2021-03-10 09:45:25

by Yanan Wang

[permalink] [raw]
Subject: [RFC PATCH v2 0/3] KVM: arm64: Improve efficiency of stage2 page table

Hi,
This v2 series makes some efficiency improvement of stage2 page table code,
and there are some test results to quantify the benefit of each patch.

Changelogs:
v1->v2:
- rebased on top of mainline v5.12-rc2
- also move CMOs of I-cache to the fault handlers
- merge patch 2 and patch 3 together
- retest this v2 series based on v5.12-rc2
- v1: https://lore.kernel.org/lkml/[email protected]/

About patch 1:
We currently uniformly perform CMOs of D-cache and I-cache in user_mem_abort()
before calling the fault handlers. If we get concurrent translation faults on
the same IPA (page or block), CMOs for the first time is necessary while the
others later are not.

By moving CMOs to the fault handlers, we can easily identify conditions where
they are really needed and avoid the unnecessary ones. As it's a time consuming
process to perform CMOs especially when flushing a block range, so this solution
reduces much load of kvm and improve efficiency of the stage2 page table code.

So let's move both clean of D-cache and invalidation of I-cache to the map path
and move only invalidation of I-cache to the permission path. Since the original
APIs for CMOs in mmu.c are only called in function user_mem_abort(), we now also
move them to pgtable.c.

The following results represent the benefit of patch 1 alone, and they were
tested by [1](kvm/selftest) that I have posted recently.
[1] https://lore.kernel.org/lkml/[email protected]/

When there are muitiple vcpus concurrently accessing the same memory region,
we can test the execution time of KVM creating new mappings, updating the
permissions of old mappings from RO to RW, and rebuilding the blocks after
they have been split.

hardware platform: HiSilicon Kunpeng920 Server
host kernel: Linux mainline v5.12-rc2

cmdline: ./kvm_page_table_test -m 4 -s anonymous -b 1G -v 80
(80 vcpus, 1G memory, page mappings(normal 4K))
KVM_CREATE_MAPPINGS: before 104.63s -> after 97.30s +7.00%
KVM_UPDATE_MAPPINGS: before 78.47s -> after 77.18s +1.64%

cmdline: ./kvm_page_table_test -m 4 -s anonymous_thp -b 20G -v 40
(40 vcpus, 20G memory, block mappings(THP 2M))
KVM_CREATE_MAPPINGS: before 15.70s -> after 7.36s +53.12%
KVM_UPDATE_MAPPINGS: before 161.00s -> after 135.03s +16.13%
KVM_REBUILD_BLOCKS: before 170.49s -> after 145.46s +14.68%

cmdline: ./kvm_page_table_test -m 4 -s anonymous_hugetlb_1gb -b 20G -v 40
(40 vcpus, 20G memory, block mappings(HUGETLB 1G))
KVM_CREATE_MAPPINGS: before 104.55s -> after 3.69s +96.47%
KVM_UPDATE_MAPPINGS: before 160.67s -> after 130.65s +18.68%
KVM_REBUILD_BLOCKS: before 103.95s -> after 2.96s +97.15%

About patch 2:
If KVM needs to coalesce the existing normal page mappings into a block mapping,
we currently follow the following steps successively:
1) invalidate the table entry in the PMD/PUD table
2) flush TLB by VMID
3) unmap the old sub-level tables
4) install the new block entry to the PMD/PUD table

It will cost a long time to unmap the numerous old page mappings in step 3,
which means there will be a long period when the PMD/PUD table entry could be
found invalid (step 1, 2, 3). So the other vcpus have a really big chance to
trigger unnecessary translations if they access any page within the block and
find the table entry invalid.

So let's quickly install the block entry at first to ensure uninterrupted memory
access of the other vcpus, and then unmap the page mappings after installation.
This will reduce most of the time when the table entry is invalid, and avoid most
of the unnecessary translation faults.

After this patch the steps can be like:
1) invalidate the table entry in the PMD/PUD table
2) flush TLB by VMID
3) install the new block entry to the PMD/PUD table
4) unmap the old sub-level tables

As this patch only affects the rebuilding of block mappings, so we can test the
execution time of KVM rebuilding the blocks after they have been split.

hardware platform: HiSilicon Kunpeng920 Server
host kernel: Linux mainline v5.12-rc2

cmdline: ./kvm_page_table_test -m 4 -s anonymous_thp -b 20G -v 20
(20 vcpus, 20G memory, block mappings(THP 2M))
KVM_REBUILD_BLOCKS: before 73.64s -> after 57.75s +21.58%

cmdline: ./kvm_page_table_test -m 4 -s anonymous_thp -b 20G -v 40
(40 vcpus, 20G memory, block mappings(THP 2M))
KVM_REBUILD_BLOCKS: before 145.4s -> after 130.8s +10.62%

cmdline: ./kvm_page_table_test -m 4 -s anonymous_hugetlb_1gb -b 1G -v 80
(80 vcpus, 1G memory, block mappings(HUGETLB 1G))
KVM_REBUILD_BLOCKS: before 0.166s -> after 0.035s +78.92%

cmdline: ./kvm_page_table_test -m 4 -s anonymous_hugetlb_1gb -b 20G -v 20
(20 vcpus, 20G memory, block mappings(HUGETLB 1G))
KVM_REBUILD_BLOCKS: before 2.875s -> after 0.282s +90.20%

cmdline: ./kvm_page_table_test -m 4 -s anonymous_hugetlb_1gb -b 20G -v 40
(40 vcpus, 20G memory, block mappings(HUGETLB 1G))
KVM_REBUILD_BLOCKS: before 2.965s -> after 0.359s +87.55%

About patch 3:
A new method to distinguish cases of memcache allocations is introduced.
By comparing fault_granule and vma_pagesize, cases that require allocations
from memcache and cases that don't can be distinguished completely.

---

Yanan Wang (3):
KVM: arm64: Move CMOs from user_mem_abort to the fault handlers
KVM: arm64: Install the block entry before unmapping the page mappings
KVM: arm64: Distinguish cases of memcache allocations completely

arch/arm64/include/asm/kvm_mmu.h | 31 ---------
arch/arm64/kvm/hyp/pgtable.c | 112 +++++++++++++++++++++++--------
arch/arm64/kvm/mmu.c | 48 +++++--------
3 files changed, 99 insertions(+), 92 deletions(-)

--
2.19.1


2021-03-10 09:45:25

by Yanan Wang

[permalink] [raw]
Subject: [RFC PATCH v2 1/3] KVM: arm64: Move CMOs from user_mem_abort to the fault handlers

We currently uniformly perform CMOs of D-cache and I-cache in function
user_mem_abort() before calling the fault handlers. If we get concurrent
translation faults on the same IPA (page or block), CMOs for the first
time is necessary while the others later are not.

By moving CMOs to the fault handlers, we can easily identify conditions
where they are really needed and avoid the unnecessary ones. As it's a
time consuming process to perform CMOs especially when flushing a block
range, so this solution reduces much load of kvm and improve efficiency
of the page table code.

So let's move both clean of D-cache and invalidation of I-cache to the
map path and move only invalidation of I-cache to the permission path.
Since the original APIs for CMOs in mmu.c are only called in function
user_mem_abort, we now also move them to pgtable.c.

Signed-off-by: Yanan Wang <[email protected]>
---
arch/arm64/include/asm/kvm_mmu.h | 31 ---------------
arch/arm64/kvm/hyp/pgtable.c | 68 +++++++++++++++++++++++++-------
arch/arm64/kvm/mmu.c | 23 ++---------
3 files changed, 57 insertions(+), 65 deletions(-)

diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
index 90873851f677..c31f88306d4e 100644
--- a/arch/arm64/include/asm/kvm_mmu.h
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -177,37 +177,6 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
}

-static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
-{
- void *va = page_address(pfn_to_page(pfn));
-
- /*
- * With FWB, we ensure that the guest always accesses memory using
- * cacheable attributes, and we don't have to clean to PoC when
- * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
- * PoU is not required either in this case.
- */
- if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
- return;
-
- kvm_flush_dcache_to_poc(va, size);
-}
-
-static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
- unsigned long size)
-{
- if (icache_is_aliasing()) {
- /* any kind of VIPT cache */
- __flush_icache_all();
- } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
- /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
- void *va = page_address(pfn_to_page(pfn));
-
- invalidate_icache_range((unsigned long)va,
- (unsigned long)va + size);
- }
-}
-
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);

diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
index 4d177ce1d536..829a34eea526 100644
--- a/arch/arm64/kvm/hyp/pgtable.c
+++ b/arch/arm64/kvm/hyp/pgtable.c
@@ -464,6 +464,43 @@ static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot,
return 0;
}

+static bool stage2_pte_cacheable(kvm_pte_t pte)
+{
+ u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
+ return memattr == PAGE_S2_MEMATTR(NORMAL);
+}
+
+static bool stage2_pte_executable(kvm_pte_t pte)
+{
+ return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
+}
+
+static void stage2_flush_dcache(void *addr, u64 size)
+{
+ /*
+ * With FWB, we ensure that the guest always accesses memory using
+ * cacheable attributes, and we don't have to clean to PoC when
+ * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
+ * PoU is not required either in this case.
+ */
+ if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+ return;
+
+ __flush_dcache_area(addr, size);
+}
+
+static void stage2_invalidate_icache(void *addr, u64 size)
+{
+ if (icache_is_aliasing()) {
+ /* Flush any kind of VIPT icache */
+ __flush_icache_all();
+ } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
+ /* PIPT or VPIPT at EL2 */
+ invalidate_icache_range((unsigned long)addr,
+ (unsigned long)addr + size);
+ }
+}
+
static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
@@ -495,6 +532,13 @@ static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
put_page(page);
}

+ /* Perform CMOs before installation of the new PTE */
+ if (!kvm_pte_valid(old) || stage2_pte_cacheable(old))
+ stage2_flush_dcache(__va(phys), granule);
+
+ if (stage2_pte_executable(new))
+ stage2_invalidate_icache(__va(phys), granule);
+
smp_store_release(ptep, new);
get_page(page);
data->phys += granule;
@@ -651,20 +695,6 @@ int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
return ret;
}

-static void stage2_flush_dcache(void *addr, u64 size)
-{
- if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
- return;
-
- __flush_dcache_area(addr, size);
-}
-
-static bool stage2_pte_cacheable(kvm_pte_t pte)
-{
- u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
- return memattr == PAGE_S2_MEMATTR(NORMAL);
-}
-
static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
@@ -743,8 +773,16 @@ static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
* but worst-case the access flag update gets lost and will be
* set on the next access instead.
*/
- if (data->pte != pte)
+ if (data->pte != pte) {
+ /*
+ * Invalidate the instruction cache before updating
+ * if we are going to add the executable permission.
+ */
+ if (!stage2_pte_executable(*ptep) && stage2_pte_executable(pte))
+ stage2_invalidate_icache(kvm_pte_follow(pte),
+ kvm_granule_size(level));
WRITE_ONCE(*ptep, pte);
+ }

return 0;
}
diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
index 77cb2d28f2a4..1eec9f63bc6f 100644
--- a/arch/arm64/kvm/mmu.c
+++ b/arch/arm64/kvm/mmu.c
@@ -609,16 +609,6 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

-static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
-{
- __clean_dcache_guest_page(pfn, size);
-}
-
-static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
-{
- __invalidate_icache_guest_page(pfn, size);
-}
-
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
{
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
@@ -882,13 +872,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (writable)
prot |= KVM_PGTABLE_PROT_W;

- if (fault_status != FSC_PERM && !device)
- clean_dcache_guest_page(pfn, vma_pagesize);
-
- if (exec_fault) {
+ if (exec_fault)
prot |= KVM_PGTABLE_PROT_X;
- invalidate_icache_guest_page(pfn, vma_pagesize);
- }

if (device)
prot |= KVM_PGTABLE_PROT_DEVICE;
@@ -1144,10 +1129,10 @@ int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
trace_kvm_set_spte_hva(hva);

/*
- * We've moved a page around, probably through CoW, so let's treat it
- * just like a translation fault and clean the cache to the PoC.
+ * We've moved a page around, probably through CoW, so let's treat
+ * it just like a translation fault and the map handler will clean
+ * the cache to the PoC.
*/
- clean_dcache_guest_page(pfn, PAGE_SIZE);
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
return 0;
}
--
2.19.1

2021-03-10 09:45:38

by Yanan Wang

[permalink] [raw]
Subject: [RFC PATCH v2 2/3] KVM: arm64: Install the block entry before unmapping the page mappings

When KVM needs to coalesce the existing normal page mappings into a block
mapping, we currently follow the following steps successively:
1) invalidate the table entry in the PMD/PUD table
2) flush TLB by VMID
3) unmap the old sub-level tables
4) install the new block entry to the PMD/PUD table

It will cost a long time to unmap the old page mappings in step 3, which
means there will be a long period when the PMD/PUD table entry could be
found invalid (step 1, 2, 3). So the other vcpus have a really big chance
to trigger unnecessary translations if they access any page within the
block and find the table entry invalid.

So let's quickly install the block entry at first to ensure uninterrupted
memory access of the other vcpus, and then unmap the page mappings after
installation. This will reduce most of the time when the table entry is
invalid, and avoid most of the unnecessary translation faults.

After this patch the steps can be like:
1) invalidate the table entry in the PMD/PUD table
2) flush TLB by VMID
3) install the new block entry to the PMD/PUD table
4) unmap the old sub-level tables

Signed-off-by: Yanan Wang <[email protected]>
---
arch/arm64/kvm/hyp/pgtable.c | 44 ++++++++++++++++++++++++------------
1 file changed, 30 insertions(+), 14 deletions(-)

diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
index 829a34eea526..b40b1f1615c7 100644
--- a/arch/arm64/kvm/hyp/pgtable.c
+++ b/arch/arm64/kvm/hyp/pgtable.c
@@ -434,6 +434,7 @@ struct stage2_map_data {
kvm_pte_t attr;

kvm_pte_t *anchor;
+ kvm_pte_t *follow;

struct kvm_s2_mmu *mmu;
struct kvm_mmu_memory_cache *memcache;
@@ -545,6 +546,24 @@ static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
return 0;
}

+static void stage2_coalesce_tables_into_block(u64 addr, u32 level,
+ kvm_pte_t *ptep,
+ struct stage2_map_data *data)
+{
+ u64 granule = kvm_granule_size(level), phys = data->phys;
+ kvm_pte_t new = kvm_init_valid_leaf_pte(phys, data->attr, level);
+
+ kvm_set_invalid_pte(ptep);
+
+ /*
+ * Invalidate the whole stage-2, as we may have numerous leaf entries
+ * below us which would otherwise need invalidating individually.
+ */
+ kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
+ smp_store_release(ptep, new);
+ data->phys += granule;
+}
+
static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
@@ -555,15 +574,14 @@ static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
if (!kvm_block_mapping_supported(addr, end, data->phys, level))
return 0;

- kvm_set_invalid_pte(ptep);
-
/*
- * Invalidate the whole stage-2, as we may have numerous leaf
- * entries below us which would otherwise need invalidating
- * individually.
+ * If we need to coalesce existing table entries into a block here,
+ * then install the block entry first and the sub-level page mappings
+ * will be unmapped later.
*/
- kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
data->anchor = ptep;
+ data->follow = kvm_pte_follow(*ptep);
+ stage2_coalesce_tables_into_block(addr, level, ptep, data);
return 0;
}

@@ -616,20 +634,18 @@ static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
- int ret = 0;
-
if (!data->anchor)
return 0;

- free_page((unsigned long)kvm_pte_follow(*ptep));
- put_page(virt_to_page(ptep));
-
- if (data->anchor == ptep) {
+ if (data->anchor != ptep) {
+ free_page((unsigned long)kvm_pte_follow(*ptep));
+ put_page(virt_to_page(ptep));
+ } else {
+ free_page((unsigned long)data->follow);
data->anchor = NULL;
- ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
}

- return ret;
+ return 0;
}

/*
--
2.19.1

2021-03-10 09:46:59

by Yanan Wang

[permalink] [raw]
Subject: [RFC PATCH v2 3/3] KVM: arm64: Distinguish cases of memcache allocations completely

With a guest translation fault, the memcache pages are not needed if KVM
is only about to install a new leaf entry into the existing page table.
And with a guest permission fault, the memcache pages are also not needed
for a write_fault in dirty-logging time if KVM is only about to update
the existing leaf entry instead of collapsing a block entry into a table.

By comparing fault_granule and vma_pagesize, cases that require allocations
from memcache and cases that don't can be distinguished completely.

Signed-off-by: Yanan Wang <[email protected]>
---
arch/arm64/kvm/mmu.c | 25 ++++++++++++-------------
1 file changed, 12 insertions(+), 13 deletions(-)

diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
index 1eec9f63bc6f..05af40dc60c1 100644
--- a/arch/arm64/kvm/mmu.c
+++ b/arch/arm64/kvm/mmu.c
@@ -810,19 +810,6 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
gfn = fault_ipa >> PAGE_SHIFT;
mmap_read_unlock(current->mm);

- /*
- * Permission faults just need to update the existing leaf entry,
- * and so normally don't require allocations from the memcache. The
- * only exception to this is when dirty logging is enabled at runtime
- * and a write fault needs to collapse a block entry into a table.
- */
- if (fault_status != FSC_PERM || (logging_active && write_fault)) {
- ret = kvm_mmu_topup_memory_cache(memcache,
- kvm_mmu_cache_min_pages(kvm));
- if (ret)
- return ret;
- }
-
mmu_seq = vcpu->kvm->mmu_notifier_seq;
/*
* Ensure the read of mmu_notifier_seq happens before we call
@@ -880,6 +867,18 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
prot |= KVM_PGTABLE_PROT_X;

+ /*
+ * Allocations from the memcache are required only when granule of the
+ * lookup level where the guest fault happened exceeds vma_pagesize,
+ * which means new page tables will be created in the fault handlers.
+ */
+ if (fault_granule > vma_pagesize) {
+ ret = kvm_mmu_topup_memory_cache(memcache,
+ kvm_mmu_cache_min_pages(kvm));
+ if (ret)
+ return ret;
+ }
+
/*
* Under the premise of getting a FSC_PERM fault, we just need to relax
* permissions only if vma_pagesize equals fault_granule. Otherwise,
--
2.19.1