2012-11-13 06:04:21

by Jacob Pan

[permalink] [raw]
Subject: [PATCH 0/3] pm: Intel powerclamp driver

Hi,

We have done some experiment with idle injection on Intel platforms.
The idea is to use the increasingly power efficient package level
C-states for power capping and passive thermal control.

Documentation is included in the patch to explain the theory of
operation, performance implication, calibration, scalability, and user
interface. Please refer to the following file for more details.

Documentation/thermal/intel_powerclamp.txt

Arjan van de Ven created the original idea and driver, I have been
refining driver in hope that they can be to be useful beyond a proof
of concept.

Jacob Pan (3):
tick: export nohz tick idle symbols for module use
x86/nmi: export local_touch_nmi() symbol for modules
PM: Introduce Intel PowerClamp Driver

Documentation/thermal/intel_powerclamp.txt | 307 +++++++++++
arch/x86/kernel/nmi.c | 1 +
drivers/thermal/Kconfig | 10 +
drivers/thermal/Makefile | 1 +
drivers/thermal/intel_powerclamp.c | 766 ++++++++++++++++++++++++++++
kernel/time/tick-sched.c | 2 +
6 files changed, 1087 insertions(+)
create mode 100644 Documentation/thermal/intel_powerclamp.txt
create mode 100644 drivers/thermal/intel_powerclamp.c

--
1.7.9.5


2012-11-13 06:04:22

by Jacob Pan

[permalink] [raw]
Subject: [PATCH 1/3] tick: export nohz tick idle symbols for module use

Allow drivers such as intel_powerclamp to use these apis for
turning on/off ticks during idle.

Signed-off-by: Jacob Pan <[email protected]>
---
kernel/time/tick-sched.c | 2 ++
1 file changed, 2 insertions(+)

diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index a402608..7c38f08 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -510,6 +510,7 @@ void tick_nohz_idle_enter(void)

local_irq_enable();
}
+EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);

/**
* tick_nohz_irq_exit - update next tick event from interrupt exit
@@ -634,6 +635,7 @@ void tick_nohz_idle_exit(void)

local_irq_enable();
}
+EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
--
1.7.9.5

2012-11-13 06:04:26

by Jacob Pan

[permalink] [raw]
Subject: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

Intel PowerClamp driver performs synchronized idle injection across
all online CPUs. The goal is to maintain a given package level C-state
ratio.

Compared to other throttling methods already exist in the kernel,
such as ACPI PAD (taking CPUs offline) and clock modulation, this is often
more efficient in terms of performance per watt.

Please refer to Documentation/thermal/intel_powerclamp.txt for more details.

Signed-off-by: Arjan van de Ven <[email protected]>
Signed-off-by: Jacob Pan <[email protected]>
---
Documentation/thermal/intel_powerclamp.txt | 307 +++++++++++
drivers/thermal/Kconfig | 10 +
drivers/thermal/Makefile | 1 +
drivers/thermal/intel_powerclamp.c | 766 ++++++++++++++++++++++++++++
4 files changed, 1084 insertions(+)
create mode 100644 Documentation/thermal/intel_powerclamp.txt
create mode 100644 drivers/thermal/intel_powerclamp.c

diff --git a/Documentation/thermal/intel_powerclamp.txt b/Documentation/thermal/intel_powerclamp.txt
new file mode 100644
index 0000000..332de4a
--- /dev/null
+++ b/Documentation/thermal/intel_powerclamp.txt
@@ -0,0 +1,307 @@
+ =======================
+ INTEL POWERCLAMP DRIVER
+ =======================
+By: Arjan van de Ven <[email protected]>
+ Jacob Pan <[email protected]>
+
+Contents:
+ (*) Introduction
+ - Goals and Objectives
+
+ (*) Theory of Operation
+ - Idle Injection
+ - Calibration
+
+ (*) Performance Analysis
+ - Effectiveness and Limitations
+ - Power vs Performance
+ - Scalability
+ - Calibration
+ - Comparison with Alternative Techniques
+
+ (*) Usage and Interfaces
+ - Generic Thermal Layer (sysfs)
+ - Kernel APIs (TBD)
+
+============
+INTRODUCTION
+============
+
+Consider the situation where a system’s power consumption must be
+reduced at runtime, due to power budget, thermal constraint, or noise
+level, and where active cooling is not preferred. Software managed
+passive power reduction must be performed to prevent the hardware
+actions that are designed for catastrophic scenarios.
+
+Currently, P-states, T-states (clock modulation), and CPU offlining
+are used for CPU throttling.
+
+On Intel CPUs, C-states provide effective power reduction, but so far
+they’re only used opportunistically, based on workload. With the
+development of intel_powerclamp driver, the method of synchronizing
+idle injection across all online CPU threads was introduced. The goal
+is to achieve forced and controllable C-state residency.
+
+Test/Analysis has been made in the areas of power, performance,
+scalability, and user experience. In many cases, clear advantage is
+shown over taking the CPU offline or modulating the CPU clock.
+
+
+===================
+THEORY OF OPERATION
+===================
+
+Idle Injection
+--------------
+
+On modern Intel processors (Nehalem or later), package level C-state
+residency is available in MSRs, thus also available to the kernel.
+
+These MSRs are:
+ #define MSR_PKG_C2_RESIDENCY 0x60D
+ #define MSR_PKG_C3_RESIDENCY 0x3F8
+ #define MSR_PKG_C6_RESIDENCY 0x3F9
+ #define MSR_PKG_C7_RESIDENCY 0x3FA
+
+If the kernel can also inject idle time to the system, then a
+closed-loop control system can be established that manages package
+level C-state. The intel_powerclamp driver is conceived as such a
+control system, where the target set point is a user-selected idle
+ratio (based on power reduction), and the error is the difference
+between the actual package level C-state residency ratio and the target idle
+ratio.
+
+Injection is controlled by high priority kernel threads, spawned for
+each online CPU.
+
+These kernel threads, with SCHED_FIFO class, are created to perform
+clamping actions of controlled duty ratio and duration. Each per-CPU
+thread synchronizes its idle time and duration, based on the rounding
+of jiffies, so accumulated errors can be prevented to avoid a jittery
+effect. Threads are also bound to the CPU such that they cannot be
+migrated, unless the CPU is taken offline. In this case, threads
+belong to the offlined CPUs will be terminated immediately.
+
+Running as SCHED_FIFO and relatively high priority, also allows such
+scheme to work for both preemptable and non-preemptable kernels.
+Alignment of idle time around jiffies ensures scalability for HZ
+values. This effect can be better visualized using a Perf timechart.
+The following diagram shows the behavior of kernel thread
+kidle_inject/cpu. During idle injection, it runs monitor/mwait idle
+for a given "duration", then relinquishes the CPU to other tasks,
+until the next time interval.
+
+The NOHZ schedule tick is disabled during idle time, but interrupts
+are not masked. Tests show that the extra wakeups from scheduler tick
+have a dramatic impact on the effectiveness of the powerclamp driver
+on large scale systems (Westmere system with 80 processors).
+
+CPU0
+ ____________ ____________
+kidle_inject/0 | sleep | mwait | sleep |
+ _________| |________| |_______
+ duration
+CPU1
+ ____________ ____________
+kidle_inject/1 | sleep | mwait | sleep |
+ _________| |________| |_______
+ ^
+ |
+ |
+ roundup(jiffies, interval)
+
+Only one CPU is allowed to collect statistics and update global
+control parameters. This CPU is referred to as the controlling CPU in
+this document. The controlling CPU is elected at runtime, with a
+policy that favors BSP, taking into account the possibility of a CPU
+hot-plug.
+
+In terms of dynamics of the idle control system, package level idle
+time is considered largely as a non-causal system where its behavior
+cannot be based on the past or current input. Therefore, the
+intel_powerclamp driver attempts to enforce the desired idle time
+instantly as given input (target idle ratio). After injection,
+powerclamp moniors the actual idle for a given time window and adjust
+the next injection accordingly to avoid over/under correction.
+
+When used in a causal control system, such as a temperature control,
+it is up to the user of this driver to implement algorithms where
+past samples and outputs are included in the feedback. For example, a
+PID-based thermal controller can use the powerclamp driver to
+maintain a desired target temperature, based on integral and
+derivative gains of the past samples.
+
+
+
+Calibration
+-----------
+During scalability testing, it is observed that synchronized actions
+among CPUs become challenging as the number of cores grows. This is
+also true for the ability of a system to enter package level C-states.
+
+To make sure the intel_powerclamp driver scales well, online
+calibration is implemented. The goals for doing such a calibration
+are:
+
+a) determine the effective range of idle injection ratio
+b) determine the amount of compensation needed at each target ratio
+
+Compensation to each target ratio consists of two parts:
+
+ a) steady state error compensation
+ This is to offset the error occurring when the system can
+ enter idle without extra wakeups (such as external interrupts).
+
+ b) dynamic error compensation
+ When an excessive amount of wakeups occurs during idle, an
+ additional idle ratio can be added to quiet interrupts, by
+ slowing down CPU activities.
+
+A debugfs file is provided for the user to examine compensation
+progress and results, such as on a Westmere system.
+[jacob@nex01 ~]$ cat
+/sys/kernel/debug/intel_powerclamp/powerclamp_calib
+controlling cpu: 0
+pct confidence steady dynamic (compensation)
+0 0 0 0
+1 1 0 0
+2 1 1 0
+3 3 1 0
+4 3 1 0
+5 3 1 0
+6 3 1 0
+7 3 1 0
+8 3 1 0
+...
+30 3 2 0
+31 3 2 0
+32 3 1 0
+33 3 2 0
+34 3 1 0
+35 3 2 0
+36 3 1 0
+37 3 2 0
+38 3 1 0
+39 3 2 0
+40 3 3 0
+41 3 1 0
+42 3 2 0
+43 3 1 0
+44 3 1 0
+45 3 2 0
+46 3 3 0
+47 3 0 0
+48 3 2 0
+49 3 3 0
+
+Calibration occurs during runtime. No offline method is available.
+Steady state compensation is used only when confidence levels of all
+adjacent ratios have reached satisfactory level. A confidence level
+is accumulated based on clean data collected at runtime. Data
+collected during a period without extra interrupts is considered
+clean.
+
+To compensate for excessive amounts of wakeup during idle, additional
+idle time is injected when such a condition is detected. Currently,
+we have a simple algorithm to double the injection ratio. A possible
+enhancement might be to throttle the offending IRQ, such as delaying
+EOI for level triggered interrupts. But it is a challenge to be
+non-intrusive to the scheduler or the IRQ core code.
+
+
+CPU Online/Offline
+------------------
+Per-CPU kernel threads are started/stopped upon receiving
+notifications of CPU hotplug activities. The intel_powerclamp driver
+keeps track of clamping kernel threads, even after they are migrated
+to other CPUs, after a CPU offline event.
+
+
+=====================
+Performance Analysis
+=====================
+This section describes the general performance data collected on
+multiple systems, including Westmere (80P) and Ivy Bridge (4P, 8P).
+
+Effectiveness and Limitations
+-----------------------------
+The maximum range that idle injection is allowed is capped at 50
+percent. As mentioned earlier, since interrupts are allowed during
+forced idle time, excessive interrupts could result in less
+effectiveness. The extreme case would be doing a ping -f to generated
+flooded network interrupts without much CPU acknowledgement. In this
+case, little can be done from the idle injection threads. In most
+normal cases, such as scp a large file, applications can be throttled
+by the powerclamp driver, since slowing down the CPU also slows down
+network protocol processing, which in turn reduces interrupts.
+
+When control parameters change at runtime by the controlling CPU, it
+may take an additional period for the rest of the CPUs to catch up
+with the changes. During this time, idle injection is out of sync,
+thus not able to enter package C- states at the expected ratio. But
+this effect is minor, in that in most cases change to the target
+ratio is updated much less frequently than the idle injection
+frequency.
+
+Scalability
+-----------
+Tests also show a minor, but measurable, difference between the 4P/8P
+Ivy Bridge system and the 80P Westmere server under 50% idle ratio.
+More compensation is needed on Westmere for the same amount of
+target idle ratio. The compensation also increases as the idle ratio
+gets larger. The above reason constitutes the need for the
+calibration code.
+
+On the IVB 8P system, compared to an offline CPU, powerclamp can
+achieve up to 40% better performance per watt. (measured by a spin
+counter summed over per CPU counting threads spawned for all running
+CPUs).
+
+====================
+Usage and Interfaces
+====================
+The powerclamp driver is registered to the generic thermal layer as a
+cooling device. Currently, it’s not bound to any thermal zones.
+
+jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
+cur_state:0
+max_state:50
+type:intel_powerclamp
+
+Example usage:
+- To inject 25% idle time
+$ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state
+"
+
+If the system is not busy and has more than 25% idle time already,
+then the powerclamp driver will not start idle injection. Using Top
+will not show idle injection kernel threads.
+
+If the system is busy (spin test below) and has less than 25% natural
+idle time, powerclamp kernel threads will do idle injection, which
+appear running to the scheduler. But the overall system idle is still
+reflected. In this example, 24.1% idle is shown. This helps the
+system admin or user determine the cause of slowdown, when a
+powerclamp driver is in action.
+
+
+Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
+Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
+Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
+Swap: 4087804k total, 0k used, 4087804k free, 945336k cached
+
+ PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
+ 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
+ 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0
+ 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
+ 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
+ 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
+ 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
+ 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
+ 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz
+
+Tests have shown that by using the powerclamp driver as a cooling
+device, a PID based userspace thermal controller can manage to
+control CPU temperature effectively, when no other thermal influence
+is added. For example, a UltraBook user can compile the kernel under
+certain temperature (below most active trip points).
diff --git a/drivers/thermal/Kconfig b/drivers/thermal/Kconfig
index e1cb6bd..4d99c4b 100644
--- a/drivers/thermal/Kconfig
+++ b/drivers/thermal/Kconfig
@@ -55,3 +55,13 @@ config EXYNOS_THERMAL
help
If you say yes here you get support for TMU (Thermal Managment
Unit) on SAMSUNG EXYNOS series of SoC.
+
+config INTEL_POWERCLAMP
+ tristate "Intel PowerClamp idle injection driver"
+ depends on THERMAL
+ depends on X86
+ depends on CPU_SUP_INTEL
+ help
+ Enable this to enable Intel PowerClamp idle injection driver. This
+ enforce idle time which results in more package C-state residency. The
+ user interface is exposed via generic thermal framework.
diff --git a/drivers/thermal/Makefile b/drivers/thermal/Makefile
index 885550d..03e4479 100644
--- a/drivers/thermal/Makefile
+++ b/drivers/thermal/Makefile
@@ -7,3 +7,4 @@ obj-$(CONFIG_CPU_THERMAL) += cpu_cooling.o
obj-$(CONFIG_SPEAR_THERMAL) += spear_thermal.o
obj-$(CONFIG_RCAR_THERMAL) += rcar_thermal.o
obj-$(CONFIG_EXYNOS_THERMAL) += exynos_thermal.o
+obj-$(CONFIG_INTEL_POWERCLAMP) += intel_powerclamp.o
diff --git a/drivers/thermal/intel_powerclamp.c b/drivers/thermal/intel_powerclamp.c
new file mode 100644
index 0000000..cc9fa17
--- /dev/null
+++ b/drivers/thermal/intel_powerclamp.c
@@ -0,0 +1,766 @@
+/*
+ * intel_powerclamp.c - package c-state idle injection
+ *
+ * Copyright (c) 2012, Intel Corporation.
+ *
+ * Authors:
+ * Arjan van de Ven <[email protected]>
+ * Jacob Pan <[email protected]>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ *
+ * TODO:
+ * 1. better handle wakeup from external interrupts, currently a fixed
+ * compensation is added to clamping duration when excessive amount
+ * of wakeups are observed during idle time. the reason is that in
+ * case of external interrupts without need for ack, clamping down
+ * cpu in non-irq context does not reduce irq. for majority of the
+ * cases, clamping down cpu does help reduce irq as well, we should
+ * be able to differenciate the two cases and give a quantitative
+ * solution for the irqs that we can control. perhaps based on
+ * get_cpu_iowait_time_us()
+ *
+ * 2. synchronization with other hw blocks
+ *
+ *
+ */
+
+/* #define DEBUG */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include <linux/cpu.h>
+#include <linux/thermal.h>
+#include <linux/slab.h>
+#include <linux/tick.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/nmi.h>
+
+#include <asm/msr.h>
+#include <asm/mwait.h>
+#include <asm/cpu_device_id.h>
+#include <asm/idle.h>
+#include <asm/hardirq.h>
+
+#define MSR_PKG_C2_RESIDENCY 0x60D
+#define MSR_PKG_C3_RESIDENCY 0x3F8
+#define MSR_PKG_C6_RESIDENCY 0x3F9
+#define MSR_PKG_C7_RESIDENCY 0x3FA
+
+#define MAX_TARGET_RATIO (50)
+/* For each undisturbed clamping period (no extra wake ups during idle time),
+ * we increment the confidence counter for the given target ratio.
+ * CONFIDENCE_OK defines the level where runtime calibration results are
+ * valid.
+ */
+#define CONFIDENCE_OK (3)
+/* Default idle injection duration, driver adjust sleep time to meet target
+ * idle ratio. Similar to frequency modulation.
+ */
+#define DEFAULT_DURATION_JIFFIES (6)
+
+static unsigned int target_mwait;
+static struct dentry *debug_dir;
+
+/* user selected target */
+static unsigned int set_target_ratio;
+static unsigned int current_ratio;
+static bool should_skip;
+static bool reduce_irq;
+static atomic_t idle_wakeup_counter;
+static unsigned int control_cpu; /* The cpu assigned to collect stat and update
+ * control parameters. default to BSP but BSP
+ * can be offlined.
+ */
+static int clamping;
+
+
+static struct task_struct __percpu **powerclamp_thread;
+static struct thermal_cooling_device *cooling_dev;
+static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
+ * clamping thread
+ */
+static int duration;
+module_param(duration, int, 0600);
+MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
+
+static unsigned int pkg_cstate_ratio_cur;
+static unsigned int window_size;
+
+struct powerclamp_calibration_data {
+ unsigned long confidence; /* used for calibration, basically a counter
+ * gets incremented each time a clamping
+ * period is completed without extra wakeups
+ * once that counter is reached given level,
+ * compensation is deemed usable.
+ */
+ unsigned long steady_comp; /* steady state compensation used when
+ * no extra wakeups occurred.
+ */
+ unsigned long dynamic_comp; /* compensate excessive wakeup from idle
+ * mostly from external interrupts.
+ */
+};
+
+static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
+
+static int window_size_set(const char *arg, const struct kernel_param *kp)
+{
+ int ret = 0;
+ unsigned long new_window_size;
+
+ ret = kstrtoul(arg, 10, &new_window_size);
+ if (ret)
+ goto exit_win;
+ if (new_window_size >= 10 || new_window_size < 2) {
+ pr_err("PowerClamp: invalid window size %lu, between 2-10\n",
+ new_window_size);
+ ret = -EINVAL;
+ }
+
+ window_size = new_window_size;
+ smp_mb();
+
+exit_win:
+
+ return ret;
+}
+static struct kernel_param_ops window_size_ops = {
+ .set = window_size_set,
+ .get = param_get_int,
+};
+
+module_param_cb(window_size, &window_size_ops, &window_size, 0644);
+MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
+ "\tpowerclamp controls idle ratio within this window. larger\n"
+ "\twindow size results in slower response time but more smooth\n"
+ "\tclamping results. default to 2.");
+
+static void find_target_mwait(void)
+{
+ unsigned int eax, ebx, ecx, edx;
+ unsigned int highest_cstate = 0;
+ unsigned int highest_subcstate = 0;
+ int i;
+
+ if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
+ return;
+
+ cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
+
+ if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
+ !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
+ return;
+
+ edx >>= MWAIT_SUBSTATE_SIZE;
+ for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
+ if (edx & MWAIT_SUBSTATE_MASK) {
+ highest_cstate = i;
+ highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
+ }
+ }
+ target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
+ (highest_subcstate - 1);
+
+}
+
+static u64 pkg_state_counter(void)
+{
+ u64 val;
+ u64 count = 0;
+
+ static int skip_c2;
+ static int skip_c3;
+ static int skip_c6;
+ static int skip_c7;
+
+ if (!skip_c2) {
+ if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
+ count += val;
+ else
+ skip_c2 = 1;
+ }
+
+ if (!skip_c3) {
+ if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
+ count += val;
+ else
+ skip_c3 = 1;
+ }
+
+ if (!skip_c6) {
+ if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
+ count += val;
+ else
+ skip_c6 = 1;
+ }
+
+ if (!skip_c7) {
+ if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
+ count += val;
+ else
+ skip_c7 = 1;
+ }
+
+ return count;
+}
+
+static void noop_timer(unsigned long foo)
+{
+ /* empty... just the fact that we get the interrupt wakes us up */
+}
+
+static unsigned int get_compensation(int ratio)
+{
+ unsigned int comp = 0;
+
+ /* we only use compensation if all adjacent ones are good */
+ if (ratio == 1 &&
+ cal_data[ratio].confidence >= CONFIDENCE_OK &&
+ cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
+ cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
+ comp = (cal_data[ratio].steady_comp +
+ cal_data[ratio + 1].steady_comp +
+ cal_data[ratio + 2].steady_comp) / 3;
+ } else if (ratio == MAX_TARGET_RATIO - 1 &&
+ cal_data[ratio].confidence >= CONFIDENCE_OK &&
+ cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
+ cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
+ comp = (cal_data[ratio].steady_comp +
+ cal_data[ratio - 1].steady_comp +
+ cal_data[ratio - 2].steady_comp) / 3;
+ } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
+ cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
+ cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
+ comp = (cal_data[ratio].steady_comp +
+ cal_data[ratio - 1].steady_comp +
+ cal_data[ratio + 1].steady_comp) / 3;
+ }
+
+ /* REVISIT: simple penalty of double idle injection */
+ if (reduce_irq)
+ comp = ratio;
+ /* do not exceed limit */
+ if (comp + ratio >= MAX_TARGET_RATIO)
+ comp = MAX_TARGET_RATIO - ratio - 1;
+
+ return comp;
+}
+
+static void adjust_compensation(int target_ratio, unsigned int win)
+{
+ int delta;
+
+ /*
+ * adjust compensations if confidence level has not been reached or
+ * there are too many wakeups during the last idle injection period, we
+ * cannot trust the data for compensation.
+ */
+ if (cal_data[target_ratio].confidence >= CONFIDENCE_OK ||
+ atomic_read(&idle_wakeup_counter) >
+ win * num_online_cpus())
+ return;
+
+ delta = set_target_ratio - current_ratio;
+ /* filter out bad data */
+ if (delta >= 0 && delta <= (1+target_ratio/10)) {
+ if (cal_data[target_ratio].steady_comp)
+ cal_data[target_ratio].steady_comp =
+ roundup(delta+
+ cal_data[target_ratio].steady_comp,
+ 2)/2;
+ else
+ cal_data[target_ratio].steady_comp = delta;
+ cal_data[target_ratio].confidence++;
+ }
+}
+
+static bool powerclamp_adjust_controls(unsigned int target_ratio,
+ unsigned int guard, unsigned int win)
+{
+ static u64 msr_last, tsc_last;
+ u64 msr_now, tsc_now;
+
+ /* check result for the last window */
+ msr_now = pkg_state_counter();
+ rdtscll(tsc_now);
+
+ /* calculate pkg cstate vs tsc ratio */
+ if (!msr_last || !tsc_last)
+ current_ratio = 1;
+ else if (tsc_now-tsc_last)
+ current_ratio = 100*(msr_now-msr_last)/
+ (tsc_now-tsc_last);
+
+ /* update record */
+ msr_last = msr_now;
+ tsc_last = tsc_now;
+
+ adjust_compensation(target_ratio, win);
+ /*
+ * too many external interrupts, set flag such
+ * that we can take measure later.
+ */
+ reduce_irq = atomic_read(&idle_wakeup_counter) >=
+ 2 * win * num_online_cpus();
+
+ atomic_set(&idle_wakeup_counter, 0);
+ /* if we are above target+guard, skip */
+ return set_target_ratio + guard <= current_ratio;
+}
+
+static int clamp_thread(void *arg)
+{
+ int cpunr = (unsigned long)arg;
+ DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
+ static const struct sched_param param = {
+ .sched_priority = MAX_USER_RT_PRIO/2,
+ };
+ unsigned int count = 0;
+ unsigned int target_ratio;
+
+ set_bit(cpunr, cpu_clamping_mask);
+ set_freezable();
+ init_timer_on_stack(&wakeup_timer);
+ sched_setscheduler(current, SCHED_FIFO, &param);
+
+ while (clamping && !kthread_should_stop() && cpu_online(cpunr)) {
+ int sleeptime;
+ unsigned long target_jiffies;
+ unsigned int guard;
+ unsigned int compensation = 0;
+ int interval; /* jiffies to sleep for each attempt */
+ unsigned int duration_jiffies = msecs_to_jiffies(duration);
+ unsigned int window_size_now;
+
+ try_to_freeze();
+ /*
+ * make sure user selected ratio does not take effect until
+ * the next round. adjust target_ratio if user has changed
+ * target such that we can converge quickly.
+ */
+ target_ratio = set_target_ratio;
+ guard = 1 + target_ratio/20;
+ window_size_now = window_size;
+ count++;
+
+ /*
+ * systems may have different ability to enter package level
+ * c-states, thus we need to compensate the injected idle ratio
+ * to achieve the actual target reported by the HW.
+ */
+ compensation = get_compensation(target_ratio);
+ interval = duration_jiffies*100/(target_ratio+compensation);
+
+ /* align idle time */
+ target_jiffies = roundup(jiffies, interval);
+ sleeptime = target_jiffies - jiffies;
+ if (sleeptime <= 0)
+ sleeptime = 1;
+ schedule_timeout_interruptible(sleeptime);
+ /*
+ * only elected controlling cpu can collect stats and update
+ * control parameters.
+ */
+ if (cpunr == control_cpu && !(count%window_size_now)) {
+ should_skip =
+ powerclamp_adjust_controls(target_ratio,
+ guard, window_size_now);
+ smp_mb();
+ }
+
+ if (should_skip)
+ continue;
+
+ target_jiffies = jiffies + duration_jiffies;
+ mod_timer(&wakeup_timer, target_jiffies);
+ if (unlikely(local_softirq_pending()))
+ continue;
+ /*
+ * stop tick sched during idle time, interrupts are still
+ * allowed. thus jiffies are updated properly.
+ */
+ preempt_disable();
+ tick_nohz_idle_enter();
+ /* mwait until target jiffies is reached */
+ while (time_before(jiffies, target_jiffies)) {
+ unsigned long ecx = 1;
+ unsigned long eax = target_mwait;
+
+ /*
+ * REVISIT: may call enter_idle() to notify drivers who
+ * can save power during cpu idle. same for exit_idle()
+ */
+ local_touch_nmi();
+ stop_critical_timings();
+ __monitor((void *)&current_thread_info()->flags, 0, 0);
+ cpu_relax(); /* allow HT sibling to run */
+ __mwait(eax, ecx);
+ start_critical_timings();
+ atomic_inc(&idle_wakeup_counter);
+ }
+ tick_nohz_idle_exit();
+ preempt_enable_no_resched();
+ }
+ del_timer_sync(&wakeup_timer);
+ clear_bit(cpunr, cpu_clamping_mask);
+
+ return 0;
+}
+
+/*
+ * 1 HZ polling while clamping is active, useful for userspace
+ * to monitor actual idle ratio.
+ */
+static void poll_pkg_cstate(struct work_struct *dummy);
+static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
+static void poll_pkg_cstate(struct work_struct *dummy)
+{
+ static u64 msr_last;
+ static u64 tsc_last;
+ static unsigned long jiffies_last;
+
+ u64 msr_now;
+ unsigned long jiffies_now;
+ u64 tsc_now;
+
+ msr_now = pkg_state_counter();
+ rdtscll(tsc_now);
+ jiffies_now = jiffies;
+
+ /* calculate pkg cstate vs tsc ratio */
+ if (!msr_last || !tsc_last)
+ pkg_cstate_ratio_cur = 1;
+ else {
+ if (tsc_now - tsc_last)
+ pkg_cstate_ratio_cur = 100 * (msr_now - msr_last)/
+ (tsc_now - tsc_last);
+ }
+
+ /* update record */
+ msr_last = msr_now;
+ jiffies_last = jiffies_now;
+ tsc_last = tsc_now;
+
+ if (clamping)
+ schedule_delayed_work(&poll_pkg_cstate_work, HZ);
+}
+
+static int start_power_clamp(void)
+{
+ unsigned long cpu;
+ struct task_struct *thread;
+
+ /* check if pkg cstate counter is completely 0, abort in this case */
+ if (!pkg_state_counter()) {
+ pr_err("pkg cstate counter not functional, abort\n");
+ return -EINVAL;
+ }
+
+ if (set_target_ratio > MAX_TARGET_RATIO)
+ set_target_ratio = MAX_TARGET_RATIO;
+
+ /* prevent cpu hotplug */
+ get_online_cpus();
+
+ /* prefer BSP */
+ control_cpu = 0;
+ if (!cpu_online(control_cpu))
+ control_cpu = smp_processor_id();
+
+ clamping = 1;
+ schedule_delayed_work(&poll_pkg_cstate_work, 0);
+
+ /* start one thread per online cpu */
+ for_each_online_cpu(cpu) {
+ struct task_struct **p =
+ per_cpu_ptr(powerclamp_thread, cpu);
+
+ thread = kthread_create_on_node(clamp_thread,
+ (void *) cpu,
+ cpu_to_node(cpu),
+ "kidle_inject/%ld", cpu);
+ /* bind to cpu here */
+ if (likely(!IS_ERR(thread))) {
+ kthread_bind(thread, cpu);
+ wake_up_process(thread);
+ *p = thread;
+ }
+
+ }
+ put_online_cpus();
+
+ return 0;
+}
+
+static void end_power_clamp(void)
+{
+ int i;
+ struct task_struct *thread;
+
+ clamping = 0;
+ /*
+ * make clamping visible to other cpus and give per cpu clamping threads
+ * sometime to exit, or gets killed later.
+ */
+ smp_mb();
+ msleep(20);
+ if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
+ for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
+ pr_debug("clamping thread for cpu %d alive, kill\n", i);
+ thread = *per_cpu_ptr(powerclamp_thread, i);
+ kthread_stop(thread);
+ }
+ }
+}
+
+static int powerclamp_cpu_callback(struct notifier_block *nfb,
+ unsigned long action, void *hcpu)
+{
+ unsigned long cpu = (unsigned long)hcpu;
+ struct task_struct *thread;
+ struct task_struct **percpu_thread =
+ per_cpu_ptr(powerclamp_thread, cpu);
+
+ if (!clamping)
+ goto exit_ok;
+
+ switch (action) {
+ case CPU_ONLINE:
+ thread = kthread_create_on_node(clamp_thread,
+ (void *) cpu,
+ cpu_to_node(cpu),
+ "kidle_inject/%lu", cpu);
+ if (likely(!IS_ERR(thread))) {
+ kthread_bind(thread, cpu);
+ wake_up_process(thread);
+ *percpu_thread = thread;
+ }
+ /* prefer BSP as controlling CPU */
+ if (cpu == 0) {
+ control_cpu = 0;
+ smp_mb();
+ }
+ break;
+ case CPU_DEAD:
+ if (test_bit(cpu, cpu_clamping_mask)) {
+ pr_err("cpu %lu dead but powerclamping thread is not\n",
+ cpu);
+ kthread_stop(*percpu_thread);
+ }
+ if (cpu == control_cpu) {
+ control_cpu = smp_processor_id();
+ smp_mb();
+ }
+ }
+
+exit_ok:
+ return NOTIFY_OK;
+}
+
+static struct notifier_block powerclamp_cpu_notifier = {
+ .notifier_call = powerclamp_cpu_callback,
+};
+
+static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
+ unsigned long *state)
+{
+ *state = MAX_TARGET_RATIO;
+
+ return 0;
+}
+
+static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
+ unsigned long *state)
+{
+ if (clamping)
+ *state = pkg_cstate_ratio_cur;
+ else
+ /* to save power, do not poll idle ratio while not clamping */
+ *state = -1; /* indicates invalid state */
+
+ return 0;
+}
+
+static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
+ unsigned long new_target_ratio)
+{
+ int ret = 0;
+
+ if (new_target_ratio >= MAX_TARGET_RATIO)
+ new_target_ratio = MAX_TARGET_RATIO - 1;
+
+ if (set_target_ratio == 0 && new_target_ratio > 0) {
+ pr_info("Start idle injection to reduce power\n");
+ set_target_ratio = new_target_ratio;
+ ret = start_power_clamp();
+ goto exit_set;
+ } else if (set_target_ratio > 0 && new_target_ratio == 0) {
+ pr_info("Stop forced idle injection\n");
+ set_target_ratio = 0;
+ end_power_clamp();
+ } else /* adjust currently running */ {
+ set_target_ratio = new_target_ratio;
+ /* make new set_target_ratio visible to other cpus */
+ smp_mb();
+ }
+
+exit_set:
+ return ret;
+}
+
+/* bind to generic thermal layer as cooling device*/
+static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
+ .get_max_state = powerclamp_get_max_state,
+ .get_cur_state = powerclamp_get_cur_state,
+ .set_cur_state = powerclamp_set_cur_state,
+};
+
+/* runs on Nehalem and later */
+static const struct x86_cpu_id intel_powerclamp_ids[] = {
+ { X86_VENDOR_INTEL, 6, 0x1a},
+ { X86_VENDOR_INTEL, 6, 0x1c},
+ { X86_VENDOR_INTEL, 6, 0x1e},
+ { X86_VENDOR_INTEL, 6, 0x1f},
+ { X86_VENDOR_INTEL, 6, 0x25},
+ { X86_VENDOR_INTEL, 6, 0x26},
+ { X86_VENDOR_INTEL, 6, 0x2a},
+ { X86_VENDOR_INTEL, 6, 0x2c},
+ { X86_VENDOR_INTEL, 6, 0x2d},
+ { X86_VENDOR_INTEL, 6, 0x2e},
+ { X86_VENDOR_INTEL, 6, 0x2f},
+ { X86_VENDOR_INTEL, 6, 0x3a},
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
+
+static int powerclamp_probe(void)
+{
+ if (!x86_match_cpu(intel_powerclamp_ids)) {
+ pr_err("Intel powerclamp does not run on family %d model %d\n",
+ boot_cpu_data.x86, boot_cpu_data.x86_model);
+ return -ENODEV;
+ }
+ if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
+ !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
+ !boot_cpu_has(X86_FEATURE_MWAIT) ||
+ !boot_cpu_has(X86_FEATURE_ARAT))
+ return -ENODEV;
+
+ /* find the deepest mwait value */
+ find_target_mwait();
+
+ return 0;
+}
+
+static int powerclamp_debug_show(struct seq_file *m, void *unused)
+{
+ int i = 0;
+
+ seq_printf(m, "controlling cpu: %d\n", control_cpu);
+ seq_printf(m, "pct confidence steady dynamic (compensation)\n");
+ for (i = 0; i < MAX_TARGET_RATIO; i++) {
+ seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
+ i,
+ cal_data[i].confidence,
+ cal_data[i].steady_comp,
+ cal_data[i].dynamic_comp);
+ }
+
+ return 0;
+}
+
+static int powerclamp_debug_open(struct inode *inode,
+ struct file *file)
+{
+ return single_open(file, powerclamp_debug_show, inode->i_private);
+}
+
+static const struct file_operations powerclamp_debug_fops = {
+ .open = powerclamp_debug_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+ .owner = THIS_MODULE,
+};
+
+static inline void powerclamp_create_debug_files(void)
+{
+ debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
+ if (!debug_dir)
+ return;
+
+ if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
+ cal_data, &powerclamp_debug_fops))
+ goto file_error;
+
+ return;
+
+file_error:
+ debugfs_remove_recursive(debug_dir);
+}
+
+static int powerclamp_init(void)
+{
+ int retval;
+ int bitmap_size;
+
+ bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
+ cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
+ if (!cpu_clamping_mask)
+ return -ENOMEM;
+
+ /* probe cpu features and ids here */
+ retval = powerclamp_probe();
+ if (retval)
+ return retval;
+ /* set default limit, maybe adjusted during runtime based on feedback */
+ window_size = 2;
+ register_hotcpu_notifier(&powerclamp_cpu_notifier);
+ powerclamp_thread = alloc_percpu(struct task_struct *);
+ cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
+ &powerclamp_cooling_ops);
+ if (IS_ERR(cooling_dev))
+ return -ENODEV;
+
+ if (!duration)
+ duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
+ powerclamp_create_debug_files();
+
+ return 0;
+}
+module_init(powerclamp_init);
+
+static void powerclamp_exit(void)
+{
+ unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
+ end_power_clamp();
+ free_percpu(powerclamp_thread);
+ thermal_cooling_device_unregister(cooling_dev);
+ kfree(cpu_clamping_mask);
+
+ cancel_delayed_work_sync(&poll_pkg_cstate_work);
+ debugfs_remove_recursive(debug_dir);
+}
+module_exit(powerclamp_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Arjan van de Ven <[email protected]>");
+MODULE_AUTHOR("Jacob Pan <[email protected]>");
+MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
--
1.7.9.5

2012-11-13 06:04:59

by Jacob Pan

[permalink] [raw]
Subject: [PATCH 2/3] x86/nmi: export local_touch_nmi() symbol for modules

Signed-off-by: Jacob Pan <[email protected]>
---
arch/x86/kernel/nmi.c | 1 +
1 file changed, 1 insertion(+)

diff --git a/arch/x86/kernel/nmi.c b/arch/x86/kernel/nmi.c
index f84f5c5..6030805 100644
--- a/arch/x86/kernel/nmi.c
+++ b/arch/x86/kernel/nmi.c
@@ -509,3 +509,4 @@ void local_touch_nmi(void)
{
__this_cpu_write(last_nmi_rip, 0);
}
+EXPORT_SYMBOL_GPL(local_touch_nmi);
--
1.7.9.5

2012-11-13 06:33:36

by Joe Perches

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Mon, 2012-11-12 at 14:03 -0800, Jacob Pan wrote:
> Intel PowerClamp driver performs synchronized idle injection across
> all online CPUs. The goal is to maintain a given package level C-state
> ratio.

style trivia:

[]

> diff --git a/drivers/thermal/intel_powerclamp.c b/drivers/thermal/intel_powerclamp.c
[]
> +
> +/* #define DEBUG */
> +

Adding this #define before any #include

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

> +#include <linux/module.h>
> +#include <linux/kernel.h>

[]

> +static int window_size_set(const char *arg, const struct kernel_param *kp)
> +{
[]
> + if (new_window_size >= 10 || new_window_size < 2) {
> + pr_err("PowerClamp: invalid window size %lu, between 2-10\n",
> + new_window_size);

Means there's no need for "PowerClamp: " prefixes with pr_fmt

pr_err("invalid window size %lu...

and all the other pr_<level> uses get prefixed too.

> +static u64 pkg_state_counter(void)
> +{
> + u64 val;
> + u64 count = 0;
> +
> + static int skip_c2;
> + static int skip_c3;
> + static int skip_c6;
> + static int skip_c7;

bool?

2012-11-13 06:55:17

by Jacob Pan

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Mon, 12 Nov 2012 22:33:36 -0800
Joe Perches <[email protected]> wrote:

> > Intel PowerClamp driver performs synchronized idle injection across
> > all online CPUs. The goal is to maintain a given package level
> > C-state ratio.
>
> style trivia:
they are all good catches. will fix in the next version.

--
Thanks,

Jacob

2012-11-13 21:16:42

by Paul E. McKenney

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Mon, Nov 12, 2012 at 02:03:51PM -0800, Jacob Pan wrote:
> Intel PowerClamp driver performs synchronized idle injection across
> all online CPUs. The goal is to maintain a given package level C-state
> ratio.
>
> Compared to other throttling methods already exist in the kernel,
> such as ACPI PAD (taking CPUs offline) and clock modulation, this is often
> more efficient in terms of performance per watt.
>
> Please refer to Documentation/thermal/intel_powerclamp.txt for more details.

If I read this correctly, this forces a group of CPUs into idle for
about 600 milliseconds at a time. This would indeed delay grace periods,
which could easily result in user complaints. Also, given the default
RCU_BOOST_DELAY of 500 milliseconds in kernels enabling RCU_BOOST,
you would see needless RCU priority boosting.

Of course, if the idle period extended for longer, you would see RCU
CPU stall warnings. And if the idle period extended indefinitely, you
could hang the system -- the RCU callbacks on the idled CPU could not
be invoked, and if one of those RCU callbacks was waking someone up,
that someone would not be woken up.

It looks like you could end up with part of the system powerclamped
in some situations, and with all of it powerclamped in other situations.
Is that the case, or am I confused?

Thanx, Paul

> Signed-off-by: Arjan van de Ven <[email protected]>
> Signed-off-by: Jacob Pan <[email protected]>
> ---
> Documentation/thermal/intel_powerclamp.txt | 307 +++++++++++
> drivers/thermal/Kconfig | 10 +
> drivers/thermal/Makefile | 1 +
> drivers/thermal/intel_powerclamp.c | 766 ++++++++++++++++++++++++++++
> 4 files changed, 1084 insertions(+)
> create mode 100644 Documentation/thermal/intel_powerclamp.txt
> create mode 100644 drivers/thermal/intel_powerclamp.c
>
> diff --git a/Documentation/thermal/intel_powerclamp.txt b/Documentation/thermal/intel_powerclamp.txt
> new file mode 100644
> index 0000000..332de4a
> --- /dev/null
> +++ b/Documentation/thermal/intel_powerclamp.txt
> @@ -0,0 +1,307 @@
> + =======================
> + INTEL POWERCLAMP DRIVER
> + =======================
> +By: Arjan van de Ven <[email protected]>
> + Jacob Pan <[email protected]>
> +
> +Contents:
> + (*) Introduction
> + - Goals and Objectives
> +
> + (*) Theory of Operation
> + - Idle Injection
> + - Calibration
> +
> + (*) Performance Analysis
> + - Effectiveness and Limitations
> + - Power vs Performance
> + - Scalability
> + - Calibration
> + - Comparison with Alternative Techniques
> +
> + (*) Usage and Interfaces
> + - Generic Thermal Layer (sysfs)
> + - Kernel APIs (TBD)
> +
> +============
> +INTRODUCTION
> +============
> +
> +Consider the situation where a system’s power consumption must be
> +reduced at runtime, due to power budget, thermal constraint, or noise
> +level, and where active cooling is not preferred. Software managed
> +passive power reduction must be performed to prevent the hardware
> +actions that are designed for catastrophic scenarios.
> +
> +Currently, P-states, T-states (clock modulation), and CPU offlining
> +are used for CPU throttling.
> +
> +On Intel CPUs, C-states provide effective power reduction, but so far
> +they’re only used opportunistically, based on workload. With the
> +development of intel_powerclamp driver, the method of synchronizing
> +idle injection across all online CPU threads was introduced. The goal
> +is to achieve forced and controllable C-state residency.
> +
> +Test/Analysis has been made in the areas of power, performance,
> +scalability, and user experience. In many cases, clear advantage is
> +shown over taking the CPU offline or modulating the CPU clock.
> +
> +
> +===================
> +THEORY OF OPERATION
> +===================
> +
> +Idle Injection
> +--------------
> +
> +On modern Intel processors (Nehalem or later), package level C-state
> +residency is available in MSRs, thus also available to the kernel.
> +
> +These MSRs are:
> + #define MSR_PKG_C2_RESIDENCY 0x60D
> + #define MSR_PKG_C3_RESIDENCY 0x3F8
> + #define MSR_PKG_C6_RESIDENCY 0x3F9
> + #define MSR_PKG_C7_RESIDENCY 0x3FA
> +
> +If the kernel can also inject idle time to the system, then a
> +closed-loop control system can be established that manages package
> +level C-state. The intel_powerclamp driver is conceived as such a
> +control system, where the target set point is a user-selected idle
> +ratio (based on power reduction), and the error is the difference
> +between the actual package level C-state residency ratio and the target idle
> +ratio.
> +
> +Injection is controlled by high priority kernel threads, spawned for
> +each online CPU.
> +
> +These kernel threads, with SCHED_FIFO class, are created to perform
> +clamping actions of controlled duty ratio and duration. Each per-CPU
> +thread synchronizes its idle time and duration, based on the rounding
> +of jiffies, so accumulated errors can be prevented to avoid a jittery
> +effect. Threads are also bound to the CPU such that they cannot be
> +migrated, unless the CPU is taken offline. In this case, threads
> +belong to the offlined CPUs will be terminated immediately.
> +
> +Running as SCHED_FIFO and relatively high priority, also allows such
> +scheme to work for both preemptable and non-preemptable kernels.
> +Alignment of idle time around jiffies ensures scalability for HZ
> +values. This effect can be better visualized using a Perf timechart.
> +The following diagram shows the behavior of kernel thread
> +kidle_inject/cpu. During idle injection, it runs monitor/mwait idle
> +for a given "duration", then relinquishes the CPU to other tasks,
> +until the next time interval.
> +
> +The NOHZ schedule tick is disabled during idle time, but interrupts
> +are not masked. Tests show that the extra wakeups from scheduler tick
> +have a dramatic impact on the effectiveness of the powerclamp driver
> +on large scale systems (Westmere system with 80 processors).
> +
> +CPU0
> + ____________ ____________
> +kidle_inject/0 | sleep | mwait | sleep |
> + _________| |________| |_______
> + duration
> +CPU1
> + ____________ ____________
> +kidle_inject/1 | sleep | mwait | sleep |
> + _________| |________| |_______
> + ^
> + |
> + |
> + roundup(jiffies, interval)
> +
> +Only one CPU is allowed to collect statistics and update global
> +control parameters. This CPU is referred to as the controlling CPU in
> +this document. The controlling CPU is elected at runtime, with a
> +policy that favors BSP, taking into account the possibility of a CPU
> +hot-plug.
> +
> +In terms of dynamics of the idle control system, package level idle
> +time is considered largely as a non-causal system where its behavior
> +cannot be based on the past or current input. Therefore, the
> +intel_powerclamp driver attempts to enforce the desired idle time
> +instantly as given input (target idle ratio). After injection,
> +powerclamp moniors the actual idle for a given time window and adjust
> +the next injection accordingly to avoid over/under correction.
> +
> +When used in a causal control system, such as a temperature control,
> +it is up to the user of this driver to implement algorithms where
> +past samples and outputs are included in the feedback. For example, a
> +PID-based thermal controller can use the powerclamp driver to
> +maintain a desired target temperature, based on integral and
> +derivative gains of the past samples.
> +
> +
> +
> +Calibration
> +-----------
> +During scalability testing, it is observed that synchronized actions
> +among CPUs become challenging as the number of cores grows. This is
> +also true for the ability of a system to enter package level C-states.
> +
> +To make sure the intel_powerclamp driver scales well, online
> +calibration is implemented. The goals for doing such a calibration
> +are:
> +
> +a) determine the effective range of idle injection ratio
> +b) determine the amount of compensation needed at each target ratio
> +
> +Compensation to each target ratio consists of two parts:
> +
> + a) steady state error compensation
> + This is to offset the error occurring when the system can
> + enter idle without extra wakeups (such as external interrupts).
> +
> + b) dynamic error compensation
> + When an excessive amount of wakeups occurs during idle, an
> + additional idle ratio can be added to quiet interrupts, by
> + slowing down CPU activities.
> +
> +A debugfs file is provided for the user to examine compensation
> +progress and results, such as on a Westmere system.
> +[jacob@nex01 ~]$ cat
> +/sys/kernel/debug/intel_powerclamp/powerclamp_calib
> +controlling cpu: 0
> +pct confidence steady dynamic (compensation)
> +0 0 0 0
> +1 1 0 0
> +2 1 1 0
> +3 3 1 0
> +4 3 1 0
> +5 3 1 0
> +6 3 1 0
> +7 3 1 0
> +8 3 1 0
> +...
> +30 3 2 0
> +31 3 2 0
> +32 3 1 0
> +33 3 2 0
> +34 3 1 0
> +35 3 2 0
> +36 3 1 0
> +37 3 2 0
> +38 3 1 0
> +39 3 2 0
> +40 3 3 0
> +41 3 1 0
> +42 3 2 0
> +43 3 1 0
> +44 3 1 0
> +45 3 2 0
> +46 3 3 0
> +47 3 0 0
> +48 3 2 0
> +49 3 3 0
> +
> +Calibration occurs during runtime. No offline method is available.
> +Steady state compensation is used only when confidence levels of all
> +adjacent ratios have reached satisfactory level. A confidence level
> +is accumulated based on clean data collected at runtime. Data
> +collected during a period without extra interrupts is considered
> +clean.
> +
> +To compensate for excessive amounts of wakeup during idle, additional
> +idle time is injected when such a condition is detected. Currently,
> +we have a simple algorithm to double the injection ratio. A possible
> +enhancement might be to throttle the offending IRQ, such as delaying
> +EOI for level triggered interrupts. But it is a challenge to be
> +non-intrusive to the scheduler or the IRQ core code.
> +
> +
> +CPU Online/Offline
> +------------------
> +Per-CPU kernel threads are started/stopped upon receiving
> +notifications of CPU hotplug activities. The intel_powerclamp driver
> +keeps track of clamping kernel threads, even after they are migrated
> +to other CPUs, after a CPU offline event.
> +
> +
> +=====================
> +Performance Analysis
> +=====================
> +This section describes the general performance data collected on
> +multiple systems, including Westmere (80P) and Ivy Bridge (4P, 8P).
> +
> +Effectiveness and Limitations
> +-----------------------------
> +The maximum range that idle injection is allowed is capped at 50
> +percent. As mentioned earlier, since interrupts are allowed during
> +forced idle time, excessive interrupts could result in less
> +effectiveness. The extreme case would be doing a ping -f to generated
> +flooded network interrupts without much CPU acknowledgement. In this
> +case, little can be done from the idle injection threads. In most
> +normal cases, such as scp a large file, applications can be throttled
> +by the powerclamp driver, since slowing down the CPU also slows down
> +network protocol processing, which in turn reduces interrupts.
> +
> +When control parameters change at runtime by the controlling CPU, it
> +may take an additional period for the rest of the CPUs to catch up
> +with the changes. During this time, idle injection is out of sync,
> +thus not able to enter package C- states at the expected ratio. But
> +this effect is minor, in that in most cases change to the target
> +ratio is updated much less frequently than the idle injection
> +frequency.
> +
> +Scalability
> +-----------
> +Tests also show a minor, but measurable, difference between the 4P/8P
> +Ivy Bridge system and the 80P Westmere server under 50% idle ratio.
> +More compensation is needed on Westmere for the same amount of
> +target idle ratio. The compensation also increases as the idle ratio
> +gets larger. The above reason constitutes the need for the
> +calibration code.
> +
> +On the IVB 8P system, compared to an offline CPU, powerclamp can
> +achieve up to 40% better performance per watt. (measured by a spin
> +counter summed over per CPU counting threads spawned for all running
> +CPUs).
> +
> +====================
> +Usage and Interfaces
> +====================
> +The powerclamp driver is registered to the generic thermal layer as a
> +cooling device. Currently, it’s not bound to any thermal zones.
> +
> +jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
> +cur_state:0
> +max_state:50
> +type:intel_powerclamp
> +
> +Example usage:
> +- To inject 25% idle time
> +$ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state
> +"
> +
> +If the system is not busy and has more than 25% idle time already,
> +then the powerclamp driver will not start idle injection. Using Top
> +will not show idle injection kernel threads.
> +
> +If the system is busy (spin test below) and has less than 25% natural
> +idle time, powerclamp kernel threads will do idle injection, which
> +appear running to the scheduler. But the overall system idle is still
> +reflected. In this example, 24.1% idle is shown. This helps the
> +system admin or user determine the cause of slowdown, when a
> +powerclamp driver is in action.
> +
> +
> +Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
> +Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
> +Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
> +Swap: 4087804k total, 0k used, 4087804k free, 945336k cached
> +
> + PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
> + 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
> + 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0
> + 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
> + 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
> + 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
> + 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
> + 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
> + 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz
> +
> +Tests have shown that by using the powerclamp driver as a cooling
> +device, a PID based userspace thermal controller can manage to
> +control CPU temperature effectively, when no other thermal influence
> +is added. For example, a UltraBook user can compile the kernel under
> +certain temperature (below most active trip points).
> diff --git a/drivers/thermal/Kconfig b/drivers/thermal/Kconfig
> index e1cb6bd..4d99c4b 100644
> --- a/drivers/thermal/Kconfig
> +++ b/drivers/thermal/Kconfig
> @@ -55,3 +55,13 @@ config EXYNOS_THERMAL
> help
> If you say yes here you get support for TMU (Thermal Managment
> Unit) on SAMSUNG EXYNOS series of SoC.
> +
> +config INTEL_POWERCLAMP
> + tristate "Intel PowerClamp idle injection driver"
> + depends on THERMAL
> + depends on X86
> + depends on CPU_SUP_INTEL
> + help
> + Enable this to enable Intel PowerClamp idle injection driver. This
> + enforce idle time which results in more package C-state residency. The
> + user interface is exposed via generic thermal framework.
> diff --git a/drivers/thermal/Makefile b/drivers/thermal/Makefile
> index 885550d..03e4479 100644
> --- a/drivers/thermal/Makefile
> +++ b/drivers/thermal/Makefile
> @@ -7,3 +7,4 @@ obj-$(CONFIG_CPU_THERMAL) += cpu_cooling.o
> obj-$(CONFIG_SPEAR_THERMAL) += spear_thermal.o
> obj-$(CONFIG_RCAR_THERMAL) += rcar_thermal.o
> obj-$(CONFIG_EXYNOS_THERMAL) += exynos_thermal.o
> +obj-$(CONFIG_INTEL_POWERCLAMP) += intel_powerclamp.o
> diff --git a/drivers/thermal/intel_powerclamp.c b/drivers/thermal/intel_powerclamp.c
> new file mode 100644
> index 0000000..cc9fa17
> --- /dev/null
> +++ b/drivers/thermal/intel_powerclamp.c
> @@ -0,0 +1,766 @@
> +/*
> + * intel_powerclamp.c - package c-state idle injection
> + *
> + * Copyright (c) 2012, Intel Corporation.
> + *
> + * Authors:
> + * Arjan van de Ven <[email protected]>
> + * Jacob Pan <[email protected]>
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms and conditions of the GNU General Public License,
> + * version 2, as published by the Free Software Foundation.
> + *
> + * This program is distributed in the hope it will be useful, but WITHOUT
> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
> + * more details.
> + *
> + * You should have received a copy of the GNU General Public License along with
> + * this program; if not, write to the Free Software Foundation, Inc.,
> + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
> + *
> + *
> + * TODO:
> + * 1. better handle wakeup from external interrupts, currently a fixed
> + * compensation is added to clamping duration when excessive amount
> + * of wakeups are observed during idle time. the reason is that in
> + * case of external interrupts without need for ack, clamping down
> + * cpu in non-irq context does not reduce irq. for majority of the
> + * cases, clamping down cpu does help reduce irq as well, we should
> + * be able to differenciate the two cases and give a quantitative
> + * solution for the irqs that we can control. perhaps based on
> + * get_cpu_iowait_time_us()
> + *
> + * 2. synchronization with other hw blocks
> + *
> + *
> + */
> +
> +/* #define DEBUG */
> +
> +#include <linux/module.h>
> +#include <linux/kernel.h>
> +#include <linux/delay.h>
> +#include <linux/kthread.h>
> +#include <linux/freezer.h>
> +#include <linux/cpu.h>
> +#include <linux/thermal.h>
> +#include <linux/slab.h>
> +#include <linux/tick.h>
> +#include <linux/debugfs.h>
> +#include <linux/seq_file.h>
> +#include <linux/nmi.h>
> +
> +#include <asm/msr.h>
> +#include <asm/mwait.h>
> +#include <asm/cpu_device_id.h>
> +#include <asm/idle.h>
> +#include <asm/hardirq.h>
> +
> +#define MSR_PKG_C2_RESIDENCY 0x60D
> +#define MSR_PKG_C3_RESIDENCY 0x3F8
> +#define MSR_PKG_C6_RESIDENCY 0x3F9
> +#define MSR_PKG_C7_RESIDENCY 0x3FA
> +
> +#define MAX_TARGET_RATIO (50)
> +/* For each undisturbed clamping period (no extra wake ups during idle time),
> + * we increment the confidence counter for the given target ratio.
> + * CONFIDENCE_OK defines the level where runtime calibration results are
> + * valid.
> + */
> +#define CONFIDENCE_OK (3)
> +/* Default idle injection duration, driver adjust sleep time to meet target
> + * idle ratio. Similar to frequency modulation.
> + */
> +#define DEFAULT_DURATION_JIFFIES (6)
> +
> +static unsigned int target_mwait;
> +static struct dentry *debug_dir;
> +
> +/* user selected target */
> +static unsigned int set_target_ratio;
> +static unsigned int current_ratio;
> +static bool should_skip;
> +static bool reduce_irq;
> +static atomic_t idle_wakeup_counter;
> +static unsigned int control_cpu; /* The cpu assigned to collect stat and update
> + * control parameters. default to BSP but BSP
> + * can be offlined.
> + */
> +static int clamping;
> +
> +
> +static struct task_struct __percpu **powerclamp_thread;
> +static struct thermal_cooling_device *cooling_dev;
> +static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
> + * clamping thread
> + */
> +static int duration;
> +module_param(duration, int, 0600);
> +MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
> +
> +static unsigned int pkg_cstate_ratio_cur;
> +static unsigned int window_size;
> +
> +struct powerclamp_calibration_data {
> + unsigned long confidence; /* used for calibration, basically a counter
> + * gets incremented each time a clamping
> + * period is completed without extra wakeups
> + * once that counter is reached given level,
> + * compensation is deemed usable.
> + */
> + unsigned long steady_comp; /* steady state compensation used when
> + * no extra wakeups occurred.
> + */
> + unsigned long dynamic_comp; /* compensate excessive wakeup from idle
> + * mostly from external interrupts.
> + */
> +};
> +
> +static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
> +
> +static int window_size_set(const char *arg, const struct kernel_param *kp)
> +{
> + int ret = 0;
> + unsigned long new_window_size;
> +
> + ret = kstrtoul(arg, 10, &new_window_size);
> + if (ret)
> + goto exit_win;
> + if (new_window_size >= 10 || new_window_size < 2) {
> + pr_err("PowerClamp: invalid window size %lu, between 2-10\n",
> + new_window_size);
> + ret = -EINVAL;
> + }
> +
> + window_size = new_window_size;
> + smp_mb();
> +
> +exit_win:
> +
> + return ret;
> +}
> +static struct kernel_param_ops window_size_ops = {
> + .set = window_size_set,
> + .get = param_get_int,
> +};
> +
> +module_param_cb(window_size, &window_size_ops, &window_size, 0644);
> +MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
> + "\tpowerclamp controls idle ratio within this window. larger\n"
> + "\twindow size results in slower response time but more smooth\n"
> + "\tclamping results. default to 2.");
> +
> +static void find_target_mwait(void)
> +{
> + unsigned int eax, ebx, ecx, edx;
> + unsigned int highest_cstate = 0;
> + unsigned int highest_subcstate = 0;
> + int i;
> +
> + if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
> + return;
> +
> + cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
> +
> + if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
> + !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
> + return;
> +
> + edx >>= MWAIT_SUBSTATE_SIZE;
> + for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
> + if (edx & MWAIT_SUBSTATE_MASK) {
> + highest_cstate = i;
> + highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
> + }
> + }
> + target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
> + (highest_subcstate - 1);
> +
> +}
> +
> +static u64 pkg_state_counter(void)
> +{
> + u64 val;
> + u64 count = 0;
> +
> + static int skip_c2;
> + static int skip_c3;
> + static int skip_c6;
> + static int skip_c7;
> +
> + if (!skip_c2) {
> + if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
> + count += val;
> + else
> + skip_c2 = 1;
> + }
> +
> + if (!skip_c3) {
> + if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
> + count += val;
> + else
> + skip_c3 = 1;
> + }
> +
> + if (!skip_c6) {
> + if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
> + count += val;
> + else
> + skip_c6 = 1;
> + }
> +
> + if (!skip_c7) {
> + if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
> + count += val;
> + else
> + skip_c7 = 1;
> + }
> +
> + return count;
> +}
> +
> +static void noop_timer(unsigned long foo)
> +{
> + /* empty... just the fact that we get the interrupt wakes us up */
> +}
> +
> +static unsigned int get_compensation(int ratio)
> +{
> + unsigned int comp = 0;
> +
> + /* we only use compensation if all adjacent ones are good */
> + if (ratio == 1 &&
> + cal_data[ratio].confidence >= CONFIDENCE_OK &&
> + cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
> + cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
> + comp = (cal_data[ratio].steady_comp +
> + cal_data[ratio + 1].steady_comp +
> + cal_data[ratio + 2].steady_comp) / 3;
> + } else if (ratio == MAX_TARGET_RATIO - 1 &&
> + cal_data[ratio].confidence >= CONFIDENCE_OK &&
> + cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
> + cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
> + comp = (cal_data[ratio].steady_comp +
> + cal_data[ratio - 1].steady_comp +
> + cal_data[ratio - 2].steady_comp) / 3;
> + } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
> + cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
> + cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
> + comp = (cal_data[ratio].steady_comp +
> + cal_data[ratio - 1].steady_comp +
> + cal_data[ratio + 1].steady_comp) / 3;
> + }
> +
> + /* REVISIT: simple penalty of double idle injection */
> + if (reduce_irq)
> + comp = ratio;
> + /* do not exceed limit */
> + if (comp + ratio >= MAX_TARGET_RATIO)
> + comp = MAX_TARGET_RATIO - ratio - 1;
> +
> + return comp;
> +}
> +
> +static void adjust_compensation(int target_ratio, unsigned int win)
> +{
> + int delta;
> +
> + /*
> + * adjust compensations if confidence level has not been reached or
> + * there are too many wakeups during the last idle injection period, we
> + * cannot trust the data for compensation.
> + */
> + if (cal_data[target_ratio].confidence >= CONFIDENCE_OK ||
> + atomic_read(&idle_wakeup_counter) >
> + win * num_online_cpus())
> + return;
> +
> + delta = set_target_ratio - current_ratio;
> + /* filter out bad data */
> + if (delta >= 0 && delta <= (1+target_ratio/10)) {
> + if (cal_data[target_ratio].steady_comp)
> + cal_data[target_ratio].steady_comp =
> + roundup(delta+
> + cal_data[target_ratio].steady_comp,
> + 2)/2;
> + else
> + cal_data[target_ratio].steady_comp = delta;
> + cal_data[target_ratio].confidence++;
> + }
> +}
> +
> +static bool powerclamp_adjust_controls(unsigned int target_ratio,
> + unsigned int guard, unsigned int win)
> +{
> + static u64 msr_last, tsc_last;
> + u64 msr_now, tsc_now;
> +
> + /* check result for the last window */
> + msr_now = pkg_state_counter();
> + rdtscll(tsc_now);
> +
> + /* calculate pkg cstate vs tsc ratio */
> + if (!msr_last || !tsc_last)
> + current_ratio = 1;
> + else if (tsc_now-tsc_last)
> + current_ratio = 100*(msr_now-msr_last)/
> + (tsc_now-tsc_last);
> +
> + /* update record */
> + msr_last = msr_now;
> + tsc_last = tsc_now;
> +
> + adjust_compensation(target_ratio, win);
> + /*
> + * too many external interrupts, set flag such
> + * that we can take measure later.
> + */
> + reduce_irq = atomic_read(&idle_wakeup_counter) >=
> + 2 * win * num_online_cpus();
> +
> + atomic_set(&idle_wakeup_counter, 0);
> + /* if we are above target+guard, skip */
> + return set_target_ratio + guard <= current_ratio;
> +}
> +
> +static int clamp_thread(void *arg)
> +{
> + int cpunr = (unsigned long)arg;
> + DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
> + static const struct sched_param param = {
> + .sched_priority = MAX_USER_RT_PRIO/2,
> + };
> + unsigned int count = 0;
> + unsigned int target_ratio;
> +
> + set_bit(cpunr, cpu_clamping_mask);
> + set_freezable();
> + init_timer_on_stack(&wakeup_timer);
> + sched_setscheduler(current, SCHED_FIFO, &param);
> +
> + while (clamping && !kthread_should_stop() && cpu_online(cpunr)) {
> + int sleeptime;
> + unsigned long target_jiffies;
> + unsigned int guard;
> + unsigned int compensation = 0;
> + int interval; /* jiffies to sleep for each attempt */
> + unsigned int duration_jiffies = msecs_to_jiffies(duration);
> + unsigned int window_size_now;
> +
> + try_to_freeze();
> + /*
> + * make sure user selected ratio does not take effect until
> + * the next round. adjust target_ratio if user has changed
> + * target such that we can converge quickly.
> + */
> + target_ratio = set_target_ratio;
> + guard = 1 + target_ratio/20;
> + window_size_now = window_size;
> + count++;
> +
> + /*
> + * systems may have different ability to enter package level
> + * c-states, thus we need to compensate the injected idle ratio
> + * to achieve the actual target reported by the HW.
> + */
> + compensation = get_compensation(target_ratio);
> + interval = duration_jiffies*100/(target_ratio+compensation);
> +
> + /* align idle time */
> + target_jiffies = roundup(jiffies, interval);
> + sleeptime = target_jiffies - jiffies;
> + if (sleeptime <= 0)
> + sleeptime = 1;
> + schedule_timeout_interruptible(sleeptime);
> + /*
> + * only elected controlling cpu can collect stats and update
> + * control parameters.
> + */
> + if (cpunr == control_cpu && !(count%window_size_now)) {
> + should_skip =
> + powerclamp_adjust_controls(target_ratio,
> + guard, window_size_now);
> + smp_mb();
> + }
> +
> + if (should_skip)
> + continue;
> +
> + target_jiffies = jiffies + duration_jiffies;
> + mod_timer(&wakeup_timer, target_jiffies);
> + if (unlikely(local_softirq_pending()))
> + continue;
> + /*
> + * stop tick sched during idle time, interrupts are still
> + * allowed. thus jiffies are updated properly.
> + */
> + preempt_disable();
> + tick_nohz_idle_enter();
> + /* mwait until target jiffies is reached */
> + while (time_before(jiffies, target_jiffies)) {
> + unsigned long ecx = 1;
> + unsigned long eax = target_mwait;
> +
> + /*
> + * REVISIT: may call enter_idle() to notify drivers who
> + * can save power during cpu idle. same for exit_idle()
> + */
> + local_touch_nmi();
> + stop_critical_timings();
> + __monitor((void *)&current_thread_info()->flags, 0, 0);
> + cpu_relax(); /* allow HT sibling to run */
> + __mwait(eax, ecx);
> + start_critical_timings();
> + atomic_inc(&idle_wakeup_counter);
> + }
> + tick_nohz_idle_exit();
> + preempt_enable_no_resched();
> + }
> + del_timer_sync(&wakeup_timer);
> + clear_bit(cpunr, cpu_clamping_mask);
> +
> + return 0;
> +}
> +
> +/*
> + * 1 HZ polling while clamping is active, useful for userspace
> + * to monitor actual idle ratio.
> + */
> +static void poll_pkg_cstate(struct work_struct *dummy);
> +static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
> +static void poll_pkg_cstate(struct work_struct *dummy)
> +{
> + static u64 msr_last;
> + static u64 tsc_last;
> + static unsigned long jiffies_last;
> +
> + u64 msr_now;
> + unsigned long jiffies_now;
> + u64 tsc_now;
> +
> + msr_now = pkg_state_counter();
> + rdtscll(tsc_now);
> + jiffies_now = jiffies;
> +
> + /* calculate pkg cstate vs tsc ratio */
> + if (!msr_last || !tsc_last)
> + pkg_cstate_ratio_cur = 1;
> + else {
> + if (tsc_now - tsc_last)
> + pkg_cstate_ratio_cur = 100 * (msr_now - msr_last)/
> + (tsc_now - tsc_last);
> + }
> +
> + /* update record */
> + msr_last = msr_now;
> + jiffies_last = jiffies_now;
> + tsc_last = tsc_now;
> +
> + if (clamping)
> + schedule_delayed_work(&poll_pkg_cstate_work, HZ);
> +}
> +
> +static int start_power_clamp(void)
> +{
> + unsigned long cpu;
> + struct task_struct *thread;
> +
> + /* check if pkg cstate counter is completely 0, abort in this case */
> + if (!pkg_state_counter()) {
> + pr_err("pkg cstate counter not functional, abort\n");
> + return -EINVAL;
> + }
> +
> + if (set_target_ratio > MAX_TARGET_RATIO)
> + set_target_ratio = MAX_TARGET_RATIO;
> +
> + /* prevent cpu hotplug */
> + get_online_cpus();
> +
> + /* prefer BSP */
> + control_cpu = 0;
> + if (!cpu_online(control_cpu))
> + control_cpu = smp_processor_id();
> +
> + clamping = 1;
> + schedule_delayed_work(&poll_pkg_cstate_work, 0);
> +
> + /* start one thread per online cpu */
> + for_each_online_cpu(cpu) {
> + struct task_struct **p =
> + per_cpu_ptr(powerclamp_thread, cpu);
> +
> + thread = kthread_create_on_node(clamp_thread,
> + (void *) cpu,
> + cpu_to_node(cpu),
> + "kidle_inject/%ld", cpu);
> + /* bind to cpu here */
> + if (likely(!IS_ERR(thread))) {
> + kthread_bind(thread, cpu);
> + wake_up_process(thread);
> + *p = thread;
> + }
> +
> + }
> + put_online_cpus();
> +
> + return 0;
> +}
> +
> +static void end_power_clamp(void)
> +{
> + int i;
> + struct task_struct *thread;
> +
> + clamping = 0;
> + /*
> + * make clamping visible to other cpus and give per cpu clamping threads
> + * sometime to exit, or gets killed later.
> + */
> + smp_mb();
> + msleep(20);
> + if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
> + for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
> + pr_debug("clamping thread for cpu %d alive, kill\n", i);
> + thread = *per_cpu_ptr(powerclamp_thread, i);
> + kthread_stop(thread);
> + }
> + }
> +}
> +
> +static int powerclamp_cpu_callback(struct notifier_block *nfb,
> + unsigned long action, void *hcpu)
> +{
> + unsigned long cpu = (unsigned long)hcpu;
> + struct task_struct *thread;
> + struct task_struct **percpu_thread =
> + per_cpu_ptr(powerclamp_thread, cpu);
> +
> + if (!clamping)
> + goto exit_ok;
> +
> + switch (action) {
> + case CPU_ONLINE:
> + thread = kthread_create_on_node(clamp_thread,
> + (void *) cpu,
> + cpu_to_node(cpu),
> + "kidle_inject/%lu", cpu);
> + if (likely(!IS_ERR(thread))) {
> + kthread_bind(thread, cpu);
> + wake_up_process(thread);
> + *percpu_thread = thread;
> + }
> + /* prefer BSP as controlling CPU */
> + if (cpu == 0) {
> + control_cpu = 0;
> + smp_mb();
> + }
> + break;
> + case CPU_DEAD:
> + if (test_bit(cpu, cpu_clamping_mask)) {
> + pr_err("cpu %lu dead but powerclamping thread is not\n",
> + cpu);
> + kthread_stop(*percpu_thread);
> + }
> + if (cpu == control_cpu) {
> + control_cpu = smp_processor_id();
> + smp_mb();
> + }
> + }
> +
> +exit_ok:
> + return NOTIFY_OK;
> +}
> +
> +static struct notifier_block powerclamp_cpu_notifier = {
> + .notifier_call = powerclamp_cpu_callback,
> +};
> +
> +static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
> + unsigned long *state)
> +{
> + *state = MAX_TARGET_RATIO;
> +
> + return 0;
> +}
> +
> +static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
> + unsigned long *state)
> +{
> + if (clamping)
> + *state = pkg_cstate_ratio_cur;
> + else
> + /* to save power, do not poll idle ratio while not clamping */
> + *state = -1; /* indicates invalid state */
> +
> + return 0;
> +}
> +
> +static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
> + unsigned long new_target_ratio)
> +{
> + int ret = 0;
> +
> + if (new_target_ratio >= MAX_TARGET_RATIO)
> + new_target_ratio = MAX_TARGET_RATIO - 1;
> +
> + if (set_target_ratio == 0 && new_target_ratio > 0) {
> + pr_info("Start idle injection to reduce power\n");
> + set_target_ratio = new_target_ratio;
> + ret = start_power_clamp();
> + goto exit_set;
> + } else if (set_target_ratio > 0 && new_target_ratio == 0) {
> + pr_info("Stop forced idle injection\n");
> + set_target_ratio = 0;
> + end_power_clamp();
> + } else /* adjust currently running */ {
> + set_target_ratio = new_target_ratio;
> + /* make new set_target_ratio visible to other cpus */
> + smp_mb();
> + }
> +
> +exit_set:
> + return ret;
> +}
> +
> +/* bind to generic thermal layer as cooling device*/
> +static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
> + .get_max_state = powerclamp_get_max_state,
> + .get_cur_state = powerclamp_get_cur_state,
> + .set_cur_state = powerclamp_set_cur_state,
> +};
> +
> +/* runs on Nehalem and later */
> +static const struct x86_cpu_id intel_powerclamp_ids[] = {
> + { X86_VENDOR_INTEL, 6, 0x1a},
> + { X86_VENDOR_INTEL, 6, 0x1c},
> + { X86_VENDOR_INTEL, 6, 0x1e},
> + { X86_VENDOR_INTEL, 6, 0x1f},
> + { X86_VENDOR_INTEL, 6, 0x25},
> + { X86_VENDOR_INTEL, 6, 0x26},
> + { X86_VENDOR_INTEL, 6, 0x2a},
> + { X86_VENDOR_INTEL, 6, 0x2c},
> + { X86_VENDOR_INTEL, 6, 0x2d},
> + { X86_VENDOR_INTEL, 6, 0x2e},
> + { X86_VENDOR_INTEL, 6, 0x2f},
> + { X86_VENDOR_INTEL, 6, 0x3a},
> + {}
> +};
> +MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
> +
> +static int powerclamp_probe(void)
> +{
> + if (!x86_match_cpu(intel_powerclamp_ids)) {
> + pr_err("Intel powerclamp does not run on family %d model %d\n",
> + boot_cpu_data.x86, boot_cpu_data.x86_model);
> + return -ENODEV;
> + }
> + if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
> + !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
> + !boot_cpu_has(X86_FEATURE_MWAIT) ||
> + !boot_cpu_has(X86_FEATURE_ARAT))
> + return -ENODEV;
> +
> + /* find the deepest mwait value */
> + find_target_mwait();
> +
> + return 0;
> +}
> +
> +static int powerclamp_debug_show(struct seq_file *m, void *unused)
> +{
> + int i = 0;
> +
> + seq_printf(m, "controlling cpu: %d\n", control_cpu);
> + seq_printf(m, "pct confidence steady dynamic (compensation)\n");
> + for (i = 0; i < MAX_TARGET_RATIO; i++) {
> + seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
> + i,
> + cal_data[i].confidence,
> + cal_data[i].steady_comp,
> + cal_data[i].dynamic_comp);
> + }
> +
> + return 0;
> +}
> +
> +static int powerclamp_debug_open(struct inode *inode,
> + struct file *file)
> +{
> + return single_open(file, powerclamp_debug_show, inode->i_private);
> +}
> +
> +static const struct file_operations powerclamp_debug_fops = {
> + .open = powerclamp_debug_open,
> + .read = seq_read,
> + .llseek = seq_lseek,
> + .release = single_release,
> + .owner = THIS_MODULE,
> +};
> +
> +static inline void powerclamp_create_debug_files(void)
> +{
> + debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
> + if (!debug_dir)
> + return;
> +
> + if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
> + cal_data, &powerclamp_debug_fops))
> + goto file_error;
> +
> + return;
> +
> +file_error:
> + debugfs_remove_recursive(debug_dir);
> +}
> +
> +static int powerclamp_init(void)
> +{
> + int retval;
> + int bitmap_size;
> +
> + bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
> + cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
> + if (!cpu_clamping_mask)
> + return -ENOMEM;
> +
> + /* probe cpu features and ids here */
> + retval = powerclamp_probe();
> + if (retval)
> + return retval;
> + /* set default limit, maybe adjusted during runtime based on feedback */
> + window_size = 2;
> + register_hotcpu_notifier(&powerclamp_cpu_notifier);
> + powerclamp_thread = alloc_percpu(struct task_struct *);
> + cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
> + &powerclamp_cooling_ops);
> + if (IS_ERR(cooling_dev))
> + return -ENODEV;
> +
> + if (!duration)
> + duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
> + powerclamp_create_debug_files();
> +
> + return 0;
> +}
> +module_init(powerclamp_init);
> +
> +static void powerclamp_exit(void)
> +{
> + unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
> + end_power_clamp();
> + free_percpu(powerclamp_thread);
> + thermal_cooling_device_unregister(cooling_dev);
> + kfree(cpu_clamping_mask);
> +
> + cancel_delayed_work_sync(&poll_pkg_cstate_work);
> + debugfs_remove_recursive(debug_dir);
> +}
> +module_exit(powerclamp_exit);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Arjan van de Ven <[email protected]>");
> +MODULE_AUTHOR("Jacob Pan <[email protected]>");
> +MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
> --
> 1.7.9.5
>
>

2012-11-13 21:39:30

by Jacob Pan

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, 13 Nov 2012 13:16:02 -0800
"Paul E. McKenney" <[email protected]> wrote:

> > Please refer to Documentation/thermal/intel_powerclamp.txt for more
> > details.
>
> If I read this correctly, this forces a group of CPUs into idle for
> about 600 milliseconds at a time. This would indeed delay grace
> periods, which could easily result in user complaints. Also, given
> the default RCU_BOOST_DELAY of 500 milliseconds in kernels enabling
> RCU_BOOST, you would see needless RCU priority boosting.
>
the default idle injection duration is 6ms. we adjust the sleep
interval to ensure idle ratio. So the idle duration stays the same once
set. So would it be safe to delay grace period for this small amount in
exchange for less over head in each injection period?
> Of course, if the idle period extended for longer, you would see RCU
> CPU stall warnings. And if the idle period extended indefinitely, you
> could hang the system -- the RCU callbacks on the idled CPU could not
> be invoked, and if one of those RCU callbacks was waking someone up,
> that someone would not be woken up.
>
for the same algorithm, idle duration is not extended. the injected
idle loop also yield to pending softirqs, i guess that is what rcu
callbacks are using?
> It looks like you could end up with part of the system powerclamped
> in some situations, and with all of it powerclamped in other
> situations. Is that the case, or am I confused?
>
could you explain the part that is partially powerclamped?

> Thanx, Paul
[Jacob Pan]

--
Thanks,

Jacob

2012-11-13 21:56:47

by Arjan van de Ven

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On 11/13/2012 1:16 PM, Paul E. McKenney wrote:
> On Mon, Nov 12, 2012 at 02:03:51PM -0800, Jacob Pan wrote:
>> Intel PowerClamp driver performs synchronized idle injection across
>> all online CPUs. The goal is to maintain a given package level C-state
>> ratio.
>>
>> Compared to other throttling methods already exist in the kernel,
>> such as ACPI PAD (taking CPUs offline) and clock modulation, this is often
>> more efficient in terms of performance per watt.
>>
>> Please refer to Documentation/thermal/intel_powerclamp.txt for more details.
>
> If I read this correctly, this forces a group of CPUs into idle for
> about 600 milliseconds at a time. This would indeed delay grace periods,

6ms not 600

2012-11-13 22:32:54

by Paul E. McKenney

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, Nov 13, 2012 at 01:39:22PM -0800, Jacob Pan wrote:
> On Tue, 13 Nov 2012 13:16:02 -0800
> "Paul E. McKenney" <[email protected]> wrote:
>
> > > Please refer to Documentation/thermal/intel_powerclamp.txt for more
> > > details.
> >
> > If I read this correctly, this forces a group of CPUs into idle for
> > about 600 milliseconds at a time. This would indeed delay grace
> > periods, which could easily result in user complaints. Also, given
> > the default RCU_BOOST_DELAY of 500 milliseconds in kernels enabling
> > RCU_BOOST, you would see needless RCU priority boosting.
> >
> the default idle injection duration is 6ms. we adjust the sleep
> interval to ensure idle ratio. So the idle duration stays the same once
> set. So would it be safe to delay grace period for this small amount in
> exchange for less over head in each injection period?

Ah, 6ms of delay is much better than 600ms. Should be OK (famous last
words!).

> > Of course, if the idle period extended for longer, you would see RCU
> > CPU stall warnings. And if the idle period extended indefinitely, you
> > could hang the system -- the RCU callbacks on the idled CPU could not
> > be invoked, and if one of those RCU callbacks was waking someone up,
> > that someone would not be woken up.
> >
> for the same algorithm, idle duration is not extended. the injected
> idle loop also yield to pending softirqs, i guess that is what rcu
> callbacks are using?

For most kernel configuration options, it does use softirq. And yes,
the kthread you are using would yield to softirqs -- but only as long
as softirq processing hasn't moved over to ksoftirqd. Longer term,
RCU will be moving from softirq to kthreads, though, and these might be
prempted by your powerclamp kthread, depending on priorities. It looks
like you use RT prio 50, which would usually preempt the RCU kthreads
(unless someone changed the priorities).

> > It looks like you could end up with part of the system powerclamped
> > in some situations, and with all of it powerclamped in other
> > situations. Is that the case, or am I confused?
> >
> could you explain the part that is partially powerclamped?

Suppose that a given system has two sockets. Are the two sockets
powerclamped independently, or at the same time? My guess was the
former, but looking at the code again, it looks like the latter.
So it is a good thing I asked, I guess. ;-)

Thanx, Paul

> [Jacob Pan]
>
> --
> Thanks,
>
> Jacob
> --
> To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
> the body of a message to [email protected]
> More majordomo info at http://vger.kernel.org/majordomo-info.html
> Please read the FAQ at http://www.tux.org/lkml/
>

2012-11-13 22:45:15

by Arjan van de Ven

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On 11/13/2012 2:23 PM, Paul E. McKenney wrote:
> On Tue, Nov 13, 2012 at 01:39:22PM -0800, Jacob Pan wrote:
>> On Tue, 13 Nov 2012 13:16:02 -0800
>> "Paul E. McKenney" <[email protected]> wrote:
>>
>>>> Please refer to Documentation/thermal/intel_powerclamp.txt for more
>>>> details.
>>>
>>> If I read this correctly, this forces a group of CPUs into idle for
>>> about 600 milliseconds at a time. This would indeed delay grace
>>> periods, which could easily result in user complaints. Also, given
>>> the default RCU_BOOST_DELAY of 500 milliseconds in kernels enabling
>>> RCU_BOOST, you would see needless RCU priority boosting.
>>>
>> the default idle injection duration is 6ms. we adjust the sleep
>> interval to ensure idle ratio. So the idle duration stays the same once
>> set. So would it be safe to delay grace period for this small amount in
>> exchange for less over head in each injection period?
>
> Ah, 6ms of delay is much better than 600ms. Should be OK (famous last
> words!).

well... power clamping is not "free".
You're going to lose performance as a trade off for dropping instantaneous power consumption....
in the measurements we've done comparing various methods.. this one is doing remarkably well.

>
> For most kernel configuration options, it does use softirq. And yes,
> the kthread you are using would yield to softirqs -- but only as long
> as softirq processing hasn't moved over to ksoftirqd. Longer term,
> RCU will be moving from softirq to kthreads, though, and these might be
> prempted by your powerclamp kthread, depending on priorities. It looks
> like you use RT prio 50, which would usually preempt the RCU kthreads
> (unless someone changed the priorities).

we tried to pick a "middle of the road" value, so that usages that really really
want to run, still get to run, but things that are more loose about it, get put on hold.


>
>>> It looks like you could end up with part of the system powerclamped
>>> in some situations, and with all of it powerclamped in other
>>> situations. Is that the case, or am I confused?
>>>
>> could you explain the part that is partially powerclamped?
>
> Suppose that a given system has two sockets. Are the two sockets
> powerclamped independently, or at the same time? My guess was the
> former, but looking at the code again, it looks like the latter.
> So it is a good thing I asked, I guess. ;-)

they are clamped together, and they have to.
you don't get (on the systems where this driver works) any "package" C state unless
all packages are idle completely.
And it's these package C states where the real deep power savings happen, that's
why they are such a juicy target for power clamping ;-)

2012-11-13 22:57:42

by Rafael J. Wysocki

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tuesday, November 13, 2012 02:45:11 PM Arjan van de Ven wrote:
> On 11/13/2012 2:23 PM, Paul E. McKenney wrote:
> > On Tue, Nov 13, 2012 at 01:39:22PM -0800, Jacob Pan wrote:
> >> On Tue, 13 Nov 2012 13:16:02 -0800
> >> "Paul E. McKenney" <[email protected]> wrote:
> >>
> >>>> Please refer to Documentation/thermal/intel_powerclamp.txt for more
> >>>> details.
> >>>
> >>> If I read this correctly, this forces a group of CPUs into idle for
> >>> about 600 milliseconds at a time. This would indeed delay grace
> >>> periods, which could easily result in user complaints. Also, given
> >>> the default RCU_BOOST_DELAY of 500 milliseconds in kernels enabling
> >>> RCU_BOOST, you would see needless RCU priority boosting.
> >>>
> >> the default idle injection duration is 6ms. we adjust the sleep
> >> interval to ensure idle ratio. So the idle duration stays the same once
> >> set. So would it be safe to delay grace period for this small amount in
> >> exchange for less over head in each injection period?
> >
> > Ah, 6ms of delay is much better than 600ms. Should be OK (famous last
> > words!).
>
> well... power clamping is not "free".
> You're going to lose performance as a trade off for dropping instantaneous power consumption....

Yes. It is good to realize that when the clamping triggers, we already
have some more to worry about than losing some performance. :-)

The problem here is to find a way to lose as little performance as we possibly
can and prevent the system from overheating at the same time.

Thanks,
Rafael


--
I speak only for myself.
Rafael J. Wysocki, Intel Open Source Technology Center.

2012-11-14 00:06:39

by Paul E. McKenney

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, Nov 13, 2012 at 02:45:11PM -0800, Arjan van de Ven wrote:
> On 11/13/2012 2:23 PM, Paul E. McKenney wrote:
> > On Tue, Nov 13, 2012 at 01:39:22PM -0800, Jacob Pan wrote:
> >> On Tue, 13 Nov 2012 13:16:02 -0800
> >> "Paul E. McKenney" <[email protected]> wrote:
> >>
> >>>> Please refer to Documentation/thermal/intel_powerclamp.txt for more
> >>>> details.
> >>>
> >>> If I read this correctly, this forces a group of CPUs into idle for
> >>> about 600 milliseconds at a time. This would indeed delay grace
> >>> periods, which could easily result in user complaints. Also, given
> >>> the default RCU_BOOST_DELAY of 500 milliseconds in kernels enabling
> >>> RCU_BOOST, you would see needless RCU priority boosting.
> >>>
> >> the default idle injection duration is 6ms. we adjust the sleep
> >> interval to ensure idle ratio. So the idle duration stays the same once
> >> set. So would it be safe to delay grace period for this small amount in
> >> exchange for less over head in each injection period?
> >
> > Ah, 6ms of delay is much better than 600ms. Should be OK (famous last
> > words!).
>
> well... power clamping is not "free".
> You're going to lose performance as a trade off for dropping instantaneous power consumption....
> in the measurements we've done comparing various methods.. this one is doing remarkably well.

No argument here. My concern is not performance in this situation, but
rather in-kernel confusion, particularly any such confusion involving RCU.

And understood, you can get similar effects from virtualization.
For all I know, the virtualization guys might leverage your experience
with power clamping to push for gang scheduling once more. ;-)

> > For most kernel configuration options, it does use softirq. And yes,
> > the kthread you are using would yield to softirqs -- but only as long
> > as softirq processing hasn't moved over to ksoftirqd. Longer term,
> > RCU will be moving from softirq to kthreads, though, and these might be
> > prempted by your powerclamp kthread, depending on priorities. It looks
> > like you use RT prio 50, which would usually preempt the RCU kthreads
> > (unless someone changed the priorities).
>
> we tried to pick a "middle of the road" value, so that usages that really really
> want to run, still get to run, but things that are more loose about it, get put on hold.

Makes sense.

> >>> It looks like you could end up with part of the system powerclamped
> >>> in some situations, and with all of it powerclamped in other
> >>> situations. Is that the case, or am I confused?
> >>>
> >> could you explain the part that is partially powerclamped?
> >
> > Suppose that a given system has two sockets. Are the two sockets
> > powerclamped independently, or at the same time? My guess was the
> > former, but looking at the code again, it looks like the latter.
> > So it is a good thing I asked, I guess. ;-)
>
> they are clamped together, and they have to.
> you don't get (on the systems where this driver works) any "package" C state unless
> all packages are idle completely.
> And it's these package C states where the real deep power savings happen, that's
> why they are such a juicy target for power clamping ;-)

OK, so the point of clamping all sockets simultaneously is to be able
to power down the electronics surrounding the sockets as well as the
sockets themselves? If all you cared about was the individual sockets,
I don't see why you couldn't power the sockets down individually rather
than in sync with each other.

Just to make sure I am really understanding what is happening, let's
suppose we have a HZ=1000 system that has a few tasks that occasionally
run at prio 99. These tasks would run during the clamp interval,
but would (for example) see the jiffies counter remaining at the
value at the beginning of the clamp interval until the end of that
interval, when the jiffies counter would suddenly jump by roughly
six counts, right?

If so, this could cause some (minor) RCU issues, such as RCU
deciding to force quiescent states right at the end of a clamping
interval, even though none of the RCU readers would have had a
chance to do anything in the meantime. Shouldn't result in a
bug though, just wasted motion.

I think I know, but I feel the need to ask anyway. Why not tell
RCU about the clamping?

Thanx, Paul

2012-11-14 00:07:41

by Paul E. McKenney

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Wed, Nov 14, 2012 at 12:02:00AM +0100, Rafael J. Wysocki wrote:
> On Tuesday, November 13, 2012 02:45:11 PM Arjan van de Ven wrote:
> > On 11/13/2012 2:23 PM, Paul E. McKenney wrote:
> > > On Tue, Nov 13, 2012 at 01:39:22PM -0800, Jacob Pan wrote:
> > >> On Tue, 13 Nov 2012 13:16:02 -0800
> > >> "Paul E. McKenney" <[email protected]> wrote:
> > >>
> > >>>> Please refer to Documentation/thermal/intel_powerclamp.txt for more
> > >>>> details.
> > >>>
> > >>> If I read this correctly, this forces a group of CPUs into idle for
> > >>> about 600 milliseconds at a time. This would indeed delay grace
> > >>> periods, which could easily result in user complaints. Also, given
> > >>> the default RCU_BOOST_DELAY of 500 milliseconds in kernels enabling
> > >>> RCU_BOOST, you would see needless RCU priority boosting.
> > >>>
> > >> the default idle injection duration is 6ms. we adjust the sleep
> > >> interval to ensure idle ratio. So the idle duration stays the same once
> > >> set. So would it be safe to delay grace period for this small amount in
> > >> exchange for less over head in each injection period?
> > >
> > > Ah, 6ms of delay is much better than 600ms. Should be OK (famous last
> > > words!).
> >
> > well... power clamping is not "free".
> > You're going to lose performance as a trade off for dropping instantaneous power consumption....
>
> Yes. It is good to realize that when the clamping triggers, we already
> have some more to worry about than losing some performance. :-)
>
> The problem here is to find a way to lose as little performance as we possibly
> can and prevent the system from overheating at the same time.

Understood. My concern is in-kernel confusion rather than performance.

Thanx, Paul

2012-11-14 00:09:09

by Arjan van de Ven

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver


>
> OK, so the point of clamping all sockets simultaneously is to be able
> to power down the electronics surrounding the sockets as well as the
> sockets themselves?

yup; memory can go to self refresh etc etc

>If all you cared about was the individual sockets,
> I don't see why you couldn't power the sockets down individually rather
> than in sync with each other.

the hardware that this driver supports does not support powering down sockets individually.

(since the memory controllers are part of the "socket"... it would increase latency
etc etc, and likely wreak havoc with the cache coherency protocols)

> I think I know, but I feel the need to ask anyway. Why not tell
> RCU about the clamping?

I don't mind telling RCU, but what cannot happen is a bunch of CPU time suddenly getting used
(since that is the opposite of what is needed at the specific point in time of going idle)

2012-11-14 01:14:54

by Jacob Pan

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, 13 Nov 2012 16:08:54 -0800
Arjan van de Ven <[email protected]> wrote:

> > I think I know, but I feel the need to ask anyway. Why not tell
> > RCU about the clamping?
>
> I don't mind telling RCU, but what cannot happen is a bunch of CPU
> time suddenly getting used (since that is the opposite of what is
> needed at the specific point in time of going idle)
Another reason is my observation that there are some assumptions/checks
to make sure only idle thread can tell rcu it is idle. Is it ok to
extend that to other kthreads?

--
Thanks,

Jacob

2012-11-14 01:24:53

by Jacob Pan

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, 13 Nov 2012 16:03:00 -0800
"Paul E. McKenney" <[email protected]> wrote:

> Just to make sure I am really understanding what is happening, let's
> suppose we have a HZ=1000 system that has a few tasks that
> occasionally run at prio 99. These tasks would run during the clamp
> interval, but would (for example) see the jiffies counter remaining
> at the value at the beginning of the clamp interval until the end of
> that interval, when the jiffies counter would suddenly jump by roughly
> six counts, right?

Yes, if there is no interrupts disturb the clamping duration.
We do not mask interrupts which will update jiffies.

--
Thanks,

Jacob

2012-11-14 01:36:25

by Paul E. McKenney

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, Nov 13, 2012 at 05:14:50PM -0800, Jacob Pan wrote:
> On Tue, 13 Nov 2012 16:08:54 -0800
> Arjan van de Ven <[email protected]> wrote:
>
> > > I think I know, but I feel the need to ask anyway. Why not tell
> > > RCU about the clamping?
> >
> > I don't mind telling RCU, but what cannot happen is a bunch of CPU
> > time suddenly getting used (since that is the opposite of what is
> > needed at the specific point in time of going idle)

Another round of RCU_FAST_NO_HZ rework, you are asking for? ;-)

> Another reason is my observation that there are some assumptions/checks
> to make sure only idle thread can tell rcu it is idle. Is it ok to
> extend that to other kthreads?

If you are only having the system take 6-millisecond "vacations", probably
best to try it as it is and fix specific problems if/when they arise.

Thanx, Paul

2012-11-14 02:59:09

by Arjan van de Ven

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On 11/13/2012 5:34 PM, Paul E. McKenney wrote:
> On Tue, Nov 13, 2012 at 05:14:50PM -0800, Jacob Pan wrote:
>> On Tue, 13 Nov 2012 16:08:54 -0800
>> Arjan van de Ven <[email protected]> wrote:
>>
>>>> I think I know, but I feel the need to ask anyway. Why not tell
>>>> RCU about the clamping?
>>>
>>> I don't mind telling RCU, but what cannot happen is a bunch of CPU
>>> time suddenly getting used (since that is the opposite of what is
>>> needed at the specific point in time of going idle)
>
> Another round of RCU_FAST_NO_HZ rework, you are asking for? ;-)

well
we can tell you we're about to mwait
and we can tell you when we're done being idle.
you could just do the actual work at that point, we don't care anymore ;-)
just at the start of the mandated idle period we can't afford to have more
jitter than we already have (which is more than I'd like, but it's manageable.
More jitter means more performance hit, since during the time of the jitter, some cpus
are forced idle, e.g. costing performance, without the actual big-step power savings
kicking in yet....)

> If you are only having the system take 6-millisecond "vacations", probably

it's not all that different from running a while (1) loop for 6 msec inside
a kernel thread.... other than the power level of course...

2012-11-15 03:22:23

by Paul E. McKenney

[permalink] [raw]
Subject: Re: [PATCH 3/3] PM: Introduce Intel PowerClamp Driver

On Tue, Nov 13, 2012 at 06:59:06PM -0800, Arjan van de Ven wrote:
> On 11/13/2012 5:34 PM, Paul E. McKenney wrote:
> > On Tue, Nov 13, 2012 at 05:14:50PM -0800, Jacob Pan wrote:
> >> On Tue, 13 Nov 2012 16:08:54 -0800
> >> Arjan van de Ven <[email protected]> wrote:
> >>
> >>>> I think I know, but I feel the need to ask anyway. Why not tell
> >>>> RCU about the clamping?
> >>>
> >>> I don't mind telling RCU, but what cannot happen is a bunch of CPU
> >>> time suddenly getting used (since that is the opposite of what is
> >>> needed at the specific point in time of going idle)
> >
> > Another round of RCU_FAST_NO_HZ rework, you are asking for? ;-)
>
> well
> we can tell you we're about to mwait
> and we can tell you when we're done being idle.
> you could just do the actual work at that point, we don't care anymore ;-)
> just at the start of the mandated idle period we can't afford to have more
> jitter than we already have (which is more than I'd like, but it's manageable.
> More jitter means more performance hit, since during the time of the jitter, some cpus
> are forced idle, e.g. costing performance, without the actual big-step power savings
> kicking in yet....)

Fair enough -- but probably best to see what problems arise rather than
trying to guess too far ahead. Who knows? It might "just work".

> > If you are only having the system take 6-millisecond "vacations", probably
>
> it's not all that different from running a while (1) loop for 6 msec inside
> a kernel thread.... other than the power level of course...

Well, a while (1) on all CPUs simultaneously, anyway.

Thanx, Paul