ACPI 6.2 adds the Processor Properties Topology Table (PPTT), which is
used to describe the processor and cache topology. Ideally it is
used to extend/override information provided by the hardware, but
right now ARM64 is entirely dependent on firmware provided tables.
This patch parses the table for the cache topology and CPU topology.
For the latter we also add an additional topology_cod_id() macro,
and a package_id for arm64. Initially the physical id will match
the cluster id, but we update users of the cluster to utilize
the new macro. When we enable ACPI/PPTT for arm64 we map the socket
to the physical id as the remainder of the kernel expects.
For example on juno:
[root@mammon-juno-rh topology]# lstopo-no-graphics
Package L#0
L2 L#0 (1024KB)
L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)
L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)
L2 L#1 (2048KB)
L1d L#4 (32KB) + L1i L#4 (48KB) + Core L#4 + PU L#4 (P#4)
L1d L#5 (32KB) + L1i L#5 (48KB) + Core L#5 + PU L#5 (P#5)
HostBridge L#0
PCIBridge
PCIBridge
PCIBridge
PCI 1095:3132
Block(Disk) L#0 "sda"
PCIBridge
PCI 1002:68f9
GPU L#1 "renderD128"
GPU L#2 "card0"
GPU L#3 "controlD64"
PCIBridge
PCI 11ab:4380
Net L#4 "enp8s0"
v1->v2:
The parser keys off the acpi_pptt_processor node to determine
unique cache's rather than the acpi_pptt_cache referenced by the
processor node. This allows PPTT tables which "share" cache nodes
across cpu nodes despite not being a shared cache.
Normalize the socket, cluster and thread mapping so that they match
linux's traditional mapping for the physical id, and thread id.
Adding explicit scheduler knowledge of clusters (rather than just
their cache sharing attributes) is a subject for a future patch.
Jeremy Linton (6):
ACPI/PPTT: Add Processor Properties Topology Table parsing
ACPI: Enable PPTT support on ARM64
drivers: base: cacheinfo: arm64: Add support for ACPI based firmware
tables
Topology: Add cluster on die macros and arm64 decoding
arm64: Fixup users of topology_physical_package_id
arm64: topology: Enable ACPI/PPTT based CPU topology.
arch/arm64/Kconfig | 1 +
arch/arm64/include/asm/topology.h | 4 +-
arch/arm64/kernel/cacheinfo.c | 23 +-
arch/arm64/kernel/topology.c | 62 ++++-
drivers/acpi/Makefile | 1 +
drivers/acpi/arm64/Kconfig | 3 +
drivers/acpi/pptt.c | 459 ++++++++++++++++++++++++++++++++++++++
drivers/base/cacheinfo.c | 17 +-
drivers/clk/clk-mb86s7x.c | 2 +-
drivers/cpufreq/arm_big_little.c | 2 +-
drivers/firmware/psci_checker.c | 2 +-
include/linux/cacheinfo.h | 10 +-
include/linux/topology.h | 4 +
13 files changed, 570 insertions(+), 20 deletions(-)
create mode 100644 drivers/acpi/pptt.c
--
2.13.5
There are a few arm64 specific users (cpufreq, psci, etc) which really
want the cluster rather than the topology_physical_package_id(). Lets
convert those users to topology_cod_id(). That way when we start
differentiating the socket/cluster they will continue to behave correctly.
Signed-off-by: Jeremy Linton <[email protected]>
---
drivers/clk/clk-mb86s7x.c | 2 +-
drivers/cpufreq/arm_big_little.c | 2 +-
drivers/firmware/psci_checker.c | 2 +-
3 files changed, 3 insertions(+), 3 deletions(-)
diff --git a/drivers/clk/clk-mb86s7x.c b/drivers/clk/clk-mb86s7x.c
index 2a83a3ff1d09..da4b456f9afc 100644
--- a/drivers/clk/clk-mb86s7x.c
+++ b/drivers/clk/clk-mb86s7x.c
@@ -338,7 +338,7 @@ static struct clk_hw *mb86s7x_clclk_register(struct device *cpu_dev)
return ERR_PTR(-ENOMEM);
clc->hw.init = &init;
- clc->cluster = topology_physical_package_id(cpu_dev->id);
+ clc->cluster = topology_cod_id(cpu_dev->id);
init.name = dev_name(cpu_dev);
init.ops = &clk_clc_ops;
diff --git a/drivers/cpufreq/arm_big_little.c b/drivers/cpufreq/arm_big_little.c
index 17504129fd77..6ee69b3820de 100644
--- a/drivers/cpufreq/arm_big_little.c
+++ b/drivers/cpufreq/arm_big_little.c
@@ -72,7 +72,7 @@ static struct mutex cluster_lock[MAX_CLUSTERS];
static inline int raw_cpu_to_cluster(int cpu)
{
- return topology_physical_package_id(cpu);
+ return topology_cod_id(cpu);
}
static inline int cpu_to_cluster(int cpu)
diff --git a/drivers/firmware/psci_checker.c b/drivers/firmware/psci_checker.c
index 6523ce962865..a9465f5d344a 100644
--- a/drivers/firmware/psci_checker.c
+++ b/drivers/firmware/psci_checker.c
@@ -202,7 +202,7 @@ static int hotplug_tests(void)
*/
for (i = 0; i < nb_cluster; ++i) {
int cluster_id =
- topology_physical_package_id(cpumask_any(clusters[i]));
+ topology_cod_id(cpumask_any(clusters[i]));
ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
clusters[i]);
/* Remove trailing newline. */
--
2.13.5
The /sys cache entries should support ACPI/PPTT generated cache
topology information. Lets detect ACPI systems and call
an arch specific cache_setup_acpi() routine to update the hardware
probed cache topology.
For arm64, if ACPI is enabled, determine the max number of cache
levels and populate them using a PPTT table if one is available.
Signed-off-by: Jeremy Linton <[email protected]>
---
arch/arm64/kernel/cacheinfo.c | 23 ++++++++++++++++++-----
drivers/acpi/pptt.c | 1 +
drivers/base/cacheinfo.c | 17 +++++++++++------
include/linux/cacheinfo.h | 10 ++++++++--
4 files changed, 38 insertions(+), 13 deletions(-)
diff --git a/arch/arm64/kernel/cacheinfo.c b/arch/arm64/kernel/cacheinfo.c
index 380f2e2fbed5..2e2cf0d312ba 100644
--- a/arch/arm64/kernel/cacheinfo.c
+++ b/arch/arm64/kernel/cacheinfo.c
@@ -17,6 +17,7 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
+#include <linux/acpi.h>
#include <linux/cacheinfo.h>
#include <linux/of.h>
@@ -44,9 +45,17 @@ static void ci_leaf_init(struct cacheinfo *this_leaf,
this_leaf->type = type;
}
+#ifndef CONFIG_ACPI
+int acpi_find_last_cache_level(unsigned int cpu)
+{
+ /*ACPI kernels should be built with PPTT support*/
+ return 0;
+}
+#endif
+
static int __init_cache_level(unsigned int cpu)
{
- unsigned int ctype, level, leaves, of_level;
+ unsigned int ctype, level, leaves, fw_level;
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
for (level = 1, leaves = 0; level <= MAX_CACHE_LEVEL; level++) {
@@ -59,15 +68,19 @@ static int __init_cache_level(unsigned int cpu)
leaves += (ctype == CACHE_TYPE_SEPARATE) ? 2 : 1;
}
- of_level = of_find_last_cache_level(cpu);
- if (level < of_level) {
+ if (acpi_disabled)
+ fw_level = of_find_last_cache_level(cpu);
+ else
+ fw_level = acpi_find_last_cache_level(cpu);
+
+ if (level < fw_level) {
/*
* some external caches not specified in CLIDR_EL1
* the information may be available in the device tree
* only unified external caches are considered here
*/
- leaves += (of_level - level);
- level = of_level;
+ leaves += (fw_level - level);
+ level = fw_level;
}
this_cpu_ci->num_levels = level;
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
index f7694fa1e0bd..0dd918c3782c 100644
--- a/drivers/acpi/pptt.c
+++ b/drivers/acpi/pptt.c
@@ -331,6 +331,7 @@ static void update_cache_properties(struct cacheinfo *this_leaf,
struct acpi_pptt_cache *found_cache,
struct acpi_pptt_processor *cpu_node)
{
+ this_leaf->firmware_node = found_cache;
if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
this_leaf->size = found_cache->size;
if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
diff --git a/drivers/base/cacheinfo.c b/drivers/base/cacheinfo.c
index eb3af2739537..8eca279e50d1 100644
--- a/drivers/base/cacheinfo.c
+++ b/drivers/base/cacheinfo.c
@@ -86,7 +86,7 @@ static int cache_setup_of_node(unsigned int cpu)
static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
struct cacheinfo *sib_leaf)
{
- return sib_leaf->of_node == this_leaf->of_node;
+ return sib_leaf->firmware_node == this_leaf->firmware_node;
}
/* OF properties to query for a given cache type */
@@ -215,6 +215,11 @@ static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
}
#endif
+int __weak cache_setup_acpi(unsigned int cpu)
+{
+ return -ENOTSUPP;
+}
+
static int cache_shared_cpu_map_setup(unsigned int cpu)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
@@ -225,11 +230,11 @@ static int cache_shared_cpu_map_setup(unsigned int cpu)
if (this_cpu_ci->cpu_map_populated)
return 0;
- if (of_have_populated_dt())
+ if (!acpi_disabled)
+ ret = cache_setup_acpi(cpu);
+ else if (of_have_populated_dt())
ret = cache_setup_of_node(cpu);
- else if (!acpi_disabled)
- /* No cache property/hierarchy support yet in ACPI */
- ret = -ENOTSUPP;
+
if (ret)
return ret;
@@ -286,7 +291,7 @@ static void cache_shared_cpu_map_remove(unsigned int cpu)
static void cache_override_properties(unsigned int cpu)
{
- if (of_have_populated_dt())
+ if (acpi_disabled && of_have_populated_dt())
return cache_of_override_properties(cpu);
}
diff --git a/include/linux/cacheinfo.h b/include/linux/cacheinfo.h
index 6a524bf6a06d..0114eb9ab67b 100644
--- a/include/linux/cacheinfo.h
+++ b/include/linux/cacheinfo.h
@@ -36,6 +36,9 @@ enum cache_type {
* @of_node: if devicetree is used, this represents either the cpu node in
* case there's no explicit cache node or the cache node itself in the
* device tree
+ * @firmware_node: Shared with of_node. When not using DT, this may contain
+ * pointers to other firmware based values. Particularly ACPI/PPTT
+ * unique values.
* @disable_sysfs: indicates whether this node is visible to the user via
* sysfs or not
* @priv: pointer to any private data structure specific to particular
@@ -64,8 +67,10 @@ struct cacheinfo {
#define CACHE_ALLOCATE_POLICY_MASK \
(CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE)
#define CACHE_ID BIT(4)
-
- struct device_node *of_node;
+ union {
+ struct device_node *of_node;
+ void *firmware_node;
+ };
bool disable_sysfs;
void *priv;
};
@@ -98,6 +103,7 @@ int func(unsigned int cpu) \
struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu);
int init_cache_level(unsigned int cpu);
int populate_cache_leaves(unsigned int cpu);
+int acpi_find_last_cache_level(unsigned int cpu);
const struct attribute_group *cache_get_priv_group(struct cacheinfo *this_leaf);
--
2.13.5
Propagate the topology information from the PPTT tree to the
cpu_topology array. We can get the thread id, core_id and
cluster_id by assuming certain levels of the PPTT tree correspond
to those concepts. The package_id is flagged in the tree and can be
found by passing an arbitrary large level to setup_acpi_cpu_topology()
which terminates its search when it finds an ACPI node flagged
as the physical package. If the tree doesn't contain enough
levels to represent all of thread/core/cod/package then the package
id will be used for the missing levels.
Since server/ACPI machines are more likely to be multisocket and NUMA,
this patch also modifies the default clusters=sockets behavior
for ACPI machines to sockets=sockets. DT machines continue to
represent sockets as clusters. For ACPI machines, this results in a
more normalized view of the topology. Cluster level scheduler decisions
are still being made due to the "MC" level in the scheduler which has
knowledge of cache sharing domains.
This code is loosely based on a combination of code from:
Xiongfeng Wang <[email protected]>
John Garry <[email protected]>
Jeffrey Hugo <[email protected]>
Signed-off-by: Jeremy Linton <[email protected]>
---
arch/arm64/kernel/topology.c | 54 +++++++++++++++++++++++++++++++++++++++++++-
include/linux/topology.h | 1 +
2 files changed, 54 insertions(+), 1 deletion(-)
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c
index 9147e5b6326d..42f3e7f28b2b 100644
--- a/arch/arm64/kernel/topology.c
+++ b/arch/arm64/kernel/topology.c
@@ -11,6 +11,7 @@
* for more details.
*/
+#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
@@ -22,6 +23,7 @@
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/slab.h>
+#include <linux/smp.h>
#include <linux/string.h>
#include <asm/cpu.h>
@@ -304,6 +306,54 @@ static void __init reset_cpu_topology(void)
}
}
+#ifdef CONFIG_ACPI
+/*
+ * Propagate the topology information of the processor_topology_node tree to the
+ * cpu_topology array.
+ */
+static int __init parse_acpi_topology(void)
+{
+ u64 is_threaded;
+ int cpu;
+ int topology_id;
+ /* set a large depth, to hit ACPI_PPTT_PHYSICAL_PACKAGE if one exists */
+ const int max_topo = 0xFF;
+
+ is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
+
+ for_each_possible_cpu(cpu) {
+ topology_id = setup_acpi_cpu_topology(cpu, 0);
+ if (topology_id < 0)
+ return topology_id;
+
+ if (is_threaded) {
+ cpu_topology[cpu].thread_id = topology_id;
+ topology_id = setup_acpi_cpu_topology(cpu, 1);
+ cpu_topology[cpu].core_id = topology_id;
+ topology_id = setup_acpi_cpu_topology(cpu, 2);
+ cpu_topology[cpu].cluster_id = topology_id;
+ topology_id = setup_acpi_cpu_topology(cpu, max_topo);
+ cpu_topology[cpu].package_id = topology_id;
+ } else {
+ cpu_topology[cpu].thread_id = -1;
+ cpu_topology[cpu].core_id = topology_id;
+ topology_id = setup_acpi_cpu_topology(cpu, 1);
+ cpu_topology[cpu].cluster_id = topology_id;
+ topology_id = setup_acpi_cpu_topology(cpu, max_topo);
+ cpu_topology[cpu].package_id = topology_id;
+ }
+ }
+ return 0;
+}
+
+#else
+static int __init parse_acpi_topology(void)
+{
+ /*ACPI kernels should be built with PPTT support*/
+ return -EINVAL;
+}
+#endif
+
void __init init_cpu_topology(void)
{
reset_cpu_topology();
@@ -312,6 +362,8 @@ void __init init_cpu_topology(void)
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
- if (of_have_populated_dt() && parse_dt_topology())
+ if ((!acpi_disabled) && parse_acpi_topology())
+ reset_cpu_topology();
+ else if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
}
diff --git a/include/linux/topology.h b/include/linux/topology.h
index 4660749a7303..cbf2fb13bf92 100644
--- a/include/linux/topology.h
+++ b/include/linux/topology.h
@@ -43,6 +43,7 @@
if (nr_cpus_node(node))
int arch_update_cpu_topology(void);
+int setup_acpi_cpu_topology(unsigned int cpu, int level);
/* Conform to ACPI 2.0 SLIT distance definitions */
#define LOCAL_DISTANCE 10
--
2.13.5
Many modern machines have cluster on die (COD) non-uniformity
as well as the traditional multi-socket architectures. Reusing
the multi-socket or NUMA on die concepts for these (as arm64 does)
breaks down when presented with actual multi-socket/COD machines.
Similar, problems are also visible on some x86 machines so it
seems appropriate to start abstracting and making these topologies
visible.
To start, a topology_cod_id() macro is added which defaults to returning
the same information as topology_physical_package_id(). Moving forward
we can start to spit out the differences.
For arm64, an additional package_id is added to the cpu_topology array.
Initially this will be equal to the cluster_id as well.
Signed-off-by: Jeremy Linton <[email protected]>
---
arch/arm64/include/asm/topology.h | 4 +++-
arch/arm64/kernel/topology.c | 8 ++++++--
include/linux/topology.h | 3 +++
3 files changed, 12 insertions(+), 3 deletions(-)
diff --git a/arch/arm64/include/asm/topology.h b/arch/arm64/include/asm/topology.h
index 8b57339823e9..bd7517960d39 100644
--- a/arch/arm64/include/asm/topology.h
+++ b/arch/arm64/include/asm/topology.h
@@ -7,13 +7,15 @@ struct cpu_topology {
int thread_id;
int core_id;
int cluster_id;
+ int package_id;
cpumask_t thread_sibling;
cpumask_t core_sibling;
};
extern struct cpu_topology cpu_topology[NR_CPUS];
-#define topology_physical_package_id(cpu) (cpu_topology[cpu].cluster_id)
+#define topology_physical_package_id(cpu) (cpu_topology[cpu].package_id)
+#define topology_cod_id(cpu) (cpu_topology[cpu].cluster_id)
#define topology_core_id(cpu) (cpu_topology[cpu].core_id)
#define topology_core_cpumask(cpu) (&cpu_topology[cpu].core_sibling)
#define topology_sibling_cpumask(cpu) (&cpu_topology[cpu].thread_sibling)
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c
index 8d48b233e6ce..9147e5b6326d 100644
--- a/arch/arm64/kernel/topology.c
+++ b/arch/arm64/kernel/topology.c
@@ -67,6 +67,8 @@ static int __init parse_core(struct device_node *core, int cluster_id,
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
+ /* maintain DT cluster == package behavior */
+ cpu_topology[cpu].package_id = cluster_id;
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
@@ -88,7 +90,7 @@ static int __init parse_core(struct device_node *core, int cluster_id,
core);
return -EINVAL;
}
-
+ cpu_topology[cpu].package_id = cluster_id;
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
@@ -228,7 +230,7 @@ static void update_siblings_masks(unsigned int cpuid)
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
- if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
+ if (cpuid_topo->package_id != cpu_topo->package_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
@@ -273,6 +275,7 @@ void store_cpu_topology(unsigned int cpuid)
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
}
+ cpuid_topo->package_id = cpuid_topo->cluster_id;
pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
@@ -292,6 +295,7 @@ static void __init reset_cpu_topology(void)
cpu_topo->thread_id = -1;
cpu_topo->core_id = 0;
cpu_topo->cluster_id = -1;
+ cpu_topo->package_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
diff --git a/include/linux/topology.h b/include/linux/topology.h
index cb0775e1ee4b..4660749a7303 100644
--- a/include/linux/topology.h
+++ b/include/linux/topology.h
@@ -184,6 +184,9 @@ static inline int cpu_to_mem(int cpu)
#ifndef topology_physical_package_id
#define topology_physical_package_id(cpu) ((void)(cpu), -1)
#endif
+#ifndef topology_cod_id /* cluster on die */
+#define topology_cod_id(cpu) topology_physical_package_id(cpu)
+#endif
#ifndef topology_core_id
#define topology_core_id(cpu) ((void)(cpu), 0)
#endif
--
2.13.5
ACPI 6.2 adds a new table, which describes how processing units
are related to each other in tree like fashion. Caches are
also sprinkled throughout the tree and describe the properties
of the caches in relation to other caches and processing units.
Add the code to parse the cache hierarchy and report the total
number of levels of cache for a given core using
acpi_find_last_cache_level() as well as fill out the individual
cores cache information with cache_setup_acpi() once the
cpu_cacheinfo structure has been populated by the arch specific
code.
Further, report peers in the topology using setup_acpi_cpu_topology()
to report a unique ID for each processing unit at a given level
in the tree. These unique id's can then be used to match related
processing units which exist as threads, COD (clusters
on die), within a given package, etc.
Signed-off-by: Jeremy Linton <[email protected]>
---
drivers/acpi/pptt.c | 458 ++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 458 insertions(+)
create mode 100644 drivers/acpi/pptt.c
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
new file mode 100644
index 000000000000..f7694fa1e0bd
--- /dev/null
+++ b/drivers/acpi/pptt.c
@@ -0,0 +1,458 @@
+/*
+ * Copyright (C) 2017, ARM
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * This file implements parsing of Processor Properties Topology Table (PPTT)
+ * which is optionally used to describe the processor and cache topology.
+ * Due to the relative pointers used throughout the table, this doesn't
+ * leverage the existing subtable parsing in the kernel.
+ */
+#define pr_fmt(fmt) "ACPI PPTT: " fmt
+
+#include <linux/acpi.h>
+#include <linux/cacheinfo.h>
+#include <acpi/processor.h>
+
+/*
+ * Given the PPTT table, find and verify that the subtable entry
+ * is located within the table
+ */
+static struct acpi_subtable_header *fetch_pptt_subtable(
+ struct acpi_table_header *table_hdr, u32 pptt_ref)
+{
+ struct acpi_subtable_header *entry;
+
+ /* there isn't a subtable at reference 0 */
+ if (!pptt_ref)
+ return NULL;
+
+ if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
+ return NULL;
+
+ entry = (struct acpi_subtable_header *)((u8 *)table_hdr + pptt_ref);
+
+ if (pptt_ref + entry->length > table_hdr->length)
+ return NULL;
+
+ return entry;
+}
+
+static struct acpi_pptt_processor *fetch_pptt_node(
+ struct acpi_table_header *table_hdr, u32 pptt_ref)
+{
+ return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_pptt_cache *fetch_pptt_cache(
+ struct acpi_table_header *table_hdr, u32 pptt_ref)
+{
+ return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_subtable_header *acpi_get_pptt_resource(
+ struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *node, int resource)
+{
+ u32 ref;
+
+ if (resource >= node->number_of_priv_resources)
+ return NULL;
+
+ ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) +
+ sizeof(u32) * resource);
+
+ return fetch_pptt_subtable(table_hdr, ref);
+}
+
+/*
+ * given a pptt resource, verify that it is a cache node, then walk
+ * down each level of caches, counting how many levels are found
+ * as well as checking the cache type (icache, dcache, unified). If a
+ * level & type match, then we set found, and continue the search.
+ * Once the entire cache branch has been walked return its max
+ * depth.
+ */
+static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
+ int local_level,
+ struct acpi_subtable_header *res,
+ struct acpi_pptt_cache **found,
+ int level, int type)
+{
+ struct acpi_pptt_cache *cache;
+
+ if (res->type != ACPI_PPTT_TYPE_CACHE)
+ return 0;
+
+ cache = (struct acpi_pptt_cache *) res;
+ while (cache) {
+ local_level++;
+
+ if ((local_level == level) &&
+ (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) &&
+ ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) {
+ if (*found != NULL)
+ pr_err("Found duplicate cache level/type unable to determine uniqueness\n");
+
+ pr_debug("Found cache @ level %d\n", level);
+ *found = cache;
+ /*
+ * continue looking at this node's resource list
+ * to verify that we don't find a duplicate
+ * cache node.
+ */
+ }
+ cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
+ }
+ return local_level;
+}
+
+/*
+ * Given a CPU node look for cache levels that exist at this level, and then
+ * for each cache node, count how many levels exist below (logically above) it.
+ * If a level and type are specified, and we find that level/type, abort
+ * processing and return the acpi_pptt_cache structure.
+ */
+static struct acpi_pptt_cache *acpi_find_cache_level(
+ struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu_node,
+ int *starting_level, int level, int type)
+{
+ struct acpi_subtable_header *res;
+ int number_of_levels = *starting_level;
+ int resource = 0;
+ struct acpi_pptt_cache *ret = NULL;
+ int local_level;
+
+ /* walk down from processor node */
+ while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
+ resource++;
+
+ local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
+ res, &ret, level, type);
+ /*
+ * we are looking for the max depth. Since its potentially
+ * possible for a given node to have resources with differing
+ * depths verify that the depth we have found is the largest.
+ */
+ if (number_of_levels < local_level)
+ number_of_levels = local_level;
+ }
+ if (number_of_levels > *starting_level)
+ *starting_level = number_of_levels;
+
+ return ret;
+}
+
+/*
+ * given a processor node containing a processing unit, walk into it and count
+ * how many levels exist solely for it, and then walk up each level until we hit
+ * the root node (ignore the package level because it may be possible to have
+ * caches that exist across packages). Count the number of cache levels that
+ * exist at each level on the way up.
+ */
+static int acpi_process_node(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu_node)
+{
+ int total_levels = 0;
+
+ do {
+ acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
+ cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
+ } while (cpu_node);
+
+ return total_levels;
+}
+
+/*
+ * Find the subtable entry describing the provided processor
+ */
+static struct acpi_pptt_processor *acpi_find_processor_node(
+ struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id)
+{
+ struct acpi_subtable_header *entry;
+ unsigned long table_end;
+ struct acpi_pptt_processor *cpu_node;
+
+ table_end = (unsigned long)table_hdr + table_hdr->length;
+ entry = (struct acpi_subtable_header *)((u8 *)table_hdr +
+ sizeof(struct acpi_table_pptt));
+
+ /* find the processor structure associated with this cpuid */
+ while (((unsigned long)entry) + sizeof(struct acpi_subtable_header) < table_end) {
+ cpu_node = (struct acpi_pptt_processor *)entry;
+
+ if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) &&
+ (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)) {
+ pr_debug("checking phy_cpu_id %d against acpi id %d\n",
+ acpi_cpu_id, cpu_node->acpi_processor_id);
+ if (acpi_cpu_id == cpu_node->acpi_processor_id) {
+ /* found the correct entry */
+ pr_debug("match found!\n");
+ return (struct acpi_pptt_processor *)entry;
+ }
+ }
+
+ if (entry->length == 0) {
+ pr_err("Invalid zero length subtable\n");
+ break;
+ }
+ entry = (struct acpi_subtable_header *)
+ ((u8 *)entry + entry->length);
+ }
+
+ return NULL;
+}
+
+/*
+ * Given a acpi_pptt_processor node, walk up until we identify the
+ * package that the node is associated with or we run out of levels
+ * to request.
+ */
+static struct acpi_pptt_processor *acpi_find_processor_package_id(
+ struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu,
+ int level)
+{
+ struct acpi_pptt_processor *prev_node;
+
+ while (cpu && level && !(cpu->flags & ACPI_PPTT_PHYSICAL_PACKAGE)) {
+ pr_debug("level %d\n", level);
+ prev_node = fetch_pptt_node(table_hdr, cpu->parent);
+ if (prev_node == NULL)
+ break;
+ cpu = prev_node;
+ level--;
+ }
+ return cpu;
+}
+
+static int acpi_parse_pptt(struct acpi_table_header *table_hdr, u32 acpi_cpu_id)
+{
+ int number_of_levels = 0;
+ struct acpi_pptt_processor *cpu;
+
+ cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
+ if (cpu)
+ number_of_levels = acpi_process_node(table_hdr, cpu);
+
+ return number_of_levels;
+}
+
+#define ACPI_6_2_CACHE_TYPE_DATA (0x0)
+#define ACPI_6_2_CACHE_TYPE_INSTR (1<<2)
+#define ACPI_6_2_CACHE_TYPE_UNIFIED (1<<3)
+#define ACPI_6_2_CACHE_POLICY_WB (0x0)
+#define ACPI_6_2_CACHE_POLICY_WT (1<<4)
+#define ACPI_6_2_CACHE_READ_ALLOCATE (0x0)
+#define ACPI_6_2_CACHE_WRITE_ALLOCATE (0x01)
+#define ACPI_6_2_CACHE_RW_ALLOCATE (0x02)
+
+static u8 acpi_cache_type(enum cache_type type)
+{
+ switch (type) {
+ case CACHE_TYPE_DATA:
+ pr_debug("Looking for data cache\n");
+ return ACPI_6_2_CACHE_TYPE_DATA;
+ case CACHE_TYPE_INST:
+ pr_debug("Looking for instruction cache\n");
+ return ACPI_6_2_CACHE_TYPE_INSTR;
+ default:
+ pr_debug("Unknown cache type, assume unified\n");
+ case CACHE_TYPE_UNIFIED:
+ pr_debug("Looking for unified cache\n");
+ return ACPI_6_2_CACHE_TYPE_UNIFIED;
+ }
+}
+
+/* find the ACPI node describing the cache type/level for the given CPU */
+static struct acpi_pptt_cache *acpi_find_cache_node(
+ struct acpi_table_header *table_hdr, u32 acpi_cpu_id,
+ enum cache_type type, unsigned int level,
+ struct acpi_pptt_processor **node)
+{
+ int total_levels = 0;
+ struct acpi_pptt_cache *found = NULL;
+ struct acpi_pptt_processor *cpu_node;
+ u8 acpi_type = acpi_cache_type(type);
+
+ pr_debug("Looking for CPU %d's level %d cache type %d\n",
+ acpi_cpu_id, level, acpi_type);
+
+ cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
+ if (!cpu_node)
+ return NULL;
+
+ do {
+ found = acpi_find_cache_level(table_hdr, cpu_node, &total_levels, level, acpi_type);
+ *node = cpu_node;
+ cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
+ } while ((cpu_node) && (!found));
+
+ return found;
+}
+
+int acpi_find_last_cache_level(unsigned int cpu)
+{
+ u32 acpi_cpu_id;
+ struct acpi_table_header *table;
+ int number_of_levels = 0;
+ acpi_status status;
+
+ pr_debug("Cache Setup find last level cpu=%d\n", cpu);
+
+ acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
+ } else {
+ number_of_levels = acpi_parse_pptt(table, acpi_cpu_id);
+ acpi_put_table(table);
+ }
+ pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
+
+ return number_of_levels;
+}
+
+/*
+ * The ACPI spec implies that the fields in the cache structures are used to
+ * extend and correct the information probed from the hardware. In the case
+ * of arm64 the CCSIDR probing has been removed because it might be incorrect.
+ */
+static void update_cache_properties(struct cacheinfo *this_leaf,
+ struct acpi_pptt_cache *found_cache,
+ struct acpi_pptt_processor *cpu_node)
+{
+ if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
+ this_leaf->size = found_cache->size;
+ if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
+ this_leaf->coherency_line_size = found_cache->line_size;
+ if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
+ this_leaf->number_of_sets = found_cache->number_of_sets;
+ if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
+ this_leaf->ways_of_associativity = found_cache->associativity;
+ if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID)
+ switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
+ case ACPI_6_2_CACHE_POLICY_WT:
+ this_leaf->attributes = CACHE_WRITE_THROUGH;
+ break;
+ case ACPI_6_2_CACHE_POLICY_WB:
+ this_leaf->attributes = CACHE_WRITE_BACK;
+ break;
+ default:
+ pr_err("Unknown ACPI cache policy %d\n",
+ found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY);
+ }
+ if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID)
+ switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
+ case ACPI_6_2_CACHE_READ_ALLOCATE:
+ this_leaf->attributes |= CACHE_READ_ALLOCATE;
+ break;
+ case ACPI_6_2_CACHE_WRITE_ALLOCATE:
+ this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
+ break;
+ case ACPI_6_2_CACHE_RW_ALLOCATE:
+ this_leaf->attributes |=
+ CACHE_READ_ALLOCATE|CACHE_WRITE_ALLOCATE;
+ break;
+ default:
+ pr_err("Unknown ACPI cache allocation policy %d\n",
+ found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE);
+ }
+}
+
+static void cache_setup_acpi_cpu(struct acpi_table_header *table,
+ unsigned int cpu)
+{
+ struct acpi_pptt_cache *found_cache;
+ struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
+ u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
+ struct cacheinfo *this_leaf;
+ unsigned int index = 0;
+ struct acpi_pptt_processor *cpu_node = NULL;
+
+ while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
+ this_leaf = this_cpu_ci->info_list + index;
+ found_cache = acpi_find_cache_node(table, acpi_cpu_id,
+ this_leaf->type,
+ this_leaf->level,
+ &cpu_node);
+ pr_debug("found = %p %p\n", found_cache, cpu_node);
+ if (found_cache)
+ update_cache_properties(this_leaf,
+ found_cache,
+ cpu_node);
+
+ index++;
+ }
+}
+
+static int topology_setup_acpi_cpu(struct acpi_table_header *table,
+ unsigned int cpu, int level)
+{
+ struct acpi_pptt_processor *cpu_node;
+ u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
+
+ cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
+ if (cpu_node) {
+ cpu_node = acpi_find_processor_package_id(table, cpu_node, level);
+ return (int)((u8 *)cpu_node - (u8 *)table);
+ }
+ pr_err_once("PPTT table found, but unable to locate core for %d\n",
+ cpu);
+ return -ENOENT;
+}
+
+/*
+ * simply assign a ACPI cache entry to each known CPU cache entry
+ * determining which entries are shared is done later.
+ */
+int cache_setup_acpi(unsigned int cpu)
+{
+ struct acpi_table_header *table;
+ acpi_status status;
+
+ pr_debug("Cache Setup ACPI cpu %d\n", cpu);
+
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
+ return -ENOENT;
+ }
+
+ cache_setup_acpi_cpu(table, cpu);
+ acpi_put_table(table);
+
+ return status;
+}
+
+/*
+ * Determine a topology unique ID for each thread/core/cluster/socket/etc.
+ * This ID can then be used to group peers.
+ */
+int setup_acpi_cpu_topology(unsigned int cpu, int level)
+{
+ struct acpi_table_header *table;
+ acpi_status status;
+ int retval;
+
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_err_once("No PPTT table found, cpu topology may be inaccurate\n");
+ return -ENOENT;
+ }
+ retval = topology_setup_acpi_cpu(table, cpu, level);
+ pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n",
+ cpu, level, retval);
+ acpi_put_table(table);
+
+ return retval;
+}
--
2.13.5
Now that we have a PPTT parser, in preparation for its use
on arm64, lets build it.
Signed-off-by: Jeremy Linton <[email protected]>
---
arch/arm64/Kconfig | 1 +
drivers/acpi/Makefile | 1 +
drivers/acpi/arm64/Kconfig | 3 +++
3 files changed, 5 insertions(+)
diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig
index 0df64a6a56d4..68c9d1289735 100644
--- a/arch/arm64/Kconfig
+++ b/arch/arm64/Kconfig
@@ -7,6 +7,7 @@ config ARM64
select ACPI_REDUCED_HARDWARE_ONLY if ACPI
select ACPI_MCFG if ACPI
select ACPI_SPCR_TABLE if ACPI
+ select ACPI_PPTT if ACPI
select ARCH_CLOCKSOURCE_DATA
select ARCH_HAS_DEBUG_VIRTUAL
select ARCH_HAS_DEVMEM_IS_ALLOWED
diff --git a/drivers/acpi/Makefile b/drivers/acpi/Makefile
index 90265ab4437a..c92a0c937551 100644
--- a/drivers/acpi/Makefile
+++ b/drivers/acpi/Makefile
@@ -85,6 +85,7 @@ obj-$(CONFIG_ACPI_BGRT) += bgrt.o
obj-$(CONFIG_ACPI_CPPC_LIB) += cppc_acpi.o
obj-$(CONFIG_ACPI_SPCR_TABLE) += spcr.o
obj-$(CONFIG_ACPI_DEBUGGER_USER) += acpi_dbg.o
+obj-$(CONFIG_ACPI_PPTT) += pptt.o
# processor has its own "processor." module_param namespace
processor-y := processor_driver.o
diff --git a/drivers/acpi/arm64/Kconfig b/drivers/acpi/arm64/Kconfig
index 5a6f80fce0d6..74b855a669ea 100644
--- a/drivers/acpi/arm64/Kconfig
+++ b/drivers/acpi/arm64/Kconfig
@@ -7,3 +7,6 @@ config ACPI_IORT
config ACPI_GTDT
bool
+
+config ACPI_PPTT
+ bool
\ No newline at end of file
--
2.13.5
Hi Jeremy,
I have tested it on D05 board, the sysfs can display right information about
cpu topo and cache topo, except that the core_id and physical_package_id are
not continuous and counting from zero. But this doesn't influence the system.
Thanks,
Xiongfeng Wang
On 2017/9/20 2:47, Jeremy Linton wrote:
> ACPI 6.2 adds the Processor Properties Topology Table (PPTT), which is
> used to describe the processor and cache topology. Ideally it is
> used to extend/override information provided by the hardware, but
> right now ARM64 is entirely dependent on firmware provided tables.
>
> This patch parses the table for the cache topology and CPU topology.
> For the latter we also add an additional topology_cod_id() macro,
> and a package_id for arm64. Initially the physical id will match
> the cluster id, but we update users of the cluster to utilize
> the new macro. When we enable ACPI/PPTT for arm64 we map the socket
> to the physical id as the remainder of the kernel expects.
>
> For example on juno:
> [root@mammon-juno-rh topology]# lstopo-no-graphics
> Package L#0
> L2 L#0 (1024KB)
> L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0)
> L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)
> L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)
> L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)
> L2 L#1 (2048KB)
> L1d L#4 (32KB) + L1i L#4 (48KB) + Core L#4 + PU L#4 (P#4)
> L1d L#5 (32KB) + L1i L#5 (48KB) + Core L#5 + PU L#5 (P#5)
> HostBridge L#0
> PCIBridge
> PCIBridge
> PCIBridge
> PCI 1095:3132
> Block(Disk) L#0 "sda"
> PCIBridge
> PCI 1002:68f9
> GPU L#1 "renderD128"
> GPU L#2 "card0"
> GPU L#3 "controlD64"
> PCIBridge
> PCI 11ab:4380
> Net L#4 "enp8s0"
>
> v1->v2:
>
> The parser keys off the acpi_pptt_processor node to determine
> unique cache's rather than the acpi_pptt_cache referenced by the
> processor node. This allows PPTT tables which "share" cache nodes
> across cpu nodes despite not being a shared cache.
>
> Normalize the socket, cluster and thread mapping so that they match
> linux's traditional mapping for the physical id, and thread id.
> Adding explicit scheduler knowledge of clusters (rather than just
> their cache sharing attributes) is a subject for a future patch.
>
> Jeremy Linton (6):
> ACPI/PPTT: Add Processor Properties Topology Table parsing
> ACPI: Enable PPTT support on ARM64
> drivers: base: cacheinfo: arm64: Add support for ACPI based firmware
> tables
> Topology: Add cluster on die macros and arm64 decoding
> arm64: Fixup users of topology_physical_package_id
> arm64: topology: Enable ACPI/PPTT based CPU topology.
>
> arch/arm64/Kconfig | 1 +
> arch/arm64/include/asm/topology.h | 4 +-
> arch/arm64/kernel/cacheinfo.c | 23 +-
> arch/arm64/kernel/topology.c | 62 ++++-
> drivers/acpi/Makefile | 1 +
> drivers/acpi/arm64/Kconfig | 3 +
> drivers/acpi/pptt.c | 459 ++++++++++++++++++++++++++++++++++++++
> drivers/base/cacheinfo.c | 17 +-
> drivers/clk/clk-mb86s7x.c | 2 +-
> drivers/cpufreq/arm_big_little.c | 2 +-
> drivers/firmware/psci_checker.c | 2 +-
> include/linux/cacheinfo.h | 10 +-
> include/linux/topology.h | 4 +
> 13 files changed, 570 insertions(+), 20 deletions(-)
> create mode 100644 drivers/acpi/pptt.c
>
Hi Jeremy,
On 2017/9/20 2:47, Jeremy Linton wrote:
> ACPI 6.2 adds a new table, which describes how processing units
> are related to each other in tree like fashion. Caches are
> also sprinkled throughout the tree and describe the properties
> of the caches in relation to other caches and processing units.
>
> Add the code to parse the cache hierarchy and report the total
> number of levels of cache for a given core using
> acpi_find_last_cache_level() as well as fill out the individual
> cores cache information with cache_setup_acpi() once the
> cpu_cacheinfo structure has been populated by the arch specific
> code.
>
> Further, report peers in the topology using setup_acpi_cpu_topology()
> to report a unique ID for each processing unit at a given level
> in the tree. These unique id's can then be used to match related
> processing units which exist as threads, COD (clusters
> on die), within a given package, etc.
>
> Signed-off-by: Jeremy Linton <[email protected]>
> ---
> drivers/acpi/pptt.c | 458 ++++++++++++++++++++++++++++++++++++++++++++++++++++
> 1 file changed, 458 insertions(+)
> create mode 100644 drivers/acpi/pptt.c
>
> diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
> new file mode 100644
> index 000000000000..f7694fa1e0bd
> --- /dev/null
> +++ b/drivers/acpi/pptt.c
> @@ -0,0 +1,458 @@
> +/*
> + * Copyright (C) 2017, ARM
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms and conditions of the GNU General Public License,
> + * version 2, as published by the Free Software Foundation.
> + *
> + * This program is distributed in the hope it will be useful, but WITHOUT
> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
> + * more details.
> + *
> + * This file implements parsing of Processor Properties Topology Table (PPTT)
> + * which is optionally used to describe the processor and cache topology.
> + * Due to the relative pointers used throughout the table, this doesn't
> + * leverage the existing subtable parsing in the kernel.
> + */
> +#define pr_fmt(fmt) "ACPI PPTT: " fmt
> +
> +#include <linux/acpi.h>
> +#include <linux/cacheinfo.h>
> +#include <acpi/processor.h>
> +
> +/*
> + * Given the PPTT table, find and verify that the subtable entry
> + * is located within the table
> + */
> +static struct acpi_subtable_header *fetch_pptt_subtable(
> + struct acpi_table_header *table_hdr, u32 pptt_ref)
> +{
> + struct acpi_subtable_header *entry;
> +
> + /* there isn't a subtable at reference 0 */
> + if (!pptt_ref)
> + return NULL;
> +
> + if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
> + return NULL;
> +
> + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + pptt_ref);
> +
> + if (pptt_ref + entry->length > table_hdr->length)
> + return NULL;
> +
> + return entry;
> +}
> +
> +static struct acpi_pptt_processor *fetch_pptt_node(
> + struct acpi_table_header *table_hdr, u32 pptt_ref)
> +{
> + return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
> +}
> +
> +static struct acpi_pptt_cache *fetch_pptt_cache(
> + struct acpi_table_header *table_hdr, u32 pptt_ref)
> +{
> + return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
> +}
> +
> +static struct acpi_subtable_header *acpi_get_pptt_resource(
> + struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *node, int resource)
> +{
> + u32 ref;
> +
> + if (resource >= node->number_of_priv_resources)
> + return NULL;
> +
> + ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) +
> + sizeof(u32) * resource);
> +
> + return fetch_pptt_subtable(table_hdr, ref);
> +}
> +
> +/*
> + * given a pptt resource, verify that it is a cache node, then walk
> + * down each level of caches, counting how many levels are found
> + * as well as checking the cache type (icache, dcache, unified). If a
> + * level & type match, then we set found, and continue the search.
> + * Once the entire cache branch has been walked return its max
> + * depth.
> + */
> +static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
> + int local_level,
> + struct acpi_subtable_header *res,
> + struct acpi_pptt_cache **found,
> + int level, int type)
> +{
> + struct acpi_pptt_cache *cache;
> +
> + if (res->type != ACPI_PPTT_TYPE_CACHE)
> + return 0;
> +
> + cache = (struct acpi_pptt_cache *) res;
> + while (cache) {
> + local_level++;
> +
> + if ((local_level == level) &&
> + (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) &&
> + ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) {
> + if (*found != NULL)
> + pr_err("Found duplicate cache level/type unable to determine uniqueness\n");
> +
> + pr_debug("Found cache @ level %d\n", level);
> + *found = cache;
> + /*
> + * continue looking at this node's resource list
> + * to verify that we don't find a duplicate
> + * cache node.
> + */
> + }
> + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
> + }
> + return local_level;
> +}
> +
> +/*
> + * Given a CPU node look for cache levels that exist at this level, and then
> + * for each cache node, count how many levels exist below (logically above) it.
> + * If a level and type are specified, and we find that level/type, abort
> + * processing and return the acpi_pptt_cache structure.
> + */
> +static struct acpi_pptt_cache *acpi_find_cache_level(
> + struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *cpu_node,
> + int *starting_level, int level, int type)
> +{
> + struct acpi_subtable_header *res;
> + int number_of_levels = *starting_level;
> + int resource = 0;
> + struct acpi_pptt_cache *ret = NULL;
> + int local_level;
> +
> + /* walk down from processor node */
> + while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
> + resource++;
> +
> + local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
> + res, &ret, level, type);
> + /*
> + * we are looking for the max depth. Since its potentially
> + * possible for a given node to have resources with differing
> + * depths verify that the depth we have found is the largest.
> + */
> + if (number_of_levels < local_level)
> + number_of_levels = local_level;
> + }
> + if (number_of_levels > *starting_level)
> + *starting_level = number_of_levels;
> +
> + return ret;
> +}
> +
> +/*
> + * given a processor node containing a processing unit, walk into it and count
> + * how many levels exist solely for it, and then walk up each level until we hit
> + * the root node (ignore the package level because it may be possible to have
> + * caches that exist across packages). Count the number of cache levels that
> + * exist at each level on the way up.
> + */
> +static int acpi_process_node(struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *cpu_node)
> +{
> + int total_levels = 0;
> +
> + do {
> + acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
> + } while (cpu_node);
> +
> + return total_levels;
> +}
> +
> +/*
> + * Find the subtable entry describing the provided processor
> + */
> +static struct acpi_pptt_processor *acpi_find_processor_node(
> + struct acpi_table_header *table_hdr,
> + u32 acpi_cpu_id)
> +{
> + struct acpi_subtable_header *entry;
> + unsigned long table_end;
> + struct acpi_pptt_processor *cpu_node;
> +
> + table_end = (unsigned long)table_hdr + table_hdr->length;
> + entry = (struct acpi_subtable_header *)((u8 *)table_hdr +
> + sizeof(struct acpi_table_pptt));
> +
> + /* find the processor structure associated with this cpuid */
> + while (((unsigned long)entry) + sizeof(struct acpi_subtable_header) < table_end) {
> + cpu_node = (struct acpi_pptt_processor *)entry;
> +
> + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) &&
> + (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)) {
> + pr_debug("checking phy_cpu_id %d against acpi id %d\n",
> + acpi_cpu_id, cpu_node->acpi_processor_id);
> + if (acpi_cpu_id == cpu_node->acpi_processor_id) {
> + /* found the correct entry */
> + pr_debug("match found!\n");
> + return (struct acpi_pptt_processor *)entry;
> + }
> + }
> +
> + if (entry->length == 0) {
> + pr_err("Invalid zero length subtable\n");
> + break;
> + }
> + entry = (struct acpi_subtable_header *)
> + ((u8 *)entry + entry->length);
> + }
> +
> + return NULL;
> +}
> +
> +/*
> + * Given a acpi_pptt_processor node, walk up until we identify the
> + * package that the node is associated with or we run out of levels
> + * to request.
> + */
> +static struct acpi_pptt_processor *acpi_find_processor_package_id(
> + struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *cpu,
> + int level)
> +{
> + struct acpi_pptt_processor *prev_node;
> +
> + while (cpu && level && !(cpu->flags & ACPI_PPTT_PHYSICAL_PACKAGE)) {
> + pr_debug("level %d\n", level);
> + prev_node = fetch_pptt_node(table_hdr, cpu->parent);
> + if (prev_node == NULL)
> + break;
> + cpu = prev_node;
> + level--;
> + }
> + return cpu;
> +}
> +
> +static int acpi_parse_pptt(struct acpi_table_header *table_hdr, u32 acpi_cpu_id)
> +{
> + int number_of_levels = 0;
> + struct acpi_pptt_processor *cpu;
> +
> + cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
> + if (cpu)
> + number_of_levels = acpi_process_node(table_hdr, cpu);
> +
> + return number_of_levels;
> +}
> +
> +#define ACPI_6_2_CACHE_TYPE_DATA (0x0)
> +#define ACPI_6_2_CACHE_TYPE_INSTR (1<<2)
> +#define ACPI_6_2_CACHE_TYPE_UNIFIED (1<<3)
> +#define ACPI_6_2_CACHE_POLICY_WB (0x0)
> +#define ACPI_6_2_CACHE_POLICY_WT (1<<4)
> +#define ACPI_6_2_CACHE_READ_ALLOCATE (0x0)
> +#define ACPI_6_2_CACHE_WRITE_ALLOCATE (0x01)
> +#define ACPI_6_2_CACHE_RW_ALLOCATE (0x02)
> +
> +static u8 acpi_cache_type(enum cache_type type)
> +{
> + switch (type) {
> + case CACHE_TYPE_DATA:
> + pr_debug("Looking for data cache\n");
> + return ACPI_6_2_CACHE_TYPE_DATA;
> + case CACHE_TYPE_INST:
> + pr_debug("Looking for instruction cache\n");
> + return ACPI_6_2_CACHE_TYPE_INSTR;
> + default:
> + pr_debug("Unknown cache type, assume unified\n");
> + case CACHE_TYPE_UNIFIED:
> + pr_debug("Looking for unified cache\n");
> + return ACPI_6_2_CACHE_TYPE_UNIFIED;
> + }
> +}
> +
> +/* find the ACPI node describing the cache type/level for the given CPU */
> +static struct acpi_pptt_cache *acpi_find_cache_node(
> + struct acpi_table_header *table_hdr, u32 acpi_cpu_id,
> + enum cache_type type, unsigned int level,
> + struct acpi_pptt_processor **node)
> +{
> + int total_levels = 0;
> + struct acpi_pptt_cache *found = NULL;
> + struct acpi_pptt_processor *cpu_node;
> + u8 acpi_type = acpi_cache_type(type);
> +
> + pr_debug("Looking for CPU %d's level %d cache type %d\n",
> + acpi_cpu_id, level, acpi_type);
> +
> + cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
> + if (!cpu_node)
> + return NULL;
> +
> + do {
> + found = acpi_find_cache_level(table_hdr, cpu_node, &total_levels, level, acpi_type);
> + *node = cpu_node;
> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
> + } while ((cpu_node) && (!found));
> +
> + return found;
> +}
> +
> +int acpi_find_last_cache_level(unsigned int cpu)
> +{
> + u32 acpi_cpu_id;
> + struct acpi_table_header *table;
> + int number_of_levels = 0;
> + acpi_status status;
> +
> + pr_debug("Cache Setup find last level cpu=%d\n", cpu);
> +
> + acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
> + if (ACPI_FAILURE(status)) {
> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
> + } else {
> + number_of_levels = acpi_parse_pptt(table, acpi_cpu_id);
> + acpi_put_table(table);
> + }
> + pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
> +
> + return number_of_levels;
> +}
> +
> +/*
> + * The ACPI spec implies that the fields in the cache structures are used to
> + * extend and correct the information probed from the hardware. In the case
> + * of arm64 the CCSIDR probing has been removed because it might be incorrect.
> + */
> +static void update_cache_properties(struct cacheinfo *this_leaf,
> + struct acpi_pptt_cache *found_cache,
> + struct acpi_pptt_processor *cpu_node)
> +{
> + if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
> + this_leaf->size = found_cache->size;
> + if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
> + this_leaf->coherency_line_size = found_cache->line_size;
> + if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
> + this_leaf->number_of_sets = found_cache->number_of_sets;
> + if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
> + this_leaf->ways_of_associativity = found_cache->associativity;
> + if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID)
> + switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
> + case ACPI_6_2_CACHE_POLICY_WT:
> + this_leaf->attributes = CACHE_WRITE_THROUGH;
> + break;
> + case ACPI_6_2_CACHE_POLICY_WB:
> + this_leaf->attributes = CACHE_WRITE_BACK;
> + break;
> + default:
> + pr_err("Unknown ACPI cache policy %d\n",
> + found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY);
> + }
> + if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID)
> + switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
> + case ACPI_6_2_CACHE_READ_ALLOCATE:
> + this_leaf->attributes |= CACHE_READ_ALLOCATE;
> + break;
> + case ACPI_6_2_CACHE_WRITE_ALLOCATE:
> + this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
> + break;
> + case ACPI_6_2_CACHE_RW_ALLOCATE:
> + this_leaf->attributes |=
> + CACHE_READ_ALLOCATE|CACHE_WRITE_ALLOCATE;
> + break;
> + default:
> + pr_err("Unknown ACPI cache allocation policy %d\n",
> + found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE);
> + }
> +}
> +
> +static void cache_setup_acpi_cpu(struct acpi_table_header *table,
> + unsigned int cpu)
> +{
> + struct acpi_pptt_cache *found_cache;
> + struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
> + struct cacheinfo *this_leaf;
> + unsigned int index = 0;
> + struct acpi_pptt_processor *cpu_node = NULL;
> +
> + while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
> + this_leaf = this_cpu_ci->info_list + index;
> + found_cache = acpi_find_cache_node(table, acpi_cpu_id,
> + this_leaf->type,
> + this_leaf->level,
> + &cpu_node);
> + pr_debug("found = %p %p\n", found_cache, cpu_node);
> + if (found_cache)
> + update_cache_properties(this_leaf,
> + found_cache,
> + cpu_node);
> +
> + index++;
> + }
> +}
> +
> +static int topology_setup_acpi_cpu(struct acpi_table_header *table,
> + unsigned int cpu, int level)
> +{
> + struct acpi_pptt_processor *cpu_node;
> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
> +
> + cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
> + if (cpu_node) {
> + cpu_node = acpi_find_processor_package_id(table, cpu_node, level);
> + return (int)((u8 *)cpu_node - (u8 *)table);
> + }
> + pr_err_once("PPTT table found, but unable to locate core for %d\n",
> + cpu);
> + return -ENOENT;
Can we return -1 when PPTT doesn't exist? So that we can still get topo info from MPIDR.
'store_cpu_topology()' determine whether cpu topology has been populated by checking
whether cluster_id is -1. If cluster_id is not -1, it won't read cpu topo info from MPIDR.
Or maybe we can change 'store_cpu_topology()' as well. If cluster_id is less than zero,
we read cpu topo info from MPIDR.
> +}
> +
> +/*
> + * simply assign a ACPI cache entry to each known CPU cache entry
> + * determining which entries are shared is done later.
> + */
> +int cache_setup_acpi(unsigned int cpu)
> +{
> + struct acpi_table_header *table;
> + acpi_status status;
> +
> + pr_debug("Cache Setup ACPI cpu %d\n", cpu);
> +
> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
> + if (ACPI_FAILURE(status)) {
> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
> + return -ENOENT;
> + }
> +
> + cache_setup_acpi_cpu(table, cpu);
> + acpi_put_table(table);
> +
> + return status;
> +}
> +
> +/*
> + * Determine a topology unique ID for each thread/core/cluster/socket/etc.
> + * This ID can then be used to group peers.
> + */
> +int setup_acpi_cpu_topology(unsigned int cpu, int level)
> +{
> + struct acpi_table_header *table;
> + acpi_status status;
> + int retval;
Can we add a static int array to record already assigned id for each level?
So that we can count the id starting from zero. And also the id can be successive.
> +
> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
> + if (ACPI_FAILURE(status)) {
> + pr_err_once("No PPTT table found, cpu topology may be inaccurate\n");
> + return -ENOENT;
> + }
> + retval = topology_setup_acpi_cpu(table, cpu, level);
> + pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n",
> + cpu, level, retval);
> + acpi_put_table(table);
> +
> + return retval;
> +}
>
Hi,
On 09/19/2017 01:47 PM, Jeremy Linton wrote:
> The /sys cache entries should support ACPI/PPTT generated cache
> topology information. Lets detect ACPI systems and call
> an arch specific cache_setup_acpi() routine to update the hardware
> probed cache topology.
>
> For arm64, if ACPI is enabled, determine the max number of cache
> levels and populate them using a PPTT table if one is available.
>
> Signed-off-by: Jeremy Linton <[email protected]>
> ---
> arch/arm64/kernel/cacheinfo.c | 23 ++++++++++++++++++-----
> drivers/acpi/pptt.c | 1 +
> drivers/base/cacheinfo.c | 17 +++++++++++------
> include/linux/cacheinfo.h | 10 ++++++++--
> 4 files changed, 38 insertions(+), 13 deletions(-)
>
> diff --git a/arch/arm64/kernel/cacheinfo.c b/arch/arm64/kernel/cacheinfo.c
> index 380f2e2fbed5..2e2cf0d312ba 100644
> --- a/arch/arm64/kernel/cacheinfo.c
> +++ b/arch/arm64/kernel/cacheinfo.c
> @@ -17,6 +17,7 @@
> * along with this program. If not, see <http://www.gnu.org/licenses/>.
> */
>
> +#include <linux/acpi.h>
> #include <linux/cacheinfo.h>
> #include <linux/of.h>
>
> @@ -44,9 +45,17 @@ static void ci_leaf_init(struct cacheinfo *this_leaf,
> this_leaf->type = type;
> }
>
> +#ifndef CONFIG_ACPI
> +int acpi_find_last_cache_level(unsigned int cpu)
> +{
> + /*ACPI kernels should be built with PPTT support*/
> + return 0;
> +}
> +#endif
> +
> static int __init_cache_level(unsigned int cpu)
> {
> - unsigned int ctype, level, leaves, of_level;
> + unsigned int ctype, level, leaves, fw_level;
> struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
>
> for (level = 1, leaves = 0; level <= MAX_CACHE_LEVEL; level++) {
> @@ -59,15 +68,19 @@ static int __init_cache_level(unsigned int cpu)
> leaves += (ctype == CACHE_TYPE_SEPARATE) ? 2 : 1;
> }
>
> - of_level = of_find_last_cache_level(cpu);
> - if (level < of_level) {
> + if (acpi_disabled)
> + fw_level = of_find_last_cache_level(cpu);
> + else
> + fw_level = acpi_find_last_cache_level(cpu);
> +
> + if (level < fw_level) {
> /*
> * some external caches not specified in CLIDR_EL1
> * the information may be available in the device tree
> * only unified external caches are considered here
> */
> - leaves += (of_level - level);
> - level = of_level;
> + leaves += (fw_level - level);
> + level = fw_level;
> }
>
> this_cpu_ci->num_levels = level;
> diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
> index f7694fa1e0bd..0dd918c3782c 100644
> --- a/drivers/acpi/pptt.c
> +++ b/drivers/acpi/pptt.c
> @@ -331,6 +331,7 @@ static void update_cache_properties(struct cacheinfo *this_leaf,
> struct acpi_pptt_cache *found_cache,
> struct acpi_pptt_processor *cpu_node)
> {
> + this_leaf->firmware_node = found_cache;
Naturally, I messed up the v2 changes when I merged them. This line
should equal the cpu_node.
> if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
> this_leaf->size = found_cache->size;
> if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
> diff --git a/drivers/base/cacheinfo.c b/drivers/base/cacheinfo.c
> index eb3af2739537..8eca279e50d1 100644
> --- a/drivers/base/cacheinfo.c
> +++ b/drivers/base/cacheinfo.c
> @@ -86,7 +86,7 @@ static int cache_setup_of_node(unsigned int cpu)
> static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
> struct cacheinfo *sib_leaf)
> {
> - return sib_leaf->of_node == this_leaf->of_node;
> + return sib_leaf->firmware_node == this_leaf->firmware_node;
> }
>
> /* OF properties to query for a given cache type */
> @@ -215,6 +215,11 @@ static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
> }
> #endif
>
> +int __weak cache_setup_acpi(unsigned int cpu)
> +{
> + return -ENOTSUPP;
> +}
> +
> static int cache_shared_cpu_map_setup(unsigned int cpu)
> {
> struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
> @@ -225,11 +230,11 @@ static int cache_shared_cpu_map_setup(unsigned int cpu)
> if (this_cpu_ci->cpu_map_populated)
> return 0;
>
> - if (of_have_populated_dt())
> + if (!acpi_disabled)
> + ret = cache_setup_acpi(cpu);
> + else if (of_have_populated_dt())
> ret = cache_setup_of_node(cpu);
> - else if (!acpi_disabled)
> - /* No cache property/hierarchy support yet in ACPI */
> - ret = -ENOTSUPP;
> +
> if (ret)
> return ret;
>
> @@ -286,7 +291,7 @@ static void cache_shared_cpu_map_remove(unsigned int cpu)
>
> static void cache_override_properties(unsigned int cpu)
> {
> - if (of_have_populated_dt())
> + if (acpi_disabled && of_have_populated_dt())
> return cache_of_override_properties(cpu);
> }
>
> diff --git a/include/linux/cacheinfo.h b/include/linux/cacheinfo.h
> index 6a524bf6a06d..0114eb9ab67b 100644
> --- a/include/linux/cacheinfo.h
> +++ b/include/linux/cacheinfo.h
> @@ -36,6 +36,9 @@ enum cache_type {
> * @of_node: if devicetree is used, this represents either the cpu node in
> * case there's no explicit cache node or the cache node itself in the
> * device tree
> + * @firmware_node: Shared with of_node. When not using DT, this may contain
> + * pointers to other firmware based values. Particularly ACPI/PPTT
> + * unique values.
> * @disable_sysfs: indicates whether this node is visible to the user via
> * sysfs or not
> * @priv: pointer to any private data structure specific to particular
> @@ -64,8 +67,10 @@ struct cacheinfo {
> #define CACHE_ALLOCATE_POLICY_MASK \
> (CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE)
> #define CACHE_ID BIT(4)
> -
> - struct device_node *of_node;
> + union {
> + struct device_node *of_node;
> + void *firmware_node;
> + };
> bool disable_sysfs;
> void *priv;
> };
> @@ -98,6 +103,7 @@ int func(unsigned int cpu) \
> struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu);
> int init_cache_level(unsigned int cpu);
> int populate_cache_leaves(unsigned int cpu);
> +int acpi_find_last_cache_level(unsigned int cpu);
>
> const struct attribute_group *cache_get_priv_group(struct cacheinfo *this_leaf);
>
>
Hi,
On 09/20/2017 02:15 AM, Xiongfeng Wang wrote:
> Hi Jeremy,
>
> On 2017/9/20 2:47, Jeremy Linton wrote:
>> ACPI 6.2 adds a new table, which describes how processing units
>> are related to each other in tree like fashion. Caches are
>> also sprinkled throughout the tree and describe the properties
>> of the caches in relation to other caches and processing units.
>>
>> Add the code to parse the cache hierarchy and report the total
>> number of levels of cache for a given core using
>> acpi_find_last_cache_level() as well as fill out the individual
>> cores cache information with cache_setup_acpi() once the
>> cpu_cacheinfo structure has been populated by the arch specific
>> code.
>>
>> Further, report peers in the topology using setup_acpi_cpu_topology()
>> to report a unique ID for each processing unit at a given level
>> in the tree. These unique id's can then be used to match related
>> processing units which exist as threads, COD (clusters
>> on die), within a given package, etc.
>>
>> Signed-off-by: Jeremy Linton <[email protected]>
>> ---
>> drivers/acpi/pptt.c | 458 ++++++++++++++++++++++++++++++++++++++++++++++++++++
>> 1 file changed, 458 insertions(+)
>> create mode 100644 drivers/acpi/pptt.c
>>
>> diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
>> new file mode 100644
>> index 000000000000..f7694fa1e0bd
>> --- /dev/null
>> +++ b/drivers/acpi/pptt.c
>> @@ -0,0 +1,458 @@
>> +/*
>> + * Copyright (C) 2017, ARM
>> + *
>> + * This program is free software; you can redistribute it and/or modify it
>> + * under the terms and conditions of the GNU General Public License,
>> + * version 2, as published by the Free Software Foundation.
>> + *
>> + * This program is distributed in the hope it will be useful, but WITHOUT
>> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
>> + * more details.
>> + *
>> + * This file implements parsing of Processor Properties Topology Table (PPTT)
>> + * which is optionally used to describe the processor and cache topology.
>> + * Due to the relative pointers used throughout the table, this doesn't
>> + * leverage the existing subtable parsing in the kernel.
>> + */
>> +#define pr_fmt(fmt) "ACPI PPTT: " fmt
>> +
>> +#include <linux/acpi.h>
>> +#include <linux/cacheinfo.h>
>> +#include <acpi/processor.h>
>> +
>> +/*
>> + * Given the PPTT table, find and verify that the subtable entry
>> + * is located within the table
>> + */
>> +static struct acpi_subtable_header *fetch_pptt_subtable(
>> + struct acpi_table_header *table_hdr, u32 pptt_ref)
>> +{
>> + struct acpi_subtable_header *entry;
>> +
>> + /* there isn't a subtable at reference 0 */
>> + if (!pptt_ref)
>> + return NULL;
>> +
>> + if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
>> + return NULL;
>> +
>> + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + pptt_ref);
>> +
>> + if (pptt_ref + entry->length > table_hdr->length)
>> + return NULL;
>> +
>> + return entry;
>> +}
>> +
>> +static struct acpi_pptt_processor *fetch_pptt_node(
>> + struct acpi_table_header *table_hdr, u32 pptt_ref)
>> +{
>> + return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
>> +}
>> +
>> +static struct acpi_pptt_cache *fetch_pptt_cache(
>> + struct acpi_table_header *table_hdr, u32 pptt_ref)
>> +{
>> + return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
>> +}
>> +
>> +static struct acpi_subtable_header *acpi_get_pptt_resource(
>> + struct acpi_table_header *table_hdr,
>> + struct acpi_pptt_processor *node, int resource)
>> +{
>> + u32 ref;
>> +
>> + if (resource >= node->number_of_priv_resources)
>> + return NULL;
>> +
>> + ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) +
>> + sizeof(u32) * resource);
>> +
>> + return fetch_pptt_subtable(table_hdr, ref);
>> +}
>> +
>> +/*
>> + * given a pptt resource, verify that it is a cache node, then walk
>> + * down each level of caches, counting how many levels are found
>> + * as well as checking the cache type (icache, dcache, unified). If a
>> + * level & type match, then we set found, and continue the search.
>> + * Once the entire cache branch has been walked return its max
>> + * depth.
>> + */
>> +static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
>> + int local_level,
>> + struct acpi_subtable_header *res,
>> + struct acpi_pptt_cache **found,
>> + int level, int type)
>> +{
>> + struct acpi_pptt_cache *cache;
>> +
>> + if (res->type != ACPI_PPTT_TYPE_CACHE)
>> + return 0;
>> +
>> + cache = (struct acpi_pptt_cache *) res;
>> + while (cache) {
>> + local_level++;
>> +
>> + if ((local_level == level) &&
>> + (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) &&
>> + ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) {
>> + if (*found != NULL)
>> + pr_err("Found duplicate cache level/type unable to determine uniqueness\n");
>> +
>> + pr_debug("Found cache @ level %d\n", level);
>> + *found = cache;
>> + /*
>> + * continue looking at this node's resource list
>> + * to verify that we don't find a duplicate
>> + * cache node.
>> + */
>> + }
>> + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
>> + }
>> + return local_level;
>> +}
>> +
>> +/*
>> + * Given a CPU node look for cache levels that exist at this level, and then
>> + * for each cache node, count how many levels exist below (logically above) it.
>> + * If a level and type are specified, and we find that level/type, abort
>> + * processing and return the acpi_pptt_cache structure.
>> + */
>> +static struct acpi_pptt_cache *acpi_find_cache_level(
>> + struct acpi_table_header *table_hdr,
>> + struct acpi_pptt_processor *cpu_node,
>> + int *starting_level, int level, int type)
>> +{
>> + struct acpi_subtable_header *res;
>> + int number_of_levels = *starting_level;
>> + int resource = 0;
>> + struct acpi_pptt_cache *ret = NULL;
>> + int local_level;
>> +
>> + /* walk down from processor node */
>> + while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
>> + resource++;
>> +
>> + local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
>> + res, &ret, level, type);
>> + /*
>> + * we are looking for the max depth. Since its potentially
>> + * possible for a given node to have resources with differing
>> + * depths verify that the depth we have found is the largest.
>> + */
>> + if (number_of_levels < local_level)
>> + number_of_levels = local_level;
>> + }
>> + if (number_of_levels > *starting_level)
>> + *starting_level = number_of_levels;
>> +
>> + return ret;
>> +}
>> +
>> +/*
>> + * given a processor node containing a processing unit, walk into it and count
>> + * how many levels exist solely for it, and then walk up each level until we hit
>> + * the root node (ignore the package level because it may be possible to have
>> + * caches that exist across packages). Count the number of cache levels that
>> + * exist at each level on the way up.
>> + */
>> +static int acpi_process_node(struct acpi_table_header *table_hdr,
>> + struct acpi_pptt_processor *cpu_node)
>> +{
>> + int total_levels = 0;
>> +
>> + do {
>> + acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
>> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
>> + } while (cpu_node);
>> +
>> + return total_levels;
>> +}
>> +
>> +/*
>> + * Find the subtable entry describing the provided processor
>> + */
>> +static struct acpi_pptt_processor *acpi_find_processor_node(
>> + struct acpi_table_header *table_hdr,
>> + u32 acpi_cpu_id)
>> +{
>> + struct acpi_subtable_header *entry;
>> + unsigned long table_end;
>> + struct acpi_pptt_processor *cpu_node;
>> +
>> + table_end = (unsigned long)table_hdr + table_hdr->length;
>> + entry = (struct acpi_subtable_header *)((u8 *)table_hdr +
>> + sizeof(struct acpi_table_pptt));
>> +
>> + /* find the processor structure associated with this cpuid */
>> + while (((unsigned long)entry) + sizeof(struct acpi_subtable_header) < table_end) {
>> + cpu_node = (struct acpi_pptt_processor *)entry;
>> +
>> + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) &&
>> + (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)) {
>> + pr_debug("checking phy_cpu_id %d against acpi id %d\n",
>> + acpi_cpu_id, cpu_node->acpi_processor_id);
>> + if (acpi_cpu_id == cpu_node->acpi_processor_id) {
>> + /* found the correct entry */
>> + pr_debug("match found!\n");
>> + return (struct acpi_pptt_processor *)entry;
>> + }
>> + }
>> +
>> + if (entry->length == 0) {
>> + pr_err("Invalid zero length subtable\n");
>> + break;
>> + }
>> + entry = (struct acpi_subtable_header *)
>> + ((u8 *)entry + entry->length);
>> + }
>> +
>> + return NULL;
>> +}
>> +
>> +/*
>> + * Given a acpi_pptt_processor node, walk up until we identify the
>> + * package that the node is associated with or we run out of levels
>> + * to request.
>> + */
>> +static struct acpi_pptt_processor *acpi_find_processor_package_id(
>> + struct acpi_table_header *table_hdr,
>> + struct acpi_pptt_processor *cpu,
>> + int level)
>> +{
>> + struct acpi_pptt_processor *prev_node;
>> +
>> + while (cpu && level && !(cpu->flags & ACPI_PPTT_PHYSICAL_PACKAGE)) {
>> + pr_debug("level %d\n", level);
>> + prev_node = fetch_pptt_node(table_hdr, cpu->parent);
>> + if (prev_node == NULL)
>> + break;
>> + cpu = prev_node;
>> + level--;
>> + }
>> + return cpu;
>> +}
>> +
>> +static int acpi_parse_pptt(struct acpi_table_header *table_hdr, u32 acpi_cpu_id)
>> +{
>> + int number_of_levels = 0;
>> + struct acpi_pptt_processor *cpu;
>> +
>> + cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
>> + if (cpu)
>> + number_of_levels = acpi_process_node(table_hdr, cpu);
>> +
>> + return number_of_levels;
>> +}
>> +
>> +#define ACPI_6_2_CACHE_TYPE_DATA (0x0)
>> +#define ACPI_6_2_CACHE_TYPE_INSTR (1<<2)
>> +#define ACPI_6_2_CACHE_TYPE_UNIFIED (1<<3)
>> +#define ACPI_6_2_CACHE_POLICY_WB (0x0)
>> +#define ACPI_6_2_CACHE_POLICY_WT (1<<4)
>> +#define ACPI_6_2_CACHE_READ_ALLOCATE (0x0)
>> +#define ACPI_6_2_CACHE_WRITE_ALLOCATE (0x01)
>> +#define ACPI_6_2_CACHE_RW_ALLOCATE (0x02)
>> +
>> +static u8 acpi_cache_type(enum cache_type type)
>> +{
>> + switch (type) {
>> + case CACHE_TYPE_DATA:
>> + pr_debug("Looking for data cache\n");
>> + return ACPI_6_2_CACHE_TYPE_DATA;
>> + case CACHE_TYPE_INST:
>> + pr_debug("Looking for instruction cache\n");
>> + return ACPI_6_2_CACHE_TYPE_INSTR;
>> + default:
>> + pr_debug("Unknown cache type, assume unified\n");
>> + case CACHE_TYPE_UNIFIED:
>> + pr_debug("Looking for unified cache\n");
>> + return ACPI_6_2_CACHE_TYPE_UNIFIED;
>> + }
>> +}
>> +
>> +/* find the ACPI node describing the cache type/level for the given CPU */
>> +static struct acpi_pptt_cache *acpi_find_cache_node(
>> + struct acpi_table_header *table_hdr, u32 acpi_cpu_id,
>> + enum cache_type type, unsigned int level,
>> + struct acpi_pptt_processor **node)
>> +{
>> + int total_levels = 0;
>> + struct acpi_pptt_cache *found = NULL;
>> + struct acpi_pptt_processor *cpu_node;
>> + u8 acpi_type = acpi_cache_type(type);
>> +
>> + pr_debug("Looking for CPU %d's level %d cache type %d\n",
>> + acpi_cpu_id, level, acpi_type);
>> +
>> + cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
>> + if (!cpu_node)
>> + return NULL;
>> +
>> + do {
>> + found = acpi_find_cache_level(table_hdr, cpu_node, &total_levels, level, acpi_type);
>> + *node = cpu_node;
>> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
>> + } while ((cpu_node) && (!found));
>> +
>> + return found;
>> +}
>> +
>> +int acpi_find_last_cache_level(unsigned int cpu)
>> +{
>> + u32 acpi_cpu_id;
>> + struct acpi_table_header *table;
>> + int number_of_levels = 0;
>> + acpi_status status;
>> +
>> + pr_debug("Cache Setup find last level cpu=%d\n", cpu);
>> +
>> + acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
>> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
>> + if (ACPI_FAILURE(status)) {
>> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
>> + } else {
>> + number_of_levels = acpi_parse_pptt(table, acpi_cpu_id);
>> + acpi_put_table(table);
>> + }
>> + pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
>> +
>> + return number_of_levels;
>> +}
>> +
>> +/*
>> + * The ACPI spec implies that the fields in the cache structures are used to
>> + * extend and correct the information probed from the hardware. In the case
>> + * of arm64 the CCSIDR probing has been removed because it might be incorrect.
>> + */
>> +static void update_cache_properties(struct cacheinfo *this_leaf,
>> + struct acpi_pptt_cache *found_cache,
>> + struct acpi_pptt_processor *cpu_node)
>> +{
>> + if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
>> + this_leaf->size = found_cache->size;
>> + if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
>> + this_leaf->coherency_line_size = found_cache->line_size;
>> + if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
>> + this_leaf->number_of_sets = found_cache->number_of_sets;
>> + if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
>> + this_leaf->ways_of_associativity = found_cache->associativity;
>> + if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID)
>> + switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
>> + case ACPI_6_2_CACHE_POLICY_WT:
>> + this_leaf->attributes = CACHE_WRITE_THROUGH;
>> + break;
>> + case ACPI_6_2_CACHE_POLICY_WB:
>> + this_leaf->attributes = CACHE_WRITE_BACK;
>> + break;
>> + default:
>> + pr_err("Unknown ACPI cache policy %d\n",
>> + found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY);
>> + }
>> + if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID)
>> + switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
>> + case ACPI_6_2_CACHE_READ_ALLOCATE:
>> + this_leaf->attributes |= CACHE_READ_ALLOCATE;
>> + break;
>> + case ACPI_6_2_CACHE_WRITE_ALLOCATE:
>> + this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
>> + break;
>> + case ACPI_6_2_CACHE_RW_ALLOCATE:
>> + this_leaf->attributes |=
>> + CACHE_READ_ALLOCATE|CACHE_WRITE_ALLOCATE;
>> + break;
>> + default:
>> + pr_err("Unknown ACPI cache allocation policy %d\n",
>> + found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE);
>> + }
>> +}
>> +
>> +static void cache_setup_acpi_cpu(struct acpi_table_header *table,
>> + unsigned int cpu)
>> +{
>> + struct acpi_pptt_cache *found_cache;
>> + struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
>> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
>> + struct cacheinfo *this_leaf;
>> + unsigned int index = 0;
>> + struct acpi_pptt_processor *cpu_node = NULL;
>> +
>> + while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
>> + this_leaf = this_cpu_ci->info_list + index;
>> + found_cache = acpi_find_cache_node(table, acpi_cpu_id,
>> + this_leaf->type,
>> + this_leaf->level,
>> + &cpu_node);
>> + pr_debug("found = %p %p\n", found_cache, cpu_node);
>> + if (found_cache)
>> + update_cache_properties(this_leaf,
>> + found_cache,
>> + cpu_node);
>> +
>> + index++;
>> + }
>> +}
>> +
>> +static int topology_setup_acpi_cpu(struct acpi_table_header *table,
>> + unsigned int cpu, int level)
>> +{
>> + struct acpi_pptt_processor *cpu_node;
>> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
>> +
>> + cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
>> + if (cpu_node) {
>> + cpu_node = acpi_find_processor_package_id(table, cpu_node, level);
>> + return (int)((u8 *)cpu_node - (u8 *)table);
>> + }
>> + pr_err_once("PPTT table found, but unable to locate core for %d\n",
>> + cpu);
>> + return -ENOENT;
>
> Can we return -1 when PPTT doesn't exist? So that we can still get topo info from MPIDR.
> 'store_cpu_topology()' determine whether cpu topology has been populated by checking
> whether cluster_id is -1. If cluster_id is not -1, it won't read cpu topo info from MPIDR.
> Or maybe we can change 'store_cpu_topology()' as well. If cluster_id is less than zero,
> we read cpu topo info from MPIDR.
? I will retest this, but any negative return from setup_acpi_topology()
for the initial node (subsequent requests should minimally duplicate the
cpu node rather than failing) request, should result in a call to
reset_cpu_topology(), and the information being sourced from the MPIDR
in store_cpu_topology(). There are various ways the tree could be
"damaged" but if all the system cpus have matching valid acpi_id/cpu
nodes, then that reflects a valid topology and there really isn't enough
information to decide if its damaged. The one case where this isn't
accurate is missing socket identifiers, but the code actually handles
this as well as the lack of missing cluster/thread ids (which don't
exist in the standard).
>
>> +}
>> +
>> +/*
>> + * simply assign a ACPI cache entry to each known CPU cache entry
>> + * determining which entries are shared is done later.
>> + */
>> +int cache_setup_acpi(unsigned int cpu)
>> +{
>> + struct acpi_table_header *table;
>> + acpi_status status;
>> +
>> + pr_debug("Cache Setup ACPI cpu %d\n", cpu);
>> +
>> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
>> + if (ACPI_FAILURE(status)) {
>> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
>> + return -ENOENT;
>> + }
>> +
>> + cache_setup_acpi_cpu(table, cpu);
>> + acpi_put_table(table);
>> +
>> + return status;
>> +}
>> +
>> +/*
>> + * Determine a topology unique ID for each thread/core/cluster/socket/etc.
>> + * This ID can then be used to group peers.
>> + */
>> +int setup_acpi_cpu_topology(unsigned int cpu, int level)
>> +{
>> + struct acpi_table_header *table;
>> + acpi_status status;
>> + int retval;
>
> Can we add a static int array to record already assigned id for each level?
> So that we can count the id starting from zero. And also the id can be successive.
I don't like the idea of a node<->generated_id array/map in this module,
although I've considered a number of ways to create more normalized
values. Particularly, the one area that might be useful is utilizing the
acpi id for the cores, which is problematic in the MT case. One of my
other alternative ideas was to plug a unique node id into a reserved
field in the table as the node is traversed. That idea is a little evil,
and really should be part of the ACPI standard so the firmware is
providing the ID's rather than dependent on the traversal order of the
tree.
If it turns out that these ID's need to be zero based, or some other
limitation I would prefer just renumbering them in
update_siblings_mask() or parse_acpi_topology(). I hacked together a
patch to renumber the package_id yesterday, but i'm pretty sure I've
seen (non arm) machines with odd package/core ids in the past, and I
don't really see anything in the ABI the dictating this. Let me clean it
up a bit and I can post it as an additional patch on top of the PPTT
patches.
So, is this an actual use case/problem, or its just an "appearance" type
of thing?
>
>> +
>> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
>> + if (ACPI_FAILURE(status)) {
>> + pr_err_once("No PPTT table found, cpu topology may be inaccurate\n");
>> + return -ENOENT;
>> + }
>> + retval = topology_setup_acpi_cpu(table, cpu, level);
>> + pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n",
>> + cpu, level, retval);
>> + acpi_put_table(table);
>> +
>> + return retval;
>> +}
>>
>
Hi Jeremy,
On 2017/9/22 2:48, Jeremy Linton wrote:
> Hi,
>
> On 09/20/2017 02:15 AM, Xiongfeng Wang wrote:
>> Hi Jeremy,
>>
>> On 2017/9/20 2:47, Jeremy Linton wrote:
>>> ACPI 6.2 adds a new table, which describes how processing units
>>> are related to each other in tree like fashion. Caches are
>>> also sprinkled throughout the tree and describe the properties
>>> of the caches in relation to other caches and processing units.
>>>
>>> Add the code to parse the cache hierarchy and report the total
>>> number of levels of cache for a given core using
>>> acpi_find_last_cache_level() as well as fill out the individual
>>> cores cache information with cache_setup_acpi() once the
>>> cpu_cacheinfo structure has been populated by the arch specific
>>> code.
>>>
>>> Further, report peers in the topology using setup_acpi_cpu_topology()
>>> to report a unique ID for each processing unit at a given level
>>> in the tree. These unique id's can then be used to match related
>>> processing units which exist as threads, COD (clusters
>>> on die), within a given package, etc.
>>>
>>> +
>>> +static int topology_setup_acpi_cpu(struct acpi_table_header *table,
>>> + unsigned int cpu, int level)
>>> +{
>>> + struct acpi_pptt_processor *cpu_node;
>>> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid;
>>> +
>>> + cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
>>> + if (cpu_node) {
>>> + cpu_node = acpi_find_processor_package_id(table, cpu_node, level);
>>> + return (int)((u8 *)cpu_node - (u8 *)table);
>>> + }
>>> + pr_err_once("PPTT table found, but unable to locate core for %d\n",
>>> + cpu);
>>> + return -ENOENT;
>>
>> Can we return -1 when PPTT doesn't exist? So that we can still get topo info from MPIDR.
>> 'store_cpu_topology()' determine whether cpu topology has been populated by checking
>> whether cluster_id is -1. If cluster_id is not -1, it won't read cpu topo info from MPIDR.
>> Or maybe we can change 'store_cpu_topology()' as well. If cluster_id is less than zero,
>> we read cpu topo info from MPIDR.
>
> ? I will retest this, but any negative return from setup_acpi_topology() for the initial node (subsequent requests should minimally duplicate the cpu node rather than failing) request, should result in a call to reset_cpu_topology(), and the information being sourced from the MPIDR in store_cpu_topology(). There are various ways the tree could be "damaged" but if all the system cpus have matching valid acpi_id/cpu nodes, then that reflects a valid topology and there really isn't enough information to decide if its damaged. The one case where this isn't accurate is missing socket identifiers, but the code actually handles this as well as the lack of missing cluster/thread ids (which don't exist in the standard).
>
Yes, you are right. I didn't notice the function reset_cpu_topology() before. Thanks for your explanation.
>>
>>> +}
>>> +
>>> +/*
>>> + * simply assign a ACPI cache entry to each known CPU cache entry
>>> + * determining which entries are shared is done later.
>>> + */
>>> +int cache_setup_acpi(unsigned int cpu)
>>> +{
>>> + struct acpi_table_header *table;
>>> + acpi_status status;
>>> +
>>> + pr_debug("Cache Setup ACPI cpu %d\n", cpu);
>>> +
>>> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
>>> + if (ACPI_FAILURE(status)) {
>>> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
>>> + return -ENOENT;
>>> + }
>>> +
>>> + cache_setup_acpi_cpu(table, cpu);
>>> + acpi_put_table(table);
>>> +
>>> + return status;
>>> +}
>>> +
>>> +/*
>>> + * Determine a topology unique ID for each thread/core/cluster/socket/etc.
>>> + * This ID can then be used to group peers.
>>> + */
>>> +int setup_acpi_cpu_topology(unsigned int cpu, int level)
>>> +{
>>> + struct acpi_table_header *table;
>>> + acpi_status status;
>>> + int retval;
>>
>> Can we add a static int array to record already assigned id for each level?
>> So that we can count the id starting from zero. And also the id can be successive.
>
> I don't like the idea of a node<->generated_id array/map in this module, although I've considered a number of ways to create more normalized values. Particularly, the one area that might be useful is utilizing the acpi id for the cores, which is problematic in the MT case. One of my other alternative ideas was to plug a unique node id into a reserved field in the table as the node is traversed. That idea is a little evil, and really should be part of the ACPI standard so the firmware is providing the ID's rather than dependent on the traversal order of the tree.
>
> If it turns out that these ID's need to be zero based, or some other limitation I would prefer just renumbering them in update_siblings_mask() or parse_acpi_topology(). I hacked together a patch to renumber the package_id yesterday, but i'm pretty sure I've seen (non arm) machines with odd package/core ids in the past, and I don't really see anything in the ABI the dictating this. Let me clean it up a bit and I can post it as an additional patch on top of the PPTT patches.
>
Yes, I agree. Renumbering the IDs in parse_acpi_topology() is better.
> So, is this an actual use case/problem, or its just an "appearance" type of thing?
>
It is not an actual use problem, just an "appearance".
Thanks,
Xiongfeng Wang