From: kbuild test robot Subject: Re: [PATCH v4 2/3] dax: change bdev_dax_supported() to support boolean returns Date: Sun, 18 Feb 2018 16:22:48 +0800 Message-ID: <201802181615.wTEEGhEQ%fengguang.wu@intel.com> References: <151871655831.27617.969797567050409931.stgit@djiang5-desk3.ch.intel.com> Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="qMm9M+Fa2AknHoGS" Cc: kbuild-all@01.org, darrick.wong@oracle.com, linux-nvdimm@lists.01.org, david@fromorbit.com, linux-xfs@vger.kernel.org, ross.zwisler@linux.intel.com, linux-ext4@vger.kernel.org, dan.j.williams@intel.com To: Dave Jiang Return-path: Received: from mga17.intel.com ([192.55.52.151]:35555 "EHLO mga17.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751052AbeBRIXj (ORCPT ); Sun, 18 Feb 2018 03:23:39 -0500 Content-Disposition: inline In-Reply-To: <151871655831.27617.969797567050409931.stgit@djiang5-desk3.ch.intel.com> Sender: linux-ext4-owner@vger.kernel.org List-ID: --qMm9M+Fa2AknHoGS Content-Type: text/plain; charset=us-ascii Content-Disposition: inline Hi Dave, I love your patch! Perhaps something to improve: [auto build test WARNING on linus/master] [also build test WARNING on v4.16-rc1 next-20180216] [cannot apply to dgc-xfs/for-next] [if your patch is applied to the wrong git tree, please drop us a note to help improve the system] url: https://github.com/0day-ci/linux/commits/Dave-Jiang/minimal-DAX-support-for-XFS-realtime-device/20180218-154220 config: i386-randconfig-x003-201807 (attached as .config) compiler: gcc-7 (Debian 7.3.0-1) 7.3.0 reproduce: # save the attached .config to linux build tree make ARCH=i386 Note: it may well be a FALSE warning. FWIW you are at least aware of it now. http://gcc.gnu.org/wiki/Better_Uninitialized_Warnings All warnings (new ones prefixed by >>): fs//xfs/xfs_super.c: In function 'xfs_fs_fill_super': >> fs//xfs/xfs_super.c:1660:8: warning: 'rtdev_is_dax' may be used uninitialized in this function [-Wmaybe-uninitialized] bool rtdev_is_dax, datadev_is_dax; ^~~~~~~~~~~~ vim +/rtdev_is_dax +1660 fs//xfs/xfs_super.c 1566 1567 STATIC int 1568 xfs_fs_fill_super( 1569 struct super_block *sb, 1570 void *data, 1571 int silent) 1572 { 1573 struct inode *root; 1574 struct xfs_mount *mp = NULL; 1575 int flags = 0, error = -ENOMEM; 1576 1577 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL); 1578 if (!mp) 1579 goto out; 1580 1581 spin_lock_init(&mp->m_sb_lock); 1582 mutex_init(&mp->m_growlock); 1583 atomic_set(&mp->m_active_trans, 0); 1584 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); 1585 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); 1586 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker); 1587 mp->m_kobj.kobject.kset = xfs_kset; 1588 1589 mp->m_super = sb; 1590 sb->s_fs_info = mp; 1591 1592 error = xfs_parseargs(mp, (char *)data); 1593 if (error) 1594 goto out_free_fsname; 1595 1596 sb_min_blocksize(sb, BBSIZE); 1597 sb->s_xattr = xfs_xattr_handlers; 1598 sb->s_export_op = &xfs_export_operations; 1599 #ifdef CONFIG_XFS_QUOTA 1600 sb->s_qcop = &xfs_quotactl_operations; 1601 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 1602 #endif 1603 sb->s_op = &xfs_super_operations; 1604 1605 if (silent) 1606 flags |= XFS_MFSI_QUIET; 1607 1608 error = xfs_open_devices(mp); 1609 if (error) 1610 goto out_free_fsname; 1611 1612 error = xfs_init_mount_workqueues(mp); 1613 if (error) 1614 goto out_close_devices; 1615 1616 error = xfs_init_percpu_counters(mp); 1617 if (error) 1618 goto out_destroy_workqueues; 1619 1620 /* Allocate stats memory before we do operations that might use it */ 1621 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); 1622 if (!mp->m_stats.xs_stats) { 1623 error = -ENOMEM; 1624 goto out_destroy_counters; 1625 } 1626 1627 error = xfs_readsb(mp, flags); 1628 if (error) 1629 goto out_free_stats; 1630 1631 error = xfs_finish_flags(mp); 1632 if (error) 1633 goto out_free_sb; 1634 1635 error = xfs_setup_devices(mp); 1636 if (error) 1637 goto out_free_sb; 1638 1639 error = xfs_filestream_mount(mp); 1640 if (error) 1641 goto out_free_sb; 1642 1643 /* 1644 * we must configure the block size in the superblock before we run the 1645 * full mount process as the mount process can lookup and cache inodes. 1646 */ 1647 sb->s_magic = XFS_SB_MAGIC; 1648 sb->s_blocksize = mp->m_sb.sb_blocksize; 1649 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; 1650 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); 1651 sb->s_max_links = XFS_MAXLINK; 1652 sb->s_time_gran = 1; 1653 set_posix_acl_flag(sb); 1654 1655 /* version 5 superblocks support inode version counters. */ 1656 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) 1657 sb->s_flags |= SB_I_VERSION; 1658 1659 if (mp->m_flags & XFS_MOUNT_DAX) { > 1660 bool rtdev_is_dax, datadev_is_dax; 1661 1662 xfs_warn(mp, 1663 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1664 1665 datadev_is_dax = bdev_dax_supported(sb, 1666 mp->m_ddev_targp->bt_bdev, sb->s_blocksize); 1667 if (mp->m_rtdev_targp) 1668 rtdev_is_dax = bdev_dax_supported(sb, 1669 mp->m_rtdev_targp->bt_bdev, 1670 sb->s_blocksize); 1671 if (!rtdev_is_dax && !datadev_is_dax) { 1672 xfs_alert(mp, 1673 "DAX unsupported by block device. Turning off DAX."); 1674 mp->m_flags &= ~XFS_MOUNT_DAX; 1675 } 1676 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1677 xfs_alert(mp, 1678 "DAX and reflink cannot be used together!"); 1679 error = -EINVAL; 1680 goto out_filestream_unmount; 1681 } 1682 } 1683 1684 if (mp->m_flags & XFS_MOUNT_DISCARD) { 1685 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1686 1687 if (!blk_queue_discard(q)) { 1688 xfs_warn(mp, "mounting with \"discard\" option, but " 1689 "the device does not support discard"); 1690 mp->m_flags &= ~XFS_MOUNT_DISCARD; 1691 } 1692 } 1693 1694 if (xfs_sb_version_hasreflink(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1695 xfs_alert(mp, 1696 "reflink not compatible with realtime device!"); 1697 error = -EINVAL; 1698 goto out_filestream_unmount; 1699 } 1700 1701 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) { 1702 xfs_alert(mp, 1703 "reverse mapping btree not compatible with realtime device!"); 1704 error = -EINVAL; 1705 goto out_filestream_unmount; 1706 } 1707 1708 error = xfs_mountfs(mp); 1709 if (error) 1710 goto out_filestream_unmount; 1711 1712 root = igrab(VFS_I(mp->m_rootip)); 1713 if (!root) { 1714 error = -ENOENT; 1715 goto out_unmount; 1716 } 1717 sb->s_root = d_make_root(root); 1718 if (!sb->s_root) { 1719 error = -ENOMEM; 1720 goto out_unmount; 1721 } 1722 1723 return 0; 1724 1725 out_filestream_unmount: 1726 xfs_filestream_unmount(mp); 1727 out_free_sb: 1728 xfs_freesb(mp); 1729 out_free_stats: 1730 free_percpu(mp->m_stats.xs_stats); 1731 out_destroy_counters: 1732 xfs_destroy_percpu_counters(mp); 1733 out_destroy_workqueues: 1734 xfs_destroy_mount_workqueues(mp); 1735 out_close_devices: 1736 xfs_close_devices(mp); 1737 out_free_fsname: 1738 xfs_free_fsname(mp); 1739 kfree(mp); 1740 out: 1741 return error; 1742 1743 out_unmount: 1744 xfs_filestream_unmount(mp); 1745 xfs_unmountfs(mp); 1746 goto out_free_sb; 1747 } 1748 --- 0-DAY kernel test infrastructure Open Source Technology Center https://lists.01.org/pipermail/kbuild-all Intel Corporation --qMm9M+Fa2AknHoGS Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICCE0iVoAAy5jb25maWcAlFxLd+M2st7nV+h07mJmkbRf7XTOPV6AICghIgg2AMqWNzyO re74xG33yPIk+fdTBfABgKAyk0USoQoPAvX4qgrw9999vyBvh5evd4fH+7unp78WX3bPu/3d Yfew+Pz4tPv/RS4XlTQLlnPzIzCXj89vf75/PP94ubj48fTyx5Mf9veni/Vu/7x7WtCX58+P X96g++PL83ffAzuVVcGX7eVFxs3i8XXx/HJYvO4O33XtNx8v2/Ozq7+83+MPXmmjGmq4rNqc UZkzNRJlY+rGtIVUgpird7unz+dnP+Cy3vUcRNEV9Cvcz6t3d/v7397/+fHy/b1d5av9iPZh 99n9HvqVkq5zVre6qWupzDilNoSujSKUTWlCNOMPO7MQpG5Vlbfw5boVvLr6eIxObq5OL9MM VIqamL8dJ2ALhqsYy9tckBZZ4SsMG9dqaXppySWrlmY10pasYorTlmuC9Ckha5bTxtU148uV ibeDbNsV2bC2pm2R05GqrjUT7Q1dLUmet6RcSsXNSkzHpaTkmYLFw6GWZBuNvyK6pXXTKqDd pGiErlhb8goOj996G2AXpZlp6rZmyo5BFCPRDvUkJjL4VXClTUtXTbWe4avJkqXZ3Ip4xlRF rGjXUmuelSxi0Y2uGRzrDPmaVKZdNTBLLeAAV7DmFIfdPFJaTlNmkzmsGOtW1oYL2JYclA72 iFfLOc6cwaHbzyMlaEqguqDKrRb1XNemVjJjeiQX/KZlRJVb+N0K5p15vTQEvhkkcsNKfXXe tw/qDCepQe3fPz3++v7ry8Pb0+71/f81FREMJYARzd7/GOk1V5/aa6m8o8gaXubw4axlN24+ HSi1WYEg4JYUEv7VGqKxs7VrS2sln9CWvX2DlsFkcdOyagNfjksU3Fydn/VEquAorZpyOM53 70bz2LW1humUlYR9JuWGKQ3igv0SzS1pjIyEeg0ixsp2ecvrNCUDylmaVN76+u5Tbm7neszM X95eAGH4Vm9V/qfGdLu2Ywy4wmP0m9vjvWVio4MVjyJHmhJ0TWqD8nX17h/PL8+7fw7HoK9J 7X+g3uoNr2lydlBmkHnxqWENSzI4GQFdkGrbEgMeZ5VYZ6MZ2EJ/UtLkSQdrD8KqoeWAtYHM lL0Ug0osXt9+ff3r9bD7OkrxYPdBY6zOJlwCkPRKXqcprCgY+G2cuijA9Ov1lA+NG9gZ5E8P IvhSWQvpIQJozqUgPGrTXKSYwMyC8YOP387MQIyC47CGjBip0lyKaaY2zlYLACHhTABAKJhN ZyoCu6lrojSb/z5rSQvPHFJEHlo2MCAYb0NXuYzNsM+SE0PSnTfgKXN0lCVB/7OlZeIErd3b jAIRe1scD6xvZfRRYpspSXIKEx1nA+DSkvyXJsknJHqH3AETK5nm8etu/5oSztUtOlkuc059 BagkUnhesoQWWKLPvQKEggdrd0Fpv4uDrXXz3ty9/r44wDoWd88Pi9fD3eF1cXd///L2fHh8 /jIuyHC6drCBUtlUJhACPGi70wFxWEemc9QwykDpgcMkbQL6HURtOm0xYGauZWkFdPIhijYL Pd1Eoxg4Str4a4Gf4Adhb1N2RDtmv7uO+ttl4iiJ7jg2fEJZoqsTvkojxWFQtqSZ9eqhfwZA W515OIOvO0A/abE7OTaXEkcowEzxwlydnfjtuGmAkT366eCma8Urs241KVg0xumAQ6xZbSA+ cagBoGXupD2FwTLUZWBoKsTfgMLaomy0h7PpUsmm1v5mggegy+R5Z+W665AWB0tySzrGUPN8 Rp4cXeUz7rWjFyACt0zNiSQA6qPD52zD6YwLdBwwyKxG9N/AVHF8ErCwSQYt6XrgAjuashng 68GEUxacSwOmrNJpl6yA4kFYnge/K2bc73ERVioQuM0fJ9jnAkF3rRi4qPBIew0KoyGUD9hd C0VV7kfT8JsIGM15CQ9IqrwHiaMxyKcIbCR16NDnnoFbljkFtSzBg1mUDkEI+lR7thjbV5T5 M8VsGMulzBW4NeN5NVKB8+YVeG/vRJwS8/zUyzm4jmAHKautx7fxftSnprpewxLB5uIavb2v C3+xs9Y0mlQAvuQoQN46IFxD3NROHLSTiLHZFxVcekdJzFqsSJX7UMChUecCvVZr/+LfbSW4 b5k9+8vKAsy6H3/ObxAEZm3R+N9TNIbdRD9Bebzhaxl8P19WpCw8ybYf4DdYyOE36FUQXRLu hSok33BYVLdt3j5Al4woxe2xjAK4YnRdS9gSxA8AGlPit8aRtsIbrG9po0Mb2zPw4fDtKPhg +o4M6jYRtR4RdoAm6uLI8aOA2VDG35khPzJ+LQxR0f5AR1nGxEeeNEBOJ2DwdsCLY8BDT08u JqikSxfWu/3nl/3Xu+f73YL9e/cMAIsA1KIIsQD9jXBlZvAuF4FE+Lh2IyyST6xwI1zv1mIw J+1B8I15M7VOGZKSBHGWLptshg22UC1ZHy96woc0dJcIbloFOihFpLeGCeuGWojmecHpBMuN AKfgZQAwrX2y8uhJm3SMwQH2bd1OWJtTl+xm7kC9MeIRwBQ4pRtpvzSihnAjY76mAmYFdL9m W7BXYCQwuxH4UpcPSvoNuwSbNQaNAY1HR0kRJs8tF0JOTjl+WVOFPSJhR0lBYAlQHOC3i939 gTgIPuI0WJyJSOs4geVaFTNJAjiqdAfX2oJ3KVLupWgql/RmSoGL49UvjIZxsGULDPIY59sR V1KuIyImeOG34ctGNomYTsMBYvjUhbIJEwGm3PBi2+OHKQOAvi51kVyYy6a5nH57veKGhXB/ QMwAeLYAvzBItS7Q9oiGVGwJRrPKXVa+O+qW1PGe0DK1EcDnrEdEW12DHWDEGfiIJvgNyNRI 1nYNMZxAGAgC0agKok7YLu5rSWwpE2e4IirHQMLCVwMH32Gh1CCJ+XtjqLp9yRsRC7jd5pS+ un2FeMxFNWiyJofs5M4FR1TUmLaPN9y1uuzkDC2XzUxGm9e0dXmTPt+ZWLxmFI12C8bIBKBp pt32XAJ0rMtmyUMQ7jXPmRbgsJuJFsEeSARIQyIcezUT2ExY4QCbkswEURNu0ANZLROrnLKG 2WCzwuQL7BzghVhg3NZzy+JEplAY+cRWMZnHSBmfCvNerCtOYJ0gxWcLF+CvY9kUMu+OuGYU PaEHx2TelGA10X4j4lS+6A4myFKsi50WeaZlt4iB3YC7SZq/sNfHUDxkve2NmykD4fI+mOhU Ihcra1kT2S1aggQByqPrazAGvlsvc4S/XWXofEIgvZsIkkOV9JxjURzxt3alm65ISNdJRssj bWxEyj5hrq5v/ifmHiQldmR0Jga8kvE6+cBilhR3d1Izw1OvAJkYGdY2B6rCWlNTBZClb7Mx zATWLqnc/PDr3evuYfG7Q7jf9i+fH59cutAzOXLTLf7YBli2HnIFIaCzZ53fdn59xVDnvLQa IjyIpHxFtnGDRpB8deJlmpxeJVbSa5zN9pWAKBpPXbMw21VmOSl8Krhtqjls2KeGBTm9Lj2R 6WWy0dU1onbwtmypuNkG0U5HvAVtSae6bKpM5Lboa51K2tIi23WWzjS5STDMKFJbZL8TUIGs yVBUqe/2h0e8ALEwf33b+VEMAfxkgR3EnJjY8K0MxFvVyOF/Z0RqaSNIlcpYxYyMaXkzO0XL qT42DclnTEXMWMtrpsDv/BcrUlxTfhPMym9GenI6qYu/4QCkuCRpnp7DEMWD3e1FnNBks86l ThEwX59zve6R06hFvIIv0U12fKmYp4dNsMXy45wNjAfmn43TJdnKXPzNQHrJj+4NmGHlH0IQ mjbV34y+JkrM7P2YOiiOrwALppcf0yvw1He2Pyqh+NTWlIeWA9o2HLrJXjO5XOj733Z4W8DP LnDpMrGVlEEOtG/PwbPjIlL+u2OhhVfk6yvGrtHLVrhmnCYxVE/uhrx6d//5X0OGFj4lXo0n rSNxvc3CdFVPyIpPqbOv7HUP8Ao1wL+mSlQwhtsbxEiMyJTwar7WxbjOoN3yuvJRt7vYM0PE meZoQ5huy+S5ZbPVzZFlnhJ3VtfprpP2ETn06a82YwX+B8OpsPDbFT8Gi79/ud+9vr7sFwew +LZc+Hl3d3jb+9Yf3VSINIKrMmgRCkYgcGSu9BCRsJLb0zGREtFFbR2cF9YDJiy4rTJ56MXU ck6SwcUClspNOG4GcDNeJrsxAD/xstOY3x3mQIZ+7qQ1QAY3WVnrtIdBFiLG8Y9Vizj6B5Hx 2YFUTs/PTtP4tLuzhMUBQLxVDnB79pIihEA8Ub4BpTAuZGptViDEGD1g20JcvuEaIrNlCIfg 1AgaqSBn2rUdqV8NLIMGpBLGGzFMNxrsjUgCmunQUbiXSkf2rFHpEyKOTErjcu6ji7z4eJmc UXw4QjA6fZMGaUKkj1Vczg0IcZPhjeBpcRnJx+niKPUiTV3PLGn900z7x3Q7VY2WaV0QNs5j SScprnlFV7yml8GZdK3naQAtWEnSPl0sGVjE5c3pEWpbzhwP3QLimN3kDSf0vE3f/bLEmQ1D kz3TC33XjGJ3YVRo4aweY7Wwuzbqyv+XPkt5Ok+z+WeB4bZf5RsNHzoUzBqENHRaNcR7rsSk GxGSu9zZ5UVk+AF4ikbYSL8AJFxurz4MiQRoA//tZvXyC10zmNhpI4Vlk0ZNCTa1I5ghwYXt Vc1MXAvI/aSmvuYyuHjKpRBNu2Jl7fep7LVZjbmbJTreJa+uztJE8D1XlxcxrS+7nMe9vBZn sbXwizO2SdBpC9Y9vRxaDS5f1MZm9wJj3bVvZAl2kqht2qg6rmRJx/XvUw2+iGEGFVNDsXTK RKNiSmL5EIvimZJrVlkbjIk7HftnEfpSh2G8WtzXl+fHw8s+uOXkZ607Ka6iou+EQ5G6PEan 0V10n8P6f4ws48WXbEnott2IGRsfE7yup5cZj/aY6brgN1aix4tMEnQ6S99+4R9TVUJ3ALjf MJi7yTPEhVRJGoDHoSnWy5EQaObYjGk+a5qKoGhkj1RPNgqEn6fgTCXx9lvknLumizTc6KiX F2kUAEopi0Izc3XyJz1x//iLq0mc67eZN5LnqjWuypfA4TAh6DpV2zqmFoALHZUk7s1bIDxP ZiWjfZnK3uf0ToCXKF1lj+TwImXDroZvOdq3X5QgVUPCixnDihwtdTXDdQ5Ha60Hcv08CD4O 5wqscQqdiSg3FzR3g04y7306cdnE9/dzrikAY3/gMG3cYT13Tx6HT8X4dQk4uTZ2CdYsXwST uLPq2VD3TfgRtkoflUETN4SPCFYGFtZXGwdyJebfx8a19g6hD8lt9t9dYM3V1cXJz4O3P17v SFEBHFyTbWCSk2zC3UuZT6u7QqlZ1fYCemLL42GtolrMEiRYSkYq25qcqlASpokm8LIzqTzk bS2lpxi3WeNZs9vzAsyY91uL/iHJ6C271x+w7XUUeQw8fT+rBIlF9PJs35f0RX1P07HSbTca 6+Xr6Fquu4PTTi7d9mMDHMrANK0E8Z+TWFOHitC5KBe1ztIjeIegD8JtiS9ElGrqOBNmo3HQ NAy6RG+DRlY3wKxvwivsmMS/9qATwGJQPNGUkQ4JowJngr9bTSpu+G0yvHU2PrbSgGc1HCXi BGIzWiF5uAjjDaKDM/IAswhvJ7KCp2yMK/8G9um2PT05Sfu02/bswyzpPOwVDHfimc7bK2yI kwIrhZfC0wlTdpNMlaPh4oj3QOgUOtLT0I8qZh8phB5tqHTa2k64c/ZSte2lQ/NoZ7EhCsxy FkyyAvEqG4v5fbvZC51HPgkzm5hP8Klpa+EuWm1yLWesicv1woQpHwn+Fm+flLlpo2cs9csf u/0CsOvdl93X3fPBZuAIrfni5RsWYrwsXFc79bxp98xuTOl5qGd4pJc6MPC/JWOevPYtYWIP WrEa3/OONkaACV+zueRNLYIhossqOGhXQxpI/siYIew/7cja033tC1dlklIqwgs1158cSPcq zJP7b3gQ4a/eQFpp1pPSoqu44xvSriyNXWr/zaht6e7NufltJKG9d7leuaq/67NMGi83Vk1V GymXI8TH5hYDgLzQbuq5IRXbtHLDlOI58x9xhiMx2r8DmhuHxN+dEQPYdBu3Nsb4Rtw2FqSa boVMuglLs0kExeBQg2tz/SczjRnMOGqLyDyfbOJAjNpDczPdYjcgWS4VyIuRs1ttVkwJ/7KR +5hGGwmao8FgFPGLy5jjWCHezWERSVMD4szj74tpCdmbqaTih1KUMplcgV0kADDCwwKJv3lc dsmAcFidzVVvse9MwdzfFcHMSh5hUyxv0PzghTVbqJRVuU35zEGFSc0mNxb79u4mXDgFEpIL yGtTTLXPM2IcnwmA1MyWjLudhf9Pap6DanFiSxfe+m2iD3jQPXpH49ttJIOb7WtIU+eDDLkc A9VxfbXL6MXv2QIGCMzqkmzbrCTVzGUd9BOAkq8RRyVfuS2K/e5fb7vn+78Wr/d3T0HKp7cG YS7Q2oel3ODrVIVXPmfI8UOvgYjmI4hAekIfbmFv7/lHGiskO6FEaJCr/74Lnot95ZO6Vpfq IKscIgl7iMdHBlr3bvR/WY/Fj43hKQAUbG/4PibJ0e/GDH349Bm696Xp8x2/b4Zl+JgeqKHA fY4FbvGwf/x3UJAfgX/d+5ogDKopxYlwnvn6YefPYiZ/GNygCpRjHWXpR8JPs4Qe1oSFzxur 40LOlRFB/1kOsMXl2RWvZDjBlD6gkmCikY8nH4iHPFpEdqu+cCU7WGgUhboNayv7rPksnraU 1VI1aZPa01cgy7MMbJRKNTFHr7/d7XcPU8wefkz08D0k2r/+gfcxSD0NiAcR5A9Pu9DMdaAl 0E2bIkAxLkmeJ3FewCVYFaIYhA8YhOmRj8qmLmd8rxP42ODbNWdvr/2uLP4BeGGxO9z/+E8v N08DSUREsZSYSkh7R0sWwv08wpJzxWiyZmHJpPIwKDbhjGGLGyFs6yeOOO2D/ejpEGcI5rNm /juETiUCkPKp4Wodj3esoo4wzCQf9yAJtaVk9s93dIsPenK5mR21VmkQY2lEJ3P0dsr4jlmP +FACJmJ997DD0g3Qdov7l+fD/uXpyb2g//btZQ/TOr589/r45fkaFA1ZF/QF/keHLNj+28vr wRvGM9EDC3t++Pby+HwIxBCLc/3bieBD+/ZjoMvy1UXbvRMaZnr94/Fw/1t6OeH5XWO50dBV +jZi92eMwsvW0BhkluB3KrVEMVPiIUH7e6UGhDiqfclTT6oqZj58ODkdR1gyX1mw2lVlvkpg yt3/LSgn4aZiC8glAWvHU9uJI7jcdreTP9zf7R8Wv+4fH77sgr3bYs03LaP55U9nP89Uws5O fk7X24F0fvkhSTKUJ/MK7mv6PzYysCs4q5yn3g9bu7/VRdZ/H/tzd/92uPv1aWf/cNnCVjMP r4v3C/b17eku8ikZrwph8LnAuMnwI6xo2ktg+IJmgGj4vGDFIMrzH8x2Y2mqeB0/GiKyMRPO ZKPgmoZTh293uuzZefwHe7p7eVwGudOKDSpU7Q5/vOx/R6Q1ca0A/9YsunyELWC5SarWh7dS x0nwl+UMqhllMqAq/GfA+Mv+qa/Ak2NjM3dJ21J1k7V4g42mAk3L4UpCbDKuLZVpw2lqcfg0 f822we5hgzfa4KTD3eK1e0iJf/8krQr1mKizBfoUjgCmuvKLE/Z3m69oHU2GzTYfOzcZMiii 0nT8LF7P/N0lR1yixDPRzNgwnMI0VcWil+fVfxi7tubGbSX9V1TnYSupOtmI1H2rzgMEkhLG vJmAKNovLMej7Lh2Mp6yPefMz180QIoA2KDyMImFblyIaze6+4OcnsUd8wRz6oy1wM9BoJ6i vlwvS1KcpmhDy/A2wMi1BHdJVLSYezpVtx6Wn5+u5tj4A0yWa7eN8oEhubPWWfBjLsd0Afs4 dvN2S9NqBS1HK5b1I+AuepujIucbHECVswfi1HA3GKhd/nm4rgnMbNnz0NPeNG73W3BP/9c/ nn/88fL8D7v0LFpxhu1ccv6t7cVUr7sVCT44OI6IYtJ4E7B3tBHxye6xWE/NrvXk9FpPzi9o Q8ZK3NtFZ/dMP4drcn6ub8/F9Y3JuB7PRqydiq56vkPyGFlY7G939g2TxJkYjalMa9eoH68i 5+DOoLwUxEMZj3JPdSLQfbtQT7xZQB933xk/JhhVF/npPD5Ihft8qz7FdswIJnXJMQFARDCc 2pZsWMylkOssJZyzxAq76jOVxwcl/cqTNfNa6SWzDsb1nVcRpd6zjFPPOVd5oIuEA7vXC9fC cnWSP+WHeU5BIKbEE8ALxH0Vrre4i28aCswPgwvjaD/Is9kQ/SoWmQ4j+nfLDlLk5BAn4sKF aXotW9gFOeOO2TpOG3ZkW7vpkpAcqsjtPAyM294hrT3UlSWKGKSsrvBwFpqbB5L+3e24Q3Ka UuuHId0SQUxTI4T6kVKunC556HbhAVukRYlJe6yMIkeukgngaoa60TThymghKU0t7Vg48uA6 Lc4lwczFLI5j6LCV4b87pLV52v2hMIMYOA+bBi2DE6CrzI6VS/tarjXQIwiwviOp8QlRDoGu vAAcUWumyblOVKAi2rVFGee11rVReq1b6RUHU5bf+YWJrPQIcRpDC7vwPNr+j+r7VfPktPEW lS4AmxIkgCmunKKXTJXp5lklCr/PPBEbG9CtAxtTO2vFPA4QA4/eeVH3TVhFgFzHH1obGWl/ n9pbeAKWH41Ca+uCs4/L+4cTlaxadicOMX4Uq62jKqSEVeTMscUON1Qkqwiur1Ni2oLk1JLi pJ2wp9Y2DUmH8/iiS66u6PLvl+fLLHLtBpClHlVUN6MknlLbMg6JvjmgaeDhoh260DhgaxfY A5pQHHmijeW8w48XRfEcbZLWQ+ig1RtoovrK+OuPy8fr68eX2WfdWSMji8zj+B/LlHtKrN9H yvaCR6YjvE49EVM6HNLa49LpiZ6wpx4J2OAh4rjALZkG0+LMKm8H9kzq0/Ce6lmQb9WNOKyb xvMRWVX7S41EGox7b0FHaekp7q73nDr2AmrxVlAfrRBX3ZxRQtuN1yC2JHLDqDyHpCTeUTyg SepxMcmQyPmOnrB9WwFCgFkZDE6K4zSdWWZCs6uf3cpSON//2hoiXnLHUv9lwM7jj0qYBxAy Lo9gOcILTDxgzVxKtp61qi4FEsxq3IvkhtDQpXTwgP3JC9C8nTduLxxC8E9sgdCpbTeu4bw0 j/wHFS00ELq7fWdbHJDKX5675FlxvQK8fstJI4LpkBxUlKtFVppIxX2KPAwcgAwdRpn6IHCk pq3qSliVKacRBfGKza2zuto2RcW4kXrpNacBX3nl1V4WbmgRSm4TkqYAsWLMR6K812rk7lX7 UOA0J/X6qd2RUbHao/1cz5TKowZqBuXKp4uRklpWeLwJ+AM3wkxRlivccnmaOMpMLnBc9ACA A7k+pfC6wJ6lTDAzYrmKD9ZttP7dMhPHt0vjpWmc7hKzzDxx+twmkDbYcdSjBxHg8ya28ArE RMrz2rkbt6fqY9FaB/J/uYJPwoVSgd/9FAnSia4Lo0a1cl0TuyTMHpLbvqJ556rZSn2bk0M8 9uUp314/Xp9fv5q4BpyMy3HNwgPF9tPs0FWsM6oDXMlPaQo/sHOqYzEhJqkUGzOsHDDwch7J nmXlImzwYNHHiuCnU19KROhujTsc9yynLJ4ug8rVrf2VJtlSB7lh3JZq70eiUV13g86b7USv yq4YDRAkdsGDw4MvJk29dmLGrKjxAFGfRrU7TH1yt6i4eSTbDOdRzEg/9QVRfq9tLCzwAQ3F 4c6bUQ/c6sGK2xNFqzV1Fhtm7P7slKkjHNPrSEAW9GSHXPqWToqjmAIGDAnZVw6Ajk5H79mA Ikh1MPV2I1FNLJyS0P50z17en41dq9/241xu9xyeQ1mk9Ty0hEoSrcKVFLHKAjdOySMre4B9 Fb+B22ct4fjCKY/ysCw8YuMB/CEofkcmWJKpMcGrpHy3CPlyHiC9KDf0tOCAfwF+Z8wB5j7K AyLF1WpSRny3nYcEtUwynoa7+Xxh3QiptBALAek7XEiW1coKg+hJ+2Ow2UzlVQ3azS0l45jR 9WKF29MjHqy3OKlUwZSo28qJ77s7kDbhZLfc2o317auWt4arbw6nIdyiV4JjdkIa2rYD/VvO NlklqdowUN2mjfaxFC8yw0mlH2uVLveS0Lgu6xLd6KkuWSoT6+1mZX5jR9ktaIOFBHdkqbe1 292xjLk1IHS/Ceajqaofp7j8fHqfsW/vH28//lKwxZ3r2sfb07d3+JLZ15dvUueWS/blO/xp ihkCHI0mZgcs5U5UGqYw3PUSkK5Ln4UHvMcyj7/0ldp6Nr2BQTQ4R63l9TpDnI/Yt4/L11nG 6Oy/Zm+Xr+rxOMfvaGAB4UvrIj2NU6m1jZNrediOU4eCjuCj5CNScHVBqvHyv36/gvjwD/kF s2wIJ/qFFjz71VWsoH3X4oY5R4+ey70mVVFaXiJJTr2c71xcW2w+LbaYrOC6Xl3vsX77USCf 1uM20fUxlvLr5en9Itmlcvn6rKa88qf5/eXzBf7998fPD/C3mX25fP3++8u3P19nr99msgB9 62SKpFHcNlKwcB/SAYsiy1hu4tlCohQmLGctABXpl//oSAcqxx9zANLBOht1Sks8jk8DucSX lFEp9VzZ9UJhnN4xH25ZX0Q0FuxUMsDg7guAPAUsaO75bNlKz43YwKPi4fCeUSjL8sg2X0xQ UUtVQdvhThEG9PnLy3eZu1/ev//x43//fPnpDvEIVOUq8iOIUVchPIvWy2lBXpYtFZWx7iOn tNE40+lxVETXtMlqwC69DnFom6sc+ggBmpMsJKZrn1pz5UlZsGoW0zxZtFneKkcw1kwrJ6p/ p0sRFUscSPhxMXy1Cqc/HFgWf4MFdxG0WHCvh57lWIrFeprlk4LPmNbrOA3CG2NZMjbdLUxs gw0uoxksYTA91IpluqKcbzfLYLrryoiGczn1ADHk7zHm8Xm6i+rz3fQ2xxnLyGF6G+JMjumN LuAp3c3jG6MqqkwK6JMsNSPbkDY31o2g2zWd2/qG2jaKjy+XN9+uopXO14/L/8z+Aink9c+Z ZJdH5NPX99cZBLi8vMnz8vvl+eXpa48F/MerLP/709vTX5cPx3m5b81Snf8+oNl+v1g2zXhn jQQNw80W21iPYr1azzEVoee4j9YrrNBTJrtnE3pOHeeFqE7I4qw3OY2keoUIbMWcVIRFKpDM OPeBy/7lwCZCSmdDdlKzazCVQ3BOMtXKrnkas/EXKav/3z9nH0/fL/+c0eg3qRj8io0Q9zyq daw02fNeVUcuuIfhWjwaZtIXbjjzXdPo0fnUq5rspMu/4XJeOBiGHGIbDgfcj0SRORhACaBi Wt0nel3n3RlgDpGb4yFtE4omM/VfjMIh9rZLt1sMFCkHy/95G12VaJlpcda2JkvbB4qgmPeH pikkLfXw0qgptDnsF5oNvw3pmZa3mPZ5E07w7ONwgtjNn8W5lTteo9aVv6ZjyXGpV1FlGTvf ttkzOD1v0wl1cDQd8pEEq3CifMWwxM9SzUDo9AcSRjeTnwAMuxsMO5/MpbeaerIPsvqUTYx1 VAqp4mN+Erp2cI/lD+PZRiqacdw+oRe/bFTosV9IvUltt/Ko9zl5XHm0kjXNM/39UjK7xRBO MvCMVKK8n+jEU8KPdHKaC+a5sNcL7sTl1ufRBbr7jrL2rjm5AXkMx7r9uafk7kRrFsEumGh9 7FNN9WZ6UkjAOmzON40OkX0F3++3KHiOytAZ93JarRbOfaHK67mX0EQACMLvPno6CVBYHX2i Q510OV+T8XYvPDqJpj5kMuNW7noTWwYrsZNVke7VJACE5VHFHSkIt7is2TGRdmoiAP3G1p+W qN3A+LxlsB61LqKL3ernxB4GGXcb/CJe9zkvFxOddo42wQ674dXVu9gxWtLKbuzNZbZ15G1n VSbT3antSBNn7TFOOStkGR6UXEsO6CLPJhYq7uCoaAWP9Kz3gZMIay6DZSzXUpgHabp7Am64 8DFcECTJDTmHyy5AW4uwshSxVD4JWpA1gkL/8/LxRfJ/+40nyezb08fLvy+zF3hz78+nZ+uu WhVCjtQzd3vq9V7Hzyb7iQZr37Gvvw5QBqcr4ywN8fmsqAlmi88iTH/JsD7bOw45+rcLvtSl dmI2Hy+Eq06GgQ53hj070lDQrGUObCOkAW6N6QoBaWWnIF2rg0RwbcEeawXLIri5jMyPndDb p14LS04ce0caHJBnwWK3nP2SSN32LP/9il2zJayKvf55PVGuAo5F8GWEshzQV7t7cBNHlVCA qssK+aF7YbhzSkWw82UxmBmzGMZG4EK9PY80QZlEDdvS/Ulq3A4umHKt9cRTtCI2jfR9ShcU YzyVbpU2sFTFKY+qYo8e6g6rA6BnUwErs45h6E+ljwfcovYktTFEZE+Dd7/ZREgSHgjIuklR f3eZh8fUqhk00MIEhxrS+gf/LJrt3az8kwv1gnguKvmHPSjihLVCpra1mgGV1L1bs/Ja+yf0 v7R3guPOn6cZ/p5MRR1OnSIlBdR03VPnqwDJVBH87q0jU0/P9+Qi281//vTX2jFYb952FTO5 64xSJX84n4dzL8GNmXfJpWcHd/nQWFyIsRlWv7G9Z3ptejb/zNXfLZqcosTTJgE4wX4abFna D9bL8ij/4yXKUw8AHb10FonNJvTY/YGBZHvCOYk8XmnAciwq9ugDuoI6cPFGfR5g5s/n/nAn DywskOS6LcZ+aMoFd7CDO8AR0cv7x9vLHz/AQsw1rAN5e/7y8nF5hudSxl7qMWC7WYFEmeWN DhOqjuVGWLULau6GcWq8j7egq8CI4unQBmTqZomlbneW41JR+fQP8VAeC3SHMNpFIlKK2Dbn 6ySF9Zkw9Alps4BD7LzFLIJF4IvQ7jOlhFZMVmJrgCmjBeqcbWUVsfsEWexosz1B+yUIHqND QjLyaJdkEXEtwWSRx28uPPPX5Kt8x3HPANOocHaU1LfqUlw9AYJvOaSBx73e8waG2baTFPT9 n0hJFPtQ0IxStGyBPnNhc1EHo3CPviVn5KGkZqcMHd9O17LcZjr1S+B9eCXjRqArGRfyB3KN Sfpmy1hVnewALL7d/cRuH6xcnFpf45n2ZhZ4FDm3zkPatDElHpc7mXW6wMjeKjR0gBOuiuTq rCFDRWmIO1pyKWC6sHrj8gAWOrajYOLwZtvjR3hMBp0qcUMseY2HHiW+bg432pacPjHBT6Od O8nqT8G2Qas/2rDQpQ8V2sxyIucYuyozePoIqmHC4DdcsQ0brX7G7u/2eDaf9WIHC+hM/qw9 KAXNATPuQbId4A4JEP6Jl7Kc3+h3tg1XdmTUp+xGloxUdZzaLyXWWeQZ+gxEddLuPdcIdx7r Mr97wHdysyGyFSQvbm7G4C2ABo6ZPA+VpX/D72DuaVwSkzS/cVbnRB6gNv5pl4Q3l28XW9Q5 1Swzhteiiyz2nL7bxe5WCTWLbMwpBQoYxbhX9JCxuHPg6I6tnHjopwDGrG+D7ZCI4vzA7Cd3 jlKskPsMWuBDDKE6iVd97pqoL3bNQu9TsvCZjO5T6rvMv0894y4ra+K89eZDQ7PNFp5ICiEJ w35wL3/KfZlYza6ym5uyVF6klGYdDttgsfOoS0ASBb4+q22wxsHArOryGDfMmkyR/RXr+fLG bKwgoHx0DdMROcnkseaFoLiyxSgWqMnBnKsPTnfhfIHp9FYu23TA+M5zvEhScGvdqTdiE/nP mvTcdyeegOlCThV/2HZfbuZ5Ss+qm7Iij5sbU4oL5VVl2NZFpm7ozCuVLg1z+YvOQJlyxesz o7YqsyWn3N4ayvIhiwnuJA1zxBMJRCHc3nMPkLPTdCNEfDwJ+0pWpdzIZecAtFp+lgoDvp8I 30t8Ron1bU3pzB6dDQPjalh1U5XgD3lRahv1dVRp26QHZ4caUr0XQ0kU4QQpTKJOqwreYW/L VCBVjJ5cUYnWAz86hYk9yQ9O6qG0Hnw7PlhvkfOzTBl+pnEE7pLwqECrCTpKh7GZ/DmOuh80 Qnjc6Ihdf/fabmtVRMR2vmi6tEEapxl4OLglmfTtZkwfqPqIdb6xVyLtFlAmdUanVZ3aYydG UlMccg8zoAR5JfS2VdGXW09bFXW9sWtKGKD8WkmMlumJO2kqrKE5kwe3TSlY2EUwDwLqqTdt hJupk2Y9GXqqFAVHGZVU6cun3nc7AnjfOFcBUqAno36ahKRuvvuJPJ0wYHdTd2Q7ifLANVrV rwJ5iLj1cSH1lwZTUOFySM4zRp2yayZiDs9dmokNkzps0x7kEgqrg2XDKcvS+gHvsLtP/UBy FMO7aZhOAlSNmGQXlJVl7KRA6J+rTUtC4bvmBZqvyt5tzmqlemBaCGx4eGqqzzw9WpmBqnBA K+g9j40deJTvjJ+sjD/wl+VkqzYpCKr57f3l82V24vuriyRwXS6fL59VlAdQeiAZ8vnp+8fl DTMFnp0TS9HOLxlpZmA+/Hp5f5/t316fPv8Bz/UMkY06MOybQnI1G/HxOoMIFF0CEJDN9XwD e2lsWDRoCTzHY+ncddbI6YtfVXW3EC3qrqutkpwZ4jvjkSWqwG+pdHvCuYBIfbEnihpVdXtg B8JR+T/rqjN/thEv3aQ0KNjVReAvSJp9eXr7/J+nN/Tw0pmOCfUd5VcGtYwmWEidJRUTjxMs CtY9IZ5HhHX/yb/z2CP7apbzeu2BKdZ0OVSffBJRnY0mMPv2/ceH18OZ5eXJQk2UPxWoj5uW JPCEGwCluBSwcerAeytZv/p4Zz9ipygZkXJI01FUG0/vl7evsKiuPh3WIHbZwJTuYB5ZDJ+K B6QdcY0mag8Io4d8GE06w138sC8shOs+pSXmQ09GaglhJz7K1nJ8d2g75BMHFnG3x5pxL4WD DVbfvQiD9RytLupgzar1djVVZ3qn6xyXACIoOhUtDjVH0AuEK5ugZL00X582KdtlsEUoeiIh hDTbLsIF2mAgLfAN0ii32SxWk6OQmY/UDallFYQBWm8enwVqeLtyAEQd+H1wND9yYzDq6SKN EsaP3YvESPu4KM5ECpd4Daf8zoNlMIxFFraiONGjTJlqSuOZpCAftra9wFjcUysb4GwNX6M+ pSVSniwsZ6aBtMBm3ECOGJqNFvsKszBdGQ5JeIfmPFSo1cOityYUz0A5wUu+mfkw05WmXvYl VKBVchbFZ5bjz31cuURm7lFDyep+1EtoQ/uZ6Sv5TKqKoQ6EVxaIrEpTE8ZuaDI84VNUex9p T+z794EqFTj8SbzhQ88skj/Q7I/HOD+eJkeW8JVUsJCGwdHiwCVdaU1JUPBeNXMVaK41dDpF gR3Ij6UegGaTi5VSAbrFdSS5lCXxG0WD7W4vf9xiKmMppZ0wMbFj4nHFpBp3JlK2N+FB9SfD /sCl/hgbo28kQmxTGVcdANNQv8Gx3ZbZdj3HrBAmG4k2283OV4imAjDBrWJEBlgCjfCWdJIn GGsow11aTNb9KZQ6+uJGjfRhS0V2CII53kP0QQhejrwAEZbbX6cZl3+jsOXfKC0iu/liibca XOLKqvBVciRZyY+484jJF8eC4RXAU+ek6Wafr5q4oQtfoLPJ16lDNxpzKIrIFDGsD5J7r/mc qkmTCrmcCI2vkXzNHzZr3OPAqv6UP97srzuRhEG48XaI7yLWZsJie0wOtdjbM/jC45+sGRwc EJNBilVBsEX9DS02KnfhuWdlZBkPAs/8k6s4IRyg530M6odnwPK4Yd65m91tAsxb2ZoOgpbe LS/Oe+RBrPPhwU+xauZrnK7+rgCczdc+9feZ3R5nAVEWi8WqaYXHuGJyn+g+WKL+AdbHqa3R Mykioa51LSQ9i0HK44FngZ2z3aaZoM1XfloQ+vpKUXENwPp2eRDC1VXBGXpBZ0/ZYLHZLiZH h4nw5rkgx0Ttbt55KBnC+dyDVDXi29yoDt5g8J7BnKWxTzix2PjfODa4CELzISCbliWmtmLR mu165VnNouTr1Xzj3WMfY7EOw9sD/aiE3VtdVRwzfbjbeuX/U3ZtzW3jSvqv+PFM1ZkdkRQl aqvyQJGUjJggGYK6OC8qj6OZca1jpexkz8y/XzRAUrh009mHXNRf4w4CDaAv/emFCawHWs78 fVcRnR6zQcEx7RgFbWaGkuhAGaeMSQ/z3j+Ty2/Ktz0ldCnRzKPMXUocD/cnt8P9G/utvnEN rO2qIW4mHQ7188SS2Tx0ifJv20+XJmddEmbLwPFsBkiTsUZgy7aGS7aWsJud5eZbk3qlUYRZ krhtvK8TtBnGra9ChLUy7RSE1HGb8sJu7kA5VSKOE4ReWq6sR3LBd8HsDhc2RqYNTxCnEtlf D68Pj3Bf7jny6zrzfcT0ntZbSKigLKV68hEm58CA0dwI9bcHlPtKhmBkOTNfRiHG1yo5NZ1t jdxHcAcy/s6gjzSEudv1hrX+XFNaTqct4XxQB6gXrMI8kI63NlaHmtRTkbblvd8RebHnBbd+ 32mCdnpwfgVnHp6Get9SlWlmBjzugSSMZyhRFtC0oCha5MrjkDWuJp8VG8wENnCXcYdjXvOs HE0/4ibgaWmaOaLOFgwGrrbuNZ5z1Z7At7n4MMfQVgpzjBdTLMWxK6q8yKnq8bSCgAgtEXTC ZFWOg0m/l/YQdUXW/RRrS/lUMAdMYKqFVoEHqn1tFyYJaoxrMJWNICYRZ3TP1UffkUt1efkV UElR8149wfkeXXQ2MGwls8PuOdAwIekGjJzjVAkcDttm0iAas90t/6PA9Fh6UGRZdfQ/Lk2e yFRkwYKJJeUfQjPJCb0u2jydanO/FX7s0m0fUcHNxeF4vxv7BHaABh+D46P6WryvzWRap7tc RUAMglhKwFTtqJq57KAKSkQ4GDJsM7/WcvunljPA5HzRLQm8AtuGklckKL9G+cGgHXWFyJJh tfscRDEyZmD7S0Ut7g0NpzqLNZzBBWReorezcrceTT+vmlIDUUekZbXj8tpjc2J/XIGU5xh5 W1geG6/A3tYRNgHXUH/Y2ffakfVVAahDnYm30WphiWAQ/olllNvhurpvfN+kvX3/Iy15gTqG ergz36DAFh0CIM2tq5MrdW4FA27DuXGuZs0QBONK4wcpn5tJIH6wq3GWJcto8bdDreQh1qao QIxKj8HIPz1qerEXH8J4YQxIgyoIyPm1VRHSxxDGg3SVyT8Nx4Zak69yGHAyfJr3GJzM9IXw u1zYUz7CVu32dWeKWQBWInMr5hVqYENRbpqsxU6KgOxl0+Gi/XjvdJSsleii6HNjOip2Ee8W rygzsPXHtN2KvRsl4MjK8t5ZTvRDuzz1+hoI5s0QOIxQvVZLSXPLzG4DqnpElJ1h3Y8AoGMN Y68wAErpydYBkES+Ow6CMv/x/P3p2/P5b/CfJ6uY/fX0DdMP6pPRb94DQ9ll82iGeXAeOJos XcXzwG3GFcLMowcO2TNeW068PGZNmbs59sFDIC4GkaPgRsxtaH76/Ofl9en7X1/frEFS4Y/X rLOLBmKTbTBiamY63hGAg+Q3N377jayEpNNB3K02KRekhC/OEV/gFz8jTrgwVTjPlzERvVTD SRDgx2m1LiSEtxgFCiIAnQY5EZRZguDQE7/4U6uMusQiopvDKIMjyxXdZxJfEB5Qe3i1wIVH gCk97h6T65C3FijvvsQAi4wjPrth8fjn7fv5683vEA5FJ735F/izfP7n5vz19/MXUPj7ref6 VZ4HwBPmL/YszuRsH7Ynq9C8EGxbaR9aU85hXF5CrwzYim04owe04MUeE/YAwyqobo90SGFW ffTivhicdwXXS4FBqwfVEnNKZSlq7aCwYzrZNsG4PGmSsNaN9Qax+FtKNC/ydCZ5ftMf/UOv kEnMhT7kzKmES0OivV0KWiX78eajd4U6FmHMF3syQAdo3xDmDNE6KljYcC0EpRlqvQidUlpC 00jqPff7Uw4i5NDBJUYWWFDfYaHEd4HaI9hBjG6F/cPaZ/UVr2DGwjwqvSry8xNEFLh27K3y aZVaesvWVZz8qSuNidpd07PrraERQwG+5AD5SEEYwnPdOTKhAZUQPxlF+o9sLOhPCDz28P3y 6u9QXSOrcXn8H6QSssJBnCSnrHeGZGoDa3OFG9BsJKMQ91rCcsrKT+HLE7ipl9+HKu3tv6hy 4GBqtMnG7vaGMCzLyLq2tAha9jEY5P+Mq8fep54H6ImGZQgE+xw2EHnWhJGYJT4ijkFsP5AP yDq979qU4RL4wCSPAm17v2eEG+gxLykCd4S67ZhVWlV1VaZ3RAi4ga3I01YulbgqzsCVF5U8 57xX5LbgrGLvFlkWBybWuxZX6xl7cle1TBQqAAp2wSynuWU0ozYSO3hWzwP3hr1B/PWsq0bd lXnNrAY/sybNc6ivqEqxcnYVvM9fL6//3Hx9+PZNbtyqCGQX0NXleYNvpQrOD2mDqzUpGG6J aXSc8FPbvuJkhPCmwPK+Ok6NwYmvk4VYHt0+KarPWnvDota9Hyy7jP0xiWNvV23kivRr34vw Buf0pJnBZhkkydHLl3XJkm4ZJbMOYBSgzl0UfGAVOC9zmncQwSKbJ+YJQVX6/Pc3uVj61b7q TCNUO9CeMdFmGDX0W9/T3Vtzk0WdyiI/aU+fTrpJ4qWftGtYFibBzBtOvsl/ojfCmZdjqtwq 4aK4Yljnq3gZ8AOmQ6+/o3Q1i2On21xxUs/2JlrNI4eon+STBdJWCawC/IBhcuAnGMVBK6Po KeUokgzE1Wo+bvJSnvU61ltnyMOd7sIuIW7R9VQqT6ye+FqaqU8JIlkxMOwM8NPnwFRoLsKx pOJq8ywK0a/yEAzdEfz6n6f+RM4f3lwX/4dgiDUOavY1ntUYjlyE88R47zaR4MAxwJS++pqI 5wcr+I5k1uIzOEOyM9F0Yb1/jmSojakbZAOW5YUDgblhDj4I8dZeWYOIzgW7+LE4QjJxMsOP 6FZy1Lrf5qBrF0XygIOf22w+LK6jybFczPAeXiYkEJDtLgilJpspwDeppj7AHdcejROqMHn0 NV2yGUT4u7NeVDQodk1T3uNU179qA8bGgFvrXi9VpHkmJdpOTnnMYkKvWifX7WVP9jJVsXUV FcmrL2XUnjYTDpgeuInE7gBa9ICghz591N3zqiDW2DjBiRFM0yVqPhJUqUcc8ll/CsGinATs m2UXvM0/0WDenXZyUGVvg0kd0mjQgjafWfrKS3oQY51H0EEjdmk9zThIiHWgwvDFfaiIMQUc REoj8WwRRT4is01WdljJASqbZBli2oQmgymeDXT3HutalhpY9Gse8+yyaBFTXtnGOgfzeDlV NRDulosV1eDVEqufnAjzIMb3eYsH9Y1icoTx0i8ZgGUUo0AsBwGrkuDraI6vf8PE2Ka7bQH9 Fq7m2B4x8vXKRdjkart4FmF6qkM92m41j61H5NsD7nRW7dqpcVPQE+DmU2ZVgToWLGX1ZgMx 51I5s8UH48l+YD+0TNmdgPuKBrVK6Rn7UDqyfRDYpmjk4UPYNg8I4yZlrVawwV/8kCQqLLuy VfrpJP0WVZZ15vpe99LRtUIYJ9sJDOA3RP31bpk/2az/b3PAM5/SAsRvMJXHC5VfVqYc9/Gk mUSdyZVZDBnjTwqSNZrPjnCf9vrVUn8zcwMWLB+3WtntJJe5x0/xHdIuu81rNGIR2FvVQrC1 pbIh1tYPOSyt6SxWpcrYba3EAST1gFrX15K8nkfqmLFuWY66LdRpQQXBzdzK58pC5CHkCWUy h4EBv7WWDNQVscJ02FHZEqVNRZVhs9ElaTbijmud8RTpZCDbv066vRBdAOUecWvdHQGBOpZT +LUdXtKh7uCuKONo1E6TzdLL0EhhmMKrp/A/frw8wjW07xNoEMs2uafWrmhejEQDTEW0NHXP G64+HO8mQ/GmXZgs/WDGFpOsfbyaHTExSMHDXYeX+bEJZ0fCaEE1wzdSNsjvJ/QVDlRbldB4 dHNVNy7hRKbjlYyXbIG9Ho6gIfD0NEsEBRqYrVgStEG0pefbDl7iBMss8RCokq0hYjZCbnod /bRL27vxERNlLpuMvF4FjHw3H7cG6OSfYJGj0x1+lhHWdcIpyNg4UGE9ucFqKT7SDYlk+5hW n+U3XOfoMgQc402clU4J++jF2BWN7UH2zwdq6Htp2qMOArRVrKInc0xW7GEpyS6RVMkqpBYJ RCS/khOy53i3iFbYIUCBRbUJgzXP7Ga1RbezKf7RaKDYPj5Gqr2a9veT6MpIX8cpVMncXpos 7uKE6l4B64ylXqyobL5cHDGAx6bd5kjyTmgKubtP5ESglhdwqXXNKl0fY6TV6ToKZv4KbmZz LzJTwQtolnmi1emAunfOmmafPPtcSr5zW9WkJUfdfMLVczCLbUMydZMdoKaPV7szs0zk6vtK J0K/DgzJfDnBwFQjI8Kt0FBGsqCm13D5jlR4Zdp+mVRXA7DH5DITEVbLh3I+iya2bMkATlOn ZsShDMJlhMzekkex/4Hg+uo2C6c8N0vQe0wzhQT9lGJXoyfaW6MWfObLMpy7FTzwOJgRrpx6 mHgS0TAshVRXAZj4BSb4C0kPWg8kVxo22IDEswm5ZHxa6WltsYVznmVwOJDcC9MroP0i7uuy S7e2meTIAmrZO2U3UYkdR28+r8xwhlVH2JEdK7Xf/pYYlmZdkixiFMrjyO50A6vkP/jp1WDq J1CZ1/hX5LNKQQQunScb7YrWV8QUgv1B8QRSG0M/DptlEZHJQ2JqO0zv9cMmreSZ4p2qOOrm I52JchXN0LGU0CJcBilef7ngLIgF12CS29ESu2dzWEKsfHWleqQQW+C3sQR7mTFYuizSAWFQ aLFcYJAh+iHFAio3mHf6A6S0xRz3t+1woU8QNs8K/zwVFKNdehUeMci5BDaw/sBjbzs2ro37 UUhKsygkRVL8mzTETKR7ms3usxuTAWPbJ8nsnV5UPOZbjgOtUEh5bbf1A6+gL6leMRHyJkW9 e9g8IgiIDGKeLBfYjnflkTJIHCwitMsxOc5Gw2jxXsdqeS3ExG6XaTlREoiC72cR0A2xBTYP C/Gi9X7+ThP1zo3VLvPEeEniKbb7lKzNHMa8yOpcbr94ztegh2aaVEq3LTg+Q52/tafCjqQg KYxTN8nwPRbgZ5VAlVEnQ5Wm26tpspmit92hMmwLsDUkDAnA6TyEYftMRMNj7aAb5VbKqvO2 bptyt51q1naXEko/Eu06mRRttOz9IdjmdaJBtQf3Si5JW/Rz1llOiQE2vb/wImepeijXZkHX e8Wv5y9PDzePl9czZl2j02UpB/vMPjkuGytG7ffv1O1/gjdnW9ZB/X+GuU1Bt+Z9PpG3P8GV QdA0n6vn2bO8AHWuvSsga0ALx5xVsPKm1dZxmNbBVbPWLPfeQrjqa8whrqoWpESqpf0G6LE5 f7nhPPsNrukHHf1R71vn/vDy+PT8/PD6z9UY4/uPF/nvv2VmL28X+M9T+Ch/fXv6980fr5eX 7+eXL2+/DLlkP96+X74+vZ1v8v36ZjPgA9xdLs9voB795fy/5+fLt5uX83+uuQxc29eHb389 Pb5hUyrdYivXfitnj+l+sCcok8RtsxMfAsMaEUBxYB3oG9fYvVzuRIpo+SlvTunuOFwD42l6 vVruJ+7p8qMrN6DvQaS/46K37rq2ZKBv1ii0WYOh7/geh4H1Xn5+8Kz3QcogJgyhV09y7uQQ YVKFmreTX60v4Mh4fnm8fDm/3lxeb/46P3+T/wNTHOMJAZJo27zlbLZw+0AbmJTBAtulBgaw eO/kGWJl67MCLL9hyscywCnP5Thj74c3/0p/fHm63GSX5vXyeH6Tk/gXCET9x9OfP14f4FFk mHcQDLB8+v0Vpv/r5cf3pxfbZ7EcfIHfWEMNqnq3L9IdibNVgJ14VEdvC2/O7Plhu8G3fYC3 PI0JiRLgXY6/WqquIh7oAOPbdBtO5KtD2p0+yQlH8nw60mWv6+wWN2pRbdZ26c5AGgxNqs13 hjie354f/rlpHl7Oz8481G+h9nRWia+IlQcbnFTfrF+fvvx5drLTOxM7yv8cl8nRm5y3TDD5 15rjjxDA0rHqPm8xe3j1KSpXNm62XT4xA9ogxG/P+3Gc6GUaE+k+Rd+Qrx1Yt2Bpo1ab06cd a++EW22wOtDW2t73uHl9+Hq++f3HH3/I9SN3reA3xgo+LElqgTLI61PGwcd1YdGqumMbq/8k Mc+xiy4JrOsaQsgIU6Yx8pd/Nqws2yLzgaxu7mWtUg9g4B53XbLOqQRgrVyFG7nxl+LEqtP6 HpWMJZ+4F3jJAKAlA0CVLIUIkDlOEOld/txVUupvCrjyLPAJAO2WZwW2raSMLkUK7OV5qGXd CKsiebEpWik8n8xbG7VnZbt16tRMyB0YjKiISvAUXswKfJ2A4ZPiLWU7CMkhsoTeK+06dqxU /dRp51L+hJyKOgBDqRY/qlYNx6+FIeH9umhDyoOpZEgJ9V2A5KYphwJfstW8Ex0Jyn4OsDMr QIWwp1I1N+82YOi2NgPqzBxGM8gDMmwdZKxi+FFoy/YkxpZzssvKIpnFS3wFVHPIVXC3CqWF Cejy7p5aWzVKQYKI0rFG1lULJRxYwDDRPVcVtfzyGTlz7u5b/KFEYhG1s0CRdZ3XxGU2wF2y IFwwwjcmt9eCnq0pYWqnvh8y0yxt5YmJ7D7lFoZYq+w3UphTayk8Hbt5bJoSQSaIAqXqf/VS Qaw0WHxLoK9lF6FaLLB6QXwrcVsU9hIPDqnvgpX5fm9QZ04JAx27mlMTijelWyvBl4Qtzrig nsosnzwBywVFdHh0o9tc3S/qNfMiz4rPch3txSu9nvqWtnASyzxngFIUkrKFqDcduLWpy9K+ z8Bx2ebPxYfF3KorxgfbAhMdWAsXldJBXd8Pep3Yu1iOVDHfcY557zPJ8t9yxyvxIZnheFsf wE3OOGxtyuU5cSP3UT9nBBz8wjWtFADa+2netu6G8+HYP1KixQ6/ot6Ztn3q56kWwvV8ZtFP 4EWwTM1YQ8LKpcpdHz9AajLuEU5FmftEVmQr00Em0HOe6sCsfj63h9z0OQkkUXzyQvMBvU0P nOXMJn60ZtxA6V3DWnpgQvcCnMDNzgUylyJfe3JC3Vsc0DIHd1Ck08AnO+gyqUskYWNw3wEO osSHKLQar7/pk1zkTmnjNFYKitlpI9zq74t2XUOANAlv6DZc2VjVEeG+odaU6idkoe3HvNE9 ia2cx94w7iAWfYuMLnxeBDd0s58CBl6HVsExKoUebAeSW4Wfhje7+SxwPeHBnGnK6GQHd9TU OUpVvFAMzu8jabZanuDyPnPHtQ8/RozFQX7RXgW032xueRZV5MSO56WJwcKnapccVj3SnDoD aDRIggUW2mNA54mXYynw0OcK/NwFC/PhuCeGkRmiaCSacZ6AmHGWRKFXpCJHVJmZmMvsnYyA 5pRYiGCReHlLKmWYqjo6W8zI1m53Qq7HQpj2+j29OHZtwQuPLtcOZ8wgSo3jM84kn0S3duv8 Mf38GT1yDPNYpKE7hTu2Co/EkA6o7kkyX8kUObXnzAoOrKerP1VdSnooEJL/falpnnmTX2Rp U7iNgM7aSEkRVayHqqpVmFVVmpVeYgX2Y0luFMz/uIIkwd/t+y8losJDa3hOHVc1zuI5Ycel cMFuCeVZBXeMHfEntCuszvGEm0Vg2iUJoY4ywOE0TPjGUvABF5T71SGKiOMh4GuIjkCiWToL ZrjWRb+cUOrEaqIf77cFfm4dlpaEHhUJLybWE6XqT/eJtgRIdzmhfqd4uuOGrn2etmU6MShS lJuCy/R+MrnOHrc5HrOnYZ09jXPKDYNebGisyG7rCDfV0stpzghXUFd4os81Q/7x3RzokR+y oDmm/M0bOCyT7/FMFFKJICK0Zq/4RCVEsIroDxPgBQ173vIt9FZKNJMgvVLJE0dAnbxHfGLi KVOD5Ej3y8BAV+GubrdBOFGHsi7pCVweF/PFnLiP1aeOQnRtjd/f9CchMhiwhCseEs4Z9e52 vMWVKdTxjcnNPycMwQDnRUS3W6IrumSFxnRqURAOFBXIxHIW0FuwqCuW7dl6ol+nLtPUuYml STixovf4OzupuuKqBb3C7I9hSHfCPd84W5b2I5f/qt5dzTt0/a2kesISsgzgDUQIL+vMv9PR 80F5U8aTi9oReMH0R52FtEtUBxmsPd2rBGeklIdQMAiizhYq3Jwu2zn1jl4lWeh7zxWX7Ea/ TkNM683r+fz2+PB8vsma3agNkV2+fr28GKyXb/Bo/YYk+W/DoXRfb3AinooW6RRAROoecQdA UECTM/dE3kMFmhvjUrTf5ZZ/OrVoheJ0yxZhAArp3t2DTkndFyhUG3YJCE7YlPIM712/AJZ2 NbzOblg4ugIj7bUm0kx8xGNN7u5d328oH0+Vmz89/B1/eny9nP+PsSfZbhzX9Vdy7qp70bet ycOiF9RgW2VNJdGOnY1OOuVO+dxMN3HOq3pf/wBSkkkKdL1VYgCkOIAgSGJ4Oj6c319f0OQF QCCu0G/0Xkz2ONtBV9ueL6sVM8fubt/ymEw20DcCo93i/9XlshYvCYicIuri6S8STFzMtu2W pxmxtBDnzCaODbO3YqZXMLqjhoqdTSYugdn4gZptSoFPHY+G+2Q9gad7Ag2YLAqmpHFpTxHi /bN5FgV41HhBpudj1VHXKpUURM8kIqBr9d3Mv7Kf9TSBY/ES0amIcZII81TdI2bEiCNiam3u FXVwIPn/NHa/N8/+FwTNU4D0HG9CI/wF3eDAy64coUS0g7QERYyyBOop8CHFtuCSZuZQk540 89E1Vg93iZ5LuOkkNOyKPJ+ST0sXUVaUbb3xJh65JHK2X8wDS/gnjWjh0uFPNCJvZtcsByKL FfhA0+TzhTNtb6O4s+a50j2VuDM0pboJqoIznV8bJ6SYLfbj8e8QNOchcj61lAKEbdoADUww Z9ZUdAph4Lg/frFs6mwqLy9H5WseBI6PewhoVWnGU8pSRCGeUqyJcGv109nMFua4I2pWPNNz ig6YdJWz8bW0gqGHfcDWCfxDFq+XrbgAoS/WBQ3qR9ea3eTulNqoOoSlaU3uw5gQCM48l+AU hAcTsoE8BbXPdvuPFJw1bkDJdo65tOlNEFGzK0f7gca1XVh3FLD5EuKNL9nCSAs9oLKd505Y GrneL/h5oPQc3YJvTODubYmTx7R0VY3HXHd2TR3kjdx+xr29zeeBQ04eYiy2FxrJdcmLJPPr 4hJIZs41yYYE1MaCcPPFY4ATDIxw30IfEItbwAktAuEzQsoAfD4hOErC6dWGzjQT+huLKd2m xZRU4xAzowyeNQJ6GGEHHcPvxGFqMa1cYn0WbDsPfJJxil9clw807rXW8oqB0jwxX3CktYl4 dyYPAxe0jtjPzQk7FHyN94TKolDO7vJeIY3Hh6K1nlgOfl5CE/IaTvacttsGwprdEj3eEjV2 dwXjQ/zb8QGz02HLCMNBLMp8nujBTlRkVG/35scEsF0ubc0WeajoWy+BbbaUiBeoLd6uXAZY DFaSbdJCh8lo7CYshV8Hs7FVXcbpJrGk4RQFhY+KpUXRoaploiqtDEzNqhRh0C3lEnSLWJrF kiwx0nOpyDtopt6nVZKHqcqaArjUXUAQBiVF+mBL1ZtDotdxyzJeVka9h3pkh4PwNGKkCZvA caPiLyysmVkDv02LNWmyK9teNCksg9KY5Czq45GqwCQ2AUW5Kw1YCXpxEq3NdvRw/FHRV+YD iYW9EV9v8zBLKha7BpVCs1r4E8kACvB2naCdtQrGZglLybzc6kH1JOawzAzHDhWdYgiocsmN +kp8BTd5CRMHp31Geu0rhSXmEOLKmidUdGKxtFiBUeiystbkkQKmx0eUTeDgcihGsqWCRZxF sa1UBnXXeDnd6J0ThmZ7Hdaw1HCxlNC82RbUCUtgqyRBC/5xMY5TBzI2sckuqLXKtka7ai3v CS4yTO/NGj0n4AC0j1eTs5p/KQ/6J1ToiK14aq4LWPJNYi4gvobFNxIofF1vGy5tn6zMgbkv b9uqoe6ChJRJU3S11b+3T4u8ND93l9QldsL6qbtDDNsOGfdTDI/IPd6ut+Fo4iQmgt6go7n4 Zdt9sksmGJFEjNrORZYz1etj24RtuY7SFq33QZeQ7gk6fuTKgUCRnHzNmnYdaevH8L1VSkhb CtE+JBIpZy+7+gCvvv/8OD3Arp/d/6QzHYnK1rSteFFWAr+PknRHUiBWpoewZQHibL0rzY7o 5Vm8SujXI36oLJmesCBsAPj2RL9ZI8E2E0d/umHbW2pscy1YVx61YZdcxwT1do3zYQHigVs3 oENi9KPsZ0p6tUrH1jVmnIsuGefiUajDPBp8c4dGI7CJ1xF15YC427CJTXqeLoHbLYHyAN+b lFsJmhj0yXJtZLXWSKJwZosnlItEbFBJnpMBfQC/hS6l07rMJvrYRV/XusmQ6E7ZrNNwlCJM oci5JrNzUMB4SgbWL5Jb5CJFjOIvacakVnGBtrZNWJCENZqnF6AlikTxmDhUyFgx+0Axfr4Q xaiw6QLBKtp/USBFaCp60C94+hTe46c+FWlNYIuE+3P12C+gt7V64yRAMg+JO2p7B7fFNhU0 evQc2SqMtOYTQPWqpwMGgQieolt8DjjXGbVJgK8NCeDJ2JYddq65afRALQpcxyrJDpO7pBk9 LAHldDGgp95o2GWwLPRp2JrMOsRSUoFqSCz9+2Hszi2RwQS+f7D0XdJoU/aZe4EelVFyqwyp ait1iWajF+MRw5Am9ibxLAoWDumoIis2o+8M7B/8GH2t5DbHYVlXH7JxdH6+LF/xpP330+nl P785v4tttl6FAg9lPjG7C3XYvvntomL9ru7AclpQ06SOgwKLscVGPQHVdzYPx5kOsSH8/fT4 OBY0uFuuNH9DFWxa8Wu4EqTauuQWbJw2GwtqncCeGCaMjye+oyAdJWnSiPS51khYBNpuyg+W 5hAiZ+hEFzVdSBMxlKe3M2bT+7g5y/G8THBxPP9zesLskQ/CR//mNxz28/374/H8Oz3qMohJ Kq34Ld0TMUh+PQxwrkppvUgjAxlOR4FgUZRgnOg00waKOc4B9jAQW1miOPcMlYtk0LD3FtSh LAGtXBglpBgyt94qtvkCNVJ8ax7pJvwIACHhT+fOfIzpN2UFtI5AGTjQwN6J5l/v54fJvy59 QBJAc9DTiU4g1owYCKBiJ9P9CKYAwM2pd8TXdGkkBfm5lHnpyPkZSNBd5ToFPXWihfVO0yvx hIKtGmkXPTGlYPQ4FobBXWLxCb0Q7ecTSgD3BHHjeHrIXR3TRsD3WzIRjUo4821VzPz2NqYl hEI2ndFbW08yjmI3IoHdZLog9z6FwogRpyIW5CjUTRB5M0q16CnSJnNcPUWUjnKvld4DQTBu kcgA53oWhBlEUcV5U+oor5FcKT2/zk657/D5tSEOv3ruZtxqJTzZqM4GtN3FhBaePc0yR1uJ qyQ1MDoZfFchCNR0RGpBl5iCJPcmLs0TGArv2ig3wSB08JXZusQJaymkx+SvvxQNceO5Wiy4 yzS6jq3d0KNF5I40j+rp/gy60bPxxVEFUV6Sodou69jV328VTEC+96kEAcmWKBzmQbtkeZrR tx0K5Yw8F10IXF99rBvgo3j5Kubqemr4xplxNidkij/n9GAghsx5oBIEC6LKJp+6PjHn4Vd/ PiHgdRVEE4dqA3LCtcViRv5VuMsIeD7wxpACQXDO68sfqPNdZeElh/8mWtDCvqdDmoHhUa4R 8cFsHBrnrIsWOGJuQIXbZW/WqhggHooIw6HoHlG3Ak7yGdvuQV2uMkZthls9JvoWjThS+v0B cRX2cpUUdBJQpIhBc+kozIqZ7W4No9AldVRalIJtlzCSeGnUaED9pFQGUbze6jcsCMyXU4tJ ANp+X3EIlQGZ1Oq6EE1wmhsH2xLGrB+v/5xv1j/fju9/7G4eP48fZyqM2/pQJTV98ylRaB5R 2UJmwHF9lVqyH+3n04upL8FyHVmVS536wtr9bZ1uKD5Aq7RSLtmjdV3myfAhbcQlDhZbxioj frRJUYG6rDrVD9lGuHa/0YOzilKteywovrwcFduE4kHvatCcPMkyVpT7oT9Ki7INxpDLylJL ZrhG90/Aoal+xbQuiFsjxP31UzNgj0SydRFv539e3/+jBVYbylyLdqpQNWng2dLIXaiiOEpm Fmc7lazB0DxtRD9Wql+VkW5/RVZYXBsVkmpPq1MqCZoh0QvkFnSQAq/KRytQjnHz+vlO5fiB apsalJq5q1rQADTZcRMqfrb6FT1Qhlk8UF7krvB+qFKLo8paXn+AcvILgpxvLbbJPQW3hJ1L ukAJaN1G8TccvMNST0wfUUuJZRxDleaSuB8KmJStGf10dXw5vp8ebgTyprp/PIoLjT7SZv9U VB+fX8/Ht/fXB1JtE1FyzQOrLPj2/PFI7MxV3qhHaPwpglKaMBHyeYV3X23BeKr6cI8IAGBi x4JfxPu4TfVED1Ijhub/1vz8OB+fb0pY599Pb7/ffOA93T8wQLH+dsaen14fAYzuLMazWvj+ ev/t4fWZwp3+ne8p+NfP+ycoYpa5tHpb7NO2qZnFhaM0kwGJwvvT0+nlh1Fnv7+kMGb7dhdp yUgqsdcs64TSFpI9jy5XX8mP8wOIQxn8ThmeCzMLcpGA7gudtrinGBJamGWtKZk6vLyLFknz FpSzfkdGRZC/oDyPDOF/IRilGLqgLGkwOoKazxczT4k+1sGbPAhUNboD92+lxKcAFfUbJLnx 5aVq45SqV5gppgYXYXQoWBuFJBifp0ZpKhC/WaZLQaWDuytF3KGJb8l/lw1ZZkQqvtpghKOB xFVJQHkeIuBc7h4loiswWgvs4eH4dHx/fT6etXXA4n3m+cqxvAMYKXpz5miph+HgEEzENWlG Q03j9pi5FlvVmHnkkRXOE3U8UY5nAqCeYhSbBflNLzbGslOpJHYIztlRbPZNvDB+6t3e7KMv G2eiOhjlsJ172jMsm8mkqzrAyEQDwOlULzb31Rc7ACyCwDEz7EioCVDbs4/8iZZDbB9NXbVB cHQGXczVASETVrmSNV7uQZiLcM6nx9P5/gmv7EGamWnnWTxzF9RMAWKx0LblKHJAF3NQ+FEz KxLewVrX0kit91qmFPTy3+/19F7ydrKDXa70eeT6ZLYPgZkHI+IF/ZiGcpK+1kPXlKnaujyq PF813oWTVHvnDI3roAXbzrQbA7Fd73BPGJ5lh88P6R3alB63C8HOGAJMzhVHk7lDFRPIBthY YYpLNi9ZU7epvz3BZq/sy9H347Mwj5G3Aqrc4BkDEbXuFqCiXUbNXJtH9tXMXLC7my+og6+6 ZGW1ZrQygmK4uzh96+8ugKo7rWimxb2skFJWfxQ30KRkzpuhVXJxS7Wpqfrvmt8UIpkbhWhc 183uoPX5ooZ0j7tVCQv0Xi5VbX0OizCYTJVLN8yIpIps+O372j0ZQIKFR1l4RXgvwpTWxo2v OXTkU9dTL0VhfQTOTFse/kxc9sr3F5iQb5/Pz30EQWOIpGF5H/ZL39EUnIzwRd0CjCiHPbgL Dnv87+fx5eHnTfPz5fz9+HH6X3xvjuPmzyrLBl4Xhy5xILg/v77/GZ8+zu+nvz/V0OLV9/uP 4x8ZEB6/3WSvr283v0ENv9/8M3zhQ/mCOYGPP99fPx5e3443H+ZyCvOVM9U2WPxtZPq88Ojq UJfabpdXW2+iJRGVAHMb7thOlmd7S8DSlK88wwpArrHj/dP5uyIMeuj7+aa+Px9v8teX01mX E8vE1y6DUeOcOKrDVwdxh5X8+Xz6djr/VEbpwrO569Hx19dclTrrGHcg08q1t3zE+G7qu+6a N67rmL/NPKtblaRJZ9q2i7/dYUtNgYnOaN/wfLz/+Hw/Ph9fzjefMDbalKfGlKejKd/k+6m2 J+5wYqdiYjUdV0WQM541+TRuCGOI0+P3MznSUZViAClyv/8Cg6nlUGKZh35UCqCKm4WnBzwV sAWZGilcO5qfEP5WpVeUe66jviohQJVA8NtT3/Hg93Sqak7q1iGDpMKBXVNaVpXLKphENpmQ rn+9GG8ydzFxVG8fDaO6UwmIo756qTpr1pBws11fGmYGfekwdVVPAo0ru5YMWRkHrafWk4yy ve9rXpdlxWG21CTQ8FF3osOa1HF8XbX0PFUjB0bb7tLGDQiQztk8ajzf8Q2AmpCt7wuHMTSe UgWIzL8KGD/Q3VG3TeDMXdq8cxcVmTVC2i7Js+lkRrHrLptq56E7GD4YLadf//n948vxLA9b Y2HPNnAu1rRStpksFuQpqDtT5WylaCsK0DhnsBUsS23RKYyF9Akv84TDydKjbFRyON4Erj/R lw1MofiU2DBoFL6wGuh+/tZ5FMzV3LAGQlWmRDKit6fjD2X3TF8enk4vo7GkOpgWUZYW1zqo EMsjtBpSV9TaW4bd/HHzcb5/+QYK18tR/R52W8ROrLcVp87b6vCgnYuiTWrqwNvrGbaF0+hI Drr6fKIdOauOp3smrzJ1vzTrg2ar+0yWVwtHrnWpw7wfP3BPIvgyrCbTSa4ZVId55ZKWCKo8 DVltuE8MoixRbZLWldavKnPUM4n8bTB0lXk6URPoBzHxe5QmFaAedTPV8azRLhVqiKnAV5u8 rtzJVEHfVQx2oekIoPK02GFfTi+PyoB3E/H64/SMig4aInw7Ibs9HCkWz9KY1eg0kbQ7ch9Y xrOZr7mj18uJZirU7Be2RDNIOx8pBvz4/IaaMMkpyhTzJK+0oc/2i8nUofxPeV7JjELqb+1W ksOCISNWCISrme4XnHaZ2OWJ1aehuh3nMsGnYUyBNPZfYZigJxWBKdqi/stR5HWH2YH0ok8k FcaZlk+Ql7VUomst5gajbYe7XG5pVUZcde0Etkw4XgxyjH6uW7pKHOPrmS27p8Dv4fxvSz6I BGFSZykdkVISpPmevjSRaHQ2S+mYgR1BFVmj4EqKPGksuRwkvkobzqK15UZc0shD4DUCfEig VpDAYkyFPvW5UfDuUFzrHk9WNWvDKqfeiZeqzwz8aJdsk2jRxxEIu8ROy+6HwNsaF73MJKdj uhRmg1RfH26az78/xPvNhYX7wGiA1jgxytsN5jDeNqFrujf1a2V9wAfO1p0XebvWIhBrKKxC rRuRURWxyurUJHxVIzJ3ZR5pXmnw0+bHAhjgqaH7x3c0rBIC9FkeQil7hZpZnLDW2yLGAOjZ OOkee/n2/nr6pp2NirguU0q/yNKw2MVprkxWmG1Q12graSLbS68YEdpvI/A+UnDFHFj7Ease nFi7BujNcQcVXP8xvmpBYFNu62gwa6bE04VItVnvJZ54i+Kax2wPs8zhgF6JYia0IaF5syWg FU8JqGGpjJHW1COreCSuQG2sRslVRVC2fFX3VNGOXNhIZeYo614Wq1pkXd1WmXqPKErUyUrL 8bdUo/TBj1b6khqm+ArC8N1ETGM4y1+m1hoxNktzY5+Ut2Wn92eRPWnkcZfE2gYMP9uS9MId kn4BG2oheOIky9o6VGYwjuKQ6anH8pRcWhhOS+jTSmEERawQ0fgw6mNRFm2yTEHADtlGLszY RDBOabjkmFGW+sLyto2Wq+Ejl/FV4H3aMnJIV2W5ypKh+/TTLTRPiAOGbMvqhnis48fH9/ub f/qJGC5Nu/l5Ao1MyHn10BDBECTtLXqSS+8FlXPQ+EGdh2TPXSNVRAdq94xz6jgDeK9VB78D gDRvMKNelI1RTRJta+2mDTC+WYtvr8U3alFb67dJEdWHCg9vdHt9UwB8CWNX/zUSEU2bh2Io dRUghWkCnMVp4csI1csCgVBkA/z+uoUTp1r7Xu2+pRLVLwR/lwUyoelHghhgvMKsfZS048Kx y8alm47JQlyt8T2kLV19lx4Q6H9Hj5Ak6RKosmZjBG4j6SyDHfLxTPT7XpqZjV66xhQIADbU 4P+O0Mr/Ag98AWr9uH7hFpUWX5KIG5Jd35htjI4mSfqqkJDOlVrP0peCiEGwTH+nvF4WMXo0 HjQKqieNsnLUtg3ZF3uZYgJSCejd7fqCzKQbsbgAoL2rMFQStydLFlFKhkg/09EjKxudlAhb EhqJ5XWird6vy5y3O+pUKTGu0XBptdlrCVteLhvfZBYYAcuy2cFJih30hTPAMC95imkh2zjV jnEUCctumcjRmGUlFdxIKQP7WbK31FfgfO/JfNLR/cN3LXFn04s+HSAXtq5ySMQaDmXlymaX 1VPZ5U9PUYa4dkB9JpMqCxrkat1Ad4Be+YBCRLZVjkP8B5yv/ox3sdhdR5tr2pSL6XSiTeqX MkvV3G93QKTit/GyNX8X2fBcHZfNn0vG/yw4/cllL6D61d1ACYMLd5KIWuKMD96aGOMQTbD/ 8r3ZICj50qxMgGwLSyDr2+G09XH8/PYKCgrR8EsWKhWw0d/xBQyP2upSE0BsKUblSQ3fbIEE JS+L64Ta7jdJXahfNTRFnld6dwXg6rYrKcR2oBZcb1cgxkLL5tRhW9PmvedG8cfYkXLQTIXM RrfLJFcFh0gtb5CzeDR3HQhmiGwUW9pVl0RsBDbs2rbTAkIG0lFvdwcYtcmFZj8EYBTAI7zS VFtjov9r7Mh2G7mRv2LkaRfYBJYseeSHeWB3U1JHfbkPy/ZLw3G0M0biA7YH6/z9VhXZ3TyK 8gATOKqq5s1isVgH7GmzZPVbnZ12krfLTjRba5loiDozPcHPRiu+zF+mBkK88+VVj1G6+Eu0 Q0ihptgqTQK0BeRdu0fyYaG68FvlKOyXn92yMQIndMmUdn3LlnXbtPwD20ixICVIlKkEj8dp ZR7B3VJyV7RpQmqxyTH5oz6gMMPAmcEar0OLJU8LWJr2/inz8KrbVqGSLovrhbOmAXTOg7yF XjOVDrxucCeZuB9BaC7RdIkeKnjVmiKEyWPpXKrFSGWwYYWM3dyVGq4t190ag6bZN81VaGi7 oBwvW7jI7nimWDgDjL9NGY5+W8/FChJg84RcuOTNXvDeH4q8571HakxIXgR6q9pNyzWIR7FS mamC8M2OjCbC405mSOS0nNs0IPPEEllIWhomQ8QdnZ9qJIy6vHSBXVFXsfu731iRB6oYruwI 63d1ZIeEV+RHxDVZbQNMPrX3LP4+cuEk9F6KXV/tMXIYH72JqLoqFlkWxoduhIT09vUE5Z1g JjyqYas+GG9TEf5E+5o8Ogu5M6WfLDoQDkVoe4rg9jQNV+DHIGp+/eXh7Xm1Wl78OjMCSiDB IIP2C/ZV1iJR8YX5z798WfJ7xyRaLbnHNYdkbvfAwCyDmC8hjGnG5WBmQcw82MuVbYMcIuJd QR2inxmvc963ziG6+GxQL8x0mDZmGRqgi7PQRFwsLkJD92VhY+DmhauuXwU+mM2D9QNq5s6D aOKUj/JpVsbpE0z8nG/jGQ9euI0YEJyto4k/58v7woMvePAs0KpZYKBnS7e5uzJd9Xz0yxHN ia+IzEWM0pAo3EIREUsQf3kX6omkaGVX8+/CI1FdijYV/APzSHRTp1n2SXUbIT8lqaXkUygP FCn0iw8TNFIUXdrawz8OVMqPVdvVu5QNvocUXbu2gqckma8I2R1enw5/n3y/u//r4enbdKlv SYJI68t1JjaN60T58vrw9P6XsmJ5PLx982MAqKTS5NxpXNN0UvMMH02uUJrRx8iopshBMMVd 6lEsjAsjyly6/EQ6QQOmzupk257kMbg2vzz8ffj1/eHxcHL//XD/1xv15l7BX/0OqQM8LdbG JWmCoQ6vi6X1WmZg4ZoccLI1iJK9qNfcDW2TRKj3T6vWVBgXIoKhRI0pFIJZ3EVr168p8q5p lRqbUxthynn1gjA7nS9GIa+F2oAt5iDNm5J4LUVChQLKUHQVIKBiEPg8Kk1BgfhtuS9M1fGg 6DeUCFAmOr9RE/3xa5SGHXUmuWjZIN4uiRqUssgMBbXqaFWSJtqvZV3iI7eSHoNB1SgUNd5v aiOlsAEcFXBq5L+efhgGRCadMvvhXjypMUrUH/Zafnh8fv3nJDn88ePbN2uP0vjK6xZDhNsW LKocxFM6Pu5CiN/CcGAyQ1vhbmP6AlYv8J+WNRixSTFOsTvTRFLLtd+6GgRR1N1LVgGsaJSS uHEL1WAYx2yto36x+LV6F2Bx5Hbe+M0a8Hgd/axdfR13tH5DlSglDvC9Ti87lkpv1IHVzWyq JhOR+yXC4NooDHMSCuyg108uc410Ojdggh1Dg6sd3DfFxhu4q9wv7yqHfyJ82Ripai6y8Iit NnTKGBrPIfqzJsFEl3YqJwsRLFu5CQN7TVtme6iNDjuzYhWe04DSqOADyzor995cHEVuVZQZ 9QKAW/gEfYl+vKjjZnv39M12ey/XLd7LuwoKaGF1lIEA46JOfoZOIfttV2Dc6YYXUfaXwDGB byZsbq0KIysCN+1L61HSAvdXIuvktHIVErdY2bVfT0dGDeskcR/gFdA+WAnmPUEpSrVEZZEE DzU19Fj7TspKsTdlmIv+XiMjPfnX28vDE/qAvf3n5PHH++HjAP9zeL//7bff/u0e/HULB2kr r6XHjIaYHi48QL7fKwzs4XKPJiEuAb3/Etu2HkquzCdgDVbqbssYl77GkQuOy/SRBR7iVGbS x+mKe1GlI89t7Gb0sAJBGpVDFMZpcY391R9yDy+WsGksA5xqQk4wOttheEDqwHD9sCBqEKtL hjntFH89wpg0BZxPwBTZbCWKDv67QlvBxmOK+HzpHXnpAHZFGV4DppD0op460ZwcmhikTLj6 pI6Tloo7EnesjEArp44NA6zQTOFhBjxx7R3JFoX5NTNgSIJMFaYO5mjgAPOZiR9m1CpXXh57 1NV751ILarUnojmUyooCZCN8g2AfmKGN27KtMsXBWzlYWxsXMD0jvaxrcjWZjD0mYSnnyXgV N1qBseRmkY5pCVNSBs0t4hsrRw0aaBj7xY8ti5kLCGXmjMEjbt0VSnw+jt3UotryNMNVa+1s VQbZ79N2i+aQjVuPQuckKgFBXFqZfZAEX49pUSElSfJuIbH+UJVirHhqNVn1O01UtcY2/66R 17lBPcgVmegtFoyrBpdZAx2L/fExiiKevqd3Brt+q7zBfNstSBP687r2dpMzocwCAk4Lgsba q0QdsCN0kjb2sOSY4qYq9aJTM8RJU3oKmgKELStotoMYpTJ7nCJg8jC8wM3oXbYoC/u1TMNF UaBzF8ZkoQ9CKdpJhDjSn8GCmwIDOGZL02MW1BpJxkfdbNZxgmHcWgFMtQoz3jxPy3BD0Mxl DGQeGnvaMH0EjGObi5pf7RZ64s4GwactVR2SIA+iXE3veUE6LFcNTjjuEZ5faSIpiczs7GKB MWFInueZPyBRSAlZtdTAFuBIouZj7RgN0ZBjdklryRFIRmc5yOV1oL/yGDaa+DFIP0cO1ghN 2EJnKukscERHIrORSnA7X7AClt3OrbzGF6gjHWlpsrcyqwJLCal2QNaagdYIShq5tQOM0tYy QyZg19k5+ghY45NdixfhULVIYPG5FB0mUmNRhzvGGWhbHXcsk1Q7SbtoqHpkbmsb6BJf9KTH gHMH3UMd+aAR6J4UvF7SPXe3SSx7DfzNfDDeibuoEYVSyqS3Eo8VaznUpADDTaUIi7IvusBr IlEcqwuYIEZLTRt1etkKRlwtcatpmFIwoqeWm0lpa8ahlKLObrQW11JaGvA+iTb8YrWoKB9T EnFaLoop2tKrq22ONiG8+5npZlN2sB6VVsYhQ4OwrGuM2xtN6Mio/YMaI6zgeqIUTv3p9ep0 uhi7OBjnGY/Ta3LOY+lcNIxiRixWx46kQcGa34z4cTP4n2Kt7N1Ji7JmE6eWa0GdlPmiFk4o 1ips81vCLstx5adoEm9JT6pMOFFqq6X6hpWnx3kkLgqtDg5cLqoONh1x3GDrumKPtrm1p3FW sYMO9z9e0QHYe19AqwDjwg/sF84dFDkBgUzZtKPzyFvMRycTB6ptvif4xGLkTZ9sYSSlymrJ ZpXWThgYL7khr0fa7hYD0CRHvl67Mjo5MRbQpo4CKlc3StehM/OMlA7REZTp+jOcDLDx0Gpd +a7ZLAv6G9O3eZlIddAdWbvTIFjBkRzs119+Ge8DOOLlMN3x6z8v788n98+vh5Pn15Pvh79f zFhIihgGYCMqwyHMAs99uKVwNoA+KcixcVptTRnfxfgf6XPWB/qktXUVGmEs4ajf9poebIkI tX5XVT41AP0S0NrNsrsYGtRwSW01MvH7L2MGmItCbJjmabjfRNuNwqbGjEH0DuBo1zTVZj2b r/Iu8xB4uLNArtsV/Q33HF89LjvZSa9E+pMwReYKEy5TdO0WWJE/N3jLUjvQ723WSY2zs00P 01Fs0mKMnyZ+vH/HQBj3d++HP0/k0z1uO2CvJ/97eP9+It7enu8fCJXcvd952y+Oc7/+OGe6 Gm8F/JufVmV2Mzs75Sw1NGUjL9MrpgQJ38OZZQVQVzF0KRbZ4/OfpnfGUG3kD17c+oMWM8tG mtFONSwju35/abAilMZeM2XDKaKz36koXndv30M9yIXfha0Cuu24PtqOK/XREAbl8PbuV1bH Z3NmxAisXIV5JDfjCIehyWDnhRsFVO3sNEnX/jpyLy3DYH+6gvJk4XOKZOnDUlhSMsO/PtfN k9l8xVSPCDYq14SfL8/5D8/Y9BbDut+KmdcMAPKlAWLJhrma8Gd+abkPazf17MJnt/tqORuD 5sQPL9/tqOrDyemvbID1LXMiA3i54nqCmCJVi+sIJyy6KGVqq2N/riO4bmH+giDCs9QdFqPA rACpYBBoCBL6qGmX3PoHOBdnejgombFb01+mrN1W3Ioj50QjskbMT/0JV3A98jxH9j+yUjmP wLqShS+BaHjfNHLOVtNKfzjbfcnOj4aHRnpAq2pGYyQM0fRghhIdR3iN6n6fh5vOGhq2Wvhb ILtdMFMB0C0Tuv7u6c/nx5Pix+Mfh9chLqZqlLfeiyaFS1rNupsOTa8jV8NmYgLsX+H4jLIm CXcAIsID/p62mPAdH3fMe4QhkfWc9D0geHF4xDaTiOr2ZKSpAxlPXDqU4cO9xnY4z+QDZu+P BMUbSJw0EB6OZX4mHjgwN0cSU+zA/elYt5Bom66L/svFMpAXZCJcNxnwGpGP64uUuA1vdGl8 F4eSf0wkl+gZuV1dLD/iT4tD2hjzI/0U4fn8p+iGyq/4pEVc9T9JCg244qJxGHRjPgiNEs1N nku8yZMSgFQyHLLqokzTNF2kySZNyfL0oo8l3rJTtDsMhbWIMSjqf0kuf6McsW8P355UhDEy ulRP1dPtnDx/TG1GzTu0a8Ioo9w4zagkmbriUdD2oXf56bJOCondlSH+a4Oi9Fa4mtyrbQml FJK7PCkcxsZrdIZ7L/R8lBaivpmU5DpQ3B+vd6//nLw+/3h/eDLl5ihta4m5naxhn3TGE557 5aDGm4GlhlfFpq2LGFUmdZk7l1GTJJNFAAv977s2Na08BxSp49dprbT+Ph7zYzlBSQaUAx61 z2uUWMgdsspS+5YYw9ZPW+soj2fnNoUvk0NVbdfbX1kxZUnc980KNRx2hIxuHIHawPD+GZpE 1HvYKUcoopS/mMfOCR5zDjVZGvn3nthqqugSVF7i4KJWBBgIk65sXEJoU8OOBUgZjA8hQpX/ qg0nB0Y4tWwhhqCeaGP6MNpQrmTelxGhHPX1LYLd37ZuQcMoWFnl06bCjLaugcLMuTXB2m2X Rx6iATbplxvFv3sw16p16FC/uU0rFpHd5iKAMFo97DhG52q9Mk7gWiTptXp5pJ1Y1om5E0XT lHFKiYqg37WwNLUUhciMS6ZA+C7SWzuenprM9jebbLSBs153daSMsgrYSQEJpcYrWZtONCyo 7fhUlyabzErrJQ5/H7NbKzLbBTvObvtWWEWgOUrKyx1JErDNQO2A0aq8Sq3Uz2WaUECxpjUz 4KxLvMB41iGlZSVDRKuPlQcxWSeBzj9mlpsUAb98sFE+CVfhmxxTtoARKDTcLg39svvFB3e9 HJpw6n00O/2YrUJfNF3BdAWgs/nH3FLvNBvfJ2NCVaVpBzYeRypjV2o6x6IhSSIr06Clcd+8 9aO6wUn/D2+Dwas4uwEA --qMm9M+Fa2AknHoGS--