From: Miles Chen <[email protected]>
This RFC patch is sent to report an use after free in mem_cgroup_iter()
after merging commit: be2657752e9e "mm: memcg: fix use after free in
mem_cgroup_iter()".
I work with android kernel tree (4.9 & 4.14), and the commit:
be2657752e9e "mm: memcg: fix use after free in mem_cgroup_iter()" has
been merged to the trees. However, I can still observe use after free
issues addressed in the commit be2657752e9e.
(on low-end devices, a few times this month)
backtrace:
css_tryget <- crash here
mem_cgroup_iter
shrink_node
shrink_zones
do_try_to_free_pages
try_to_free_pages
__perform_reclaim
__alloc_pages_direct_reclaim
__alloc_pages_slowpath
__alloc_pages_nodemask
To debug, I poisoned mem_cgroup before freeing it:
static void __mem_cgroup_free(struct mem_cgroup *memcg)
for_each_node(node)
free_mem_cgroup_per_node_info(memcg, node);
free_percpu(memcg->stat);
+ /* poison memcg before freeing it */
+ memset(memcg, 0x78, sizeof(struct mem_cgroup));
kfree(memcg);
}
The coredump shows the position=0xdbbc2a00 is freed.
(gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
$13 = {position = 0xdbbc2a00, generation = 0x2efd}
0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100
0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000
0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000
0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878
0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0
0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000
0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000
0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000
0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000
0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878
0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878
0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878
In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().
In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL.
It is possible to assign a memcg to root_mem_cgroup.nodeinfo.iter in
mem_cgroup_iter().
try_to_free_pages
struct scan_control sc = {...}, target_mem_cgroup is 0x0;
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup *root = sc->target_mem_cgroup;
memcg = mem_cgroup_iter(root, NULL, &reclaim);
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
My device uses memcg non-hierarchical mode.
When we release a memcg: invalidate_reclaim_iterators() reaches only
dead_memcg and its parents. If non-hierarchical mode is used,
invalidate_reclaim_iterators() never reaches root_mem_cgroup.
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
struct mem_cgroup *memcg = dead_memcg;
for (; memcg; memcg = parent_mem_cgroup(memcg)
...
}
So the use after free scenario looks like:
CPU1 CPU2
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
invalidate_reclaim_iterators(memcg);
...
__mem_cgroup_free()
kfree(memcg);
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
iter = &mz->iter[reclaim->priority];
pos = READ_ONCE(iter->position);
css_tryget(&pos->css) <- use after free
To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter in
invalidate_reclaim_iterators().
Signed-off-by: Miles Chen <[email protected]>
---
mm/memcontrol.c | 33 +++++++++++++++++++++++----------
1 file changed, 23 insertions(+), 10 deletions(-)
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index cdbb7a84cb6e..578b02982c9a 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -1130,26 +1130,39 @@ void mem_cgroup_iter_break(struct mem_cgroup *root,
css_put(&prev->css);
}
-static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
+static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
+ struct mem_cgroup *dead_memcg)
{
- struct mem_cgroup *memcg = dead_memcg;
struct mem_cgroup_reclaim_iter *iter;
struct mem_cgroup_per_node *mz;
int nid;
int i;
- for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- for_each_node(nid) {
- mz = mem_cgroup_nodeinfo(memcg, nid);
- for (i = 0; i <= DEF_PRIORITY; i++) {
- iter = &mz->iter[i];
- cmpxchg(&iter->position,
- dead_memcg, NULL);
- }
+ for_each_node(nid) {
+ mz = mem_cgroup_nodeinfo(from, nid);
+ for (i = 0; i <= DEF_PRIORITY; i++) {
+ iter = &mz->iter[i];
+ cmpxchg(&iter->position,
+ dead_memcg, NULL);
}
}
}
+static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
+{
+ struct mem_cgroup *memcg = dead_memcg;
+ int invalid_root = 0;
+
+ for (; memcg; memcg = parent_mem_cgroup(memcg)) {
+ __invalidate_reclaim_iterators(memcg, dead_memcg);
+ if (memcg == root_mem_cgroup)
+ invalid_root = 1;
+ }
+
+ if (!invalid_root)
+ __invalidate_reclaim_iterators(root_mem_cgroup, dead_memcg);
+}
+
/**
* mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
* @memcg: hierarchy root
--
2.18.0
On Thu, Jul 25, 2019 at 10:27:03PM +0800, [email protected] wrote:
> From: Miles Chen <[email protected]>
>
> This RFC patch is sent to report an use after free in mem_cgroup_iter()
> after merging commit: be2657752e9e "mm: memcg: fix use after free in
> mem_cgroup_iter()".
>
> I work with android kernel tree (4.9 & 4.14), and the commit:
> be2657752e9e "mm: memcg: fix use after free in mem_cgroup_iter()" has
> been merged to the trees. However, I can still observe use after free
> issues addressed in the commit be2657752e9e.
> (on low-end devices, a few times this month)
>
> backtrace:
> css_tryget <- crash here
> mem_cgroup_iter
> shrink_node
> shrink_zones
> do_try_to_free_pages
> try_to_free_pages
> __perform_reclaim
> __alloc_pages_direct_reclaim
> __alloc_pages_slowpath
> __alloc_pages_nodemask
>
> To debug, I poisoned mem_cgroup before freeing it:
>
> static void __mem_cgroup_free(struct mem_cgroup *memcg)
> for_each_node(node)
> free_mem_cgroup_per_node_info(memcg, node);
> free_percpu(memcg->stat);
> + /* poison memcg before freeing it */
> + memset(memcg, 0x78, sizeof(struct mem_cgroup));
> kfree(memcg);
> }
>
> The coredump shows the position=0xdbbc2a00 is freed.
>
> (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
> $13 = {position = 0xdbbc2a00, generation = 0x2efd}
>
> 0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100
> 0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000
> 0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000
> 0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878
> 0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0
> 0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000
> 0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000
> 0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000
> 0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000
> 0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000
> 0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000
> 0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000
> 0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000
> 0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878
> 0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878
> 0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878
> 0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878
>
> In the reclaim path, try_to_free_pages() does not setup
> sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
> shrink_node().
>
> In mem_cgroup_iter(), root is set to root_mem_cgroup because
> sc->target_mem_cgroup is NULL.
> It is possible to assign a memcg to root_mem_cgroup.nodeinfo.iter in
> mem_cgroup_iter().
>
> try_to_free_pages
> struct scan_control sc = {...}, target_mem_cgroup is 0x0;
> do_try_to_free_pages
> shrink_zones
> shrink_node
> mem_cgroup *root = sc->target_mem_cgroup;
> memcg = mem_cgroup_iter(root, NULL, &reclaim);
> mem_cgroup_iter()
> if (!root)
> root = root_mem_cgroup;
> ...
>
> css = css_next_descendant_pre(css, &root->css);
> memcg = mem_cgroup_from_css(css);
> cmpxchg(&iter->position, pos, memcg);
>
> My device uses memcg non-hierarchical mode.
> When we release a memcg: invalidate_reclaim_iterators() reaches only
> dead_memcg and its parents. If non-hierarchical mode is used,
> invalidate_reclaim_iterators() never reaches root_mem_cgroup.
>
> static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
> {
> struct mem_cgroup *memcg = dead_memcg;
>
> for (; memcg; memcg = parent_mem_cgroup(memcg)
> ...
> }
>
> So the use after free scenario looks like:
>
> CPU1 CPU2
>
> try_to_free_pages
> do_try_to_free_pages
> shrink_zones
> shrink_node
> mem_cgroup_iter()
> if (!root)
> root = root_mem_cgroup;
> ...
> css = css_next_descendant_pre(css, &root->css);
> memcg = mem_cgroup_from_css(css);
> cmpxchg(&iter->position, pos, memcg);
>
> invalidate_reclaim_iterators(memcg);
> ...
> __mem_cgroup_free()
> kfree(memcg);
>
> try_to_free_pages
> do_try_to_free_pages
> shrink_zones
> shrink_node
> mem_cgroup_iter()
> if (!root)
> root = root_mem_cgroup;
> ...
> mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
> iter = &mz->iter[reclaim->priority];
> pos = READ_ONCE(iter->position);
> css_tryget(&pos->css) <- use after free
>
> To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter in
> invalidate_reclaim_iterators().
>
> Signed-off-by: Miles Chen <[email protected]>
Acked-by: Johannes Weiner <[email protected]>
This looks good to me, but please add a comment that documents why you
need to handle root_mem_cgroup separately:
> +static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
> +{
> + struct mem_cgroup *memcg = dead_memcg;
> + int invalid_root = 0;
> +
> + for (; memcg; memcg = parent_mem_cgroup(memcg)) {
> + __invalidate_reclaim_iterators(memcg, dead_memcg);
> + if (memcg == root_mem_cgroup)
> + invalid_root = 1;
> + }
> +
> + if (!invalid_root)
> + __invalidate_reclaim_iterators(root_mem_cgroup, dead_memcg);
^ This block should have a comment that mentions that non-hierarchy
mode in cgroup1 means that parent_mem_cgroup doesn't walk all the way
up to the cgroup root.