Changes definitly calm down, most noteably probably the changes
around checking whether a page is empty if the stack reports ECC
errors.. I verified the code using raw nandwrites with OOB to
simulate an empty page which has some bits flipped in the OOB area,
everthing seems to work as I would expect it.
For now I do not check extra OOB bytes since those are at variable
locations depending on algorithm.
--
Stefan
Changes since v1:
- Split controller and NAND chip structure
- Add BCH support
- Allow to select algorithm and strength using device tree
- Improve HW ECC error reporting and use DEC_STATUS_BUF only
- Use SPDX license identifier
- Use per algorithm mtd_ooblayout_ops
- Use setup_data_interface callback for NAND timing configuration
Changes since v2:
- Set clock rate using assigned-clocks
- Use BIT() macro
- Fix and improve timing calculation
- Improve ECC error handling
- Store OOB layout for tag area in Tegra chip structure
- Update/fix bindings
- Use more specific variable names (replace "value")
- Introduce nand-is-boot-medium
- Choose sensible ECC strenght automatically
- Use wait_for_completion_timeout
- Print register dump on completion timeout
- Unify tegra_nand_(read|write)_page in tegra_nand_page_xfer
Changes since v3:
- Implement tegra_nand_(read|write)_raw using DMA
- Implement tegra_nand_(read|write)_oob using DMA
- Name registers according to Tegra 2 Technical Reference Manual (v02p)
- Use wait_for_completion_io_timeout to account for IO
- Get chip select id from device tree reg property
- Clear interrupts and reinit wait queues in case command/DMA times out
- Set default MTD name after nand_set_flash_node
- Move MODULE_DEVICE_TABLE after declaration of tegra_nand_of_match
- Make (rs|bch)_strength static
Changes since v4:
- Pass OOB area to nand_check_erased_ecc_chunk
- Pass algorithm specific bits_per_step to tegra_nand_get_strength
- Store ECC layout in chip structure
- Fix pointer assignment (use NULL)
- Removed obsolete header delay.h
- Fixed newlines
- Use non-_io variant of wait_for_completion_timeout
Lucas Stach (1):
ARM: dts: tegra: add Tegra20 NAND flash controller node
Stefan Agner (5):
mtd: rawnand: add Reed-Solomon error correction algorithm
mtd: rawnand: add an option to specify NAND chip as a boot device
mtd: rawnand: tegra: add devicetree binding
mtd: rawnand: add NVIDIA Tegra NAND Flash controller driver
ARM: dts: tegra: enable NAND flash on Colibri T20
.../devicetree/bindings/mtd/nand.txt | 6 +-
.../bindings/mtd/nvidia-tegra20-nand.txt | 64 +
MAINTAINERS | 7 +
arch/arm/boot/dts/tegra20-colibri-512.dtsi | 16 +
arch/arm/boot/dts/tegra20.dtsi | 15 +
drivers/mtd/nand/raw/Kconfig | 6 +
drivers/mtd/nand/raw/Makefile | 1 +
drivers/mtd/nand/raw/nand_base.c | 4 +
drivers/mtd/nand/raw/tegra_nand.c | 1268 +++++++++++++++++
include/linux/mtd/rawnand.h | 7 +
10 files changed, 1393 insertions(+), 1 deletion(-)
create mode 100644 Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
--
2.17.1
This adds the devicetree binding for the Tegra 2 NAND flash
controller.
Signed-off-by: Lucas Stach <[email protected]>
Signed-off-by: Stefan Agner <[email protected]>
Reviewed-by: Boris Brezillon <[email protected]>
Reviewed-by: Rob Herring <[email protected]>
---
.../bindings/mtd/nvidia-tegra20-nand.txt | 64 +++++++++++++++++++
1 file changed, 64 insertions(+)
create mode 100644 Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
diff --git a/Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt b/Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
new file mode 100644
index 0000000000000..1c351362f3a96
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
@@ -0,0 +1,64 @@
+NVIDIA Tegra NAND Flash controller
+
+Required properties:
+- compatible: Must be one of:
+ - "nvidia,tegra20-nand"
+- reg: MMIO address range
+- interrupts: interrupt output of the NFC controller
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: Must include the following entries:
+ - nand
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - nand
+
+Optional children nodes:
+Individual NAND chips are children of the NAND controller node. Currently
+only one NAND chip supported.
+
+Required children node properties:
+- reg: An integer ranging from 1 to 6 representing the CS line to use.
+
+Optional children node properties:
+- nand-ecc-mode: String, operation mode of the NAND ecc mode. Currently only
+ "hw" is supported.
+- nand-ecc-algo: string, algorithm of NAND ECC.
+ Supported values with "hw" ECC mode are: "rs", "bch".
+- nand-bus-width : See nand.txt
+- nand-on-flash-bbt: See nand.txt
+- nand-ecc-strength: integer representing the number of bits to correct
+ per ECC step (always 512). Supported strength using HW ECC
+ modes are:
+ - RS: 4, 6, 8
+ - BCH: 4, 8, 14, 16
+- nand-ecc-maximize: See nand.txt
+- nand-is-boot-medium: Makes sure only ECC strengths supported by the boot ROM
+ are choosen.
+- wp-gpios: GPIO specifier for the write protect pin.
+
+Optional child node of NAND chip nodes:
+Partitions: see partition.txt
+
+ Example:
+ nand-controller@70008000 {
+ compatible = "nvidia,tegra20-nand";
+ reg = <0x70008000 0x100>;
+ interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&tegra_car TEGRA20_CLK_NDFLASH>;
+ clock-names = "nand";
+ resets = <&tegra_car 13>;
+ reset-names = "nand";
+
+ nand@0 {
+ reg = <0>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ nand-bus-width = <8>;
+ nand-on-flash-bbt;
+ nand-ecc-algo = "bch";
+ nand-ecc-strength = <8>;
+ wp-gpios = <&gpio TEGRA_GPIO(S, 0) GPIO_ACTIVE_LOW>;
+ };
+ };
--
2.17.1
Allow to define a NAND chip as a boot device. This can be helpful
for the selection of the ECC algorithm and strength in case the boot
ROM supports only a subset of controller provided options.
Signed-off-by: Stefan Agner <[email protected]>
Reviewed-by: Boris Brezillon <[email protected]>
---
Documentation/devicetree/bindings/mtd/nand.txt | 4 ++++
drivers/mtd/nand/raw/nand_base.c | 3 +++
include/linux/mtd/rawnand.h | 6 ++++++
3 files changed, 13 insertions(+)
diff --git a/Documentation/devicetree/bindings/mtd/nand.txt b/Documentation/devicetree/bindings/mtd/nand.txt
index eaef8c657aa5c..e949c778e9837 100644
--- a/Documentation/devicetree/bindings/mtd/nand.txt
+++ b/Documentation/devicetree/bindings/mtd/nand.txt
@@ -43,6 +43,10 @@ Optional NAND chip properties:
This is particularly useful when only the in-band area is
used by the upper layers, and you want to make your NAND
as reliable as possible.
+- nand-is-boot-medium: Whether the NAND chip is a boot medium. Drivers might use
+ this information to select ECC algorithms supported by
+ the boot ROM or similar restrictions.
+
- nand-rb: shall contain the native Ready/Busy ids.
The ECC strength and ECC step size properties define the correction capability
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 47e9cb9063da4..e70bf328c64e4 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -5859,6 +5859,9 @@ static int nand_dt_init(struct nand_chip *chip)
if (of_get_nand_bus_width(dn) == 16)
chip->options |= NAND_BUSWIDTH_16;
+ if (of_property_read_bool(dn, "nand-is-boot-medium"))
+ chip->options |= NAND_IS_BOOT_MEDIUM;
+
if (of_get_nand_on_flash_bbt(dn))
chip->bbt_options |= NAND_BBT_USE_FLASH;
diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h
index 2d9cb7acbc3d8..80aeeca03f36b 100644
--- a/include/linux/mtd/rawnand.h
+++ b/include/linux/mtd/rawnand.h
@@ -219,6 +219,12 @@ enum nand_ecc_algo {
*/
#define NAND_WAIT_TCCS 0x00200000
+/*
+ * Whether the NAND chip is a boot medium. Drivers might use this information
+ * to select ECC algorithms supported by the boot ROM or similar restrictions.
+ */
+#define NAND_IS_BOOT_MEDIUM 0x00400000
+
/* Options set by nand scan */
/* Nand scan has allocated controller struct */
#define NAND_CONTROLLER_ALLOC 0x80000000
--
2.17.1
This enables the on-module ONFI conformant NAND flash.
Signed-off-by: Lucas Stach <[email protected]>
Signed-off-by: Stefan Agner <[email protected]>
---
arch/arm/boot/dts/tegra20-colibri-512.dtsi | 16 ++++++++++++++++
1 file changed, 16 insertions(+)
diff --git a/arch/arm/boot/dts/tegra20-colibri-512.dtsi b/arch/arm/boot/dts/tegra20-colibri-512.dtsi
index 5c202b3e3bb1d..0c283fb772148 100644
--- a/arch/arm/boot/dts/tegra20-colibri-512.dtsi
+++ b/arch/arm/boot/dts/tegra20-colibri-512.dtsi
@@ -462,6 +462,22 @@
};
};
+ nand-controller@70008000 {
+ status = "okay";
+
+ nand@0 {
+ reg = <0>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ nand-bus-width = <8>;
+ nand-on-flash-bbt;
+ nand-ecc-algo = "bch";
+ nand-is-boot-medium;
+ nand-ecc-maximize;
+ wp-gpios = <&gpio TEGRA_GPIO(S, 0) GPIO_ACTIVE_LOW>;
+ };
+ };
+
usb@c5004000 {
status = "okay";
nvidia,phy-reset-gpio = <&gpio TEGRA_GPIO(V, 1)
--
2.17.1
From: Lucas Stach <[email protected]>
Add basic controller device tree node to be extended by
individual boards. Use the assigned-clocks mechanism to set
NDFLASH clock to a sensible default rate of 150MHz.
Signed-off-by: Lucas Stach <[email protected]>
Signed-off-by: Stefan Agner <[email protected]>
---
arch/arm/boot/dts/tegra20.dtsi | 15 +++++++++++++++
1 file changed, 15 insertions(+)
diff --git a/arch/arm/boot/dts/tegra20.dtsi b/arch/arm/boot/dts/tegra20.dtsi
index 983dd5c147945..a75fe7fec7912 100644
--- a/arch/arm/boot/dts/tegra20.dtsi
+++ b/arch/arm/boot/dts/tegra20.dtsi
@@ -425,6 +425,21 @@
status = "disabled";
};
+ nand-controller@70008000 {
+ compatible = "nvidia,tegra20-nand";
+ reg = <0x70008000 0x100>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ interrupts = <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&tegra_car TEGRA20_CLK_NDFLASH>;
+ clock-names = "nand";
+ resets = <&tegra_car 13>;
+ reset-names = "nand";
+ assigned-clocks = <&tegra_car TEGRA20_CLK_NDFLASH>;
+ assigned-clock-rates = <150000000>;
+ status = "disabled";
+ };
+
pwm: pwm@7000a000 {
compatible = "nvidia,tegra20-pwm";
reg = <0x7000a000 0x100>;
--
2.17.1
Add Reed-Solomon (RS) to the enumeration of ECC algorithms.
Signed-off-by: Stefan Agner <[email protected]>
Reviewed-by: Boris Brezillon <[email protected]>
Acked-by: Rob Herring <[email protected]>
---
Documentation/devicetree/bindings/mtd/nand.txt | 2 +-
drivers/mtd/nand/raw/nand_base.c | 1 +
include/linux/mtd/rawnand.h | 1 +
3 files changed, 3 insertions(+), 1 deletion(-)
diff --git a/Documentation/devicetree/bindings/mtd/nand.txt b/Documentation/devicetree/bindings/mtd/nand.txt
index 8bb11d809429d..eaef8c657aa5c 100644
--- a/Documentation/devicetree/bindings/mtd/nand.txt
+++ b/Documentation/devicetree/bindings/mtd/nand.txt
@@ -25,7 +25,7 @@ Optional NAND chip properties:
Deprecated values:
"soft_bch": use "soft" and nand-ecc-algo instead
- nand-ecc-algo: string, algorithm of NAND ECC.
- Supported values are: "hamming", "bch".
+ Valid values are: "hamming", "bch", "rs".
- nand-bus-width : 8 or 16 bus width if not present 8
- nand-on-flash-bbt: boolean to enable on flash bbt option if not present false
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 10c4f9919850c..47e9cb9063da4 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -5777,6 +5777,7 @@ static int of_get_nand_ecc_mode(struct device_node *np)
static const char * const nand_ecc_algos[] = {
[NAND_ECC_HAMMING] = "hamming",
[NAND_ECC_BCH] = "bch",
+ [NAND_ECC_RS] = "rs",
};
static int of_get_nand_ecc_algo(struct device_node *np)
diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h
index 3e8ec3b8a39c7..2d9cb7acbc3d8 100644
--- a/include/linux/mtd/rawnand.h
+++ b/include/linux/mtd/rawnand.h
@@ -121,6 +121,7 @@ enum nand_ecc_algo {
NAND_ECC_UNKNOWN,
NAND_ECC_HAMMING,
NAND_ECC_BCH,
+ NAND_ECC_RS,
};
/*
--
2.17.1
Add support for the NAND flash controller found on NVIDIA
Tegra 2 SoCs. This implementation does not make use of the
command queue feature. Regular operations using ->exec_op()
use PIO mode for data transfers. Raw, ECC and OOB read/writes
make use of the DMA mode for data transfer.
Signed-off-by: Lucas Stach <[email protected]>
Signed-off-by: Stefan Agner <[email protected]>
Reviewed-by: Dmitry Osipenko <[email protected]>
---
MAINTAINERS | 7 +
drivers/mtd/nand/raw/Kconfig | 6 +
drivers/mtd/nand/raw/Makefile | 1 +
drivers/mtd/nand/raw/tegra_nand.c | 1268 +++++++++++++++++++++++++++++
4 files changed, 1282 insertions(+)
create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
diff --git a/MAINTAINERS b/MAINTAINERS
index 9d5eeff51b5fd..d62bf7dc714d2 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -14040,6 +14040,13 @@ M: Laxman Dewangan <[email protected]>
S: Supported
F: drivers/input/keyboard/tegra-kbc.c
+TEGRA NAND DRIVER
+M: Stefan Agner <[email protected]>
+M: Lucas Stach <[email protected]>
+S: Maintained
+F: Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
+F: drivers/mtd/nand/raw/tegra_nand.c
+
TEGRA PWM DRIVER
M: Thierry Reding <[email protected]>
S: Supported
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 6871ff0fd300b..472a870cfe4b0 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -530,4 +530,10 @@ config MTD_NAND_MTK
Enables support for NAND controller on MTK SoCs.
This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+config MTD_NAND_TEGRA
+ tristate "Support for NAND controller on NVIDIA Tegra"
+ depends on ARCH_TEGRA || COMPILE_TEST
+ help
+ Enables support for NAND flash controller on NVIDIA Tegra SoC.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 165b7ef9e9a18..d5a5f9832b887 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_amd.o
diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
new file mode 100644
index 0000000000000..8d8c79c52499a
--- /dev/null
+++ b/drivers/mtd/nand/raw/tegra_nand.c
@@ -0,0 +1,1268 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018 Stefan Agner <[email protected]>
+ * Copyright (C) 2014-2015 Lucas Stach <[email protected]>
+ * Copyright (C) 2012 Avionic Design GmbH
+ */
+
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/gpio/consumer.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/reset.h>
+
+#define COMMAND 0x00
+#define COMMAND_GO BIT(31)
+#define COMMAND_CLE BIT(30)
+#define COMMAND_ALE BIT(29)
+#define COMMAND_PIO BIT(28)
+#define COMMAND_TX BIT(27)
+#define COMMAND_RX BIT(26)
+#define COMMAND_SEC_CMD BIT(25)
+#define COMMAND_AFT_DAT BIT(24)
+#define COMMAND_TRANS_SIZE(x) (((x - 1) & 0xf) << 20)
+#define COMMAND_A_VALID BIT(19)
+#define COMMAND_B_VALID BIT(18)
+#define COMMAND_RD_STATUS_CHK BIT(17)
+#define COMMAND_RBSY_CHK BIT(16)
+#define COMMAND_CE(x) BIT(8 + ((x) & 0x7))
+#define COMMAND_CLE_SIZE(x) (((x - 1) & 0x3) << 4)
+#define COMMAND_ALE_SIZE(x) (((x - 1) & 0xf) << 0)
+
+#define STATUS 0x04
+
+#define ISR 0x08
+#define ISR_CORRFAIL_ERR BIT(24)
+#define ISR_UND BIT(7)
+#define ISR_OVR BIT(6)
+#define ISR_CMD_DONE BIT(5)
+#define ISR_ECC_ERR BIT(4)
+
+#define IER 0x0c
+#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16)
+#define IER_UND BIT(7)
+#define IER_OVR BIT(6)
+#define IER_CMD_DONE BIT(5)
+#define IER_ECC_ERR BIT(4)
+#define IER_GIE BIT(0)
+
+#define CONFIG 0x10
+#define CONFIG_HW_ECC BIT(31)
+#define CONFIG_ECC_SEL BIT(30)
+#define CONFIG_ERR_COR BIT(29)
+#define CONFIG_PIPE_EN BIT(28)
+#define CONFIG_TVAL_4 (0 << 24)
+#define CONFIG_TVAL_6 (1 << 24)
+#define CONFIG_TVAL_8 (2 << 24)
+#define CONFIG_SKIP_SPARE BIT(23)
+#define CONFIG_BUS_WIDTH_16 BIT(21)
+#define CONFIG_COM_BSY BIT(20)
+#define CONFIG_PS_256 (0 << 16)
+#define CONFIG_PS_512 (1 << 16)
+#define CONFIG_PS_1024 (2 << 16)
+#define CONFIG_PS_2048 (3 << 16)
+#define CONFIG_PS_4096 (4 << 16)
+#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14)
+#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14)
+#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14)
+#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14)
+#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff)
+
+#define TIMING_1 0x14
+#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28)
+#define TIMING_TWB(x) (((x) & 0xf) << 24)
+#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20)
+#define TIMING_TWHR(x) (((x) & 0xf) << 16)
+#define TIMING_TCS(x) (((x) & 0x3) << 14)
+#define TIMING_TWH(x) (((x) & 0x3) << 12)
+#define TIMING_TWP(x) (((x) & 0xf) << 8)
+#define TIMING_TRH(x) (((x) & 0x3) << 4)
+#define TIMING_TRP(x) (((x) & 0xf) << 0)
+
+#define RESP 0x18
+
+#define TIMING_2 0x1c
+#define TIMING_TADL(x) ((x) & 0xf)
+
+#define CMD_REG1 0x20
+#define CMD_REG2 0x24
+#define ADDR_REG1 0x28
+#define ADDR_REG2 0x2c
+
+#define DMA_MST_CTRL 0x30
+#define DMA_MST_CTRL_GO BIT(31)
+#define DMA_MST_CTRL_IN (0 << 30)
+#define DMA_MST_CTRL_OUT BIT(30)
+#define DMA_MST_CTRL_PERF_EN BIT(29)
+#define DMA_MST_CTRL_IE_DONE BIT(28)
+#define DMA_MST_CTRL_REUSE BIT(27)
+#define DMA_MST_CTRL_BURST_1 (2 << 24)
+#define DMA_MST_CTRL_BURST_4 (3 << 24)
+#define DMA_MST_CTRL_BURST_8 (4 << 24)
+#define DMA_MST_CTRL_BURST_16 (5 << 24)
+#define DMA_MST_CTRL_IS_DONE BIT(20)
+#define DMA_MST_CTRL_EN_A BIT(2)
+#define DMA_MST_CTRL_EN_B BIT(1)
+
+#define DMA_CFG_A 0x34
+#define DMA_CFG_B 0x38
+
+#define FIFO_CTRL 0x3c
+#define FIFO_CTRL_CLR_ALL BIT(3)
+
+#define DATA_PTR 0x40
+#define TAG_PTR 0x44
+#define ECC_PTR 0x48
+
+#define DEC_STATUS 0x4c
+#define DEC_STATUS_A_ECC_FAIL BIT(1)
+#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000
+#define DEC_STATUS_ERR_COUNT_SHIFT 16
+
+#define HWSTATUS_CMD 0x50
+#define HWSTATUS_MASK 0x54
+#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24)
+#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16)
+#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8)
+#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0)
+
+#define BCH_CONFIG 0xcc
+#define BCH_ENABLE BIT(0)
+#define BCH_TVAL_4 (0 << 4)
+#define BCH_TVAL_8 (1 << 4)
+#define BCH_TVAL_14 (2 << 4)
+#define BCH_TVAL_16 (3 << 4)
+
+#define DEC_STAT_RESULT 0xd0
+#define DEC_STAT_BUF 0xd4
+#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000
+#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24
+#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000
+#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16
+#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00
+#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8
+
+#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off))
+
+#define SKIP_SPARE_BYTES 4
+#define BITS_PER_STEP_RS 18
+#define BITS_PER_STEP_BCH 13
+
+#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
+#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY
+#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \
+ HWSTATUS_RDSTATUS_VALUE(0) | \
+ HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
+ HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
+
+struct tegra_nand_controller {
+ struct nand_hw_control controller;
+ struct device *dev;
+ void __iomem *regs;
+ int irq;
+ struct clk *clk;
+ struct completion command_complete;
+ struct completion dma_complete;
+ bool last_read_error;
+ int cur_cs;
+ struct nand_chip *chip;
+};
+
+struct tegra_nand_chip {
+ struct nand_chip chip;
+ struct gpio_desc *wp_gpio;
+ struct mtd_oob_region tag;
+ struct mtd_oob_region ecc;
+ u32 config;
+ u32 config_ecc;
+ u32 bch_config;
+ int cs[1];
+};
+
+static inline struct tegra_nand_controller *to_tegra_ctrl(
+ struct nand_hw_control *hw_ctrl)
+{
+ return container_of(hw_ctrl, struct tegra_nand_controller, controller);
+}
+
+static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
+{
+ return container_of(chip, struct tegra_nand_chip, chip);
+}
+
+static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
+ BITS_PER_BYTE);
+
+ if (section > 0)
+ return -ERANGE;
+
+ oobregion->offset = SKIP_SPARE_BYTES;
+ oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
+
+ return 0;
+}
+
+static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
+ BITS_PER_BYTE);
+
+ if (section > 0)
+ return -ERANGE;
+
+ oobregion->offset = SKIP_SPARE_BYTES +
+ round_up(bytes_per_step * chip->ecc.steps, 4);
+ oobregion->length = mtd->oobsize - oobregion->offset;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
+ .ecc = tegra_nand_ooblayout_rs_ecc,
+ .free = tegra_nand_ooblayout_rs_free,
+};
+
+static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
+ BITS_PER_BYTE);
+
+ if (section > 0)
+ return -ERANGE;
+
+ oobregion->offset = SKIP_SPARE_BYTES;
+ oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
+
+ return 0;
+}
+
+static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
+ BITS_PER_BYTE);
+
+ if (section > 0)
+ return -ERANGE;
+
+ oobregion->offset = SKIP_SPARE_BYTES +
+ round_up(bytes_per_step * chip->ecc.steps, 4);
+ oobregion->length = mtd->oobsize - oobregion->offset;
+
+ return 0;
+}
+
+/*
+ * Layout with tag bytes is
+ *
+ * --------------------------------------------------------------------------
+ * | main area | skip bytes | tag bytes | parity | .. |
+ * --------------------------------------------------------------------------
+ *
+ * If not tag bytes are written, parity moves right after skip bytes!
+ */
+static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
+ .ecc = tegra_nand_ooblayout_bch_ecc,
+ .free = tegra_nand_ooblayout_bch_free,
+};
+
+static irqreturn_t tegra_nand_irq(int irq, void *data)
+{
+ struct tegra_nand_controller *ctrl = data;
+ u32 isr, dma;
+
+ isr = readl_relaxed(ctrl->regs + ISR);
+ dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
+ dev_dbg(ctrl->dev, "isr %08x\n", isr);
+
+ if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
+ return IRQ_NONE;
+
+ /*
+ * The bit name is somewhat missleading: This is also set when
+ * HW ECC was successful. The data sheet states:
+ * Correctable OR Un-correctable errors occurred in the DMA transfer...
+ */
+ if (isr & ISR_CORRFAIL_ERR)
+ ctrl->last_read_error = true;
+
+ if (isr & ISR_CMD_DONE)
+ complete(&ctrl->command_complete);
+
+ if (isr & ISR_UND)
+ dev_err(ctrl->dev, "FIFO underrun\n");
+
+ if (isr & ISR_OVR)
+ dev_err(ctrl->dev, "FIFO overrun\n");
+
+ /* handle DMA interrupts */
+ if (dma & DMA_MST_CTRL_IS_DONE) {
+ writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
+ complete(&ctrl->dma_complete);
+ }
+
+ /* clear interrupts */
+ writel_relaxed(isr, ctrl->regs + ISR);
+
+ return IRQ_HANDLED;
+}
+
+static const char * const tegra_nand_reg_names[] = {
+ "COMMAND",
+ "STATUS",
+ "ISR",
+ "IER",
+ "CONFIG",
+ "TIMING",
+ NULL,
+ "TIMING2",
+ "CMD_REG1",
+ "CMD_REG2",
+ "ADDR_REG1",
+ "ADDR_REG2",
+ "DMA_MST_CTRL",
+ "DMA_CFG_A",
+ "DMA_CFG_B",
+ "FIFO_CTRL",
+};
+
+static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
+{
+ u32 reg;
+ int i;
+
+ dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
+ for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
+ const char *reg_name = tegra_nand_reg_names[i];
+
+ if (!reg_name)
+ continue;
+
+ reg = readl_relaxed(ctrl->regs + (i * 4));
+ dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
+ }
+}
+
+static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
+{
+ u32 isr, dma;
+
+ disable_irq(ctrl->irq);
+
+ /* Abort current command/DMA operation */
+ writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
+ writel_relaxed(0, ctrl->regs + COMMAND);
+
+ /* clear interrupts */
+ isr = readl_relaxed(ctrl->regs + ISR);
+ writel_relaxed(isr, ctrl->regs + ISR);
+ dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
+ writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
+
+ reinit_completion(&ctrl->command_complete);
+ reinit_completion(&ctrl->dma_complete);
+
+ enable_irq(ctrl->irq);
+}
+
+static int tegra_nand_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ const struct nand_op_instr *instr_data_in = NULL;
+ struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+ unsigned int op_id, size = 0, offset = 0;
+ bool first_cmd = true;
+ u32 reg, cmd = 0;
+ int ret;
+
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+ unsigned int naddrs, i;
+ const u8 *addrs;
+ u32 addr1 = 0, addr2 = 0;
+
+ instr = &subop->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ if (first_cmd) {
+ cmd |= COMMAND_CLE;
+ writel_relaxed(instr->ctx.cmd.opcode,
+ ctrl->regs + CMD_REG1);
+ } else {
+ cmd |= COMMAND_SEC_CMD;
+ writel_relaxed(instr->ctx.cmd.opcode,
+ ctrl->regs + CMD_REG2);
+ }
+ first_cmd = false;
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ addrs = &instr->ctx.addr.addrs[offset];
+
+ cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
+ for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+ addr1 |= *addrs++ << (BITS_PER_BYTE * i);
+ naddrs -= i;
+ for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+ addr2 |= *addrs++ << (BITS_PER_BYTE * i);
+
+ writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
+ writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ size = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+
+ cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
+ COMMAND_RX | COMMAND_A_VALID;
+
+ instr_data_in = instr;
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ size = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+
+ cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
+ COMMAND_TX | COMMAND_A_VALID;
+ memcpy(®, instr->ctx.data.buf.out + offset, size);
+
+ writel_relaxed(reg, ctrl->regs + RESP);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ cmd |= COMMAND_RBSY_CHK;
+ break;
+ }
+ }
+
+ cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
+ writel_relaxed(cmd, ctrl->regs + COMMAND);
+ ret = wait_for_completion_timeout(&ctrl->command_complete,
+ msecs_to_jiffies(500));
+ if (!ret) {
+ dev_err(ctrl->dev, "COMMAND timeout\n");
+ tegra_nand_dump_reg(ctrl);
+ tegra_nand_controller_abort(ctrl);
+ return -ETIMEDOUT;
+ }
+
+ if (instr_data_in) {
+ reg = readl_relaxed(ctrl->regs + RESP);
+ memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size);
+ }
+
+ return 0;
+}
+
+static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
+ NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
+ );
+
+static int tegra_nand_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
+ check_only);
+}
+
+static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct tegra_nand_chip *nand = to_tegra_chip(chip);
+ struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+
+ if (die_nr < 0 || die_nr > 1) {
+ ctrl->cur_cs = -1;
+ return;
+ }
+
+ ctrl->cur_cs = nand->cs[die_nr];
+}
+
+static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
+ struct nand_chip *chip, bool enable)
+{
+ struct tegra_nand_chip *nand = to_tegra_chip(chip);
+
+ if (chip->ecc.algo == NAND_ECC_BCH && enable)
+ writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
+ else
+ writel_relaxed(0, ctrl->regs + BCH_CONFIG);
+
+ if (enable)
+ writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
+ else
+ writel_relaxed(nand->config, ctrl->regs + CONFIG);
+}
+
+static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+ void *buf, void *oob_buf, int oob_len, int page,
+ bool read)
+{
+ struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+ enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
+ dma_addr_t dma_addr = 0, dma_addr_oob = 0;
+ u32 addr1, cmd, dma_ctrl;
+ int ret;
+
+ if (read) {
+ writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
+ writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
+ } else {
+ writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
+ writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
+ }
+ cmd = COMMAND_CLE | COMMAND_SEC_CMD;
+
+ /* Lower 16-bits are column, by default 0 */
+ addr1 = page << 16;
+
+ if (!buf)
+ addr1 |= mtd->writesize;
+ writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
+
+ if (chip->options & NAND_ROW_ADDR_3) {
+ writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
+ cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
+ } else {
+ cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
+ }
+
+ if (buf) {
+ dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
+ ret = dma_mapping_error(ctrl->dev, dma_addr);
+ if (ret) {
+ dev_err(ctrl->dev, "dma mapping error\n");
+ return -EINVAL;
+ }
+
+ writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
+ writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
+ }
+
+ if (oob_buf) {
+ dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
+ dir);
+ ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
+ if (ret) {
+ dev_err(ctrl->dev, "dma mapping error\n");
+ ret = -EINVAL;
+ goto err_unmap_dma_page;
+ }
+
+ writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
+ writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
+ }
+
+ dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
+ DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
+ DMA_MST_CTRL_BURST_16;
+
+ if (buf)
+ dma_ctrl |= DMA_MST_CTRL_EN_A;
+ if (oob_buf)
+ dma_ctrl |= DMA_MST_CTRL_EN_B;
+
+ if (read)
+ dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
+ else
+ dma_ctrl |= DMA_MST_CTRL_OUT;
+
+ writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
+
+ cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
+ COMMAND_CE(ctrl->cur_cs);
+
+ if (buf)
+ cmd |= COMMAND_A_VALID;
+ if (oob_buf)
+ cmd |= COMMAND_B_VALID;
+
+ if (read)
+ cmd |= COMMAND_RX;
+ else
+ cmd |= COMMAND_TX | COMMAND_AFT_DAT;
+
+ writel_relaxed(cmd, ctrl->regs + COMMAND);
+
+ ret = wait_for_completion_timeout(&ctrl->command_complete,
+ msecs_to_jiffies(500));
+ if (!ret) {
+ dev_err(ctrl->dev, "COMMAND timeout\n");
+ tegra_nand_dump_reg(ctrl);
+ tegra_nand_controller_abort(ctrl);
+ ret = -ETIMEDOUT;
+ goto err_unmap_dma;
+ }
+
+ ret = wait_for_completion_timeout(&ctrl->dma_complete,
+ msecs_to_jiffies(500));
+ if (!ret) {
+ dev_err(ctrl->dev, "DMA timeout\n");
+ tegra_nand_dump_reg(ctrl);
+ tegra_nand_controller_abort(ctrl);
+ ret = -ETIMEDOUT;
+ goto err_unmap_dma;
+ }
+ ret = 0;
+
+err_unmap_dma:
+ if (oob_buf)
+ dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
+err_unmap_dma_page:
+ if (buf)
+ dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
+
+ return ret;
+}
+
+static int tegra_nand_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ void *oob_buf = oob_required ? chip->oob_poi : NULL;
+
+ return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
+ mtd->oobsize, page, true);
+}
+
+static int tegra_nand_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf, int oob_required,
+ int page)
+{
+ void *oob_buf = oob_required ? chip->oob_poi : NULL;
+
+ return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
+ mtd->oobsize, page, false);
+}
+
+static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
+ mtd->oobsize, page, true);
+}
+
+static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
+ mtd->oobsize, page, false);
+}
+
+static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+ struct tegra_nand_chip *nand = to_tegra_chip(chip);
+ void *oob_buf = oob_required ? chip->oob_poi : NULL;
+ u32 dec_stat, max_corr_cnt;
+ unsigned long fail_sec_flag;
+ int ret;
+
+ tegra_nand_hw_ecc(ctrl, chip, true);
+ ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, nand->tag.length,
+ page, true);
+ tegra_nand_hw_ecc(ctrl, chip, false);
+ if (ret)
+ return ret;
+
+ /* No correctable or un-correctable errors, page must have 0 bitflips */
+ if (!ctrl->last_read_error)
+ return 0;
+
+ /*
+ * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
+ * which contains information for all ECC selections.
+ *
+ * Note that since we do not use Command Queues DEC_RESULT does not
+ * state the number of pages we can read from the DEC_STAT_BUF. But
+ * since CORRFAIL_ERR did occur during page read we do have a valid
+ * result in DEC_STAT_BUF.
+ */
+ ctrl->last_read_error = false;
+ dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
+
+ fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
+ DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
+
+ max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
+ DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
+
+ if (fail_sec_flag) {
+ int bit, max_bitflips = 0;
+
+ /*
+ * Since we do not support subpage writes, a complete page
+ * is either written or not. We can take a shortcut here by
+ * checking wheather any of the sector has been successful
+ * read. If at least one sectors has been read successfully,
+ * the page must have been a written previously. It cannot
+ * be an erased page.
+ *
+ * E.g. controller might return fail_sec_flag with 0x4, which
+ * would mean only the third sector failed to correct. The
+ * page must have been written and the third sector is really
+ * not correctable anymore.
+ */
+ if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
+ mtd->ecc_stats.failed += hweight8(fail_sec_flag);
+ return max_corr_cnt;
+ }
+
+ /*
+ * All sectors failed to correct, but the ECC isn't smart
+ * enough to figure out if a page is really just erased.
+ * Read OOB data and check whether data/OOB is completely
+ * erased or if error correction just failed for all sub-
+ * pages.
+ */
+ ret = tegra_nand_read_oob(mtd, chip, page);
+ if (ret < 0)
+ return ret;
+
+ for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
+ u8 *data = buf + (chip->ecc.size * bit);
+ u8 *oob = chip->oob_poi + nand->ecc.offset +
+ (chip->ecc.bytes * bit);
+
+ ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
+ oob, chip->ecc.bytes,
+ NULL, 0,
+ chip->ecc.strength);
+ if (ret < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += ret;
+ max_bitflips = max(ret, max_bitflips);
+ }
+ }
+
+ return max_t(unsigned int, max_corr_cnt, max_bitflips);
+ } else {
+ int corr_sec_flag;
+
+ corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
+ DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
+
+ /*
+ * The value returned in the register is the maximum of
+ * bitflips encountered in any of the ECC regions. As there is
+ * no way to get the number of bitflips in a specific regions
+ * we are not able to deliver correct stats but instead
+ * overestimate the number of corrected bitflips by assuming
+ * that all regions where errors have been corrected
+ * encountered the maximum number of bitflips.
+ */
+ mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
+
+ return max_corr_cnt;
+ }
+}
+
+static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf, int oob_required,
+ int page)
+{
+ struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+ struct tegra_nand_chip *nand = to_tegra_chip(chip);
+ void *oob_buf = oob_required ? chip->oob_poi : NULL;
+ int ret;
+
+ tegra_nand_hw_ecc(ctrl, chip, true);
+ ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
+ nand->tag.length, page, false);
+ tegra_nand_hw_ecc(ctrl, chip, false);
+
+ return ret;
+}
+
+static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
+ const struct nand_sdr_timings *timings)
+{
+ /*
+ * The period (and all other timings in this function) is in ps,
+ * so need to take care here to avoid integer overflows.
+ */
+ unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
+ unsigned int period = DIV_ROUND_UP(1000000, rate);
+ u32 val, reg = 0;
+
+ val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
+ timings->tRC_min), period);
+ reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
+
+ val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
+ max(timings->tALS_min, timings->tALH_min)),
+ period);
+ reg |= TIMING_TCS(OFFSET(val, 2));
+
+ val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
+ period);
+ reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
+
+ reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
+ reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
+ reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
+ reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
+ reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
+
+ writel_relaxed(reg, ctrl->regs + TIMING_1);
+
+ val = DIV_ROUND_UP(timings->tADL_min, period);
+ reg = TIMING_TADL(OFFSET(val, 3));
+
+ writel_relaxed(reg, ctrl->regs + TIMING_2);
+}
+
+static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+ const struct nand_data_interface *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+ const struct nand_sdr_timings *timings;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return PTR_ERR(timings);
+
+ if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ tegra_nand_setup_timing(ctrl, timings);
+
+ return 0;
+}
+
+static const int rs_strength_bootable[] = { 4 };
+static const int rs_strength[] = { 4, 6, 8 };
+static const int bch_strength_bootable[] = { 8, 16 };
+static const int bch_strength[] = { 4, 8, 14, 16 };
+
+static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
+ int strength_len, int bits_per_step,
+ int oobsize)
+{
+ bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
+ int i;
+
+ /*
+ * Loop through available strengths. Backwards in case we try to
+ * maximize the BCH strength.
+ */
+ for (i = 0; i < strength_len; i++) {
+ int strength_sel, bytes_per_step, bytes_per_page;
+
+ if (maximize) {
+ strength_sel = strength[strength_len - i - 1];
+ } else {
+ strength_sel = strength[i];
+
+ if (strength_sel < chip->ecc_strength_ds)
+ continue;
+ }
+
+ bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
+ BITS_PER_BYTE);
+ bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
+
+ /* Check whether strength fits OOB */
+ if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
+ return strength_sel;
+ }
+
+ return -EINVAL;
+}
+
+static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
+{
+ const int *strength;
+ int strength_len, bits_per_step;
+
+ switch (chip->ecc.algo) {
+ case NAND_ECC_RS:
+ bits_per_step = BITS_PER_STEP_RS;
+ if (chip->options & NAND_IS_BOOT_MEDIUM) {
+ strength = rs_strength_bootable;
+ strength_len = ARRAY_SIZE(rs_strength_bootable);
+ } else {
+ strength = rs_strength;
+ strength_len = ARRAY_SIZE(rs_strength);
+ }
+ break;
+ case NAND_ECC_BCH:
+ bits_per_step = BITS_PER_STEP_BCH;
+ if (chip->options & NAND_IS_BOOT_MEDIUM) {
+ strength = bch_strength_bootable;
+ strength_len = ARRAY_SIZE(bch_strength_bootable);
+ } else {
+ strength = bch_strength;
+ strength_len = ARRAY_SIZE(bch_strength);
+ }
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return tegra_nand_get_strength(chip, strength, strength_len,
+ bits_per_step, oobsize);
+}
+
+static int tegra_nand_chips_init(struct device *dev,
+ struct tegra_nand_controller *ctrl)
+{
+ struct device_node *np = dev->of_node;
+ struct device_node *np_nand;
+ int nsels, nchips = of_get_child_count(np);
+ struct tegra_nand_chip *nand;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ int bits_per_step;
+ int ret;
+ u32 cs;
+
+ if (nchips != 1) {
+ dev_err(dev, "Currently only one NAND chip supported\n");
+ return -EINVAL;
+ }
+
+ np_nand = of_get_next_child(np, NULL);
+
+ nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
+ if (nsels != 1) {
+ dev_err(dev, "Missing/invalid reg property\n");
+ return -EINVAL;
+ }
+
+ /* Retrieve CS id, currently only single die NAND supported */
+ ret = of_property_read_u32(np_nand, "reg", &cs);
+ if (ret) {
+ dev_err(dev, "could not retrieve reg property: %d\n", ret);
+ return ret;
+ }
+
+ nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
+ if (!nand)
+ return -ENOMEM;
+
+ nand->cs[0] = cs;
+
+ nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
+
+ if (IS_ERR(nand->wp_gpio)) {
+ ret = PTR_ERR(nand->wp_gpio);
+ dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
+ return ret;
+ }
+
+ chip = &nand->chip;
+ chip->controller = &ctrl->controller;
+
+ mtd = nand_to_mtd(chip);
+
+ mtd->dev.parent = dev;
+ mtd->owner = THIS_MODULE;
+
+ nand_set_flash_node(chip, np_nand);
+
+ if (!mtd->name)
+ mtd->name = "tegra_nand";
+
+ chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
+ chip->exec_op = tegra_nand_exec_op;
+ chip->select_chip = tegra_nand_select_chip;
+ chip->setup_data_interface = tegra_nand_setup_data_interface;
+
+ ret = nand_scan_ident(mtd, 1, NULL);
+ if (ret)
+ return ret;
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+
+ chip->ecc.mode = NAND_ECC_HW;
+ chip->ecc.size = 512;
+ chip->ecc.steps = mtd->writesize / chip->ecc.size;
+ if (chip->ecc_step_ds != 512) {
+ dev_err(dev, "Unsupported step size %d\n", chip->ecc_step_ds);
+ return -EINVAL;
+ }
+
+ chip->ecc.read_page = tegra_nand_read_page_hwecc;
+ chip->ecc.write_page = tegra_nand_write_page_hwecc;
+ chip->ecc.read_page_raw = tegra_nand_read_page_raw;
+ chip->ecc.write_page_raw = tegra_nand_write_page_raw;
+ chip->ecc.read_oob = tegra_nand_read_oob;
+ chip->ecc.write_oob = tegra_nand_write_oob;
+
+ if (chip->options & NAND_BUSWIDTH_16)
+ nand->config |= CONFIG_BUS_WIDTH_16;
+
+ if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
+ if (mtd->writesize < 2048)
+ chip->ecc.algo = NAND_ECC_RS;
+ else
+ chip->ecc.algo = NAND_ECC_BCH;
+ }
+
+ if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
+ dev_err(dev, "BCH supportes 2K or 4K page size only\n");
+ return -EINVAL;
+ }
+
+ if (!chip->ecc.strength) {
+ ret = tegra_nand_select_strength(chip, mtd->oobsize);
+ if (ret < 0) {
+ dev_err(dev, "No valid strenght found, minimum %d\n",
+ chip->ecc_strength_ds);
+ return ret;
+ }
+
+ chip->ecc.strength = ret;
+ }
+
+ nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
+ CONFIG_SKIP_SPARE_SIZE_4;
+
+ switch (chip->ecc.algo) {
+ case NAND_ECC_RS:
+ bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
+ mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
+ nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
+ CONFIG_ERR_COR;
+ switch (chip->ecc.strength) {
+ case 4:
+ nand->config_ecc |= CONFIG_TVAL_4;
+ break;
+ case 6:
+ nand->config_ecc |= CONFIG_TVAL_6;
+ break;
+ case 8:
+ nand->config_ecc |= CONFIG_TVAL_8;
+ break;
+ default:
+ dev_err(dev, "ECC strength %d not supported\n",
+ chip->ecc.strength);
+ return -EINVAL;
+ }
+ break;
+ case NAND_ECC_BCH:
+ bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
+ mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
+ nand->bch_config = BCH_ENABLE;
+ switch (chip->ecc.strength) {
+ case 4:
+ nand->bch_config |= BCH_TVAL_4;
+ break;
+ case 8:
+ nand->bch_config |= BCH_TVAL_8;
+ break;
+ case 14:
+ nand->bch_config |= BCH_TVAL_14;
+ break;
+ case 16:
+ nand->bch_config |= BCH_TVAL_16;
+ break;
+ default:
+ dev_err(dev, "ECC strength %d not supported\n",
+ chip->ecc.strength);
+ return -EINVAL;
+ }
+ break;
+ default:
+ dev_err(dev, "ECC algorithm not supported\n");
+ return -EINVAL;
+ }
+
+ dev_info(dev, "Using %s with strength %d per 512 byte step\n",
+ chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
+ chip->ecc.strength);
+
+ chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
+
+ switch (mtd->writesize) {
+ case 256:
+ nand->config |= CONFIG_PS_256;
+ break;
+ case 512:
+ nand->config |= CONFIG_PS_512;
+ break;
+ case 1024:
+ nand->config |= CONFIG_PS_1024;
+ break;
+ case 2048:
+ nand->config |= CONFIG_PS_2048;
+ break;
+ case 4096:
+ nand->config |= CONFIG_PS_4096;
+ break;
+ default:
+ dev_err(dev, "Unsupported writesize %d\n", mtd->writesize);
+ return -ENODEV;
+ }
+
+ /* Store complete configuration in config_ecc */
+ nand->config_ecc |= nand->config;
+
+ /* Non-HW ECC read/writes complete OOB */
+ nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
+ writel_relaxed(nand->config, ctrl->regs + CONFIG);
+
+ ret = nand_scan_tail(mtd);
+ if (ret)
+ return ret;
+
+ /* Store ECC/tag layout when using HW ECC */
+ mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
+ mtd_ooblayout_free(mtd, 0, &nand->tag);
+ nand->config_ecc |= CONFIG_TAG_BYTE_SIZE(nand->tag.length - 1);
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "Failed to register mtd device: %d\n", ret);
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ ctrl->chip = chip;
+
+ return 0;
+}
+
+static int tegra_nand_probe(struct platform_device *pdev)
+{
+ struct reset_control *rst;
+ struct tegra_nand_controller *ctrl;
+ struct resource *res;
+ int err = 0;
+
+ ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return -ENOMEM;
+
+ ctrl->dev = &pdev->dev;
+ nand_hw_control_init(&ctrl->controller);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(ctrl->regs))
+ return PTR_ERR(ctrl->regs);
+
+ rst = devm_reset_control_get(&pdev->dev, "nand");
+ if (IS_ERR(rst))
+ return PTR_ERR(rst);
+
+ ctrl->clk = devm_clk_get(&pdev->dev, "nand");
+ if (IS_ERR(ctrl->clk))
+ return PTR_ERR(ctrl->clk);
+
+ err = clk_prepare_enable(ctrl->clk);
+ if (err)
+ return err;
+
+ err = reset_control_reset(rst);
+ if (err) {
+ dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
+ goto err_disable_clk;
+ }
+
+ writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
+ writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
+ writel_relaxed(INT_MASK, ctrl->regs + IER);
+
+ init_completion(&ctrl->command_complete);
+ init_completion(&ctrl->dma_complete);
+
+ ctrl->irq = platform_get_irq(pdev, 0);
+ err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
+ dev_name(&pdev->dev), ctrl);
+ if (err) {
+ dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
+ goto err_disable_clk;
+ }
+
+ writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
+
+ err = tegra_nand_chips_init(ctrl->dev, ctrl);
+ if (err)
+ goto err_disable_clk;
+
+ platform_set_drvdata(pdev, ctrl);
+
+ return 0;
+
+err_disable_clk:
+ clk_disable_unprepare(ctrl->clk);
+ return err;
+}
+
+static int tegra_nand_remove(struct platform_device *pdev)
+{
+ struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
+
+ nand_release(nand_to_mtd(ctrl->chip));
+
+ clk_disable_unprepare(ctrl->clk);
+
+ return 0;
+}
+
+static const struct of_device_id tegra_nand_of_match[] = {
+ { .compatible = "nvidia,tegra20-nand" },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
+
+static struct platform_driver tegra_nand_driver = {
+ .driver = {
+ .name = "tegra-nand",
+ .of_match_table = tegra_nand_of_match,
+ },
+ .probe = tegra_nand_probe,
+ .remove = tegra_nand_remove,
+};
+module_platform_driver(tegra_nand_driver);
+
+MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
+MODULE_AUTHOR("Thierry Reding <[email protected]>");
+MODULE_AUTHOR("Lucas Stach <[email protected]>");
+MODULE_AUTHOR("Stefan Agner <[email protected]>");
+MODULE_LICENSE("GPL v2");
--
2.17.1
On Sun, 17 Jun 2018 22:45:59 +0200
Stefan Agner <[email protected]> wrote:
> Changes definitly calm down, most noteably probably the changes
> around checking whether a page is empty if the stack reports ECC
> errors.. I verified the code using raw nandwrites with OOB to
> simulate an empty page which has some bits flipped in the OOB area,
> everthing seems to work as I would expect it.
>
> For now I do not check extra OOB bytes since those are at variable
> locations depending on algorithm.
Hm, if you expose them as free OOB bytes, you should also check them,
otherwise you might end up with corrupted data without noticing it. Note
that, depending on whether those free OOB bytes are ECC-protected or
not, you should change the way you do the check:
- non-protected OOB bytes: all bytes should be 0xff (no bitflips
allowed)
- data+free OOB bytes protected by the same ECC bytes: you should pass
the free OOB bytes buffer to nand_check_erased_ecc_chunk() along with
the data and ECC buffers
- free OOB bytes have their own ECC bytes: call
nand_check_erased_ecc_chunk() separately and pass it the ECC + free
OOB buffers.
>
> --
> Stefan
>
> Changes since v1:
> - Split controller and NAND chip structure
> - Add BCH support
> - Allow to select algorithm and strength using device tree
> - Improve HW ECC error reporting and use DEC_STATUS_BUF only
> - Use SPDX license identifier
> - Use per algorithm mtd_ooblayout_ops
> - Use setup_data_interface callback for NAND timing configuration
>
> Changes since v2:
> - Set clock rate using assigned-clocks
> - Use BIT() macro
> - Fix and improve timing calculation
> - Improve ECC error handling
> - Store OOB layout for tag area in Tegra chip structure
> - Update/fix bindings
> - Use more specific variable names (replace "value")
> - Introduce nand-is-boot-medium
> - Choose sensible ECC strenght automatically
> - Use wait_for_completion_timeout
> - Print register dump on completion timeout
> - Unify tegra_nand_(read|write)_page in tegra_nand_page_xfer
>
> Changes since v3:
> - Implement tegra_nand_(read|write)_raw using DMA
> - Implement tegra_nand_(read|write)_oob using DMA
> - Name registers according to Tegra 2 Technical Reference Manual (v02p)
> - Use wait_for_completion_io_timeout to account for IO
> - Get chip select id from device tree reg property
> - Clear interrupts and reinit wait queues in case command/DMA times out
> - Set default MTD name after nand_set_flash_node
> - Move MODULE_DEVICE_TABLE after declaration of tegra_nand_of_match
> - Make (rs|bch)_strength static
>
> Changes since v4:
> - Pass OOB area to nand_check_erased_ecc_chunk
> - Pass algorithm specific bits_per_step to tegra_nand_get_strength
> - Store ECC layout in chip structure
> - Fix pointer assignment (use NULL)
> - Removed obsolete header delay.h
> - Fixed newlines
> - Use non-_io variant of wait_for_completion_timeout
>
> Lucas Stach (1):
> ARM: dts: tegra: add Tegra20 NAND flash controller node
>
> Stefan Agner (5):
> mtd: rawnand: add Reed-Solomon error correction algorithm
> mtd: rawnand: add an option to specify NAND chip as a boot device
> mtd: rawnand: tegra: add devicetree binding
> mtd: rawnand: add NVIDIA Tegra NAND Flash controller driver
> ARM: dts: tegra: enable NAND flash on Colibri T20
>
> .../devicetree/bindings/mtd/nand.txt | 6 +-
> .../bindings/mtd/nvidia-tegra20-nand.txt | 64 +
> MAINTAINERS | 7 +
> arch/arm/boot/dts/tegra20-colibri-512.dtsi | 16 +
> arch/arm/boot/dts/tegra20.dtsi | 15 +
> drivers/mtd/nand/raw/Kconfig | 6 +
> drivers/mtd/nand/raw/Makefile | 1 +
> drivers/mtd/nand/raw/nand_base.c | 4 +
> drivers/mtd/nand/raw/tegra_nand.c | 1268 +++++++++++++++++
> include/linux/mtd/rawnand.h | 7 +
> 10 files changed, 1393 insertions(+), 1 deletion(-)
> create mode 100644 Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
>
On 18.06.2018 11:58, Boris Brezillon wrote:
> On Sun, 17 Jun 2018 22:45:59 +0200
> Stefan Agner <[email protected]> wrote:
>
>> Changes definitly calm down, most noteably probably the changes
>> around checking whether a page is empty if the stack reports ECC
>> errors.. I verified the code using raw nandwrites with OOB to
>> simulate an empty page which has some bits flipped in the OOB area,
>> everthing seems to work as I would expect it.
>>
>> For now I do not check extra OOB bytes since those are at variable
>> locations depending on algorithm.
>
> Hm, if you expose them as free OOB bytes, you should also check them,
> otherwise you might end up with corrupted data without noticing it. Note
> that, depending on whether those free OOB bytes are ECC-protected or
> not, you should change the way you do the check:
>
> - non-protected OOB bytes: all bytes should be 0xff (no bitflips
> allowed)
> - data+free OOB bytes protected by the same ECC bytes: you should pass
> the free OOB bytes buffer to nand_check_erased_ecc_chunk() along with
> the data and ECC buffers
> - free OOB bytes have their own ECC bytes: call
> nand_check_erased_ecc_chunk() separately and pass it the ECC + free
> OOB buffers.
This graphic taken from the public Tegra 2 Technical Reference Manual is
quite useful:
https://imgur.com/a/0Hqzbkc
Tegra basically has all of the above, which makes the whole business
really tricky...
I am not sure if we really could do variant 1, non-protected OOB, but
since we have the option of protected OOB, we probably anyway would do
that.
RS/Hamming implements variant 3.
BCH implements variant 2. OOB is protected with the last data buffer.
So this would require a algorithm depending implementation, which is
probably not a big deal.
But there is one more issue with BCH: Only if extra data are actually
transferred, tag space is actually allocated. If no tag bytes are
transferred, parity follows immediately skip bytes. As far as I know the
MTD stacks OOB layout assumes that is always the same layout, no matter
whether we write extra OOB data or not. For the Tegra NAND controller
this would mean that we have to always transfer tag bytes and therefor
penalize the use case we are most interested in (which is no extra OOB
bytes, since UBI does not make use of it)...
Furthermore I realized that testing is not easily possible since
nandwrite with --oob seems not to make use of "oob_required" in the main
page write but issues a separate OOB write command. I did not found a
way to issue a write from user space which sets oob_required...
Due to all this I rather prefer to not implement extra OOB support at
this point.
How do I do this properly? Set mtd_ooblayout_ops.free to NULL?
--
Stefan
>
>>
>> --
>> Stefan
>>
>> Changes since v1:
>> - Split controller and NAND chip structure
>> - Add BCH support
>> - Allow to select algorithm and strength using device tree
>> - Improve HW ECC error reporting and use DEC_STATUS_BUF only
>> - Use SPDX license identifier
>> - Use per algorithm mtd_ooblayout_ops
>> - Use setup_data_interface callback for NAND timing configuration
>>
>> Changes since v2:
>> - Set clock rate using assigned-clocks
>> - Use BIT() macro
>> - Fix and improve timing calculation
>> - Improve ECC error handling
>> - Store OOB layout for tag area in Tegra chip structure
>> - Update/fix bindings
>> - Use more specific variable names (replace "value")
>> - Introduce nand-is-boot-medium
>> - Choose sensible ECC strenght automatically
>> - Use wait_for_completion_timeout
>> - Print register dump on completion timeout
>> - Unify tegra_nand_(read|write)_page in tegra_nand_page_xfer
>>
>> Changes since v3:
>> - Implement tegra_nand_(read|write)_raw using DMA
>> - Implement tegra_nand_(read|write)_oob using DMA
>> - Name registers according to Tegra 2 Technical Reference Manual (v02p)
>> - Use wait_for_completion_io_timeout to account for IO
>> - Get chip select id from device tree reg property
>> - Clear interrupts and reinit wait queues in case command/DMA times out
>> - Set default MTD name after nand_set_flash_node
>> - Move MODULE_DEVICE_TABLE after declaration of tegra_nand_of_match
>> - Make (rs|bch)_strength static
>>
>> Changes since v4:
>> - Pass OOB area to nand_check_erased_ecc_chunk
>> - Pass algorithm specific bits_per_step to tegra_nand_get_strength
>> - Store ECC layout in chip structure
>> - Fix pointer assignment (use NULL)
>> - Removed obsolete header delay.h
>> - Fixed newlines
>> - Use non-_io variant of wait_for_completion_timeout
>>
>> Lucas Stach (1):
>> ARM: dts: tegra: add Tegra20 NAND flash controller node
>>
>> Stefan Agner (5):
>> mtd: rawnand: add Reed-Solomon error correction algorithm
>> mtd: rawnand: add an option to specify NAND chip as a boot device
>> mtd: rawnand: tegra: add devicetree binding
>> mtd: rawnand: add NVIDIA Tegra NAND Flash controller driver
>> ARM: dts: tegra: enable NAND flash on Colibri T20
>>
>> .../devicetree/bindings/mtd/nand.txt | 6 +-
>> .../bindings/mtd/nvidia-tegra20-nand.txt | 64 +
>> MAINTAINERS | 7 +
>> arch/arm/boot/dts/tegra20-colibri-512.dtsi | 16 +
>> arch/arm/boot/dts/tegra20.dtsi | 15 +
>> drivers/mtd/nand/raw/Kconfig | 6 +
>> drivers/mtd/nand/raw/Makefile | 1 +
>> drivers/mtd/nand/raw/nand_base.c | 4 +
>> drivers/mtd/nand/raw/tegra_nand.c | 1268 +++++++++++++++++
>> include/linux/mtd/rawnand.h | 7 +
>> 10 files changed, 1393 insertions(+), 1 deletion(-)
>> create mode 100644 Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
>> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
>>
Hi Stefan,
On Mon, 18 Jun 2018 12:51:52 +0200
Stefan Agner <[email protected]> wrote:
> On 18.06.2018 11:58, Boris Brezillon wrote:
> > On Sun, 17 Jun 2018 22:45:59 +0200
> > Stefan Agner <[email protected]> wrote:
> >
> >> Changes definitly calm down, most noteably probably the changes
> >> around checking whether a page is empty if the stack reports ECC
> >> errors.. I verified the code using raw nandwrites with OOB to
> >> simulate an empty page which has some bits flipped in the OOB area,
> >> everthing seems to work as I would expect it.
> >>
> >> For now I do not check extra OOB bytes since those are at variable
> >> locations depending on algorithm.
> >
> > Hm, if you expose them as free OOB bytes, you should also check them,
> > otherwise you might end up with corrupted data without noticing it. Note
> > that, depending on whether those free OOB bytes are ECC-protected or
> > not, you should change the way you do the check:
> >
> > - non-protected OOB bytes: all bytes should be 0xff (no bitflips
> > allowed)
> > - data+free OOB bytes protected by the same ECC bytes: you should pass
> > the free OOB bytes buffer to nand_check_erased_ecc_chunk() along with
> > the data and ECC buffers
> > - free OOB bytes have their own ECC bytes: call
> > nand_check_erased_ecc_chunk() separately and pass it the ECC + free
> > OOB buffers.
>
> This graphic taken from the public Tegra 2 Technical Reference Manual is
> quite useful:
> https://imgur.com/a/0Hqzbkc
Thanks for sharing this doc.
>
> Tegra basically has all of the above, which makes the whole business
> really tricky...
I'm not sure. Are "Skip bytes" protected by "main data parity bytes"?
AFAICT, you have "Tag bytes" that fall in case #3 and "Remaining spare
bytes" that fall in case #1. If "Skip bytes" are protected by the "main
data parity bytes", then it falls in case #2, otherwise it probably
goes in case #1.
>
> I am not sure if we really could do variant 1, non-protected OOB, but
> since we have the option of protected OOB, we probably anyway would do
> that.
That's up to you, but in this case, you should not declare those bytes
as free (didn't check what is currently done in the driver).
>
> RS/Hamming implements variant 3.
It seems to be a mix of #1 and #3, but I'm not sure (see above).
>
> BCH implements variant 2.
I'd say it's a mix of #1 (skip + remaining bytes) and #2(tag bytes).
> OOB is protected with the last data buffer.
That would be weird, but maybe you're right. HW ECC engine usually
split the OOB area in X portions, X being the number of ECC steps needed
to cover a NAND page, and then have ECC bytes cover a sub-portion of
data+OOB.
For example, for a NAND page of 2k with 64 bytes of OOB, and assuming
the ECC step is 512bytes, you usually have something like:
[512(data)+8(protected-oob)+8(ecc)] x 4
>
> So this would require a algorithm depending implementation, which is
> probably not a big deal.
True.
>
> But there is one more issue with BCH: Only if extra data are actually
> transferred, tag space is actually allocated. If no tag bytes are
> transferred, parity follows immediately skip bytes. As far as I know the
> MTD stacks OOB layout assumes that is always the same layout, no matter
> whether we write extra OOB data or not. For the Tegra NAND controller
> this would mean that we have to always transfer tag bytes and therefor
> penalize the use case we are most interested in (which is no extra OOB
> bytes, since UBI does not make use of it)...
Hm, given the amount of tag bytes I don't think you'll have a huge
penalty, so I'd recommend always sending those bytes. Alternatively,
you could decide that you never want to have those tag bytes and expose
none of them.
>
> Furthermore I realized that testing is not easily possible since
> nandwrite with --oob seems not to make use of "oob_required" in the main
> page write but issues a separate OOB write command. I did not found a
> way to issue a write from user space which sets oob_required...
Maybe it's time to patch those tools. The ioctl exists, so it's just a
matter of using it in nandwrite/mtd-utils.
>
> Due to all this I rather prefer to not implement extra OOB support at
> this point.
I'm fine with that, but that means no JFFS2 support, as I think JFFS2
wants to place some of its metadata in the OOB area. Also, I fear it
will be a mess to add support for that kind of things without breaking
existing setup afterwards, so, by taking this decision you're pretty
much saying that this controller will never expose free OOB bytes.
That's not a problem from my PoV, but I want you to be aware of that.
>
> How do I do this properly? Set mtd_ooblayout_ops.free to NULL?
Just implement a dummy function that returns -ERANGE.
Regards,
Boris
Hi Boris,
On 18.06.2018 13:59, Boris Brezillon wrote:
> Hi Stefan,
>
> On Mon, 18 Jun 2018 12:51:52 +0200
> Stefan Agner <[email protected]> wrote:
>
>> On 18.06.2018 11:58, Boris Brezillon wrote:
>> > On Sun, 17 Jun 2018 22:45:59 +0200
>> > Stefan Agner <[email protected]> wrote:
>> >
>> >> Changes definitly calm down, most noteably probably the changes
>> >> around checking whether a page is empty if the stack reports ECC
>> >> errors.. I verified the code using raw nandwrites with OOB to
>> >> simulate an empty page which has some bits flipped in the OOB area,
>> >> everthing seems to work as I would expect it.
>> >>
>> >> For now I do not check extra OOB bytes since those are at variable
>> >> locations depending on algorithm.
>> >
>> > Hm, if you expose them as free OOB bytes, you should also check them,
>> > otherwise you might end up with corrupted data without noticing it. Note
>> > that, depending on whether those free OOB bytes are ECC-protected or
>> > not, you should change the way you do the check:
>> >
>> > - non-protected OOB bytes: all bytes should be 0xff (no bitflips
>> > allowed)
>> > - data+free OOB bytes protected by the same ECC bytes: you should pass
>> > the free OOB bytes buffer to nand_check_erased_ecc_chunk() along with
>> > the data and ECC buffers
>> > - free OOB bytes have their own ECC bytes: call
>> > nand_check_erased_ecc_chunk() separately and pass it the ECC + free
>> > OOB buffers.
>>
>> This graphic taken from the public Tegra 2 Technical Reference Manual is
>> quite useful:
>> https://imgur.com/a/0Hqzbkc
>
> Thanks for sharing this doc.
>
>>
>> Tegra basically has all of the above, which makes the whole business
>> really tricky...
>
> I'm not sure. Are "Skip bytes" protected by "main data parity bytes"?
>
> AFAICT, you have "Tag bytes" that fall in case #3 and "Remaining spare
> bytes" that fall in case #1. If "Skip bytes" are protected by the "main
> data parity bytes", then it falls in case #2, otherwise it probably
> goes in case #1.
>
Skip bytes are not protected. I think they are mainly meant to skip the
bad block marker. Only 4, 8, 12 or 16 bytes are supported.
>>
>> I am not sure if we really could do variant 1, non-protected OOB, but
>> since we have the option of protected OOB, we probably anyway would do
>> that.
>
> That's up to you, but in this case, you should not declare those bytes
> as free (didn't check what is currently done in the driver).
>
>>
>> RS/Hamming implements variant 3.
>
> It seems to be a mix of #1 and #3, but I'm not sure (see above).
>
>>
>> BCH implements variant 2.
>
> I'd say it's a mix of #1 (skip + remaining bytes) and #2(tag bytes).
>
>> OOB is protected with the last data buffer.
>
> That would be weird, but maybe you're right. HW ECC engine usually
> split the OOB area in X portions, X being the number of ECC steps needed
> to cover a NAND page, and then have ECC bytes cover a sub-portion of
> data+OOB.
>
> For example, for a NAND page of 2k with 64 bytes of OOB, and assuming
> the ECC step is 512bytes, you usually have something like:
>
> [512(data)+8(protected-oob)+8(ecc)] x 4
>
The TRM explicitly states so:
"BCH mode Error correction
- Error correction with involving spare only transfers is not supported.
ECC calculation of last sub-page includes tag data in spare area.
- Error correction with Main only transfers is supported.
- Maximum possible length of Tag data size is 252 bytes."
>>
>> So this would require a algorithm depending implementation, which is
>> probably not a big deal.
>
> True.
>
>>
>> But there is one more issue with BCH: Only if extra data are actually
>> transferred, tag space is actually allocated. If no tag bytes are
>> transferred, parity follows immediately skip bytes. As far as I know the
>> MTD stacks OOB layout assumes that is always the same layout, no matter
>> whether we write extra OOB data or not. For the Tegra NAND controller
>> this would mean that we have to always transfer tag bytes and therefor
>> penalize the use case we are most interested in (which is no extra OOB
>> bytes, since UBI does not make use of it)...
>
> Hm, given the amount of tag bytes I don't think you'll have a huge
> penalty, so I'd recommend always sending those bytes. Alternatively,
> you could decide that you never want to have those tag bytes and expose
> none of them.
>
>>
>> Furthermore I realized that testing is not easily possible since
>> nandwrite with --oob seems not to make use of "oob_required" in the main
>> page write but issues a separate OOB write command. I did not found a
>> way to issue a write from user space which sets oob_required...
>
> Maybe it's time to patch those tools. The ioctl exists, so it's just a
> matter of using it in nandwrite/mtd-utils.
>
>>
>> Due to all this I rather prefer to not implement extra OOB support at
>> this point.
>
> I'm fine with that, but that means no JFFS2 support, as I think JFFS2
> wants to place some of its metadata in the OOB area. Also, I fear it
> will be a mess to add support for that kind of things without breaking
> existing setup afterwards, so, by taking this decision you're pretty
> much saying that this controller will never expose free OOB bytes.
> That's not a problem from my PoV, but I want you to be aware of that.
>
We already operate without extra OOB byte support in our downstream BSP.
I'd rather have a easy upgrade path today...
Another issue I just realized: The boot ROM only supports BCH without
tag bytes... So at least the boot loader has to be written without tag
bytes.
>>
>> How do I do this properly? Set mtd_ooblayout_ops.free to NULL?
>
> Just implement a dummy function that returns -ERANGE.
>
Ok, I will go with this then.
Also, thanks for all your valuable feedback, really appreciated!
--
Stefan