Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
SLAB freelist. The list is randomized during initialization of a new set
of pages. The order on different freelist sizes is pre-computed at boot
for performance. Each kmem_cache has its own randomized freelist except
early on boot where global lists are used. This security feature reduces
the predictability of the kernel SLAB allocator against heap overflows
rendering attacks much less stable.
For example this attack against SLUB (also applicable against SLAB)
would be affected:
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
Also, since v4.6 the freelist was moved at the end of the SLAB. It means
a controllable heap is opened to new attacks not yet publicly discussed.
A kernel heap overflow can be transformed to multiple use-after-free.
This feature makes this type of attack harder too.
To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available in the boot stage. In the worse case this function
will fallback to the get_random_bytes sub API. We also generate a shift
random number to shift pre-computed freelist for each new set of pages.
The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.
Performance results highlighted no major changes:
slab_test 1 run on boot. Difference only seen on the 2048 size test
being the worse case scenario covered by freelist randomization. New
slab pages are constantly being created on the 10000 allocations.
Variance should be mainly due to getting new pages every few
allocations.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 121 cycles
10000 times kmalloc(64)/kfree -> 121 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 121 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 123 cycles
10000 times kmalloc(64)/kfree -> 142 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 119 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles
Signed-off-by: Thomas Garnier <[email protected]>
---
Based on next-20160422
---
include/linux/slab_def.h | 4 +
init/Kconfig | 9 ++
mm/slab.c | 213 ++++++++++++++++++++++++++++++++++++++++++++++-
3 files changed, 224 insertions(+), 2 deletions(-)
diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
index 9edbbf3..182ec26 100644
--- a/include/linux/slab_def.h
+++ b/include/linux/slab_def.h
@@ -80,6 +80,10 @@ struct kmem_cache {
struct kasan_cache kasan_info;
#endif
+#ifdef CONFIG_FREELIST_RANDOM
+ void *random_seq;
+#endif
+
struct kmem_cache_node *node[MAX_NUMNODES];
};
diff --git a/init/Kconfig b/init/Kconfig
index 0c66640..73453d0 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -1742,6 +1742,15 @@ config SLOB
endchoice
+config FREELIST_RANDOM
+ default n
+ depends on SLAB
+ bool "SLAB freelist randomization"
+ help
+ Randomizes the freelist order used on creating new SLABs. This
+ security feature reduces the predictability of the kernel slab
+ allocator against heap overflows.
+
config SLUB_CPU_PARTIAL
default y
depends on SLUB && SMP
diff --git a/mm/slab.c b/mm/slab.c
index b82ee6b..89eb617 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -116,6 +116,7 @@
#include <linux/kmemcheck.h>
#include <linux/memory.h>
#include <linux/prefetch.h>
+#include <linux/log2.h>
#include <net/sock.h>
@@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
}
}
+#ifdef CONFIG_FREELIST_RANDOM
+static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
+ size_t count)
+{
+ size_t i;
+ unsigned int rand;
+
+ for (i = 0; i < count; i++)
+ list[i] = i;
+
+ /* Fisher-Yates shuffle */
+ for (i = count - 1; i > 0; i--) {
+ rand = prandom_u32_state(state);
+ rand %= (i + 1);
+ swap(list[i], list[rand]);
+ }
+}
+
+/* Create a random sequence per cache */
+static void cache_random_seq_create(struct kmem_cache *cachep)
+{
+ unsigned int seed, count = cachep->num;
+ struct rnd_state state;
+
+ if (count < 2)
+ return;
+
+ cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
+ BUG_ON(cachep->random_seq == NULL);
+
+ /* Get best entropy at this stage */
+ get_random_bytes_arch(&seed, sizeof(seed));
+ prandom_seed_state(&state, seed);
+
+ freelist_randomize(&state, cachep->random_seq, count);
+}
+
+/* Destroy the per-cache random freelist sequence */
+static void cache_random_seq_destroy(struct kmem_cache *cachep)
+{
+ kfree(cachep->random_seq);
+ cachep->random_seq = NULL;
+}
+
+/*
+ * Global static list are used when pre-computed cache list are not yet
+ * available. Lists of different sizes are created to optimize performance on
+ * SLABS with different object counts.
+ */
+static freelist_idx_t freelist_random_seq_2[2];
+static freelist_idx_t freelist_random_seq_4[4];
+static freelist_idx_t freelist_random_seq_8[8];
+static freelist_idx_t freelist_random_seq_16[16];
+static freelist_idx_t freelist_random_seq_32[32];
+static freelist_idx_t freelist_random_seq_64[64];
+static freelist_idx_t freelist_random_seq_128[128];
+static freelist_idx_t freelist_random_seq_256[256];
+const static struct m_list {
+ size_t count;
+ freelist_idx_t *list;
+} freelist_random_seqs[] = {
+ { ARRAY_SIZE(freelist_random_seq_2), freelist_random_seq_2 },
+ { ARRAY_SIZE(freelist_random_seq_4), freelist_random_seq_4 },
+ { ARRAY_SIZE(freelist_random_seq_8), freelist_random_seq_8 },
+ { ARRAY_SIZE(freelist_random_seq_16), freelist_random_seq_16 },
+ { ARRAY_SIZE(freelist_random_seq_32), freelist_random_seq_32 },
+ { ARRAY_SIZE(freelist_random_seq_64), freelist_random_seq_64 },
+ { ARRAY_SIZE(freelist_random_seq_128), freelist_random_seq_128 },
+ { ARRAY_SIZE(freelist_random_seq_256), freelist_random_seq_256 },
+};
+
+/* Pre-compute the global pre-computed lists early at boot */
+static void __init freelist_random_init(void)
+{
+ unsigned int seed;
+ size_t i;
+ struct rnd_state state;
+
+ /* Get best entropy available at this stage */
+ get_random_bytes_arch(&seed, sizeof(seed));
+ prandom_seed_state(&state, seed);
+
+ for (i = 0; i < ARRAY_SIZE(freelist_random_seqs); i++) {
+ freelist_randomize(&state, freelist_random_seqs[i].list,
+ freelist_random_seqs[i].count);
+ }
+}
+#else
+static inline void __init freelist_random_init(void) { }
+static inline void cache_random_seq_create(struct kmem_cache *cachep) { }
+static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
+#endif /* CONFIG_FREELIST_RANDOM */
+
+
/*
* Initialisation. Called after the page allocator have been initialised and
* before smp_init().
@@ -1256,6 +1351,8 @@ void __init kmem_cache_init(void)
if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
slab_max_order = SLAB_MAX_ORDER_HI;
+ freelist_random_init();
+
/* Bootstrap is tricky, because several objects are allocated
* from caches that do not exist yet:
* 1) initialize the kmem_cache cache: it contains the struct
@@ -2337,6 +2434,8 @@ void __kmem_cache_release(struct kmem_cache *cachep)
int i;
struct kmem_cache_node *n;
+ cache_random_seq_destroy(cachep);
+
free_percpu(cachep->cpu_cache);
/* NUMA: free the node structures */
@@ -2443,15 +2542,122 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
#endif
}
+#ifdef CONFIG_FREELIST_RANDOM
+/* Hold information during a freelist initialization */
+struct freelist_init_state {
+ unsigned int padding;
+ unsigned int pos;
+ unsigned int count;
+ unsigned int rand;
+ struct m_list freelist_random_seq;
+};
+
+/* Select the right pre-computed list and initialize state */
+static void freelist_state_initialize(struct freelist_init_state *state,
+ struct kmem_cache *cachep,
+ unsigned int count)
+{
+ unsigned int idx;
+ const unsigned int last_idx = ARRAY_SIZE(freelist_random_seqs) - 1;
+
+ memset(state, 0, sizeof(*state));
+ state->count = count;
+ state->pos = 0;
+
+ /* Use best entropy available to define a random shift */
+ get_random_bytes_arch(&state->rand, sizeof(state->rand));
+
+ if (cachep->random_seq) {
+ state->freelist_random_seq.list = cachep->random_seq;
+ state->freelist_random_seq.count = count;
+ } else {
+ /* count is always >= 2 */
+ idx = ilog2(count) - 1;
+ if (idx >= last_idx)
+ idx = last_idx;
+ else if (roundup_pow_of_two(idx + 1) != count)
+ idx++;
+ state->freelist_random_seq = freelist_random_seqs[idx];
+ }
+}
+
+/* Get the next entry on the list depending on the target list size */
+static freelist_idx_t get_next_entry(struct freelist_init_state *state)
+{
+ freelist_idx_t ret;
+
+ if (state->pos == state->freelist_random_seq.count) {
+ state->padding += state->pos;
+ state->pos = 0;
+ }
+
+ /* Randomize the entry using the random shift */
+ ret = state->freelist_random_seq.list[state->pos++];
+ ret = (ret + state->rand) % state->freelist_random_seq.count;
+ return ret;
+}
+
+static freelist_idx_t next_random_slot(struct freelist_init_state *state)
+{
+ freelist_idx_t entry;
+
+ do {
+ entry = get_next_entry(state);
+ } while ((entry + state->padding) >= state->count);
+
+ return entry + state->padding;
+}
+
+/*
+ * Shuffle the freelist initialization state based on pre-computed lists.
+ * return true if the list was successfully shuffled, false otherwise.
+ */
+static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
+{
+ unsigned int objfreelist, i, count = cachep->num;
+ struct freelist_init_state state;
+
+ if (count < 2)
+ return false;
+
+ objfreelist = 0;
+ freelist_state_initialize(&state, cachep, count);
+
+ /* Take the first random entry as the objfreelist */
+ if (OBJFREELIST_SLAB(cachep)) {
+ objfreelist = next_random_slot(&state);
+ page->freelist = index_to_obj(cachep, page, objfreelist) +
+ obj_offset(cachep);
+ count--;
+ }
+ for (i = 0; i < count; i++)
+ set_free_obj(page, i, next_random_slot(&state));
+
+ if (OBJFREELIST_SLAB(cachep))
+ set_free_obj(page, i, objfreelist);
+ return true;
+}
+#else
+static inline bool shuffle_freelist(struct kmem_cache *cachep,
+ struct page *page)
+{
+ return false;
+}
+#endif /* CONFIG_FREELIST_RANDOM */
+
static void cache_init_objs(struct kmem_cache *cachep,
struct page *page)
{
int i;
void *objp;
+ bool shuffled;
cache_init_objs_debug(cachep, page);
- if (OBJFREELIST_SLAB(cachep)) {
+ /* Try to randomize the freelist if enabled */
+ shuffled = shuffle_freelist(cachep, page);
+
+ if (!shuffled && OBJFREELIST_SLAB(cachep)) {
page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
obj_offset(cachep);
}
@@ -2465,7 +2671,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
kasan_poison_object_data(cachep, objp);
}
- set_free_obj(page, i, i);
+ if (!shuffled)
+ set_free_obj(page, i, i);
}
}
@@ -3815,6 +4022,8 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
int shared = 0;
int batchcount = 0;
+ cache_random_seq_create(cachep);
+
if (!is_root_cache(cachep)) {
struct kmem_cache *root = memcg_root_cache(cachep);
limit = root->limit;
--
2.8.0.rc3.226.g39d4020
On Mon, 25 Apr 2016 13:39:23 -0700 Thomas Garnier <[email protected]> wrote:
> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
> SLAB freelist. The list is randomized during initialization of a new set
> of pages. The order on different freelist sizes is pre-computed at boot
> for performance. Each kmem_cache has its own randomized freelist except
> early on boot where global lists are used. This security feature reduces
> the predictability of the kernel SLAB allocator against heap overflows
> rendering attacks much less stable.
>
> For example this attack against SLUB (also applicable against SLAB)
> would be affected:
> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
>
> Also, since v4.6 the freelist was moved at the end of the SLAB. It means
> a controllable heap is opened to new attacks not yet publicly discussed.
> A kernel heap overflow can be transformed to multiple use-after-free.
> This feature makes this type of attack harder too.
>
> To generate entropy, we use get_random_bytes_arch because 0 bits of
> entropy is available in the boot stage. In the worse case this function
> will fallback to the get_random_bytes sub API. We also generate a shift
> random number to shift pre-computed freelist for each new set of pages.
>
> The config option name is not specific to the SLAB as this approach will
> be extended to other allocators like SLUB.
>
> Performance results highlighted no major changes:
>
> slab_test 1 run on boot. Difference only seen on the 2048 size test
> being the worse case scenario covered by freelist randomization. New
> slab pages are constantly being created on the 10000 allocations.
> Variance should be mainly due to getting new pages every few
> allocations.
>
> ...
>
> --- a/include/linux/slab_def.h
> +++ b/include/linux/slab_def.h
> @@ -80,6 +80,10 @@ struct kmem_cache {
> struct kasan_cache kasan_info;
> #endif
>
> +#ifdef CONFIG_FREELIST_RANDOM
CONFIG_FREELIST_RANDOM bugs me a bit - "freelist" is so vague.
CONFIG_SLAB_FREELIST_RANDOM would be better. I mean, what Kconfig
identifier could be used for implementing randomisation in
slub/slob/etc once CONFIG_FREELIST_RANDOM is used up?
> + void *random_seq;
> +#endif
> +
> struct kmem_cache_node *node[MAX_NUMNODES];
> };
>
> diff --git a/init/Kconfig b/init/Kconfig
> index 0c66640..73453d0 100644
> --- a/init/Kconfig
> +++ b/init/Kconfig
> @@ -1742,6 +1742,15 @@ config SLOB
>
> endchoice
>
> +config FREELIST_RANDOM
> + default n
> + depends on SLAB
> + bool "SLAB freelist randomization"
> + help
> + Randomizes the freelist order used on creating new SLABs. This
> + security feature reduces the predictability of the kernel slab
> + allocator against heap overflows.
> +
> config SLUB_CPU_PARTIAL
> default y
> depends on SLUB && SMP
> diff --git a/mm/slab.c b/mm/slab.c
> index b82ee6b..89eb617 100644
> --- a/mm/slab.c
> +++ b/mm/slab.c
> @@ -116,6 +116,7 @@
> #include <linux/kmemcheck.h>
> #include <linux/memory.h>
> #include <linux/prefetch.h>
> +#include <linux/log2.h>
>
> #include <net/sock.h>
>
> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
> }
> }
>
> +#ifdef CONFIG_FREELIST_RANDOM
> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
> + size_t count)
> +{
> + size_t i;
> + unsigned int rand;
> +
> + for (i = 0; i < count; i++)
> + list[i] = i;
> +
> + /* Fisher-Yates shuffle */
> + for (i = count - 1; i > 0; i--) {
> + rand = prandom_u32_state(state);
> + rand %= (i + 1);
> + swap(list[i], list[rand]);
> + }
> +}
> +
> +/* Create a random sequence per cache */
> +static void cache_random_seq_create(struct kmem_cache *cachep)
> +{
> + unsigned int seed, count = cachep->num;
> + struct rnd_state state;
> +
> + if (count < 2)
> + return;
> +
> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
> + BUG_ON(cachep->random_seq == NULL);
Yikes, that's a bit rude. Is there no way of recovering from this? If
the answer to that is really really "no" then I guess we should put a
__GFP_NOFAIL in there. Add a comment explaining why (apologetically -
__GFP_NOFAIL is unpopular!) and remove the now-unneeded BUG_ON.
> + /* Get best entropy at this stage */
> + get_random_bytes_arch(&seed, sizeof(seed));
See concerns in other email - isn't this a no-op if CONFIG_ARCH_RANDOM=n?
> + prandom_seed_state(&state, seed);
> +
> + freelist_randomize(&state, cachep->random_seq, count);
> +}
> +
On Mon, Apr 25, 2016 at 2:10 PM, Andrew Morton
<[email protected]> wrote:
> On Mon, 25 Apr 2016 13:39:23 -0700 Thomas Garnier <[email protected]> wrote:
>
>> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
>> SLAB freelist. The list is randomized during initialization of a new set
>> of pages. The order on different freelist sizes is pre-computed at boot
>> for performance. Each kmem_cache has its own randomized freelist except
>> early on boot where global lists are used. This security feature reduces
>> the predictability of the kernel SLAB allocator against heap overflows
>> rendering attacks much less stable.
>>
>> For example this attack against SLUB (also applicable against SLAB)
>> would be affected:
>> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
>>
>> Also, since v4.6 the freelist was moved at the end of the SLAB. It means
>> a controllable heap is opened to new attacks not yet publicly discussed.
>> A kernel heap overflow can be transformed to multiple use-after-free.
>> This feature makes this type of attack harder too.
>>
>> To generate entropy, we use get_random_bytes_arch because 0 bits of
>> entropy is available in the boot stage. In the worse case this function
>> will fallback to the get_random_bytes sub API. We also generate a shift
>> random number to shift pre-computed freelist for each new set of pages.
>>
>> The config option name is not specific to the SLAB as this approach will
>> be extended to other allocators like SLUB.
>>
>> Performance results highlighted no major changes:
>>
>> slab_test 1 run on boot. Difference only seen on the 2048 size test
>> being the worse case scenario covered by freelist randomization. New
>> slab pages are constantly being created on the 10000 allocations.
>> Variance should be mainly due to getting new pages every few
>> allocations.
>>
>> ...
>>
>> --- a/include/linux/slab_def.h
>> +++ b/include/linux/slab_def.h
>> @@ -80,6 +80,10 @@ struct kmem_cache {
>> struct kasan_cache kasan_info;
>> #endif
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>
> CONFIG_FREELIST_RANDOM bugs me a bit - "freelist" is so vague.
> CONFIG_SLAB_FREELIST_RANDOM would be better. I mean, what Kconfig
> identifier could be used for implementing randomisation in
> slub/slob/etc once CONFIG_FREELIST_RANDOM is used up?
>
>> + void *random_seq;
>> +#endif
>> +
>> struct kmem_cache_node *node[MAX_NUMNODES];
>> };
>>
>> diff --git a/init/Kconfig b/init/Kconfig
>> index 0c66640..73453d0 100644
>> --- a/init/Kconfig
>> +++ b/init/Kconfig
>> @@ -1742,6 +1742,15 @@ config SLOB
>>
>> endchoice
>>
>> +config FREELIST_RANDOM
>> + default n
>> + depends on SLAB
>> + bool "SLAB freelist randomization"
>> + help
>> + Randomizes the freelist order used on creating new SLABs. This
>> + security feature reduces the predictability of the kernel slab
>> + allocator against heap overflows.
>> +
>> config SLUB_CPU_PARTIAL
>> default y
>> depends on SLUB && SMP
>> diff --git a/mm/slab.c b/mm/slab.c
>> index b82ee6b..89eb617 100644
>> --- a/mm/slab.c
>> +++ b/mm/slab.c
>> @@ -116,6 +116,7 @@
>> #include <linux/kmemcheck.h>
>> #include <linux/memory.h>
>> #include <linux/prefetch.h>
>> +#include <linux/log2.h>
>>
>> #include <net/sock.h>
>>
>> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
>> }
>> }
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
>> + size_t count)
>> +{
>> + size_t i;
>> + unsigned int rand;
>> +
>> + for (i = 0; i < count; i++)
>> + list[i] = i;
>> +
>> + /* Fisher-Yates shuffle */
>> + for (i = count - 1; i > 0; i--) {
>> + rand = prandom_u32_state(state);
>> + rand %= (i + 1);
>> + swap(list[i], list[rand]);
>> + }
>> +}
>> +
>> +/* Create a random sequence per cache */
>> +static void cache_random_seq_create(struct kmem_cache *cachep)
>> +{
>> + unsigned int seed, count = cachep->num;
>> + struct rnd_state state;
>> +
>> + if (count < 2)
>> + return;
>> +
>> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
>> + BUG_ON(cachep->random_seq == NULL);
On your previous email. (trying to stay in one thread). I added a
comment on this
version to explain that we need best entropy at this boot stage.
>
> Yikes, that's a bit rude. Is there no way of recovering from this? If
> the answer to that is really really "no" then I guess we should put a
> __GFP_NOFAIL in there. Add a comment explaining why (apologetically -
> __GFP_NOFAIL is unpopular!) and remove the now-unneeded BUG_ON.
>
>
We can always use the static. I will update on next iteration to remove the
BUG_ON.
>> + /* Get best entropy at this stage */
>> + get_random_bytes_arch(&seed, sizeof(seed));
>
> See concerns in other email - isn't this a no-op if CONFIG_ARCH_RANDOM=n?
>
>
>> + prandom_seed_state(&state, seed);
>> +
>> + freelist_randomize(&state, cachep->random_seq, count);
>> +}
>> +
>
On Mon, Apr 25, 2016 at 2:13 PM, Thomas Garnier <[email protected]> wrote:
> On Mon, Apr 25, 2016 at 2:10 PM, Andrew Morton
> <[email protected]> wrote:
>> On Mon, 25 Apr 2016 13:39:23 -0700 Thomas Garnier <[email protected]> wrote:
>>
>>> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
>>> SLAB freelist. The list is randomized during initialization of a new set
>>> of pages. The order on different freelist sizes is pre-computed at boot
>>> for performance. Each kmem_cache has its own randomized freelist except
>>> early on boot where global lists are used. This security feature reduces
>>> the predictability of the kernel SLAB allocator against heap overflows
>>> rendering attacks much less stable.
>>>
>>> For example this attack against SLUB (also applicable against SLAB)
>>> would be affected:
>>> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
>>>
>>> Also, since v4.6 the freelist was moved at the end of the SLAB. It means
>>> a controllable heap is opened to new attacks not yet publicly discussed.
>>> A kernel heap overflow can be transformed to multiple use-after-free.
>>> This feature makes this type of attack harder too.
>>>
>>> To generate entropy, we use get_random_bytes_arch because 0 bits of
>>> entropy is available in the boot stage. In the worse case this function
>>> will fallback to the get_random_bytes sub API. We also generate a shift
>>> random number to shift pre-computed freelist for each new set of pages.
>>>
>>> The config option name is not specific to the SLAB as this approach will
>>> be extended to other allocators like SLUB.
>>>
>>> Performance results highlighted no major changes:
>>>
>>> slab_test 1 run on boot. Difference only seen on the 2048 size test
>>> being the worse case scenario covered by freelist randomization. New
>>> slab pages are constantly being created on the 10000 allocations.
>>> Variance should be mainly due to getting new pages every few
>>> allocations.
>>>
>>> ...
>>>
>>> --- a/include/linux/slab_def.h
>>> +++ b/include/linux/slab_def.h
>>> @@ -80,6 +80,10 @@ struct kmem_cache {
>>> struct kasan_cache kasan_info;
>>> #endif
>>>
>>> +#ifdef CONFIG_FREELIST_RANDOM
>>
>> CONFIG_FREELIST_RANDOM bugs me a bit - "freelist" is so vague.
>> CONFIG_SLAB_FREELIST_RANDOM would be better. I mean, what Kconfig
>> identifier could be used for implementing randomisation in
>> slub/slob/etc once CONFIG_FREELIST_RANDOM is used up?
>>
>>> + void *random_seq;
>>> +#endif
>>> +
>>> struct kmem_cache_node *node[MAX_NUMNODES];
>>> };
>>>
>>> diff --git a/init/Kconfig b/init/Kconfig
>>> index 0c66640..73453d0 100644
>>> --- a/init/Kconfig
>>> +++ b/init/Kconfig
>>> @@ -1742,6 +1742,15 @@ config SLOB
>>>
>>> endchoice
>>>
>>> +config FREELIST_RANDOM
>>> + default n
>>> + depends on SLAB
>>> + bool "SLAB freelist randomization"
>>> + help
>>> + Randomizes the freelist order used on creating new SLABs. This
>>> + security feature reduces the predictability of the kernel slab
>>> + allocator against heap overflows.
>>> +
>>> config SLUB_CPU_PARTIAL
>>> default y
>>> depends on SLUB && SMP
>>> diff --git a/mm/slab.c b/mm/slab.c
>>> index b82ee6b..89eb617 100644
>>> --- a/mm/slab.c
>>> +++ b/mm/slab.c
>>> @@ -116,6 +116,7 @@
>>> #include <linux/kmemcheck.h>
>>> #include <linux/memory.h>
>>> #include <linux/prefetch.h>
>>> +#include <linux/log2.h>
>>>
>>> #include <net/sock.h>
>>>
>>> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
>>> }
>>> }
>>>
>>> +#ifdef CONFIG_FREELIST_RANDOM
>>> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
>>> + size_t count)
>>> +{
>>> + size_t i;
>>> + unsigned int rand;
>>> +
>>> + for (i = 0; i < count; i++)
>>> + list[i] = i;
>>> +
>>> + /* Fisher-Yates shuffle */
>>> + for (i = count - 1; i > 0; i--) {
>>> + rand = prandom_u32_state(state);
>>> + rand %= (i + 1);
>>> + swap(list[i], list[rand]);
>>> + }
>>> +}
>>> +
>>> +/* Create a random sequence per cache */
>>> +static void cache_random_seq_create(struct kmem_cache *cachep)
>>> +{
>>> + unsigned int seed, count = cachep->num;
>>> + struct rnd_state state;
>>> +
>>> + if (count < 2)
>>> + return;
>>> +
>>> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
>>> + BUG_ON(cachep->random_seq == NULL);
>
> On your previous email. (trying to stay in one thread). I added a
> comment on this
> version to explain that we need best entropy at this boot stage.
>
>>
>> Yikes, that's a bit rude. Is there no way of recovering from this? If
>> the answer to that is really really "no" then I guess we should put a
>> __GFP_NOFAIL in there. Add a comment explaining why (apologetically -
>> __GFP_NOFAIL is unpopular!) and remove the now-unneeded BUG_ON.
>>
>>
>
> We can always use the static. I will update on next iteration to remove the
> BUG_ON.
>
>>> + /* Get best entropy at this stage */
>>> + get_random_bytes_arch(&seed, sizeof(seed));
>>
>> See concerns in other email - isn't this a no-op if CONFIG_ARCH_RANDOM=n?
>>
The arch_* functions will return 0 which will break the loop in
get_random_bytes_arch and make it uses extract_entropy (as does
get_random_bytes).
(cf http://lxr.free-electrons.com/source/drivers/char/random.c#L1335)
I might be missing something.
>
>
>>
>>> + prandom_seed_state(&state, seed);
>>> +
>>> + freelist_randomize(&state, cachep->random_seq, count);
>>> +}
>>> +
>>
On Mon, 25 Apr 2016 14:14:33 -0700 Thomas Garnier <[email protected]> wrote:
> >>> + /* Get best entropy at this stage */
> >>> + get_random_bytes_arch(&seed, sizeof(seed));
> >>
> >> See concerns in other email - isn't this a no-op if CONFIG_ARCH_RANDOM=n?
> >>
>
> The arch_* functions will return 0 which will break the loop in
> get_random_bytes_arch and make it uses extract_entropy (as does
> get_random_bytes).
> (cf http://lxr.free-electrons.com/source/drivers/char/random.c#L1335)
>
oop, sorry, I misread the code.
(and the get_random_bytes_arch() comment "This function will use the
architecture-specific hardware random number generator if it is
available" is misleading, so there)
On Mon, Apr 25, 2016 at 2:38 PM, Andrew Morton
<[email protected]> wrote:
> On Mon, 25 Apr 2016 14:14:33 -0700 Thomas Garnier <[email protected]> wrote:
>
>> >>> + /* Get best entropy at this stage */
>> >>> + get_random_bytes_arch(&seed, sizeof(seed));
>> >>
>> >> See concerns in other email - isn't this a no-op if CONFIG_ARCH_RANDOM=n?
>> >>
>>
>> The arch_* functions will return 0 which will break the loop in
>> get_random_bytes_arch and make it uses extract_entropy (as does
>> get_random_bytes).
>> (cf http://lxr.free-electrons.com/source/drivers/char/random.c#L1335)
>>
>
> oop, sorry, I misread the code.
>
> (and the get_random_bytes_arch() comment "This function will use the
> architecture-specific hardware random number generator if it is
> available" is misleading, so there)
No problem, better double check it. I agree it is misleading.
Thomas
On Mon, Apr 25, 2016 at 01:39:23PM -0700, Thomas Garnier wrote:
> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
> SLAB freelist. The list is randomized during initialization of a new set
> of pages. The order on different freelist sizes is pre-computed at boot
> for performance. Each kmem_cache has its own randomized freelist except
> early on boot where global lists are used. This security feature reduces
> the predictability of the kernel SLAB allocator against heap overflows
> rendering attacks much less stable.
>
> For example this attack against SLUB (also applicable against SLAB)
> would be affected:
> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
>
> Also, since v4.6 the freelist was moved at the end of the SLAB. It means
> a controllable heap is opened to new attacks not yet publicly discussed.
> A kernel heap overflow can be transformed to multiple use-after-free.
> This feature makes this type of attack harder too.
>
> To generate entropy, we use get_random_bytes_arch because 0 bits of
> entropy is available in the boot stage. In the worse case this function
> will fallback to the get_random_bytes sub API. We also generate a shift
> random number to shift pre-computed freelist for each new set of pages.
>
> The config option name is not specific to the SLAB as this approach will
> be extended to other allocators like SLUB.
>
> Performance results highlighted no major changes:
>
> slab_test 1 run on boot. Difference only seen on the 2048 size test
> being the worse case scenario covered by freelist randomization. New
> slab pages are constantly being created on the 10000 allocations.
> Variance should be mainly due to getting new pages every few
> allocations.
>
> Before:
>
> Single thread testing
> =====================
> 1. Kmalloc: Repeatedly allocate then free test
> 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
> 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
> 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
> 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
> 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
> 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
> 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
> 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
> 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
> 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
> 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
> 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
> 2. Kmalloc: alloc/free test
> 10000 times kmalloc(8)/kfree -> 121 cycles
> 10000 times kmalloc(16)/kfree -> 121 cycles
> 10000 times kmalloc(32)/kfree -> 121 cycles
> 10000 times kmalloc(64)/kfree -> 121 cycles
> 10000 times kmalloc(128)/kfree -> 121 cycles
> 10000 times kmalloc(256)/kfree -> 119 cycles
> 10000 times kmalloc(512)/kfree -> 119 cycles
> 10000 times kmalloc(1024)/kfree -> 119 cycles
> 10000 times kmalloc(2048)/kfree -> 119 cycles
> 10000 times kmalloc(4096)/kfree -> 121 cycles
> 10000 times kmalloc(8192)/kfree -> 119 cycles
> 10000 times kmalloc(16384)/kfree -> 119 cycles
>
> After:
>
> Single thread testing
> =====================
> 1. Kmalloc: Repeatedly allocate then free test
> 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
> 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
> 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
> 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
> 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
> 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
> 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
> 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
> 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
> 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
> 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
> 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
> 2. Kmalloc: alloc/free test
> 10000 times kmalloc(8)/kfree -> 121 cycles
> 10000 times kmalloc(16)/kfree -> 121 cycles
> 10000 times kmalloc(32)/kfree -> 123 cycles
> 10000 times kmalloc(64)/kfree -> 142 cycles
> 10000 times kmalloc(128)/kfree -> 121 cycles
> 10000 times kmalloc(256)/kfree -> 119 cycles
> 10000 times kmalloc(512)/kfree -> 119 cycles
> 10000 times kmalloc(1024)/kfree -> 119 cycles
> 10000 times kmalloc(2048)/kfree -> 119 cycles
> 10000 times kmalloc(4096)/kfree -> 119 cycles
> 10000 times kmalloc(8192)/kfree -> 119 cycles
> 10000 times kmalloc(16384)/kfree -> 119 cycles
>
> Signed-off-by: Thomas Garnier <[email protected]>
> ---
> Based on next-20160422
> ---
> include/linux/slab_def.h | 4 +
> init/Kconfig | 9 ++
> mm/slab.c | 213 ++++++++++++++++++++++++++++++++++++++++++++++-
> 3 files changed, 224 insertions(+), 2 deletions(-)
>
> diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
> index 9edbbf3..182ec26 100644
> --- a/include/linux/slab_def.h
> +++ b/include/linux/slab_def.h
> @@ -80,6 +80,10 @@ struct kmem_cache {
> struct kasan_cache kasan_info;
> #endif
>
> +#ifdef CONFIG_FREELIST_RANDOM
> + void *random_seq;
> +#endif
> +
> struct kmem_cache_node *node[MAX_NUMNODES];
> };
>
> diff --git a/init/Kconfig b/init/Kconfig
> index 0c66640..73453d0 100644
> --- a/init/Kconfig
> +++ b/init/Kconfig
> @@ -1742,6 +1742,15 @@ config SLOB
>
> endchoice
>
> +config FREELIST_RANDOM
> + default n
> + depends on SLAB
> + bool "SLAB freelist randomization"
> + help
> + Randomizes the freelist order used on creating new SLABs. This
> + security feature reduces the predictability of the kernel slab
> + allocator against heap overflows.
> +
> config SLUB_CPU_PARTIAL
> default y
> depends on SLUB && SMP
> diff --git a/mm/slab.c b/mm/slab.c
> index b82ee6b..89eb617 100644
> --- a/mm/slab.c
> +++ b/mm/slab.c
> @@ -116,6 +116,7 @@
> #include <linux/kmemcheck.h>
> #include <linux/memory.h>
> #include <linux/prefetch.h>
> +#include <linux/log2.h>
>
> #include <net/sock.h>
>
> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
> }
> }
>
> +#ifdef CONFIG_FREELIST_RANDOM
> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
> + size_t count)
> +{
> + size_t i;
> + unsigned int rand;
> +
> + for (i = 0; i < count; i++)
> + list[i] = i;
> +
> + /* Fisher-Yates shuffle */
> + for (i = count - 1; i > 0; i--) {
> + rand = prandom_u32_state(state);
> + rand %= (i + 1);
> + swap(list[i], list[rand]);
> + }
> +}
> +
> +/* Create a random sequence per cache */
> +static void cache_random_seq_create(struct kmem_cache *cachep)
> +{
> + unsigned int seed, count = cachep->num;
> + struct rnd_state state;
> +
> + if (count < 2)
> + return;
> +
> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
> + BUG_ON(cachep->random_seq == NULL);
Hello,
Please make function return int and propagate error to the cache creator.
> +
> + /* Get best entropy at this stage */
> + get_random_bytes_arch(&seed, sizeof(seed));
> + prandom_seed_state(&state, seed);
> +
> + freelist_randomize(&state, cachep->random_seq, count);
> +}
> +
> +/* Destroy the per-cache random freelist sequence */
> +static void cache_random_seq_destroy(struct kmem_cache *cachep)
> +{
> + kfree(cachep->random_seq);
> + cachep->random_seq = NULL;
> +}
> +
> +/*
> + * Global static list are used when pre-computed cache list are not yet
> + * available. Lists of different sizes are created to optimize performance on
> + * SLABS with different object counts.
> + */
> +static freelist_idx_t freelist_random_seq_2[2];
> +static freelist_idx_t freelist_random_seq_4[4];
> +static freelist_idx_t freelist_random_seq_8[8];
> +static freelist_idx_t freelist_random_seq_16[16];
> +static freelist_idx_t freelist_random_seq_32[32];
> +static freelist_idx_t freelist_random_seq_64[64];
> +static freelist_idx_t freelist_random_seq_128[128];
> +static freelist_idx_t freelist_random_seq_256[256];
> +const static struct m_list {
> + size_t count;
> + freelist_idx_t *list;
> +} freelist_random_seqs[] = {
> + { ARRAY_SIZE(freelist_random_seq_2), freelist_random_seq_2 },
> + { ARRAY_SIZE(freelist_random_seq_4), freelist_random_seq_4 },
> + { ARRAY_SIZE(freelist_random_seq_8), freelist_random_seq_8 },
> + { ARRAY_SIZE(freelist_random_seq_16), freelist_random_seq_16 },
> + { ARRAY_SIZE(freelist_random_seq_32), freelist_random_seq_32 },
> + { ARRAY_SIZE(freelist_random_seq_64), freelist_random_seq_64 },
> + { ARRAY_SIZE(freelist_random_seq_128), freelist_random_seq_128 },
> + { ARRAY_SIZE(freelist_random_seq_256), freelist_random_seq_256 },
> +};
I'd like to remove this global static list even if we can't get random
sequence in early boot-up process. In this stage that kernel is not
yet initialized, malicious user cannot do anything so random sequence
doesn't give any more security. After kernel initialization, we will
use per cache random sequence so problem suface is really small. If you
want to randomize freelist sequence even in this case, you can manually
permute the sequence with calling prandom_u32_state(). But, I don't
think it is necessary.
Thanks.
> +
> +/* Pre-compute the global pre-computed lists early at boot */
> +static void __init freelist_random_init(void)
> +{
> + unsigned int seed;
> + size_t i;
> + struct rnd_state state;
> +
> + /* Get best entropy available at this stage */
> + get_random_bytes_arch(&seed, sizeof(seed));
> + prandom_seed_state(&state, seed);
> +
> + for (i = 0; i < ARRAY_SIZE(freelist_random_seqs); i++) {
> + freelist_randomize(&state, freelist_random_seqs[i].list,
> + freelist_random_seqs[i].count);
> + }
> +}
> +#else
> +static inline void __init freelist_random_init(void) { }
> +static inline void cache_random_seq_create(struct kmem_cache *cachep) { }
> +static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
> +#endif /* CONFIG_FREELIST_RANDOM */
> +
> +
> /*
> * Initialisation. Called after the page allocator have been initialised and
> * before smp_init().
> @@ -1256,6 +1351,8 @@ void __init kmem_cache_init(void)
> if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
> slab_max_order = SLAB_MAX_ORDER_HI;
>
> + freelist_random_init();
> +
> /* Bootstrap is tricky, because several objects are allocated
> * from caches that do not exist yet:
> * 1) initialize the kmem_cache cache: it contains the struct
> @@ -2337,6 +2434,8 @@ void __kmem_cache_release(struct kmem_cache *cachep)
> int i;
> struct kmem_cache_node *n;
>
> + cache_random_seq_destroy(cachep);
> +
> free_percpu(cachep->cpu_cache);
>
> /* NUMA: free the node structures */
> @@ -2443,15 +2542,122 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
> #endif
> }
>
> +#ifdef CONFIG_FREELIST_RANDOM
> +/* Hold information during a freelist initialization */
> +struct freelist_init_state {
> + unsigned int padding;
> + unsigned int pos;
> + unsigned int count;
> + unsigned int rand;
> + struct m_list freelist_random_seq;
> +};
> +
> +/* Select the right pre-computed list and initialize state */
> +static void freelist_state_initialize(struct freelist_init_state *state,
> + struct kmem_cache *cachep,
> + unsigned int count)
> +{
> + unsigned int idx;
> + const unsigned int last_idx = ARRAY_SIZE(freelist_random_seqs) - 1;
> +
> + memset(state, 0, sizeof(*state));
> + state->count = count;
> + state->pos = 0;
> +
> + /* Use best entropy available to define a random shift */
> + get_random_bytes_arch(&state->rand, sizeof(state->rand));
> +
> + if (cachep->random_seq) {
> + state->freelist_random_seq.list = cachep->random_seq;
> + state->freelist_random_seq.count = count;
> + } else {
> + /* count is always >= 2 */
> + idx = ilog2(count) - 1;
> + if (idx >= last_idx)
> + idx = last_idx;
> + else if (roundup_pow_of_two(idx + 1) != count)
> + idx++;
> + state->freelist_random_seq = freelist_random_seqs[idx];
> + }
> +}
> +
> +/* Get the next entry on the list depending on the target list size */
> +static freelist_idx_t get_next_entry(struct freelist_init_state *state)
> +{
> + freelist_idx_t ret;
> +
> + if (state->pos == state->freelist_random_seq.count) {
> + state->padding += state->pos;
> + state->pos = 0;
> + }
> +
> + /* Randomize the entry using the random shift */
> + ret = state->freelist_random_seq.list[state->pos++];
> + ret = (ret + state->rand) % state->freelist_random_seq.count;
> + return ret;
> +}
> +
> +static freelist_idx_t next_random_slot(struct freelist_init_state *state)
> +{
> + freelist_idx_t entry;
> +
> + do {
> + entry = get_next_entry(state);
> + } while ((entry + state->padding) >= state->count);
> +
> + return entry + state->padding;
> +}
> +
> +/*
> + * Shuffle the freelist initialization state based on pre-computed lists.
> + * return true if the list was successfully shuffled, false otherwise.
> + */
> +static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
> +{
> + unsigned int objfreelist, i, count = cachep->num;
> + struct freelist_init_state state;
> +
> + if (count < 2)
> + return false;
> +
> + objfreelist = 0;
> + freelist_state_initialize(&state, cachep, count);
> +
> + /* Take the first random entry as the objfreelist */
> + if (OBJFREELIST_SLAB(cachep)) {
> + objfreelist = next_random_slot(&state);
> + page->freelist = index_to_obj(cachep, page, objfreelist) +
> + obj_offset(cachep);
> + count--;
> + }
> + for (i = 0; i < count; i++)
> + set_free_obj(page, i, next_random_slot(&state));
> +
> + if (OBJFREELIST_SLAB(cachep))
> + set_free_obj(page, i, objfreelist);
> + return true;
> +}
> +#else
> +static inline bool shuffle_freelist(struct kmem_cache *cachep,
> + struct page *page)
> +{
> + return false;
> +}
> +#endif /* CONFIG_FREELIST_RANDOM */
> +
> static void cache_init_objs(struct kmem_cache *cachep,
> struct page *page)
> {
> int i;
> void *objp;
> + bool shuffled;
>
> cache_init_objs_debug(cachep, page);
>
> - if (OBJFREELIST_SLAB(cachep)) {
> + /* Try to randomize the freelist if enabled */
> + shuffled = shuffle_freelist(cachep, page);
> +
> + if (!shuffled && OBJFREELIST_SLAB(cachep)) {
> page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
> obj_offset(cachep);
> }
> @@ -2465,7 +2671,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
> kasan_poison_object_data(cachep, objp);
> }
>
> - set_free_obj(page, i, i);
> + if (!shuffled)
> + set_free_obj(page, i, i);
> }
> }
>
> @@ -3815,6 +4022,8 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
> int shared = 0;
> int batchcount = 0;
>
> + cache_random_seq_create(cachep);
> +
> if (!is_root_cache(cachep)) {
> struct kmem_cache *root = memcg_root_cache(cachep);
> limit = root->limit;
> --
> 2.8.0.rc3.226.g39d4020
>
> --
> To unsubscribe, send a message with 'unsubscribe linux-mm' in
> the body to [email protected]. For more info on Linux MM,
> see: http://www.linux-mm.org/ .
> Don't email: <a href=mailto:"[email protected]"> [email protected] </a>
Make sense. I think it is still valuable to randomize earlier pages. I
will adapt the code, test and send patch v4.
Thanks for the quick feedback,
Thomas
On Mon, Apr 25, 2016 at 5:40 PM, Joonsoo Kim <[email protected]> wrote:
> On Mon, Apr 25, 2016 at 01:39:23PM -0700, Thomas Garnier wrote:
>> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
>> SLAB freelist. The list is randomized during initialization of a new set
>> of pages. The order on different freelist sizes is pre-computed at boot
>> for performance. Each kmem_cache has its own randomized freelist except
>> early on boot where global lists are used. This security feature reduces
>> the predictability of the kernel SLAB allocator against heap overflows
>> rendering attacks much less stable.
>>
>> For example this attack against SLUB (also applicable against SLAB)
>> would be affected:
>> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
>>
>> Also, since v4.6 the freelist was moved at the end of the SLAB. It means
>> a controllable heap is opened to new attacks not yet publicly discussed.
>> A kernel heap overflow can be transformed to multiple use-after-free.
>> This feature makes this type of attack harder too.
>>
>> To generate entropy, we use get_random_bytes_arch because 0 bits of
>> entropy is available in the boot stage. In the worse case this function
>> will fallback to the get_random_bytes sub API. We also generate a shift
>> random number to shift pre-computed freelist for each new set of pages.
>>
>> The config option name is not specific to the SLAB as this approach will
>> be extended to other allocators like SLUB.
>>
>> Performance results highlighted no major changes:
>>
>> slab_test 1 run on boot. Difference only seen on the 2048 size test
>> being the worse case scenario covered by freelist randomization. New
>> slab pages are constantly being created on the 10000 allocations.
>> Variance should be mainly due to getting new pages every few
>> allocations.
>>
>> Before:
>>
>> Single thread testing
>> =====================
>> 1. Kmalloc: Repeatedly allocate then free test
>> 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
>> 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
>> 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
>> 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
>> 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
>> 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
>> 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
>> 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
>> 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
>> 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
>> 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
>> 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
>> 2. Kmalloc: alloc/free test
>> 10000 times kmalloc(8)/kfree -> 121 cycles
>> 10000 times kmalloc(16)/kfree -> 121 cycles
>> 10000 times kmalloc(32)/kfree -> 121 cycles
>> 10000 times kmalloc(64)/kfree -> 121 cycles
>> 10000 times kmalloc(128)/kfree -> 121 cycles
>> 10000 times kmalloc(256)/kfree -> 119 cycles
>> 10000 times kmalloc(512)/kfree -> 119 cycles
>> 10000 times kmalloc(1024)/kfree -> 119 cycles
>> 10000 times kmalloc(2048)/kfree -> 119 cycles
>> 10000 times kmalloc(4096)/kfree -> 121 cycles
>> 10000 times kmalloc(8192)/kfree -> 119 cycles
>> 10000 times kmalloc(16384)/kfree -> 119 cycles
>>
>> After:
>>
>> Single thread testing
>> =====================
>> 1. Kmalloc: Repeatedly allocate then free test
>> 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
>> 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
>> 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
>> 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
>> 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
>> 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
>> 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
>> 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
>> 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
>> 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
>> 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
>> 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
>> 2. Kmalloc: alloc/free test
>> 10000 times kmalloc(8)/kfree -> 121 cycles
>> 10000 times kmalloc(16)/kfree -> 121 cycles
>> 10000 times kmalloc(32)/kfree -> 123 cycles
>> 10000 times kmalloc(64)/kfree -> 142 cycles
>> 10000 times kmalloc(128)/kfree -> 121 cycles
>> 10000 times kmalloc(256)/kfree -> 119 cycles
>> 10000 times kmalloc(512)/kfree -> 119 cycles
>> 10000 times kmalloc(1024)/kfree -> 119 cycles
>> 10000 times kmalloc(2048)/kfree -> 119 cycles
>> 10000 times kmalloc(4096)/kfree -> 119 cycles
>> 10000 times kmalloc(8192)/kfree -> 119 cycles
>> 10000 times kmalloc(16384)/kfree -> 119 cycles
>>
>> Signed-off-by: Thomas Garnier <[email protected]>
>> ---
>> Based on next-20160422
>> ---
>> include/linux/slab_def.h | 4 +
>> init/Kconfig | 9 ++
>> mm/slab.c | 213 ++++++++++++++++++++++++++++++++++++++++++++++-
>> 3 files changed, 224 insertions(+), 2 deletions(-)
>>
>> diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
>> index 9edbbf3..182ec26 100644
>> --- a/include/linux/slab_def.h
>> +++ b/include/linux/slab_def.h
>> @@ -80,6 +80,10 @@ struct kmem_cache {
>> struct kasan_cache kasan_info;
>> #endif
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> + void *random_seq;
>> +#endif
>> +
>> struct kmem_cache_node *node[MAX_NUMNODES];
>> };
>>
>> diff --git a/init/Kconfig b/init/Kconfig
>> index 0c66640..73453d0 100644
>> --- a/init/Kconfig
>> +++ b/init/Kconfig
>> @@ -1742,6 +1742,15 @@ config SLOB
>>
>> endchoice
>>
>> +config FREELIST_RANDOM
>> + default n
>> + depends on SLAB
>> + bool "SLAB freelist randomization"
>> + help
>> + Randomizes the freelist order used on creating new SLABs. This
>> + security feature reduces the predictability of the kernel slab
>> + allocator against heap overflows.
>> +
>> config SLUB_CPU_PARTIAL
>> default y
>> depends on SLUB && SMP
>> diff --git a/mm/slab.c b/mm/slab.c
>> index b82ee6b..89eb617 100644
>> --- a/mm/slab.c
>> +++ b/mm/slab.c
>> @@ -116,6 +116,7 @@
>> #include <linux/kmemcheck.h>
>> #include <linux/memory.h>
>> #include <linux/prefetch.h>
>> +#include <linux/log2.h>
>>
>> #include <net/sock.h>
>>
>> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
>> }
>> }
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
>> + size_t count)
>> +{
>> + size_t i;
>> + unsigned int rand;
>> +
>> + for (i = 0; i < count; i++)
>> + list[i] = i;
>> +
>> + /* Fisher-Yates shuffle */
>> + for (i = count - 1; i > 0; i--) {
>> + rand = prandom_u32_state(state);
>> + rand %= (i + 1);
>> + swap(list[i], list[rand]);
>> + }
>> +}
>> +
>> +/* Create a random sequence per cache */
>> +static void cache_random_seq_create(struct kmem_cache *cachep)
>> +{
>> + unsigned int seed, count = cachep->num;
>> + struct rnd_state state;
>> +
>> + if (count < 2)
>> + return;
>> +
>> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
>> + BUG_ON(cachep->random_seq == NULL);
>
> Hello,
>
> Please make function return int and propagate error to the cache creator.
>
>> +
>> + /* Get best entropy at this stage */
>> + get_random_bytes_arch(&seed, sizeof(seed));
>> + prandom_seed_state(&state, seed);
>> +
>> + freelist_randomize(&state, cachep->random_seq, count);
>> +}
>> +
>> +/* Destroy the per-cache random freelist sequence */
>> +static void cache_random_seq_destroy(struct kmem_cache *cachep)
>> +{
>> + kfree(cachep->random_seq);
>> + cachep->random_seq = NULL;
>> +}
>> +
>> +/*
>> + * Global static list are used when pre-computed cache list are not yet
>> + * available. Lists of different sizes are created to optimize performance on
>> + * SLABS with different object counts.
>> + */
>> +static freelist_idx_t freelist_random_seq_2[2];
>> +static freelist_idx_t freelist_random_seq_4[4];
>> +static freelist_idx_t freelist_random_seq_8[8];
>> +static freelist_idx_t freelist_random_seq_16[16];
>> +static freelist_idx_t freelist_random_seq_32[32];
>> +static freelist_idx_t freelist_random_seq_64[64];
>> +static freelist_idx_t freelist_random_seq_128[128];
>> +static freelist_idx_t freelist_random_seq_256[256];
>> +const static struct m_list {
>> + size_t count;
>> + freelist_idx_t *list;
>> +} freelist_random_seqs[] = {
>> + { ARRAY_SIZE(freelist_random_seq_2), freelist_random_seq_2 },
>> + { ARRAY_SIZE(freelist_random_seq_4), freelist_random_seq_4 },
>> + { ARRAY_SIZE(freelist_random_seq_8), freelist_random_seq_8 },
>> + { ARRAY_SIZE(freelist_random_seq_16), freelist_random_seq_16 },
>> + { ARRAY_SIZE(freelist_random_seq_32), freelist_random_seq_32 },
>> + { ARRAY_SIZE(freelist_random_seq_64), freelist_random_seq_64 },
>> + { ARRAY_SIZE(freelist_random_seq_128), freelist_random_seq_128 },
>> + { ARRAY_SIZE(freelist_random_seq_256), freelist_random_seq_256 },
>> +};
>
> I'd like to remove this global static list even if we can't get random
> sequence in early boot-up process. In this stage that kernel is not
> yet initialized, malicious user cannot do anything so random sequence
> doesn't give any more security. After kernel initialization, we will
> use per cache random sequence so problem suface is really small. If you
> want to randomize freelist sequence even in this case, you can manually
> permute the sequence with calling prandom_u32_state(). But, I don't
> think it is necessary.
>
> Thanks.
>
>> +
>> +/* Pre-compute the global pre-computed lists early at boot */
>> +static void __init freelist_random_init(void)
>> +{
>> + unsigned int seed;
>> + size_t i;
>> + struct rnd_state state;
>> +
>> + /* Get best entropy available at this stage */
>> + get_random_bytes_arch(&seed, sizeof(seed));
>> + prandom_seed_state(&state, seed);
>> +
>> + for (i = 0; i < ARRAY_SIZE(freelist_random_seqs); i++) {
>> + freelist_randomize(&state, freelist_random_seqs[i].list,
>> + freelist_random_seqs[i].count);
>> + }
>> +}
>> +#else
>> +static inline void __init freelist_random_init(void) { }
>> +static inline void cache_random_seq_create(struct kmem_cache *cachep) { }
>> +static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
>> +#endif /* CONFIG_FREELIST_RANDOM */
>> +
>> +
>> /*
>> * Initialisation. Called after the page allocator have been initialised and
>> * before smp_init().
>> @@ -1256,6 +1351,8 @@ void __init kmem_cache_init(void)
>> if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
>> slab_max_order = SLAB_MAX_ORDER_HI;
>>
>> + freelist_random_init();
>> +
>> /* Bootstrap is tricky, because several objects are allocated
>> * from caches that do not exist yet:
>> * 1) initialize the kmem_cache cache: it contains the struct
>> @@ -2337,6 +2434,8 @@ void __kmem_cache_release(struct kmem_cache *cachep)
>> int i;
>> struct kmem_cache_node *n;
>>
>> + cache_random_seq_destroy(cachep);
>> +
>> free_percpu(cachep->cpu_cache);
>>
>> /* NUMA: free the node structures */
>> @@ -2443,15 +2542,122 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
>> #endif
>> }
>>
>> +#ifdef CONFIG_FREELIST_RANDOM
>> +/* Hold information during a freelist initialization */
>> +struct freelist_init_state {
>> + unsigned int padding;
>> + unsigned int pos;
>> + unsigned int count;
>> + unsigned int rand;
>> + struct m_list freelist_random_seq;
>> +};
>> +
>> +/* Select the right pre-computed list and initialize state */
>> +static void freelist_state_initialize(struct freelist_init_state *state,
>> + struct kmem_cache *cachep,
>> + unsigned int count)
>> +{
>> + unsigned int idx;
>> + const unsigned int last_idx = ARRAY_SIZE(freelist_random_seqs) - 1;
>> +
>> + memset(state, 0, sizeof(*state));
>> + state->count = count;
>> + state->pos = 0;
>> +
>> + /* Use best entropy available to define a random shift */
>> + get_random_bytes_arch(&state->rand, sizeof(state->rand));
>> +
>> + if (cachep->random_seq) {
>> + state->freelist_random_seq.list = cachep->random_seq;
>> + state->freelist_random_seq.count = count;
>> + } else {
>> + /* count is always >= 2 */
>> + idx = ilog2(count) - 1;
>> + if (idx >= last_idx)
>> + idx = last_idx;
>> + else if (roundup_pow_of_two(idx + 1) != count)
>> + idx++;
>> + state->freelist_random_seq = freelist_random_seqs[idx];
>> + }
>> +}
>> +
>> +/* Get the next entry on the list depending on the target list size */
>> +static freelist_idx_t get_next_entry(struct freelist_init_state *state)
>> +{
>> + freelist_idx_t ret;
>> +
>> + if (state->pos == state->freelist_random_seq.count) {
>> + state->padding += state->pos;
>> + state->pos = 0;
>> + }
>> +
>> + /* Randomize the entry using the random shift */
>> + ret = state->freelist_random_seq.list[state->pos++];
>> + ret = (ret + state->rand) % state->freelist_random_seq.count;
>> + return ret;
>> +}
>> +
>> +static freelist_idx_t next_random_slot(struct freelist_init_state *state)
>> +{
>> + freelist_idx_t entry;
>> +
>> + do {
>> + entry = get_next_entry(state);
>> + } while ((entry + state->padding) >= state->count);
>> +
>> + return entry + state->padding;
>> +}
>> +
>> +/*
>> + * Shuffle the freelist initialization state based on pre-computed lists.
>> + * return true if the list was successfully shuffled, false otherwise.
>> + */
>> +static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
>> +{
>> + unsigned int objfreelist, i, count = cachep->num;
>> + struct freelist_init_state state;
>> +
>> + if (count < 2)
>> + return false;
>> +
>> + objfreelist = 0;
>> + freelist_state_initialize(&state, cachep, count);
>> +
>> + /* Take the first random entry as the objfreelist */
>> + if (OBJFREELIST_SLAB(cachep)) {
>> + objfreelist = next_random_slot(&state);
>> + page->freelist = index_to_obj(cachep, page, objfreelist) +
>> + obj_offset(cachep);
>> + count--;
>> + }
>> + for (i = 0; i < count; i++)
>> + set_free_obj(page, i, next_random_slot(&state));
>> +
>> + if (OBJFREELIST_SLAB(cachep))
>> + set_free_obj(page, i, objfreelist);
>> + return true;
>> +}
>> +#else
>> +static inline bool shuffle_freelist(struct kmem_cache *cachep,
>> + struct page *page)
>> +{
>> + return false;
>> +}
>> +#endif /* CONFIG_FREELIST_RANDOM */
>> +
>> static void cache_init_objs(struct kmem_cache *cachep,
>> struct page *page)
>> {
>> int i;
>> void *objp;
>> + bool shuffled;
>>
>> cache_init_objs_debug(cachep, page);
>>
>> - if (OBJFREELIST_SLAB(cachep)) {
>> + /* Try to randomize the freelist if enabled */
>> + shuffled = shuffle_freelist(cachep, page);
>> +
>> + if (!shuffled && OBJFREELIST_SLAB(cachep)) {
>> page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
>> obj_offset(cachep);
>> }
>> @@ -2465,7 +2671,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
>> kasan_poison_object_data(cachep, objp);
>> }
>>
>> - set_free_obj(page, i, i);
>> + if (!shuffled)
>> + set_free_obj(page, i, i);
>> }
>> }
>>
>> @@ -3815,6 +4022,8 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
>> int shared = 0;
>> int batchcount = 0;
>>
>> + cache_random_seq_create(cachep);
>> +
>> if (!is_root_cache(cachep)) {
>> struct kmem_cache *root = memcg_root_cache(cachep);
>> limit = root->limit;
>> --
>> 2.8.0.rc3.226.g39d4020
>>
>> --
>> To unsubscribe, send a message with 'unsubscribe linux-mm' in
>> the body to [email protected]. For more info on Linux MM,
>> see: http://www.linux-mm.org/ .
>> Don't email: <a href=mailto:"[email protected]"> [email protected] </a>
On Mon, 25 Apr 2016, Thomas Garnier wrote:
> To generate entropy, we use get_random_bytes_arch because 0 bits of
> entropy is available in the boot stage. In the worse case this function
> will fallback to the get_random_bytes sub API. We also generate a shift
> random number to shift pre-computed freelist for each new set of pages.
>
> The config option name is not specific to the SLAB as this approach will
> be extended to other allocators like SLUB.
>
> Performance results highlighted no major changes:
Ok. alloc/free tests are not affected since this exercises the per cpu
objects. And the other ones as well since most of the overhead occurs on
slab page initialization.
> Before:
> 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
> 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
> 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
> 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
> 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
>
> After:
> 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
> 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
> 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
> 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
> 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
And there is some slight regression with the larger objects. Not sure if
we are really hitting the slab page initialization too much there either.
Pretty minimal in synthetic tests. Can you run something like hackbench
too?
Otherwise this looks ok.
Acked-by: Christoph Lameter <[email protected]>