkosiwPGUcNUzJtt2FkHMoS2eSTSVwoyzTpf3x0epdI7+yEa24gtmWEs9 LH/i/2Wsgq71kQi4YazPZREUYnMGK/A6EfYXt4gAm3B6jbaZwmdWTa2Go62XhUhC0gzgP90f 7x/wxHZsZVWllcVZa1dFJ4/IjDixTFRT6pQdgeastHFhQDeAMTVbYPg3YVa0m1mTV+b9H4cL 4d9KMDs1IkbfMmVaLRgLTrMoaZZOBq1iZkvqFodTUWVGHNjpcL0CkKti3R3397+ou6rtITDE F85T6eHli0Sc1OPysiWu0raNGm5wzOdwbiZK30+3TFENRdEux++VWGCD/wPpp2SMBNOiZdro msv/k0SNKq9Dc8mwZs6k4y8ub67po06m65L2Evqz+/And79jNPGpDxAxNWDKnJY8ypwRSZam 14vK25qXLl8CQJPfJBwWu8Vd5ZL8Y2ju4ddeGevcoWBLfiwz4K9kSD3JvfY0caCyJ1LPL3LT k6Z/fVsP7HDUe6CwVQ6dOzz8TYwYhjG+ms2gdaUt0xnGls9HVijlUjFpnOP946PM+g17Sr7t 9LuRTRX6zXm1bGiv1jzbYGamNVMIR2KBz2BuOoUva7i/aXXkcsMWKlqGRSJoMXiDAQFB5rJo yfuvt/1f7y8PMvN5y/oSZ1MyD5y7c+hThbnGy8i/JNH47CpMciYlKaKT6vry5iuLLpOrC3q2 hbe9urjguyafvsVEwyy6ihqRXF5ebZuq9EVAb19JmDDuYEW4qGPWmJOEQSTkJ6Wu2cXx/vVp /+Asf+Hno9/E++P+MPIPfb7mf/NO4kGRIPtBnIGSan68f96N/nz/6y+40QP7Rp8bxU96lyHo OcWuzr0uvbnme+RhKgorFxoAA2ZCASUNbuuwJCdHJ/ThD4jaMfrqn6Pxs/wWuk3zqy1NlIhF 6MXR2YYKuIfyaBuiq2PaYFoGjhq9lT7rGtJ81jWk+bRr0uYTYOGMCn/WKQiCORZ5OdPwHHZG tEibELgoRhbuhpExlcQQv14I7hwEdCJ8VBCwj6O+PcZyi2wDqF5QrmVsI1UUy9mpqLzExvJ+ 6vh54iDDecM1x450HIwvQerh8JGXNIttNb1iUnoDCaaQrpmDGMd6VsGIs4VGkHIZMlcEUIg6 a1bjmwu2l2WErpUktv8WTewHZ3cefHMZ6++KBoeX0+GXdOV5/XX/0U6ze08rryWHvzfAmLS+ TkBMmF3Q+CLblN8mV/05U4DAohy7tJaHsbto4IawdBEaYxNR0Lcq9ViRVVyqzThbaDIh/kLL e72FdZzSCJhLvQKahvHjuppMpoYsiUYuV0qFs9iZ4mVkOOjBT3QkB178VnoMY9IPov9AhjF4 g0hFNNO6WbryC1YMAG4Ju+NYYvBBMUVTi92c8IuaigGRuFz5AZsP1JjxgnnCC+OVbgJEmA/8 T3FrwyL4dWu37cs7mWnbv5VqUfsZmLFFlhYR43mFJGECpyjtGirRcehnVFiQRN5hOmznGyRe xAiqEj8vaGkHkdAerwGSBLf8UDYg0GW0cChffFvwxcyQIEJLE4utNlG6FNTOUh1PsX5EJT0n jOdiX/LHbLtxmGbrjGkW9lxErcwO3gTf+YY7GviR09PSkzArAPFFnXhxmItgco5qcTO9OIff wNUQn11pwEhEvlTQnSG5ncdWRTUdjQafMptX5n6C8w3OFnehSgPH+dUGt0xIq/8Qm4sU5Zc4 O7PacwwLu03pS08SwGaHS43HxwKN36mVp96kKdiQCUSXIjo3jHPmOYnPwzBg/RslRYUfF05e hpuSNHWax4yaBPEFp1LAnYvqU5DVaAZIto7mn+/Z7dlXVNGaloUkEjjJkInKkvhlUZeVivhh iWq8opq8pGVKdUb5jLIHsdsoTfguor/S2QHe3QZwZZ054ZTbdrNk6kTKKywm/W/r0muypR81 yMwCo6FYc+02BnzLl5nAvsbe0jfsC5bqXdmDAEY5VyA8f/o4YT32UXz/gfpdl0vGt+VLmldK s1zit34Y0ZYkxC5EQDnBy9cf/pEy6C987YfU1GDJni8+15M6ziNWL1hv6A+QJIwkD7c0a4lI ww1cIgH9JlVLM1KRmcR3LSq/MSreIUAm2DRBS7/KlPHaBbYW7G//Or49XPxLJ8B6orBqzKda oPXUoJiofFcXKGcXMKalUHsiSqt56wj74cDbolU22Apu0eFNHYVYQ4oWiGQXi7VTL77XsWJP rTWMulQGjIuJeaovsWXinJ4E5Xgyuz7bWSC5GtMKKZ3kij67NJLr2VUzF0nEKPs0yq9T2iY0 kEymF4yCuyUpq9X4ayVmZ4mS6az6ZPRIckmHYeskVzfnScrkevLJoLwf09nFeZIiv/IZ3WBH sr68mLgWlcPLF0xaaS4G68lWBuo0zCjylLsXjO0g1leQCJAgtcI/gzyHzhnoxkkfK/U2iMrc cmcdzjdG6SgLVSm7hZvsbL0/Qi/sHib7h+PhdPjrbbSE8/b4ZT36+b47vVG6fxWBhxpRrAdF dqCshB1nYFpTy9f9i1TgU/pkEcVeRvNZUaZq6NEK02L3fHjbYZSNPbzi9fn00zkUMn/0W/lx ets9j7KXkf+0f/336NRVvbNCcbzj4f7x4fA8Kg/O593/nmwt+DAVdbqN+EAr6AMwTCzqjlEv 5ujlvJ4XjCtXuEX/T+6OyxhNR8Qsp3xDSaaiSBoQJTBBYpMW38ZaO7lMuM9cytLAofma0kqX xNUuINNRvv95kh/MsMS0UZ8cV4I2nnwrmsksTdB2Rl/+BhWwFvTZ4vlJs8pSISn4N6Io6jP+ OonvsmR67fLnw8v+7UB6QxXC3c/i5fF42D/qZAL9oCM+DJFZihVhGsDAO8OuQBUWlFTOo0No lUFbMkUV2zovW87WGrrKxv7adtwQZJzXUhSBjFn+4N0WVFexXJ1aV7rho8TjRhYu1DcWyOf0 wgbcpYUbMNNGZ5kkAH1k5ug4C21a70BqWERltAXOkmaOOqoy9Gs2QEEShakMHmEr2SINZxX+ 7gVG3/A3S4yR6p4VbF+EEUisgDFDp3qwTEXPnBMtifyWbDkp7QXNFuO9qFE47//+6fx+/2xu kYDP/iMfP1/6zu4TQmQ+YLLB7ac9RgpGXY8o2An0AtieHchiXtorvsVgvZuJGoMFabKJ7xHg PnJIS43ev0hRqVgqkP9XcUZ3SKdjdqJXqQVBH4BR7A5pOJ4m/JM4T4JSVOufRt/kyKTMS3Nv K1gbLUYH4SI72AWQDc3JkioV1syl8dDosNOHyZ+Xve21hQQ2IFIA+Xm09oRNp5JVmz/7JDLo 2l/IPLzacPMCwC0hrj8u9lRRcOeKwrZFUYZnsCrnmmbvFY7ycpNt+ZX2mURdZfNyaizkuTyb NYCP7pfDggbGGnhya/8O0D57XAN/ObeWf9+WH9AWlhOXp9Ay/viPYB3IK8q5oaIyu7m+vjCu lu9ZHOm1RO+ASMfXwdwYGf5O497vJ8jKP+ai+iOt6FfOsYyP9rgqGq9D1jYJ/h5SuQUhSg3f ppdfKXyU+Ut0dq6+/Wt/OsxmVzdfxnrCEY20rua0uJpWzhZW3MJp9/54kLVpnWENceE6YNXG t+kw9BjRl48EysK4SZZGlR7ALVH+MoqDItR0eJhpRX+VpU7pksAMnI/MAXP+7Fc0zv03yGz1 Avap19gSW7e85V9z80Oit6w8a1CTFCZaFzNZdcC5wETgTHyHmVtth/KgokEgopSllB81X1Dr efiNKlqrAwP0k+nyQv6U93iU+1Q3fyDe6d0rf9SiXFIQdXg7xZ1NtDo8iPf0ZAGaC/O2ljrZ UEsh2Wqa3acoMQbZqtfhPsCxWT3BnaHq7MHx3ZSEZuQAtnfnezGV4d0Y5Y0ZYM7ThokXBgFd jr6f+TZRn/o4Kq3MpaZT2XIfP4mwFrO5cxSk8XDRSBV+M772IkyNE4CEo0XVZIm9snML8CPd Tl3QtbP7WiDPyRXtu2iJtawsP7nhdFqbF4bzZgVRoc60norqV3dat46Y5EGTqncZv9cT6/el ESEoIfbG15FGfnhg0jemhKdomjHxeIFOaem8tMmRWWhdzIOUTLTXEqkcW0hkDCEwehS4IwqI IVn4KfHahfRKz9GtX1txyDjaP3FWjEltS2fq4ZhF7tu/m4VegaOFtRPazVmO0cpI2KwK78pI n6Ho+QUrE8fR521krkD8LcUtenFL9CYUqybfyKIRPFWd+4KJKpV4/oqV6DODkej/4Q1lwqie Uj9nZiMLhH0Vc4dVaqS9i8uOnTL4LQ3dMWwNMGzmgz3mK2CeaczXKwYzu7pgMRMWw7fG9WB2 zb7nesxi2B5cX7KYKYthe319zWJuGMzNJffMDTujN5fceG6m3HtmX63xgBSBq6OZMQ+MJ+z7 AWVNtSj9KKLbH5uLrANPaOpLGsz0/YoGX9PgrzT4huk305Ux05ex1ZlVFs2agoDVJgyzV8NF rmeL6MB+GJt1lXo4iOa1noOlxxSZqCKyrdsiimOqtYUIaTiI5ysXHEGvRBoQiLQ2SorpYyO7 VNXFKjKqfQIChcABEsRmrp+YSOUjRcHV7viy+zV6un/4W6V+ldDX4/7l7W9pJ3583p1+UvY6 qdFQFXZpOUr6h8bZQqaW6k/XXthVsg1BMe38Z59fQUD98rZ/3o0ennYPf59khx4U/Kj1qRNK UgyOlOoVaCwHyUFUOofZ4pO6bAt/aioedG2VT34bX0ymuimgiDCWPAH2L2F8K1KMF0a8l8U0 CaWj67hcWdSi7DtkPVOq/JEogsp6FTR3bxGpKcjSmHLAkG5vyMwWP3SVWg/s1Qpqur5d/GdM UbVBtU6H3eypyqq6ez4cP0bB7s/3nz+tJMPybAy3FXo0Mqp5SZJnmCiKyaqjtKXSpCfzhvVq HHzjKD48/P3+qhbQ8v7lp7mSYZ/5MF1NRmshDXyzFnENs2Ii2zrTAB4+Cubc5rX1qsP43CoM c8pEjH0eJmz026m1FJ/+f/T8/rb7zw7+sXt7+P3337W8fJsNrO8q3ML3ieeVkW5cJlppM3TV i3VYeFmpO5y7GGUw9mvmsxUZNIhock3KUH1E43dLOSc2kLUqTM5JerYU7y9y91duYmqZI1fV NeM88yWJje24wipLIv96SkyTSryLubuuGxMjG1yGW5mt14SqMn1dcIaFXAG2yrYWVJ6fcwto 17CWwLrW84hJUIG8u4wFt7tnlIFWs7RK7AZL6cGf39pvz+3+9MmOrQZkYjFnDuAK9dGj2mDA cVXB3sE8bhiBVtS8AU7lumb8ygp5rqUVXHVeiWn8M5kVmD6SkYLWaYHkCitTUCHHD+/H/duH e6/IEem6/CE7HaDww5OmTmWCCANnRuB3E2AZpFD5h3Oh2Mrk1gRwU0pnAVhjTPzUWfNch6Sv HzwU0DwcptBTXBi4LmR6al8oHe6gVLTJGOO5XAZIgwFLZ7J8q2tmGKfw9dPIxGK27Ra1zQpl NCrtTWumilMwuBJ8faEr6DYrbFD+gz4DgI3ItPKmKhN0b0g/fry+HYAnOe5Gh+PoaffrVWao NYhhNhcij7QMADp44sKBJbBfKIEuqRev/Chf6tnjbIz7kDwjKKBLWuhVDQYYSdgzcE7X2Z4I rverPHepV3oOoq4F1NgS3SmFQxosHVDoE8A2caXTZgt3X1aXxAi69JdBVEquE4/I0nl0MR9P ZkkdO4/j0UYC3dej0lDVQLcx8i93KSUMXNTVMtRzJrXw9hZUPjbvb087uJUf7jHxXPjygBsA nWH+2b89jcTpdHjYS1Rw/3bvbARfL9bQTQEB85cC/ptc5Fl8O768uHIIyvBH5GxKTActgPdb d531pGPd8+HRyGHfvsJzB+pX7nf09Vp1/Xs8BxYXGweWUy/ZEg3CjbApRF+ffXl/euK6bdSb 7fYuBdxSL18rSsUZ738CX+W+ofAvJ75+7usI0uTToavxRRDN3UVuMiXd5HDfNgmmBIygi+Bz g9yYRO44iySAjUWCdT3YAJ5cXVPgy4lLLUtmEUCqCQBfjScU+NLdZotifOPSbnLVgrpv9q9P hhNufzu4ZwvAQL5wd3lae5G7BIG/cqcdrtnNPCI+Xofo1OPOrgFxOo4j9xDGtKX8Q2XlfmaE uhMbhO4Q5lZq4G5zLcUdcaGWIi4F8Xm7s4c4c0KilbDIjZpW/Znpjr3aZORktvBhWnr9x3F3 OhmFU/vRW3n2ukPoLnNgs6m7ptD+SMCW/dlQgKB8eB6l789/7o6qpItVwrVfTZhmPaf4hKDw UCJPaxojDy17zSoMxZ9IDB7QFMJ5w/cIw3tD9KzVmT/twm6QI+MQDXli9diSY1t6Cmo+emTL 39nn65JOegW8aILR8Eq0arBSpOseszu+oas23LwnmVPwtP/5ci/zwErNmSU8K+siFuLCKPey F2NoiSlKRXHbiquukmL/5/H++DE6Ht5BRDeCZCT3rHPVINxibZ7CzN8mJRAp3Q14yoTXujaD FJQCQ9/MsciG6aelk8RhymAxQ2ZdRbr1p3eb9qPe0dVCsWB9PfpYVLIyDgNfD2hHCveOhFaq ujGfujTYPPhJKCpaeBz5oXc7My9sDUOHu7QkotgIxlStKDwm0QZgvxJfKY68ln8w1rdP+yeJ Oogq9e2RjRcVFU8/WO1lzhZtKoj3w2HXp+wcZgqhyrfDhKN3Bmro5Fn6YUCdExaOVqJlhGot D7bkuylJDUcsDSdb2d4h2P7dbGfXDkz62ecubSSupw5QFAkFq5Z14jkIVOS57Xr+dwdmLs9h QM3iLtL2jobwADEhMfFdIkjE9o6hzxi4NvwqBOY7xPVGwZqVqdbr4V5CguelBhdlmfmRwLzp MJWF0JxFMRYVjo9Qm/Pgh577OUZLunu2dDpKbVUVdeswNRwC8R3mhDR2f1YEzBYKAloLGxU/ ZPZVylyQR+jD1L8ww9DpcAG3hp5GYp6llRaOO7gpApx07EX62X9mmgVGQcZGlusS9chWrp8B lWeZYYDoI38BJyVB6rFWw/rxf/8Fye4NRXe5AAA= --cNdxnHkX5QqsyA0e--