2009-04-30 09:34:26

by vimal singh

[permalink] [raw]
Subject: [resending-2] [PATCH] [MTD] [NAND] Add OMAP2 / OMAP3 NAND driver

This driver is present in the OMAP tree, now pushing it to MTD.

Original author(s):
Jian Zhang <[email protected]>

Signed-off-by: Vimal Singh <[email protected]>
---
drivers/mtd/nand/Kconfig | 6
drivers/mtd/nand/Makefile | 1
drivers/mtd/nand/omap2.c | 776 ++++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 783 insertions(+)

Index: mtd-2.6/drivers/mtd/nand/Kconfig
===================================================================
--- mtd-2.6.orig/drivers/mtd/nand/Kconfig 2009-04-29 11:31:43.000000000 +0530
+++ mtd-2.6/drivers/mtd/nand/Kconfig 2009-04-29 11:33:11.000000000 +0530
@@ -74,6 +74,12 @@ config MTD_NAND_AMS_DELTA
help
Support for NAND flash on Amstrad E3 (Delta).

+config MTD_NAND_OMAP2
+ tristate "NAND Flash device on OMAP2 and OMAP3"
+ depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3)
+ help
+ Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms.
+
config MTD_NAND_TS7250
tristate "NAND Flash device on TS-7250 board"
depends on MACH_TS72XX
Index: mtd-2.6/drivers/mtd/nand/Makefile
===================================================================
--- mtd-2.6.orig/drivers/mtd/nand/Makefile 2009-04-29 11:31:43.000000000 +0530
+++ mtd-2.6/drivers/mtd/nand/Makefile 2009-04-29 11:33:11.000000000 +0530
@@ -25,6 +25,7 @@ obj-$(CONFIG_MTD_NAND_CS553X) += cs553x
obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
+obj-$(CONFIG_MTD_NAND_OMAP2) += omap2.o
obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o
obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
Index: mtd-2.6/drivers/mtd/nand/omap2.c
===================================================================
--- /dev/null 1970-01-01 00:00:00.000000000 +0000
+++ mtd-2.6/drivers/mtd/nand/omap2.c 2009-04-30 14:57:54.000000000 +0530
@@ -0,0 +1,776 @@
+/*
+ * Copyright (c) 2004 Texas Instruments, Jian Zhang <[email protected]>
+ * Copyright (c) 2004 Micron Technology Inc.
+ * Copyright (c) 2004 David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+#include <asm/dma.h>
+
+#include <mach/gpmc.h>
+#include <mach/nand.h>
+
+#define GPMC_IRQ_STATUS 0x18
+#define GPMC_ECC_CONFIG 0x1F4
+#define GPMC_ECC_CONTROL 0x1F8
+#define GPMC_ECC_SIZE_CONFIG 0x1FC
+#define GPMC_ECC1_RESULT 0x200
+
+#define DRIVER_NAME "omap2-nand"
+
+/* size (4 KB) for IO mapping */
+#define NAND_IO_SIZE SZ_4K
+
+#define NAND_WP_OFF 0
+#define NAND_WP_BIT 0x00000010
+#define WR_RD_PIN_MONITORING 0x00600000
+
+#define GPMC_BUF_FULL 0x00000001
+#define GPMC_BUF_EMPTY 0x00000000
+
+#define NAND_Ecc_P1e (1 << 0)
+#define NAND_Ecc_P2e (1 << 1)
+#define NAND_Ecc_P4e (1 << 2)
+#define NAND_Ecc_P8e (1 << 3)
+#define NAND_Ecc_P16e (1 << 4)
+#define NAND_Ecc_P32e (1 << 5)
+#define NAND_Ecc_P64e (1 << 6)
+#define NAND_Ecc_P128e (1 << 7)
+#define NAND_Ecc_P256e (1 << 8)
+#define NAND_Ecc_P512e (1 << 9)
+#define NAND_Ecc_P1024e (1 << 10)
+#define NAND_Ecc_P2048e (1 << 11)
+
+#define NAND_Ecc_P1o (1 << 16)
+#define NAND_Ecc_P2o (1 << 17)
+#define NAND_Ecc_P4o (1 << 18)
+#define NAND_Ecc_P8o (1 << 19)
+#define NAND_Ecc_P16o (1 << 20)
+#define NAND_Ecc_P32o (1 << 21)
+#define NAND_Ecc_P64o (1 << 22)
+#define NAND_Ecc_P128o (1 << 23)
+#define NAND_Ecc_P256o (1 << 24)
+#define NAND_Ecc_P512o (1 << 25)
+#define NAND_Ecc_P1024o (1 << 26)
+#define NAND_Ecc_P2048o (1 << 27)
+
+#define TF(value) (value ? 1 : 0)
+
+#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
+#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
+#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
+#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
+#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
+#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
+#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
+#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
+
+#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
+#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
+#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
+#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
+#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
+#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
+#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
+#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
+
+#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
+#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
+#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
+#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
+#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
+#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
+#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
+#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
+
+#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
+#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
+#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
+#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
+#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
+#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
+#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
+#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
+
+#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
+#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+struct omap_nand_info {
+ struct nand_hw_control controller;
+ struct omap_nand_platform_data *pdata;
+ struct mtd_info mtd;
+ struct mtd_partition *parts;
+ struct nand_chip nand;
+ struct platform_device *pdev;
+
+ int gpmc_cs;
+ unsigned long phys_base;
+ void __iomem *gpmc_cs_baseaddr;
+ void __iomem *gpmc_baseaddr;
+};
+
+/**
+ * omap_nand_wp - This function enable or disable the Write Protect feature
+ * @mtd: MTD device structure
+ * @mode: WP ON/OFF
+ */
+static void omap_nand_wp(struct mtd_info *mtd, int mode)
+{
+ struct omap_nand_info *info = container_of(mtd,
+ struct omap_nand_info, mtd);
+
+ unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
+
+ if (mode)
+ config &= ~(NAND_WP_BIT); /* WP is ON */
+ else
+ config |= (NAND_WP_BIT); /* WP is OFF */
+
+ __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
+}
+
+/**
+ * omap_hwcontrol - hardware specific access to control-lines
+ * @mtd: MTD device structure
+ * @cmd: command to device
+ * @ctrl:
+ * NAND_NCE: bit 0 -> don't care
+ * NAND_CLE: bit 1 -> Command Latch
+ * NAND_ALE: bit 2 -> Address Latch
+ *
+ * NOTE: boards may use different bits for these!!
+ */
+static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+ struct omap_nand_info *info = container_of(mtd,
+ struct omap_nand_info, mtd);
+ switch (ctrl) {
+ case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
+ info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_COMMAND;
+ info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_DATA;
+ break;
+
+ case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
+ info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_ADDRESS;
+ info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_DATA;
+ break;
+
+ case NAND_CTRL_CHANGE | NAND_NCE:
+ info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_DATA;
+ info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_DATA;
+ break;
+ }
+
+ if (cmd != NAND_CMD_NONE)
+ __raw_writeb(cmd, info->nand.IO_ADDR_W);
+}
+
+/**
+ * omap_read_buf16 - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+
+ __raw_readsw(nand->IO_ADDR_R, buf, len / 2);
+}
+
+/**
+ * omap_write_buf16 - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
+{
+ struct omap_nand_info *info = container_of(mtd,
+ struct omap_nand_info, mtd);
+ u16 *p = (u16 *) buf;
+
+ /* FIXME try bursts of writesw() or DMA ... */
+ len >>= 1;
+
+ while (len--) {
+ writew(*p++, info->nand.IO_ADDR_W);
+
+ while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
+ GPMC_STATUS) & GPMC_BUF_FULL))
+ ;
+ }
+}
+/**
+ * omap_verify_buf - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ */
+static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
+{
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ u16 *p = (u16 *) buf;
+
+ len >>= 1;
+ while (len--) {
+ if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_MTD_NAND_OMAP_HWECC
+/**
+ * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
+ * @mtd: MTD device structure
+ */
+static void omap_hwecc_init(struct mtd_info *mtd)
+{
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ struct nand_chip *chip = mtd->priv;
+ unsigned long val = 0x0;
+
+ /* Read from ECC Control Register */
+ val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+ /* Clear all ECC | Enable Reg1 */
+ val = ((0x00000001<<8) | 0x00000001);
+ __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+
+ /* Read from ECC Size Config Register */
+ val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
+ /* ECCSIZE1=512 | Select eccResultsize[0-3] */
+ val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
+ __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
+}
+
+/**
+ * gen_true_ecc - This function will generate true ECC value
+ * @ecc_buf: buffer to store ecc code
+ *
+ * This generated true ECC value can be used when correcting
+ * data read from NAND flash memory core
+ */
+static void gen_true_ecc(u8 *ecc_buf)
+{
+ u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
+ ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
+
+ ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
+ P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
+ ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
+ P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
+ ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
+ P1e(tmp) | P2048o(tmp) | P2048e(tmp));
+}
+
+/**
+ * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
+ * @ecc_data1: ecc code from nand spare area
+ * @ecc_data2: ecc code from hardware register obtained from hardware ecc
+ * @page_data: page data
+ *
+ * This function compares two ECC's and indicates if there is an error.
+ * If the error can be corrected it will be corrected to the buffer.
+ */
+static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
+ u8 *ecc_data2, /* read from register */
+ u8 *page_data)
+{
+ uint i;
+ u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
+ u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
+ u8 ecc_bit[24];
+ u8 ecc_sum = 0;
+ u8 find_bit = 0;
+ uint find_byte = 0;
+ int isEccFF;
+
+ isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
+
+ gen_true_ecc(ecc_data1);
+ gen_true_ecc(ecc_data2);
+
+ for (i = 0; i <= 2; i++) {
+ *(ecc_data1 + i) = ~(*(ecc_data1 + i));
+ *(ecc_data2 + i) = ~(*(ecc_data2 + i));
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp0_bit[i] = *ecc_data1 % 2;
+ *ecc_data1 = *ecc_data1 / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp1_bit[i] = *(ecc_data1 + 1) % 2;
+ *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp2_bit[i] = *(ecc_data1 + 2) % 2;
+ *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp0_bit[i] = *ecc_data2 % 2;
+ *ecc_data2 = *ecc_data2 / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp1_bit[i] = *(ecc_data2 + 1) % 2;
+ *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp2_bit[i] = *(ecc_data2 + 2) % 2;
+ *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
+ }
+
+ for (i = 0; i < 6; i++)
+ ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
+
+ for (i = 0; i < 8; i++)
+ ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
+
+ for (i = 0; i < 8; i++)
+ ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
+
+ ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
+ ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
+
+ for (i = 0; i < 24; i++)
+ ecc_sum += ecc_bit[i];
+
+ switch (ecc_sum) {
+ case 0:
+ /* Not reached because this function is not called if
+ * ECC values are equal
+ */
+ return 0;
+
+ case 1:
+ /* Uncorrectable error */
+ DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
+ return -1;
+
+ case 11:
+ /* UN-Correctable error */
+ DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
+ return -1;
+
+ case 12:
+ /* Correctable error */
+ find_byte = (ecc_bit[23] << 8) +
+ (ecc_bit[21] << 7) +
+ (ecc_bit[19] << 6) +
+ (ecc_bit[17] << 5) +
+ (ecc_bit[15] << 4) +
+ (ecc_bit[13] << 3) +
+ (ecc_bit[11] << 2) +
+ (ecc_bit[9] << 1) +
+ ecc_bit[7];
+
+ find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
+
+ DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
+ "offset: %d, bit: %d\n", find_byte, find_bit);
+
+ page_data[find_byte] ^= (1 << find_bit);
+
+ return 0;
+ default:
+ if (isEccFF) {
+ if (ecc_data2[0] == 0 &&
+ ecc_data2[1] == 0 &&
+ ecc_data2[2] == 0)
+ return 0;
+ }
+ DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
+ return -1;
+ }
+}
+
+/**
+ * omap_correct_data - Compares the ECC read with HW generated ECC
+ * @mtd: MTD device structure
+ * @dat: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from HW ECC registers
+ *
+ * Compares the ecc read from nand spare area with ECC registers values
+ * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
+ * and correction.
+ */
+static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ int blockCnt = 0, i = 0, ret = 0;
+
+ /* Ex NAND_ECC_HW12_2048 */
+ if ((info->nand.ecc.mode == NAND_ECC_HW) &&
+ (info->nand.ecc.size == 2048))
+ blockCnt = 4;
+ else
+ blockCnt = 1;
+
+ for (i = 0; i < blockCnt; i++) {
+ if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+ ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
+ if (ret < 0)
+ return ret;
+ }
+ read_ecc += 3;
+ calc_ecc += 3;
+ dat += 512;
+ }
+ return 0;
+}
+
+/**
+ * omap_calcuate_ecc - Generate non-inverted ECC bytes.
+ * @mtd: MTD device structure
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ *
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page. Reading
+ * an erased page will produce an ECC mismatch between generated and read
+ * ECC bytes that has to be dealt with separately.
+ */
+static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ unsigned long val = 0x0;
+ unsigned long reg;
+
+ /* Start Reading from HW ECC1_Result = 0x200 */
+ reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
+ val = __raw_readl(reg);
+ *ecc_code++ = val; /* P128e, ..., P1e */
+ *ecc_code++ = val >> 16; /* P128o, ..., P1o */
+ /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+ *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+ reg += 4;
+
+ return 0;
+}
+
+/**
+ * omap_enable_hwecc - This function enables the hardware ecc functionality
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ */
+static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ struct nand_chip *chip = mtd->priv;
+ unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
+ unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
+
+ switch (mode) {
+ case NAND_ECC_READ:
+ __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+ break;
+ case NAND_ECC_READSYN:
+ __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+ break;
+ case NAND_ECC_WRITE:
+ __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+ break;
+ default:
+ DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
+ mode);
+ break;
+ }
+
+ __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
+}
+#endif
+
+/**
+ * omap_wait - wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND Chip structure
+ *
+ * Wait function is called during Program and erase operations and
+ * the way it is called from MTD layer, we should wait till the NAND
+ * chip is ready after the programming/erase operation has completed.
+ *
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ */
+static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ unsigned long timeo = jiffies;
+ int status, state = this->state;
+
+ if (state == FL_ERASING)
+ timeo += (HZ * 400) / 1000;
+ else
+ timeo += (HZ * 20) / 1000;
+
+ this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_COMMAND;
+ this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
+
+ __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
+
+ while (time_before(jiffies, timeo)) {
+ status = __raw_readb(this->IO_ADDR_R);
+ if (!(status & 0x40))
+ break;
+ }
+ return status;
+}
+
+/**
+ * omap_dev_ready - calls the platform specific dev_ready function
+ * @mtd: MTD device structure
+ */
+static int omap_dev_ready(struct mtd_info *mtd)
+{
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
+
+ if ((val & 0x100) == 0x100) {
+ /* Clear IRQ Interrupt */
+ val |= 0x100;
+ val &= ~(0x0);
+ __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
+ } else {
+ unsigned int cnt = 0;
+ while (cnt++ < 0x1FF) {
+ if ((val & 0x100) == 0x100)
+ return 0;
+ val = __raw_readl(info->gpmc_baseaddr +
+ GPMC_IRQ_STATUS);
+ }
+ }
+
+ return 1;
+}
+
+static int __devinit omap_nand_probe(struct platform_device *pdev)
+{
+ struct omap_nand_info *info;
+ struct omap_nand_platform_data *pdata;
+ int err;
+ unsigned long val;
+
+
+ pdata = pdev->dev.platform_data;
+ if (pdata == NULL) {
+ dev_err(&pdev->dev, "platform data missing\n");
+ return -ENODEV;
+ }
+
+ info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, info);
+
+ spin_lock_init(&info->controller.lock);
+ init_waitqueue_head(&info->controller.wq);
+
+ info->pdev = pdev;
+
+ info->gpmc_cs = pdata->cs;
+ info->gpmc_baseaddr = pdata->gpmc_baseaddr;
+ info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr;
+
+ info->mtd.priv = &info->nand;
+ info->mtd.name = dev_name(&pdev->dev);
+ info->mtd.owner = THIS_MODULE;
+
+ err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
+ if (err < 0) {
+ dev_err(&pdev->dev, "Cannot request GPMC CS\n");
+ goto out_free_info;
+ }
+
+ /* Enable RD PIN Monitoring Reg */
+ if (pdata->dev_ready) {
+ val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
+ val |= WR_RD_PIN_MONITORING;
+ gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
+ }
+
+ val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
+ val &= ~(0xf << 8);
+ val |= (0xc & 0xf) << 8;
+ gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
+
+ /* NAND write protect off */
+ omap_nand_wp(&info->mtd, NAND_WP_OFF);
+
+ if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
+ pdev->dev.driver->name)) {
+ err = -EBUSY;
+ goto out_free_cs;
+ }
+
+ info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
+ if (!info->nand.IO_ADDR_R) {
+ err = -ENOMEM;
+ goto out_release_mem_region;
+ }
+ info->nand.controller = &info->controller;
+
+ info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
+ info->nand.cmd_ctrl = omap_hwcontrol;
+
+ /* REVISIT: only supports 16-bit NAND flash */
+
+ info->nand.read_buf = omap_read_buf16;
+ info->nand.write_buf = omap_write_buf16;
+ info->nand.verify_buf = omap_verify_buf;
+
+ /*
+ * If RDY/BSY line is connected to OMAP then use the omap ready
+ * funcrtion and the generic nand_wait function which reads the status
+ * register after monitoring the RDY/BSY line.Otherwise use a standard
+ * chip delay which is slightly more than tR (AC Timing) of the NAND
+ * device and read status register until you get a failure or success
+ */
+ if (pdata->dev_ready) {
+ info->nand.dev_ready = omap_dev_ready;
+ info->nand.chip_delay = 0;
+ } else {
+ info->nand.waitfunc = omap_wait;
+ info->nand.chip_delay = 50;
+ }
+
+ info->nand.options |= NAND_SKIP_BBTSCAN;
+ if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
+ == 0x1000)
+ info->nand.options |= NAND_BUSWIDTH_16;
+
+#ifdef CONFIG_MTD_NAND_OMAP_HWECC
+ info->nand.ecc.bytes = 3;
+ info->nand.ecc.size = 512;
+ info->nand.ecc.calculate = omap_calculate_ecc;
+ info->nand.ecc.hwctl = omap_enable_hwecc;
+ info->nand.ecc.correct = omap_correct_data;
+ info->nand.ecc.mode = NAND_ECC_HW;
+
+ /* init HW ECC */
+ omap_hwecc_init(&info->mtd);
+#else
+ info->nand.ecc.mode = NAND_ECC_SOFT;
+#endif
+
+ /* DIP switches on some boards change between 8 and 16 bit
+ * bus widths for flash. Try the other width if the first try fails.
+ */
+ if (nand_scan(&info->mtd, 1)) {
+ info->nand.options ^= NAND_BUSWIDTH_16;
+ if (nand_scan(&info->mtd, 1)) {
+ err = -ENXIO;
+ goto out_release_mem_region;
+ }
+ }
+
+#ifdef CONFIG_MTD_PARTITIONS
+ err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
+ if (err > 0)
+ add_mtd_partitions(&info->mtd, info->parts, err);
+ else if (pdata->parts)
+ add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
+ else
+#endif
+ add_mtd_device(&info->mtd);
+
+ platform_set_drvdata(pdev, &info->mtd);
+
+ return 0;
+
+out_release_mem_region:
+ release_mem_region(info->phys_base, NAND_IO_SIZE);
+out_free_cs:
+ gpmc_cs_free(info->gpmc_cs);
+out_free_info:
+ kfree(info);
+
+ return err;
+}
+
+static int omap_nand_remove(struct platform_device *pdev)
+{
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct omap_nand_info *info = mtd->priv;
+
+ platform_set_drvdata(pdev, NULL);
+ /* Release NAND device, its internal structures and partitions */
+ nand_release(&info->mtd);
+ iounmap(info->nand.IO_ADDR_R);
+ kfree(&info->mtd);
+ return 0;
+}
+
+static struct platform_driver omap_nand_driver = {
+ .probe = omap_nand_probe,
+ .remove = omap_nand_remove,
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+ },
+};
+
+static int __init omap_nand_init(void)
+{
+ printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
+ return platform_driver_register(&omap_nand_driver);
+}
+
+static void __exit omap_nand_exit(void)
+{
+ platform_driver_unregister(&omap_nand_driver);
+}
+
+module_init(omap_nand_init);
+module_exit(omap_nand_exit);
+
+MODULE_ALIAS(DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");