2019-02-25 19:11:29

by Nick Crews

[permalink] [raw]
Subject: [PATCH v2] platform/chrome: Add Wilco EC Event Handling

This patch is meant to be applied on top of the current
for-next top of tree in the chrome/platform repo, at
https://git.kernel.org/pub/scm/linux/kernel/git/chrome-platform/linux.git/log/?h=for-next

The Wilco Embedded Controller can return extended events that
are not handled by standard ACPI objects. These events can
contain information about changes in EC controlled features,
such as the charger or battery getting plugged/unplugged.

These events are triggered with an ACPI Notify(0x90) and the
event data buffer is read through an ACPI method provided by
the BIOS which reads the event buffer from EC RAM.

These events are put into a queue which can be read by a userspace daemon
via a char device that implements read() and poll(). The char device
will appear at /dev/wilco_event{n}, where n is some integer.

This patch depends on a coreboot patch which adds the relevant
ACPI device, so this driver can pick it up:
https://review.coreboot.org/c/coreboot/+/31204

To test, run the simple python script from
https://gist.github.com/8a55050e353b7027ca3009074eec4200
to poll() and read() the node. You can generate events
in many ways, the easiest are to press fn+Esc or to
plug/unplug the battery (with the AC in).

I sent out an initial version of this driver a month ago,
available at https://lkml.org/lkml/2019/1/23/676
At that point, we were not sure about the requirements of the
driver, and reviewers were not pleased with the abuses of the
sysfs interface. In this version, we are more confident about
the needs of the userspace daemon that will use this driver,
and this driver addresses all of the previous concerns.

Changes in v2:
- Move sysfs node to /dev/wilco_ec{n}
- Userspace daemon should now use poll() to check for available events
- Userspace daemon should now use read() to pop an event from queue
- Keyboard events are no longer forwarded to the input subsystem
- The driver is a separate module
- There is a new ACPI device GOOG00D that the driver binds to, not the
old GOOG00C used by the core driver
- The actual ACPI command code changed from "^QSET" to "QSET"

Signed-off-by: Nick Crews <[email protected]>
---
drivers/platform/chrome/wilco_ec/Kconfig | 9 +
drivers/platform/chrome/wilco_ec/Makefile | 2 +
drivers/platform/chrome/wilco_ec/event.c | 511 ++++++++++++++++++++++
3 files changed, 522 insertions(+)
create mode 100644 drivers/platform/chrome/wilco_ec/event.c

diff --git a/drivers/platform/chrome/wilco_ec/Kconfig b/drivers/platform/chrome/wilco_ec/Kconfig
index 4a119ced4d0c..9812242663cd 100644
--- a/drivers/platform/chrome/wilco_ec/Kconfig
+++ b/drivers/platform/chrome/wilco_ec/Kconfig
@@ -18,3 +18,12 @@ config WILCO_EC_DEBUGFS
manipulation and allow for testing arbitrary commands. This
interface is intended for debug only and will not be present
on production devices.
+
+config WILCO_EC_EVENTS
+ tristate "Enable event forwarding from EC to userspace"
+ depends on WILCO_EC
+ help
+ If you say Y here, you get support for the EC to send events
+ (such as power state changes) to userspace. The EC sends the events
+ over ACPI, and a driver queues up the events to be read by a
+ userspace daemon from /dev/wilco_event using read() and poll().
diff --git a/drivers/platform/chrome/wilco_ec/Makefile b/drivers/platform/chrome/wilco_ec/Makefile
index 063e7fb4ea17..37452ab953de 100644
--- a/drivers/platform/chrome/wilco_ec/Makefile
+++ b/drivers/platform/chrome/wilco_ec/Makefile
@@ -4,3 +4,5 @@ wilco_ec-objs := core.o mailbox.o
obj-$(CONFIG_WILCO_EC) += wilco_ec.o
wilco_ec_debugfs-objs := debugfs.o
obj-$(CONFIG_WILCO_EC_DEBUGFS) += wilco_ec_debugfs.o
+wilco_ec_events-objs := event.o
+obj-$(CONFIG_WILCO_EC_EVENTS) += wilco_ec_events.o
diff --git a/drivers/platform/chrome/wilco_ec/event.c b/drivers/platform/chrome/wilco_ec/event.c
new file mode 100644
index 000000000000..48f637336920
--- /dev/null
+++ b/drivers/platform/chrome/wilco_ec/event.c
@@ -0,0 +1,511 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ACPI event handling for Wilco Embedded Controller
+ *
+ * Copyright 2019 Google LLC
+ *
+ * The Wilco Embedded Controller can return extended events that
+ * are not handled by standard ACPI objects. These events can
+ * contain information about changes in EC controlled features,
+ * such as the charger or battery getting plugged/unplugged.
+ *
+ * These events are triggered with an ACPI Notify(0x90) and the
+ * event data buffer is read through an ACPI method provided by
+ * the BIOS which reads the event buffer from EC RAM.
+ *
+ * These events are put into a queue which can be read by a userspace daemon
+ * via a char device that implements read() and poll(). The char device
+ * will appear at /dev/wilco_event{n}, where n is some integer.
+ *
+ * To test, run the simple python script from
+ * https://gist.github.com/11fa41edda69aa09e4a27f5f788d45ba
+ * to poll() and read() the node. You can generate events
+ * in many ways, the easiest are to press fn+Esc or to
+ * plug/unplug the battery (with the AC in).
+ */
+
+#include <linux/acpi.h>
+#include <linux/cdev.h>
+#include <linux/device.h>
+#include <linux/fs.h>
+#include <linux/idr.h>
+#include <linux/io.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/poll.h>
+#include <linux/uaccess.h>
+#include <linux/wait.h>
+
+/* ACPI Notify event code indicating event data is available. */
+#define EC_ACPI_NOTIFY_EVENT 0x90
+/* ACPI Method to execute to retrieve event data buffer from the EC. */
+#define EC_ACPI_GET_EVENT "QSET"
+/* Maximum number of words in event data returned by the EC. */
+#define EC_ACPI_MAX_EVENT_DATA 6
+#define EC_ACPI_MAX_EVENT_SIZE \
+ (sizeof(struct ec_event) + (EC_ACPI_MAX_EVENT_DATA) * sizeof(u16))
+
+/* Node will appear in /dev/EVENT_DEV_NAME */
+#define EVENT_DEV_NAME "wilco_event"
+#define EVENT_CLASS_NAME EVENT_DEV_NAME
+#define DRV_NAME EVENT_DEV_NAME
+#define EVENT_DEV_NAME_FMT (EVENT_DEV_NAME "%d")
+static struct class event_class = {
+ .owner = THIS_MODULE,
+ .name = EVENT_CLASS_NAME,
+};
+
+/* Keep track of all the device numbers used. */
+#define EVENT_MAX_DEV 128
+static int event_major;
+static DEFINE_IDA(event_ida);
+
+/**
+ * struct event_device_data - Data for a Wilco EC device that responds to ACPI.
+ * @events: Queue of EC events to be provided to userspace.
+ * @lock: Mutex to guard the queue.
+ * @wq: Wait queue to notify processes when events or available or the
+ * device has been removed.
+ * @cdev: Char dev that userspace reads() and polls() from.
+ * @dev: Device associated with the %cdev.
+ * @exist: Has the device been not been removed? Once a device has been removed,
+ * writes, reads, and new opens will fail.
+ *
+ * There will be one of these structs for each ACPI device registered. This data
+ * is the queue of events received from ACPI that still need to be read from
+ * userspace (plus a supporting lock and wait queue), as well as the device and
+ * char device that userspace is using, plus a flag on whether the ACPI device
+ * has been removed.
+ */
+struct event_device_data {
+ struct list_head events;
+ struct mutex lock;
+ wait_queue_head_t wq;
+ struct device dev;
+ struct cdev cdev;
+ bool exist;
+};
+
+/**
+ * struct ec_event - Extended event returned by the EC.
+ * @size: Number of words in structure after the size word.
+ * @type: Extended event type from &enum ec_event_type.
+ * @event: Event data words. Max count is %EC_ACPI_MAX_EVENT_DATA.
+ */
+struct ec_event {
+ u16 size;
+ u16 type;
+ u16 event[0];
+} __packed;
+
+/**
+ * struct ec_event_entry - Event queue entry.
+ * @list: List node.
+ * @size: Number of bytes in event structure.
+ * @event: Extended event returned by the EC. This should be the last
+ * element because &struct ec_event includes a zero length array.
+ */
+struct ec_event_entry {
+ struct list_head list;
+ size_t size;
+ struct ec_event event;
+};
+
+/**
+ * enqueue_events() - Place EC events in queue to be read by userspace.
+ * @adev: Device the events came from.
+ * @buf: Buffer of event data.
+ * @length: Length of event data buffer.
+ *
+ * %buf contains a number of ec_event's, packed one after the other.
+ * Each ec_event is of variable length. Start with the first event, copy it
+ * into a containing ev_event_entry, store that entry in a list, move on
+ * to the next ec_event in buf, and repeat.
+ *
+ * Return: 0 on success or negative error code on failure.
+ */
+static int enqueue_events(struct acpi_device *adev, const u8 *buf, u32 length)
+{
+ struct event_device_data *dev_data = adev->driver_data;
+ struct ec_event *event;
+ struct ec_event_entry *entry;
+ size_t event_size, num_words, word_size;
+ u32 offset = 0;
+
+ while (offset < length) {
+ event = (struct ec_event *)(buf + offset);
+ if (!event)
+ return -EINVAL;
+
+ /* Number of 16bit event data words is size - 1 */
+ num_words = event->size - 1;
+ word_size = num_words * sizeof(u16);
+ event_size = sizeof(*event) + word_size;
+ if (num_words > EC_ACPI_MAX_EVENT_DATA) {
+ dev_err(&adev->dev, "Too many event words: %d > %d\n",
+ num_words, EC_ACPI_MAX_EVENT_DATA);
+ return -EOVERFLOW;
+ };
+
+ /* Ensure event does not overflow the available buffer */
+ if ((offset + event_size) > length) {
+ dev_err(&adev->dev, "Event exceeds buffer: %d > %d\n",
+ offset + event_size, length);
+ return -EOVERFLOW;
+ }
+
+ /* Point to the next event in the buffer */
+ offset += event_size;
+
+ /* Create event entry for the queue */
+ entry = kzalloc(sizeof(struct ec_event_entry) + word_size,
+ GFP_KERNEL);
+ if (!entry)
+ return -ENOMEM;
+ entry->size = event_size;
+ memcpy(&entry->event, event, entry->size);
+
+ /* Add this event to the queue */
+ mutex_lock(&dev_data->lock);
+ list_add_tail(&entry->list, &dev_data->events);
+ mutex_unlock(&dev_data->lock);
+ }
+
+ return 0;
+}
+
+/**
+ * event_device_notify() - Callback when EC generates an event over ACPI.
+ * @adev: The device that the event is coming from.
+ * @value: Value passed to Notify() in ACPI.
+ *
+ * This function will read the events from the device and enqueue them.
+ */
+static void event_device_notify(struct acpi_device *adev, u32 value)
+{
+ struct acpi_buffer event_buffer = { ACPI_ALLOCATE_BUFFER, NULL };
+ struct event_device_data *dev_data = adev->driver_data;
+ union acpi_object *obj;
+ acpi_status status;
+
+ if (value != EC_ACPI_NOTIFY_EVENT) {
+ dev_err(&adev->dev, "Invalid event: 0x%08x\n", value);
+ return;
+ }
+
+ /* Execute ACPI method to get event data buffer. */
+ status = acpi_evaluate_object(adev->handle, EC_ACPI_GET_EVENT,
+ NULL, &event_buffer);
+ if (ACPI_FAILURE(status)) {
+ dev_err(&adev->dev, "Error executing ACPI method %s()\n",
+ EC_ACPI_GET_EVENT);
+ return;
+ }
+
+ obj = (union acpi_object *)event_buffer.pointer;
+ if (!obj) {
+ dev_err(&adev->dev, "Nothing returned from %s()\n",
+ EC_ACPI_GET_EVENT);
+ return;
+ }
+ if (obj->type != ACPI_TYPE_BUFFER) {
+ dev_err(&adev->dev, "Invalid object returned from %s()\n",
+ EC_ACPI_GET_EVENT);
+ kfree(obj);
+ return;
+ }
+ if (obj->buffer.length < sizeof(struct ec_event)) {
+ dev_err(&adev->dev, "Invalid buffer length %d from %s()\n",
+ obj->buffer.length, EC_ACPI_GET_EVENT);
+ kfree(obj);
+ return;
+ }
+
+ enqueue_events(adev, obj->buffer.pointer, obj->buffer.length);
+ kfree(obj);
+
+ if (!list_empty(&dev_data->events))
+ wake_up_interruptible(&dev_data->wq);
+}
+
+static int event_open(struct inode *inode, struct file *filp)
+{
+ struct event_device_data *dev_data;
+
+ dev_data = container_of(inode->i_cdev, struct event_device_data, cdev);
+ if (!dev_data->exist)
+ return -ENODEV;
+
+ /* Increase refcount on device so dev_data is not freed */
+ get_device(&dev_data->dev);
+ nonseekable_open(inode, filp);
+ filp->private_data = dev_data;
+
+ return 0;
+}
+
+static __poll_t event_poll(struct file *filp, poll_table *wait)
+{
+ struct event_device_data *dev_data = filp->private_data;
+ __poll_t mask = 0;
+
+ poll_wait(filp, &dev_data->wq, wait);
+ if (!dev_data->exist)
+ return -ENODEV;
+ if (!list_empty(&dev_data->events))
+ mask |= EPOLLIN | EPOLLRDNORM | EPOLLPRI;
+ return mask;
+}
+
+/**
+ * event_read() - Callback for passing event data to userspace via read().
+ * @filp: The file we are reading from.
+ * @buf: Pointer to userspace buffer to fill with one event.
+ * @count: Number of bytes requested. Must be at least EC_ACPI_MAX_EVENT_SIZE.
+ * @pos: File position pointer, irrelevant since we don't support seeking.
+ *
+ * Fills the passed buffer with the data from the first event in the queue,
+ * removes that event from the queue. On error, the event remains in the queue.
+ *
+ * If there are no events in the the queue, then one of two things happens,
+ * depending on if the file was opened in nonblocking mode: If in nonblocking
+ * mode, then return -EAGAIN to say there's no data. If in blocking mode, then
+ * block until an event is available.
+ *
+ * Return: Number of bytes placed in buffer, negative error code on failure.
+ */
+static ssize_t event_read(struct file *filp, char __user *buf, size_t count,
+ loff_t *pos)
+{
+ struct event_device_data *dev_data = filp->private_data;
+ struct ec_event_entry *entry;
+ ssize_t n_bytes_written = 0;
+ int err;
+
+ /* We only will give them the entire event at once */
+ if (count != 0 && count < EC_ACPI_MAX_EVENT_SIZE)
+ return -EINVAL;
+
+ mutex_lock(&dev_data->lock);
+
+ while (list_empty(&dev_data->events)) {
+ if (filp->f_flags & O_NONBLOCK) {
+ mutex_unlock(&dev_data->lock);
+ return -EAGAIN;
+ }
+ /* Need to unlock so that data can actually get added to the
+ * queue, and since we recheck before use and it's just
+ * comparing pointers, this is safe unlocked.
+ */
+ mutex_unlock(&dev_data->lock);
+ err = wait_event_interruptible(dev_data->wq,
+ !list_empty(&dev_data->events));
+ if (err)
+ return err;
+
+ /* Device was removed as we waited? */
+ if (!dev_data->exist)
+ return -ENODEV;
+ mutex_lock(&dev_data->lock);
+ }
+
+ entry = list_first_entry(&dev_data->events,
+ struct ec_event_entry, list);
+ n_bytes_written = entry->size;
+ if (copy_to_user(buf, &entry->event, n_bytes_written))
+ return -EFAULT;
+ list_del(&entry->list);
+ kfree(entry);
+
+ mutex_unlock(&dev_data->lock);
+
+ return n_bytes_written;
+}
+
+static int event_release(struct inode *inode, struct file *filp)
+{
+ struct event_device_data *dev_data = filp->private_data;
+
+ put_device(&dev_data->dev);
+
+ return 0;
+}
+
+static const struct file_operations event_fops = {
+ .open = event_open,
+ .poll = event_poll,
+ .read = event_read,
+ .release = event_release,
+ .llseek = no_llseek,
+ .owner = THIS_MODULE,
+};
+
+/**
+ * free_device_data() - Callback to free the event_device_data structure.
+ * @d: The device embedded in our device data, which we have been ref counting.
+ *
+ * This is called only after event_device_remove() has been called and all
+ * userspace programs have called event_release() on all the open file
+ * descriptors.
+ */
+static void free_device_data(struct device *d)
+{
+ struct event_device_data *dev_data;
+
+ dev_data = container_of(d, struct event_device_data, dev);
+ kfree(dev_data);
+}
+
+static void hangup_device(struct event_device_data *dev_data)
+{
+ mutex_lock(&dev_data->lock);
+ dev_data->exist = false;
+ mutex_unlock(&dev_data->lock);
+
+ /* Wake up the waiting processes so they can close. */
+ wake_up_interruptible(&dev_data->wq);
+ put_device(&dev_data->dev);
+}
+
+/**
+ * event_device_add() - Callback when creating a new device.
+ * @adev: ACPI device that we will be receiving events from.
+ *
+ * This finds a free minor number for the device, allocates and initializes
+ * some device data, and creates a new device and char dev node.
+ *
+ * The device data is freed in free_device_data(), which is called when
+ * %dev_data->dev is release()ed. This happens after all references to
+ * %dev_data->dev are dropped, which happens once both event_device_remove()
+ * has been called and every open()ed file descriptor has been release()ed.
+ *
+ * Return: 0 on success, negative error code on failure.
+ */
+static int event_device_add(struct acpi_device *adev)
+{
+ struct event_device_data *dev_data;
+ dev_t dev_num;
+ int error, minor;
+
+ minor = ida_alloc_max(&event_ida, EVENT_MAX_DEV-1, GFP_KERNEL);
+ if (minor < 0) {
+ error = minor;
+ dev_err(&adev->dev, "Failed to find minor number: %d", error);
+ return error;
+ }
+
+ dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
+ if (!dev_data) {
+ error = -ENOMEM;
+ goto free_minor;
+ }
+
+ /* Initialize the device data. */
+ adev->driver_data = dev_data;
+ INIT_LIST_HEAD(&dev_data->events);
+ mutex_init(&dev_data->lock);
+ init_waitqueue_head(&dev_data->wq);
+ dev_data->exist = true;
+
+ /* Initialize the device. */
+ dev_num = MKDEV(event_major, minor);
+ dev_data->dev.devt = dev_num;
+ dev_data->dev.class = &event_class;
+ dev_data->dev.release = free_device_data;
+ dev_set_name(&dev_data->dev, EVENT_DEV_NAME_FMT, minor);
+ device_initialize(&dev_data->dev);
+
+ /* Initialize the character device, and add it to userspace. */
+ cdev_init(&dev_data->cdev, &event_fops);
+ error = cdev_device_add(&dev_data->cdev, &dev_data->dev);
+ if (error)
+ goto free_dev_data;
+
+ return 0;
+
+free_dev_data:
+ hangup_device(dev_data);
+free_minor:
+ ida_simple_remove(&event_ida, minor);
+ return error;
+}
+
+static int event_device_remove(struct acpi_device *adev)
+{
+ struct event_device_data *dev_data = adev->driver_data;
+
+ cdev_device_del(&dev_data->cdev, &dev_data->dev);
+ ida_simple_remove(&event_ida, MINOR(dev_data->dev.devt));
+ hangup_device(dev_data);
+
+ return 0;
+}
+
+static const struct acpi_device_id event_acpi_ids[] = {
+ { "GOOG000D", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(acpi, event_acpi_ids);
+
+static struct acpi_driver event_driver = {
+ .name = DRV_NAME,
+ .class = DRV_NAME,
+ .ids = event_acpi_ids,
+ .ops = {
+ .add = event_device_add,
+ .notify = event_device_notify,
+ .remove = event_device_remove,
+ },
+ .owner = THIS_MODULE,
+};
+
+static int __init event_module_init(void)
+{
+ dev_t dev_num = 0;
+ int ret;
+
+ ret = class_register(&event_class);
+ if (ret) {
+ pr_warn(DRV_NAME ": Failed registering class: %d", ret);
+ return ret;
+ }
+
+ /* Request device numbers, starting with minor=0. Save the major num. */
+ ret = alloc_chrdev_region(&dev_num, 0, EVENT_MAX_DEV, EVENT_DEV_NAME);
+ if (ret) {
+ pr_warn(DRV_NAME ": Failed allocating dev numbers: %d", ret);
+ goto destroy_class;
+ }
+ event_major = MAJOR(dev_num);
+
+ ret = acpi_bus_register_driver(&event_driver);
+ if (ret < 0) {
+ pr_warn(DRV_NAME ": Failed registering driver: %d\n", ret);
+ goto unregister_region;
+ }
+
+ return 0;
+
+unregister_region:
+ unregister_chrdev_region(MKDEV(event_major, 0), EVENT_MAX_DEV);
+destroy_class:
+ class_unregister(&event_class);
+ ida_destroy(&event_ida);
+ return ret;
+}
+
+static void __exit event_module_exit(void)
+{
+ acpi_bus_unregister_driver(&event_driver);
+ unregister_chrdev_region(MKDEV(event_major, 0), EVENT_MAX_DEV);
+ class_unregister(&event_class);
+ ida_destroy(&event_ida);
+}
+
+module_init(event_module_init);
+module_exit(event_module_exit);
+
+MODULE_AUTHOR("Nick Crews <[email protected]>");
+MODULE_DESCRIPTION("Wilco EC ACPI event driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:" DRV_NAME);
--
2.21.0.rc0.258.g878e2cd30e-goog



2019-02-26 15:05:30

by Enric Balletbo Serra

[permalink] [raw]
Subject: Re: [PATCH v2] platform/chrome: Add Wilco EC Event Handling

Hi Nick,

Missatge de Nick Crews <[email protected]> del dia dl., 25 de febr.
2019 a les 20:13:
>
> This patch is meant to be applied on top of the current
> for-next top of tree in the chrome/platform repo, at
> https://git.kernel.org/pub/scm/linux/kernel/git/chrome-platform/linux.git/log/?h=for-next
>
> The Wilco Embedded Controller can return extended events that
> are not handled by standard ACPI objects. These events can
> contain information about changes in EC controlled features,
> such as the charger or battery getting plugged/unplugged.
>

To understand better this I think would be good to know what kind of
events or which specific events do you expect to handle through this
interface. Because if these events are like the ones you described
above (charger/battery plugged/unplugged) this should go again through
the power-supply subsystem and use the standard interface for that.

I suspect that what you want here, is different kernel drivers
accessing this event interface. E.g a wilco_ec_charger hooked to this
event interface that is able to get the event when the battery is
charging or not charging or charged. Maybe something similar to MKBP
events in cros-ec? Is that what you want?

Regards,
Enric

> These events are triggered with an ACPI Notify(0x90) and the
> event data buffer is read through an ACPI method provided by
> the BIOS which reads the event buffer from EC RAM.
>
> These events are put into a queue which can be read by a userspace daemon
> via a char device that implements read() and poll(). The char device
> will appear at /dev/wilco_event{n}, where n is some integer.
>
> This patch depends on a coreboot patch which adds the relevant
> ACPI device, so this driver can pick it up:
> https://review.coreboot.org/c/coreboot/+/31204
>
> To test, run the simple python script from
> https://gist.github.com/8a55050e353b7027ca3009074eec4200
> to poll() and read() the node. You can generate events
> in many ways, the easiest are to press fn+Esc or to
> plug/unplug the battery (with the AC in).
>
> I sent out an initial version of this driver a month ago,
> available at https://lkml.org/lkml/2019/1/23/676
> At that point, we were not sure about the requirements of the
> driver, and reviewers were not pleased with the abuses of the
> sysfs interface. In this version, we are more confident about
> the needs of the userspace daemon that will use this driver,
> and this driver addresses all of the previous concerns.
>
> Changes in v2:
> - Move sysfs node to /dev/wilco_ec{n}
> - Userspace daemon should now use poll() to check for available events
> - Userspace daemon should now use read() to pop an event from queue
> - Keyboard events are no longer forwarded to the input subsystem
> - The driver is a separate module
> - There is a new ACPI device GOOG00D that the driver binds to, not the
> old GOOG00C used by the core driver
> - The actual ACPI command code changed from "^QSET" to "QSET"
>
> Signed-off-by: Nick Crews <[email protected]>
> ---
> drivers/platform/chrome/wilco_ec/Kconfig | 9 +
> drivers/platform/chrome/wilco_ec/Makefile | 2 +
> drivers/platform/chrome/wilco_ec/event.c | 511 ++++++++++++++++++++++
> 3 files changed, 522 insertions(+)
> create mode 100644 drivers/platform/chrome/wilco_ec/event.c
>
> diff --git a/drivers/platform/chrome/wilco_ec/Kconfig b/drivers/platform/chrome/wilco_ec/Kconfig
> index 4a119ced4d0c..9812242663cd 100644
> --- a/drivers/platform/chrome/wilco_ec/Kconfig
> +++ b/drivers/platform/chrome/wilco_ec/Kconfig
> @@ -18,3 +18,12 @@ config WILCO_EC_DEBUGFS
> manipulation and allow for testing arbitrary commands. This
> interface is intended for debug only and will not be present
> on production devices.
> +
> +config WILCO_EC_EVENTS
> + tristate "Enable event forwarding from EC to userspace"
> + depends on WILCO_EC
> + help
> + If you say Y here, you get support for the EC to send events
> + (such as power state changes) to userspace. The EC sends the events
> + over ACPI, and a driver queues up the events to be read by a
> + userspace daemon from /dev/wilco_event using read() and poll().
> diff --git a/drivers/platform/chrome/wilco_ec/Makefile b/drivers/platform/chrome/wilco_ec/Makefile
> index 063e7fb4ea17..37452ab953de 100644
> --- a/drivers/platform/chrome/wilco_ec/Makefile
> +++ b/drivers/platform/chrome/wilco_ec/Makefile
> @@ -4,3 +4,5 @@ wilco_ec-objs := core.o mailbox.o
> obj-$(CONFIG_WILCO_EC) += wilco_ec.o
> wilco_ec_debugfs-objs := debugfs.o
> obj-$(CONFIG_WILCO_EC_DEBUGFS) += wilco_ec_debugfs.o
> +wilco_ec_events-objs := event.o
> +obj-$(CONFIG_WILCO_EC_EVENTS) += wilco_ec_events.o
> diff --git a/drivers/platform/chrome/wilco_ec/event.c b/drivers/platform/chrome/wilco_ec/event.c
> new file mode 100644
> index 000000000000..48f637336920
> --- /dev/null
> +++ b/drivers/platform/chrome/wilco_ec/event.c
> @@ -0,0 +1,511 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * ACPI event handling for Wilco Embedded Controller
> + *
> + * Copyright 2019 Google LLC
> + *
> + * The Wilco Embedded Controller can return extended events that
> + * are not handled by standard ACPI objects. These events can
> + * contain information about changes in EC controlled features,
> + * such as the charger or battery getting plugged/unplugged.
> + *
> + * These events are triggered with an ACPI Notify(0x90) and the
> + * event data buffer is read through an ACPI method provided by
> + * the BIOS which reads the event buffer from EC RAM.
> + *
> + * These events are put into a queue which can be read by a userspace daemon
> + * via a char device that implements read() and poll(). The char device
> + * will appear at /dev/wilco_event{n}, where n is some integer.
> + *
> + * To test, run the simple python script from
> + * https://gist.github.com/11fa41edda69aa09e4a27f5f788d45ba
> + * to poll() and read() the node. You can generate events
> + * in many ways, the easiest are to press fn+Esc or to
> + * plug/unplug the battery (with the AC in).
> + */
> +
> +#include <linux/acpi.h>
> +#include <linux/cdev.h>
> +#include <linux/device.h>
> +#include <linux/fs.h>
> +#include <linux/idr.h>
> +#include <linux/io.h>
> +#include <linux/list.h>
> +#include <linux/module.h>
> +#include <linux/poll.h>
> +#include <linux/uaccess.h>
> +#include <linux/wait.h>
> +
> +/* ACPI Notify event code indicating event data is available. */
> +#define EC_ACPI_NOTIFY_EVENT 0x90
> +/* ACPI Method to execute to retrieve event data buffer from the EC. */
> +#define EC_ACPI_GET_EVENT "QSET"
> +/* Maximum number of words in event data returned by the EC. */
> +#define EC_ACPI_MAX_EVENT_DATA 6
> +#define EC_ACPI_MAX_EVENT_SIZE \
> + (sizeof(struct ec_event) + (EC_ACPI_MAX_EVENT_DATA) * sizeof(u16))
> +
> +/* Node will appear in /dev/EVENT_DEV_NAME */
> +#define EVENT_DEV_NAME "wilco_event"
> +#define EVENT_CLASS_NAME EVENT_DEV_NAME
> +#define DRV_NAME EVENT_DEV_NAME
> +#define EVENT_DEV_NAME_FMT (EVENT_DEV_NAME "%d")
> +static struct class event_class = {
> + .owner = THIS_MODULE,
> + .name = EVENT_CLASS_NAME,
> +};
> +
> +/* Keep track of all the device numbers used. */
> +#define EVENT_MAX_DEV 128
> +static int event_major;
> +static DEFINE_IDA(event_ida);
> +
> +/**
> + * struct event_device_data - Data for a Wilco EC device that responds to ACPI.
> + * @events: Queue of EC events to be provided to userspace.
> + * @lock: Mutex to guard the queue.
> + * @wq: Wait queue to notify processes when events or available or the
> + * device has been removed.
> + * @cdev: Char dev that userspace reads() and polls() from.
> + * @dev: Device associated with the %cdev.
> + * @exist: Has the device been not been removed? Once a device has been removed,
> + * writes, reads, and new opens will fail.
> + *
> + * There will be one of these structs for each ACPI device registered. This data
> + * is the queue of events received from ACPI that still need to be read from
> + * userspace (plus a supporting lock and wait queue), as well as the device and
> + * char device that userspace is using, plus a flag on whether the ACPI device
> + * has been removed.
> + */
> +struct event_device_data {
> + struct list_head events;
> + struct mutex lock;
> + wait_queue_head_t wq;
> + struct device dev;
> + struct cdev cdev;
> + bool exist;
> +};
> +
> +/**
> + * struct ec_event - Extended event returned by the EC.
> + * @size: Number of words in structure after the size word.
> + * @type: Extended event type from &enum ec_event_type.
> + * @event: Event data words. Max count is %EC_ACPI_MAX_EVENT_DATA.
> + */
> +struct ec_event {
> + u16 size;
> + u16 type;
> + u16 event[0];
> +} __packed;
> +
> +/**
> + * struct ec_event_entry - Event queue entry.
> + * @list: List node.
> + * @size: Number of bytes in event structure.
> + * @event: Extended event returned by the EC. This should be the last
> + * element because &struct ec_event includes a zero length array.
> + */
> +struct ec_event_entry {
> + struct list_head list;
> + size_t size;
> + struct ec_event event;
> +};
> +
> +/**
> + * enqueue_events() - Place EC events in queue to be read by userspace.
> + * @adev: Device the events came from.
> + * @buf: Buffer of event data.
> + * @length: Length of event data buffer.
> + *
> + * %buf contains a number of ec_event's, packed one after the other.
> + * Each ec_event is of variable length. Start with the first event, copy it
> + * into a containing ev_event_entry, store that entry in a list, move on
> + * to the next ec_event in buf, and repeat.
> + *
> + * Return: 0 on success or negative error code on failure.
> + */
> +static int enqueue_events(struct acpi_device *adev, const u8 *buf, u32 length)
> +{
> + struct event_device_data *dev_data = adev->driver_data;
> + struct ec_event *event;
> + struct ec_event_entry *entry;
> + size_t event_size, num_words, word_size;
> + u32 offset = 0;
> +
> + while (offset < length) {
> + event = (struct ec_event *)(buf + offset);
> + if (!event)
> + return -EINVAL;
> +
> + /* Number of 16bit event data words is size - 1 */
> + num_words = event->size - 1;
> + word_size = num_words * sizeof(u16);
> + event_size = sizeof(*event) + word_size;
> + if (num_words > EC_ACPI_MAX_EVENT_DATA) {
> + dev_err(&adev->dev, "Too many event words: %d > %d\n",
> + num_words, EC_ACPI_MAX_EVENT_DATA);
> + return -EOVERFLOW;
> + };
> +
> + /* Ensure event does not overflow the available buffer */
> + if ((offset + event_size) > length) {
> + dev_err(&adev->dev, "Event exceeds buffer: %d > %d\n",
> + offset + event_size, length);
> + return -EOVERFLOW;
> + }
> +
> + /* Point to the next event in the buffer */
> + offset += event_size;
> +
> + /* Create event entry for the queue */
> + entry = kzalloc(sizeof(struct ec_event_entry) + word_size,
> + GFP_KERNEL);
> + if (!entry)
> + return -ENOMEM;
> + entry->size = event_size;
> + memcpy(&entry->event, event, entry->size);
> +
> + /* Add this event to the queue */
> + mutex_lock(&dev_data->lock);
> + list_add_tail(&entry->list, &dev_data->events);
> + mutex_unlock(&dev_data->lock);
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * event_device_notify() - Callback when EC generates an event over ACPI.
> + * @adev: The device that the event is coming from.
> + * @value: Value passed to Notify() in ACPI.
> + *
> + * This function will read the events from the device and enqueue them.
> + */
> +static void event_device_notify(struct acpi_device *adev, u32 value)
> +{
> + struct acpi_buffer event_buffer = { ACPI_ALLOCATE_BUFFER, NULL };
> + struct event_device_data *dev_data = adev->driver_data;
> + union acpi_object *obj;
> + acpi_status status;
> +
> + if (value != EC_ACPI_NOTIFY_EVENT) {
> + dev_err(&adev->dev, "Invalid event: 0x%08x\n", value);
> + return;
> + }
> +
> + /* Execute ACPI method to get event data buffer. */
> + status = acpi_evaluate_object(adev->handle, EC_ACPI_GET_EVENT,
> + NULL, &event_buffer);
> + if (ACPI_FAILURE(status)) {
> + dev_err(&adev->dev, "Error executing ACPI method %s()\n",
> + EC_ACPI_GET_EVENT);
> + return;
> + }
> +
> + obj = (union acpi_object *)event_buffer.pointer;
> + if (!obj) {
> + dev_err(&adev->dev, "Nothing returned from %s()\n",
> + EC_ACPI_GET_EVENT);
> + return;
> + }
> + if (obj->type != ACPI_TYPE_BUFFER) {
> + dev_err(&adev->dev, "Invalid object returned from %s()\n",
> + EC_ACPI_GET_EVENT);
> + kfree(obj);
> + return;
> + }
> + if (obj->buffer.length < sizeof(struct ec_event)) {
> + dev_err(&adev->dev, "Invalid buffer length %d from %s()\n",
> + obj->buffer.length, EC_ACPI_GET_EVENT);
> + kfree(obj);
> + return;
> + }
> +
> + enqueue_events(adev, obj->buffer.pointer, obj->buffer.length);
> + kfree(obj);
> +
> + if (!list_empty(&dev_data->events))
> + wake_up_interruptible(&dev_data->wq);
> +}
> +
> +static int event_open(struct inode *inode, struct file *filp)
> +{
> + struct event_device_data *dev_data;
> +
> + dev_data = container_of(inode->i_cdev, struct event_device_data, cdev);
> + if (!dev_data->exist)
> + return -ENODEV;
> +
> + /* Increase refcount on device so dev_data is not freed */
> + get_device(&dev_data->dev);
> + nonseekable_open(inode, filp);
> + filp->private_data = dev_data;
> +
> + return 0;
> +}
> +
> +static __poll_t event_poll(struct file *filp, poll_table *wait)
> +{
> + struct event_device_data *dev_data = filp->private_data;
> + __poll_t mask = 0;
> +
> + poll_wait(filp, &dev_data->wq, wait);
> + if (!dev_data->exist)
> + return -ENODEV;
> + if (!list_empty(&dev_data->events))
> + mask |= EPOLLIN | EPOLLRDNORM | EPOLLPRI;
> + return mask;
> +}
> +
> +/**
> + * event_read() - Callback for passing event data to userspace via read().
> + * @filp: The file we are reading from.
> + * @buf: Pointer to userspace buffer to fill with one event.
> + * @count: Number of bytes requested. Must be at least EC_ACPI_MAX_EVENT_SIZE.
> + * @pos: File position pointer, irrelevant since we don't support seeking.
> + *
> + * Fills the passed buffer with the data from the first event in the queue,
> + * removes that event from the queue. On error, the event remains in the queue.
> + *
> + * If there are no events in the the queue, then one of two things happens,
> + * depending on if the file was opened in nonblocking mode: If in nonblocking
> + * mode, then return -EAGAIN to say there's no data. If in blocking mode, then
> + * block until an event is available.
> + *
> + * Return: Number of bytes placed in buffer, negative error code on failure.
> + */
> +static ssize_t event_read(struct file *filp, char __user *buf, size_t count,
> + loff_t *pos)
> +{
> + struct event_device_data *dev_data = filp->private_data;
> + struct ec_event_entry *entry;
> + ssize_t n_bytes_written = 0;
> + int err;
> +
> + /* We only will give them the entire event at once */
> + if (count != 0 && count < EC_ACPI_MAX_EVENT_SIZE)
> + return -EINVAL;
> +
> + mutex_lock(&dev_data->lock);
> +
> + while (list_empty(&dev_data->events)) {
> + if (filp->f_flags & O_NONBLOCK) {
> + mutex_unlock(&dev_data->lock);
> + return -EAGAIN;
> + }
> + /* Need to unlock so that data can actually get added to the
> + * queue, and since we recheck before use and it's just
> + * comparing pointers, this is safe unlocked.
> + */
> + mutex_unlock(&dev_data->lock);
> + err = wait_event_interruptible(dev_data->wq,
> + !list_empty(&dev_data->events));
> + if (err)
> + return err;
> +
> + /* Device was removed as we waited? */
> + if (!dev_data->exist)
> + return -ENODEV;
> + mutex_lock(&dev_data->lock);
> + }
> +
> + entry = list_first_entry(&dev_data->events,
> + struct ec_event_entry, list);
> + n_bytes_written = entry->size;
> + if (copy_to_user(buf, &entry->event, n_bytes_written))
> + return -EFAULT;
> + list_del(&entry->list);
> + kfree(entry);
> +
> + mutex_unlock(&dev_data->lock);
> +
> + return n_bytes_written;
> +}
> +
> +static int event_release(struct inode *inode, struct file *filp)
> +{
> + struct event_device_data *dev_data = filp->private_data;
> +
> + put_device(&dev_data->dev);
> +
> + return 0;
> +}
> +
> +static const struct file_operations event_fops = {
> + .open = event_open,
> + .poll = event_poll,
> + .read = event_read,
> + .release = event_release,
> + .llseek = no_llseek,
> + .owner = THIS_MODULE,
> +};
> +
> +/**
> + * free_device_data() - Callback to free the event_device_data structure.
> + * @d: The device embedded in our device data, which we have been ref counting.
> + *
> + * This is called only after event_device_remove() has been called and all
> + * userspace programs have called event_release() on all the open file
> + * descriptors.
> + */
> +static void free_device_data(struct device *d)
> +{
> + struct event_device_data *dev_data;
> +
> + dev_data = container_of(d, struct event_device_data, dev);
> + kfree(dev_data);
> +}
> +
> +static void hangup_device(struct event_device_data *dev_data)
> +{
> + mutex_lock(&dev_data->lock);
> + dev_data->exist = false;
> + mutex_unlock(&dev_data->lock);
> +
> + /* Wake up the waiting processes so they can close. */
> + wake_up_interruptible(&dev_data->wq);
> + put_device(&dev_data->dev);
> +}
> +
> +/**
> + * event_device_add() - Callback when creating a new device.
> + * @adev: ACPI device that we will be receiving events from.
> + *
> + * This finds a free minor number for the device, allocates and initializes
> + * some device data, and creates a new device and char dev node.
> + *
> + * The device data is freed in free_device_data(), which is called when
> + * %dev_data->dev is release()ed. This happens after all references to
> + * %dev_data->dev are dropped, which happens once both event_device_remove()
> + * has been called and every open()ed file descriptor has been release()ed.
> + *
> + * Return: 0 on success, negative error code on failure.
> + */
> +static int event_device_add(struct acpi_device *adev)
> +{
> + struct event_device_data *dev_data;
> + dev_t dev_num;
> + int error, minor;
> +
> + minor = ida_alloc_max(&event_ida, EVENT_MAX_DEV-1, GFP_KERNEL);
> + if (minor < 0) {
> + error = minor;
> + dev_err(&adev->dev, "Failed to find minor number: %d", error);
> + return error;
> + }
> +
> + dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
> + if (!dev_data) {
> + error = -ENOMEM;
> + goto free_minor;
> + }
> +
> + /* Initialize the device data. */
> + adev->driver_data = dev_data;
> + INIT_LIST_HEAD(&dev_data->events);
> + mutex_init(&dev_data->lock);
> + init_waitqueue_head(&dev_data->wq);
> + dev_data->exist = true;
> +
> + /* Initialize the device. */
> + dev_num = MKDEV(event_major, minor);
> + dev_data->dev.devt = dev_num;
> + dev_data->dev.class = &event_class;
> + dev_data->dev.release = free_device_data;
> + dev_set_name(&dev_data->dev, EVENT_DEV_NAME_FMT, minor);
> + device_initialize(&dev_data->dev);
> +
> + /* Initialize the character device, and add it to userspace. */
> + cdev_init(&dev_data->cdev, &event_fops);
> + error = cdev_device_add(&dev_data->cdev, &dev_data->dev);
> + if (error)
> + goto free_dev_data;
> +
> + return 0;
> +
> +free_dev_data:
> + hangup_device(dev_data);
> +free_minor:
> + ida_simple_remove(&event_ida, minor);
> + return error;
> +}
> +
> +static int event_device_remove(struct acpi_device *adev)
> +{
> + struct event_device_data *dev_data = adev->driver_data;
> +
> + cdev_device_del(&dev_data->cdev, &dev_data->dev);
> + ida_simple_remove(&event_ida, MINOR(dev_data->dev.devt));
> + hangup_device(dev_data);
> +
> + return 0;
> +}
> +
> +static const struct acpi_device_id event_acpi_ids[] = {
> + { "GOOG000D", 0 },
> + { }
> +};
> +MODULE_DEVICE_TABLE(acpi, event_acpi_ids);
> +
> +static struct acpi_driver event_driver = {
> + .name = DRV_NAME,
> + .class = DRV_NAME,
> + .ids = event_acpi_ids,
> + .ops = {
> + .add = event_device_add,
> + .notify = event_device_notify,
> + .remove = event_device_remove,
> + },
> + .owner = THIS_MODULE,
> +};
> +
> +static int __init event_module_init(void)
> +{
> + dev_t dev_num = 0;
> + int ret;
> +
> + ret = class_register(&event_class);
> + if (ret) {
> + pr_warn(DRV_NAME ": Failed registering class: %d", ret);
> + return ret;
> + }
> +
> + /* Request device numbers, starting with minor=0. Save the major num. */
> + ret = alloc_chrdev_region(&dev_num, 0, EVENT_MAX_DEV, EVENT_DEV_NAME);
> + if (ret) {
> + pr_warn(DRV_NAME ": Failed allocating dev numbers: %d", ret);
> + goto destroy_class;
> + }
> + event_major = MAJOR(dev_num);
> +
> + ret = acpi_bus_register_driver(&event_driver);
> + if (ret < 0) {
> + pr_warn(DRV_NAME ": Failed registering driver: %d\n", ret);
> + goto unregister_region;
> + }
> +
> + return 0;
> +
> +unregister_region:
> + unregister_chrdev_region(MKDEV(event_major, 0), EVENT_MAX_DEV);
> +destroy_class:
> + class_unregister(&event_class);
> + ida_destroy(&event_ida);
> + return ret;
> +}
> +
> +static void __exit event_module_exit(void)
> +{
> + acpi_bus_unregister_driver(&event_driver);
> + unregister_chrdev_region(MKDEV(event_major, 0), EVENT_MAX_DEV);
> + class_unregister(&event_class);
> + ida_destroy(&event_ida);
> +}
> +
> +module_init(event_module_init);
> +module_exit(event_module_exit);
> +
> +MODULE_AUTHOR("Nick Crews <[email protected]>");
> +MODULE_DESCRIPTION("Wilco EC ACPI event driver");
> +MODULE_LICENSE("GPL v2");
> +MODULE_ALIAS("platform:" DRV_NAME);
> --
> 2.21.0.rc0.258.g878e2cd30e-goog
>

2019-03-04 23:56:04

by Nick Crews

[permalink] [raw]
Subject: Re: [PATCH v2] platform/chrome: Add Wilco EC Event Handling

Hi Enric,

On Tue, Feb 26, 2019 at 8:04 AM Enric Balletbo Serra
<[email protected]> wrote:
>
> Hi Nick,
>
> Missatge de Nick Crews <[email protected]> del dia dl., 25 de febr.
> 2019 a les 20:13:
> >
> > This patch is meant to be applied on top of the current
> > for-next top of tree in the chrome/platform repo, at
> > https://git.kernel.org/pub/scm/linux/kernel/git/chrome-platform/linux.git/log/?h=for-next
> >
> > The Wilco Embedded Controller can return extended events that
> > are not handled by standard ACPI objects. These events can
> > contain information about changes in EC controlled features,
> > such as the charger or battery getting plugged/unplugged.
> >
>
> To understand better this I think would be good to know what kind of
> events or which specific events do you expect to handle through this
> interface. Because if these events are like the ones you described
> above (charger/battery plugged/unplugged) this should go again through
> the power-supply subsystem and use the standard interface for that.

I didn't fully understand what was going on here either, so I had to figure
it out myself as well :)

I had a bad description for what sort of events this driver will be used for.
There are two general classes of events that are generated by the EC and
sent to the OS over ACPI: Standard ones (such as charger/battery/lid stuff
as you mention) and the special ones that we care about. These special events
include errors and notifications from the optional charging/display
dock accessory,
for instance "The cable you connected with is not supported". The
standard ones are
indeed handled through the standard interfaces. This interface also
gets notified
for a few of the standard events such as the battery getting plugged
and unplugged,
and that's why I was getting confused.

You can see in some of the coreboot code where ACPI determines whether
or not to forward these special "QS events" to this driver or to the
standard ACPI system:
https://review.coreboot.org/cgit/coreboot.git/tree/src/ec/google/wilco/acpi/event.asl#n80

>
> I suspect that what you want here, is different kernel drivers
> accessing this event interface. E.g a wilco_ec_charger hooked to this
> event interface that is able to get the event when the battery is
> charging or not charging or charged. Maybe something similar to MKBP
> events in cros-ec? Is that what you want?

This is not what we want, I should have explained the use case in my
original message.
The point of this driver is to allow telemetry and diagnostics management for
enterprise uses. A telemetry daemon will be running on the device
waiting for events,
(such as "The video port on the dock is not working.") and will report
them to a cloud service.
An example daemon that will use this is here:
https://chromium-review.googlesource.com/c/chromiumos/platform2/+/1390115

With these explanations, do you now think that we should keep this structure,
and not move to the power_supply subsystem?

Thanks for your thoughts,
Nick

>
> Regards,
> Enric
>
> > These events are triggered with an ACPI Notify(0x90) and the
> > event data buffer is read through an ACPI method provided by
> > the BIOS which reads the event buffer from EC RAM.
> >
> > These events are put into a queue which can be read by a userspace daemon
> > via a char device that implements read() and poll(). The char device
> > will appear at /dev/wilco_event{n}, where n is some integer.
> >
> > This patch depends on a coreboot patch which adds the relevant
> > ACPI device, so this driver can pick it up:
> > https://review.coreboot.org/c/coreboot/+/31204
> >
> > To test, run the simple python script from
> > https://gist.github.com/8a55050e353b7027ca3009074eec4200
> > to poll() and read() the node. You can generate events
> > in many ways, the easiest are to press fn+Esc or to
> > plug/unplug the battery (with the AC in).
> >
> > I sent out an initial version of this driver a month ago,
> > available at https://lkml.org/lkml/2019/1/23/676
> > At that point, we were not sure about the requirements of the
> > driver, and reviewers were not pleased with the abuses of the
> > sysfs interface. In this version, we are more confident about
> > the needs of the userspace daemon that will use this driver,
> > and this driver addresses all of the previous concerns.
> >
> > Changes in v2:
> > - Move sysfs node to /dev/wilco_ec{n}
> > - Userspace daemon should now use poll() to check for available events
> > - Userspace daemon should now use read() to pop an event from queue
> > - Keyboard events are no longer forwarded to the input subsystem
> > - The driver is a separate module
> > - There is a new ACPI device GOOG00D that the driver binds to, not the
> > old GOOG00C used by the core driver
> > - The actual ACPI command code changed from "^QSET" to "QSET"
> >
> > Signed-off-by: Nick Crews <[email protected]>
> > ---
> > drivers/platform/chrome/wilco_ec/Kconfig | 9 +
> > drivers/platform/chrome/wilco_ec/Makefile | 2 +
> > drivers/platform/chrome/wilco_ec/event.c | 511 ++++++++++++++++++++++
> > 3 files changed, 522 insertions(+)
> > create mode 100644 drivers/platform/chrome/wilco_ec/event.c
> >
> > diff --git a/drivers/platform/chrome/wilco_ec/Kconfig b/drivers/platform/chrome/wilco_ec/Kconfig
> > index 4a119ced4d0c..9812242663cd 100644
> > --- a/drivers/platform/chrome/wilco_ec/Kconfig
> > +++ b/drivers/platform/chrome/wilco_ec/Kconfig
> > @@ -18,3 +18,12 @@ config WILCO_EC_DEBUGFS
> > manipulation and allow for testing arbitrary commands. This
> > interface is intended for debug only and will not be present
> > on production devices.
> > +
> > +config WILCO_EC_EVENTS
> > + tristate "Enable event forwarding from EC to userspace"
> > + depends on WILCO_EC
> > + help
> > + If you say Y here, you get support for the EC to send events
> > + (such as power state changes) to userspace. The EC sends the events
> > + over ACPI, and a driver queues up the events to be read by a
> > + userspace daemon from /dev/wilco_event using read() and poll().
> > diff --git a/drivers/platform/chrome/wilco_ec/Makefile b/drivers/platform/chrome/wilco_ec/Makefile
> > index 063e7fb4ea17..37452ab953de 100644
> > --- a/drivers/platform/chrome/wilco_ec/Makefile
> > +++ b/drivers/platform/chrome/wilco_ec/Makefile
> > @@ -4,3 +4,5 @@ wilco_ec-objs := core.o mailbox.o
> > obj-$(CONFIG_WILCO_EC) += wilco_ec.o
> > wilco_ec_debugfs-objs := debugfs.o
> > obj-$(CONFIG_WILCO_EC_DEBUGFS) += wilco_ec_debugfs.o
> > +wilco_ec_events-objs := event.o
> > +obj-$(CONFIG_WILCO_EC_EVENTS) += wilco_ec_events.o
> > diff --git a/drivers/platform/chrome/wilco_ec/event.c b/drivers/platform/chrome/wilco_ec/event.c
> > new file mode 100644
> > index 000000000000..48f637336920
> > --- /dev/null
> > +++ b/drivers/platform/chrome/wilco_ec/event.c
> > @@ -0,0 +1,511 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +/*
> > + * ACPI event handling for Wilco Embedded Controller
> > + *
> > + * Copyright 2019 Google LLC
> > + *
> > + * The Wilco Embedded Controller can return extended events that
> > + * are not handled by standard ACPI objects. These events can
> > + * contain information about changes in EC controlled features,
> > + * such as the charger or battery getting plugged/unplugged.
> > + *
> > + * These events are triggered with an ACPI Notify(0x90) and the
> > + * event data buffer is read through an ACPI method provided by
> > + * the BIOS which reads the event buffer from EC RAM.
> > + *
> > + * These events are put into a queue which can be read by a userspace daemon
> > + * via a char device that implements read() and poll(). The char device
> > + * will appear at /dev/wilco_event{n}, where n is some integer.
> > + *
> > + * To test, run the simple python script from
> > + * https://gist.github.com/11fa41edda69aa09e4a27f5f788d45ba
> > + * to poll() and read() the node. You can generate events
> > + * in many ways, the easiest are to press fn+Esc or to
> > + * plug/unplug the battery (with the AC in).
> > + */
> > +
> > +#include <linux/acpi.h>
> > +#include <linux/cdev.h>
> > +#include <linux/device.h>
> > +#include <linux/fs.h>
> > +#include <linux/idr.h>
> > +#include <linux/io.h>
> > +#include <linux/list.h>
> > +#include <linux/module.h>
> > +#include <linux/poll.h>
> > +#include <linux/uaccess.h>
> > +#include <linux/wait.h>
> > +
> > +/* ACPI Notify event code indicating event data is available. */
> > +#define EC_ACPI_NOTIFY_EVENT 0x90
> > +/* ACPI Method to execute to retrieve event data buffer from the EC. */
> > +#define EC_ACPI_GET_EVENT "QSET"
> > +/* Maximum number of words in event data returned by the EC. */
> > +#define EC_ACPI_MAX_EVENT_DATA 6
> > +#define EC_ACPI_MAX_EVENT_SIZE \
> > + (sizeof(struct ec_event) + (EC_ACPI_MAX_EVENT_DATA) * sizeof(u16))
> > +
> > +/* Node will appear in /dev/EVENT_DEV_NAME */
> > +#define EVENT_DEV_NAME "wilco_event"
> > +#define EVENT_CLASS_NAME EVENT_DEV_NAME
> > +#define DRV_NAME EVENT_DEV_NAME
> > +#define EVENT_DEV_NAME_FMT (EVENT_DEV_NAME "%d")
> > +static struct class event_class = {
> > + .owner = THIS_MODULE,
> > + .name = EVENT_CLASS_NAME,
> > +};
> > +
> > +/* Keep track of all the device numbers used. */
> > +#define EVENT_MAX_DEV 128
> > +static int event_major;
> > +static DEFINE_IDA(event_ida);
> > +
> > +/**
> > + * struct event_device_data - Data for a Wilco EC device that responds to ACPI.
> > + * @events: Queue of EC events to be provided to userspace.
> > + * @lock: Mutex to guard the queue.
> > + * @wq: Wait queue to notify processes when events or available or the
> > + * device has been removed.
> > + * @cdev: Char dev that userspace reads() and polls() from.
> > + * @dev: Device associated with the %cdev.
> > + * @exist: Has the device been not been removed? Once a device has been removed,
> > + * writes, reads, and new opens will fail.
> > + *
> > + * There will be one of these structs for each ACPI device registered. This data
> > + * is the queue of events received from ACPI that still need to be read from
> > + * userspace (plus a supporting lock and wait queue), as well as the device and
> > + * char device that userspace is using, plus a flag on whether the ACPI device
> > + * has been removed.
> > + */
> > +struct event_device_data {
> > + struct list_head events;
> > + struct mutex lock;
> > + wait_queue_head_t wq;
> > + struct device dev;
> > + struct cdev cdev;
> > + bool exist;
> > +};
> > +
> > +/**
> > + * struct ec_event - Extended event returned by the EC.
> > + * @size: Number of words in structure after the size word.
> > + * @type: Extended event type from &enum ec_event_type.
> > + * @event: Event data words. Max count is %EC_ACPI_MAX_EVENT_DATA.
> > + */
> > +struct ec_event {
> > + u16 size;
> > + u16 type;
> > + u16 event[0];
> > +} __packed;
> > +
> > +/**
> > + * struct ec_event_entry - Event queue entry.
> > + * @list: List node.
> > + * @size: Number of bytes in event structure.
> > + * @event: Extended event returned by the EC. This should be the last
> > + * element because &struct ec_event includes a zero length array.
> > + */
> > +struct ec_event_entry {
> > + struct list_head list;
> > + size_t size;
> > + struct ec_event event;
> > +};
> > +
> > +/**
> > + * enqueue_events() - Place EC events in queue to be read by userspace.
> > + * @adev: Device the events came from.
> > + * @buf: Buffer of event data.
> > + * @length: Length of event data buffer.
> > + *
> > + * %buf contains a number of ec_event's, packed one after the other.
> > + * Each ec_event is of variable length. Start with the first event, copy it
> > + * into a containing ev_event_entry, store that entry in a list, move on
> > + * to the next ec_event in buf, and repeat.
> > + *
> > + * Return: 0 on success or negative error code on failure.
> > + */
> > +static int enqueue_events(struct acpi_device *adev, const u8 *buf, u32 length)
> > +{
> > + struct event_device_data *dev_data = adev->driver_data;
> > + struct ec_event *event;
> > + struct ec_event_entry *entry;
> > + size_t event_size, num_words, word_size;
> > + u32 offset = 0;
> > +
> > + while (offset < length) {
> > + event = (struct ec_event *)(buf + offset);
> > + if (!event)
> > + return -EINVAL;
> > +
> > + /* Number of 16bit event data words is size - 1 */
> > + num_words = event->size - 1;
> > + word_size = num_words * sizeof(u16);
> > + event_size = sizeof(*event) + word_size;
> > + if (num_words > EC_ACPI_MAX_EVENT_DATA) {
> > + dev_err(&adev->dev, "Too many event words: %d > %d\n",
> > + num_words, EC_ACPI_MAX_EVENT_DATA);
> > + return -EOVERFLOW;
> > + };
> > +
> > + /* Ensure event does not overflow the available buffer */
> > + if ((offset + event_size) > length) {
> > + dev_err(&adev->dev, "Event exceeds buffer: %d > %d\n",
> > + offset + event_size, length);
> > + return -EOVERFLOW;
> > + }
> > +
> > + /* Point to the next event in the buffer */
> > + offset += event_size;
> > +
> > + /* Create event entry for the queue */
> > + entry = kzalloc(sizeof(struct ec_event_entry) + word_size,
> > + GFP_KERNEL);
> > + if (!entry)
> > + return -ENOMEM;
> > + entry->size = event_size;
> > + memcpy(&entry->event, event, entry->size);
> > +
> > + /* Add this event to the queue */
> > + mutex_lock(&dev_data->lock);
> > + list_add_tail(&entry->list, &dev_data->events);
> > + mutex_unlock(&dev_data->lock);
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +/**
> > + * event_device_notify() - Callback when EC generates an event over ACPI.
> > + * @adev: The device that the event is coming from.
> > + * @value: Value passed to Notify() in ACPI.
> > + *
> > + * This function will read the events from the device and enqueue them.
> > + */
> > +static void event_device_notify(struct acpi_device *adev, u32 value)
> > +{
> > + struct acpi_buffer event_buffer = { ACPI_ALLOCATE_BUFFER, NULL };
> > + struct event_device_data *dev_data = adev->driver_data;
> > + union acpi_object *obj;
> > + acpi_status status;
> > +
> > + if (value != EC_ACPI_NOTIFY_EVENT) {
> > + dev_err(&adev->dev, "Invalid event: 0x%08x\n", value);
> > + return;
> > + }
> > +
> > + /* Execute ACPI method to get event data buffer. */
> > + status = acpi_evaluate_object(adev->handle, EC_ACPI_GET_EVENT,
> > + NULL, &event_buffer);
> > + if (ACPI_FAILURE(status)) {
> > + dev_err(&adev->dev, "Error executing ACPI method %s()\n",
> > + EC_ACPI_GET_EVENT);
> > + return;
> > + }
> > +
> > + obj = (union acpi_object *)event_buffer.pointer;
> > + if (!obj) {
> > + dev_err(&adev->dev, "Nothing returned from %s()\n",
> > + EC_ACPI_GET_EVENT);
> > + return;
> > + }
> > + if (obj->type != ACPI_TYPE_BUFFER) {
> > + dev_err(&adev->dev, "Invalid object returned from %s()\n",
> > + EC_ACPI_GET_EVENT);
> > + kfree(obj);
> > + return;
> > + }
> > + if (obj->buffer.length < sizeof(struct ec_event)) {
> > + dev_err(&adev->dev, "Invalid buffer length %d from %s()\n",
> > + obj->buffer.length, EC_ACPI_GET_EVENT);
> > + kfree(obj);
> > + return;
> > + }
> > +
> > + enqueue_events(adev, obj->buffer.pointer, obj->buffer.length);
> > + kfree(obj);
> > +
> > + if (!list_empty(&dev_data->events))
> > + wake_up_interruptible(&dev_data->wq);
> > +}
> > +
> > +static int event_open(struct inode *inode, struct file *filp)
> > +{
> > + struct event_device_data *dev_data;
> > +
> > + dev_data = container_of(inode->i_cdev, struct event_device_data, cdev);
> > + if (!dev_data->exist)
> > + return -ENODEV;
> > +
> > + /* Increase refcount on device so dev_data is not freed */
> > + get_device(&dev_data->dev);
> > + nonseekable_open(inode, filp);
> > + filp->private_data = dev_data;
> > +
> > + return 0;
> > +}
> > +
> > +static __poll_t event_poll(struct file *filp, poll_table *wait)
> > +{
> > + struct event_device_data *dev_data = filp->private_data;
> > + __poll_t mask = 0;
> > +
> > + poll_wait(filp, &dev_data->wq, wait);
> > + if (!dev_data->exist)
> > + return -ENODEV;
> > + if (!list_empty(&dev_data->events))
> > + mask |= EPOLLIN | EPOLLRDNORM | EPOLLPRI;
> > + return mask;
> > +}
> > +
> > +/**
> > + * event_read() - Callback for passing event data to userspace via read().
> > + * @filp: The file we are reading from.
> > + * @buf: Pointer to userspace buffer to fill with one event.
> > + * @count: Number of bytes requested. Must be at least EC_ACPI_MAX_EVENT_SIZE.
> > + * @pos: File position pointer, irrelevant since we don't support seeking.
> > + *
> > + * Fills the passed buffer with the data from the first event in the queue,
> > + * removes that event from the queue. On error, the event remains in the queue.
> > + *
> > + * If there are no events in the the queue, then one of two things happens,
> > + * depending on if the file was opened in nonblocking mode: If in nonblocking
> > + * mode, then return -EAGAIN to say there's no data. If in blocking mode, then
> > + * block until an event is available.
> > + *
> > + * Return: Number of bytes placed in buffer, negative error code on failure.
> > + */
> > +static ssize_t event_read(struct file *filp, char __user *buf, size_t count,
> > + loff_t *pos)
> > +{
> > + struct event_device_data *dev_data = filp->private_data;
> > + struct ec_event_entry *entry;
> > + ssize_t n_bytes_written = 0;
> > + int err;
> > +
> > + /* We only will give them the entire event at once */
> > + if (count != 0 && count < EC_ACPI_MAX_EVENT_SIZE)
> > + return -EINVAL;
> > +
> > + mutex_lock(&dev_data->lock);
> > +
> > + while (list_empty(&dev_data->events)) {
> > + if (filp->f_flags & O_NONBLOCK) {
> > + mutex_unlock(&dev_data->lock);
> > + return -EAGAIN;
> > + }
> > + /* Need to unlock so that data can actually get added to the
> > + * queue, and since we recheck before use and it's just
> > + * comparing pointers, this is safe unlocked.
> > + */
> > + mutex_unlock(&dev_data->lock);
> > + err = wait_event_interruptible(dev_data->wq,
> > + !list_empty(&dev_data->events));
> > + if (err)
> > + return err;
> > +
> > + /* Device was removed as we waited? */
> > + if (!dev_data->exist)
> > + return -ENODEV;
> > + mutex_lock(&dev_data->lock);
> > + }
> > +
> > + entry = list_first_entry(&dev_data->events,
> > + struct ec_event_entry, list);
> > + n_bytes_written = entry->size;
> > + if (copy_to_user(buf, &entry->event, n_bytes_written))
> > + return -EFAULT;
> > + list_del(&entry->list);
> > + kfree(entry);
> > +
> > + mutex_unlock(&dev_data->lock);
> > +
> > + return n_bytes_written;
> > +}
> > +
> > +static int event_release(struct inode *inode, struct file *filp)
> > +{
> > + struct event_device_data *dev_data = filp->private_data;
> > +
> > + put_device(&dev_data->dev);
> > +
> > + return 0;
> > +}
> > +
> > +static const struct file_operations event_fops = {
> > + .open = event_open,
> > + .poll = event_poll,
> > + .read = event_read,
> > + .release = event_release,
> > + .llseek = no_llseek,
> > + .owner = THIS_MODULE,
> > +};
> > +
> > +/**
> > + * free_device_data() - Callback to free the event_device_data structure.
> > + * @d: The device embedded in our device data, which we have been ref counting.
> > + *
> > + * This is called only after event_device_remove() has been called and all
> > + * userspace programs have called event_release() on all the open file
> > + * descriptors.
> > + */
> > +static void free_device_data(struct device *d)
> > +{
> > + struct event_device_data *dev_data;
> > +
> > + dev_data = container_of(d, struct event_device_data, dev);
> > + kfree(dev_data);
> > +}
> > +
> > +static void hangup_device(struct event_device_data *dev_data)
> > +{
> > + mutex_lock(&dev_data->lock);
> > + dev_data->exist = false;
> > + mutex_unlock(&dev_data->lock);
> > +
> > + /* Wake up the waiting processes so they can close. */
> > + wake_up_interruptible(&dev_data->wq);
> > + put_device(&dev_data->dev);
> > +}
> > +
> > +/**
> > + * event_device_add() - Callback when creating a new device.
> > + * @adev: ACPI device that we will be receiving events from.
> > + *
> > + * This finds a free minor number for the device, allocates and initializes
> > + * some device data, and creates a new device and char dev node.
> > + *
> > + * The device data is freed in free_device_data(), which is called when
> > + * %dev_data->dev is release()ed. This happens after all references to
> > + * %dev_data->dev are dropped, which happens once both event_device_remove()
> > + * has been called and every open()ed file descriptor has been release()ed.
> > + *
> > + * Return: 0 on success, negative error code on failure.
> > + */
> > +static int event_device_add(struct acpi_device *adev)
> > +{
> > + struct event_device_data *dev_data;
> > + dev_t dev_num;
> > + int error, minor;
> > +
> > + minor = ida_alloc_max(&event_ida, EVENT_MAX_DEV-1, GFP_KERNEL);
> > + if (minor < 0) {
> > + error = minor;
> > + dev_err(&adev->dev, "Failed to find minor number: %d", error);
> > + return error;
> > + }
> > +
> > + dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
> > + if (!dev_data) {
> > + error = -ENOMEM;
> > + goto free_minor;
> > + }
> > +
> > + /* Initialize the device data. */
> > + adev->driver_data = dev_data;
> > + INIT_LIST_HEAD(&dev_data->events);
> > + mutex_init(&dev_data->lock);
> > + init_waitqueue_head(&dev_data->wq);
> > + dev_data->exist = true;
> > +
> > + /* Initialize the device. */
> > + dev_num = MKDEV(event_major, minor);
> > + dev_data->dev.devt = dev_num;
> > + dev_data->dev.class = &event_class;
> > + dev_data->dev.release = free_device_data;
> > + dev_set_name(&dev_data->dev, EVENT_DEV_NAME_FMT, minor);
> > + device_initialize(&dev_data->dev);
> > +
> > + /* Initialize the character device, and add it to userspace. */
> > + cdev_init(&dev_data->cdev, &event_fops);
> > + error = cdev_device_add(&dev_data->cdev, &dev_data->dev);
> > + if (error)
> > + goto free_dev_data;
> > +
> > + return 0;
> > +
> > +free_dev_data:
> > + hangup_device(dev_data);
> > +free_minor:
> > + ida_simple_remove(&event_ida, minor);
> > + return error;
> > +}
> > +
> > +static int event_device_remove(struct acpi_device *adev)
> > +{
> > + struct event_device_data *dev_data = adev->driver_data;
> > +
> > + cdev_device_del(&dev_data->cdev, &dev_data->dev);
> > + ida_simple_remove(&event_ida, MINOR(dev_data->dev.devt));
> > + hangup_device(dev_data);
> > +
> > + return 0;
> > +}
> > +
> > +static const struct acpi_device_id event_acpi_ids[] = {
> > + { "GOOG000D", 0 },
> > + { }
> > +};
> > +MODULE_DEVICE_TABLE(acpi, event_acpi_ids);
> > +
> > +static struct acpi_driver event_driver = {
> > + .name = DRV_NAME,
> > + .class = DRV_NAME,
> > + .ids = event_acpi_ids,
> > + .ops = {
> > + .add = event_device_add,
> > + .notify = event_device_notify,
> > + .remove = event_device_remove,
> > + },
> > + .owner = THIS_MODULE,
> > +};
> > +
> > +static int __init event_module_init(void)
> > +{
> > + dev_t dev_num = 0;
> > + int ret;
> > +
> > + ret = class_register(&event_class);
> > + if (ret) {
> > + pr_warn(DRV_NAME ": Failed registering class: %d", ret);
> > + return ret;
> > + }
> > +
> > + /* Request device numbers, starting with minor=0. Save the major num. */
> > + ret = alloc_chrdev_region(&dev_num, 0, EVENT_MAX_DEV, EVENT_DEV_NAME);
> > + if (ret) {
> > + pr_warn(DRV_NAME ": Failed allocating dev numbers: %d", ret);
> > + goto destroy_class;
> > + }
> > + event_major = MAJOR(dev_num);
> > +
> > + ret = acpi_bus_register_driver(&event_driver);
> > + if (ret < 0) {
> > + pr_warn(DRV_NAME ": Failed registering driver: %d\n", ret);
> > + goto unregister_region;
> > + }
> > +
> > + return 0;
> > +
> > +unregister_region:
> > + unregister_chrdev_region(MKDEV(event_major, 0), EVENT_MAX_DEV);
> > +destroy_class:
> > + class_unregister(&event_class);
> > + ida_destroy(&event_ida);
> > + return ret;
> > +}
> > +
> > +static void __exit event_module_exit(void)
> > +{
> > + acpi_bus_unregister_driver(&event_driver);
> > + unregister_chrdev_region(MKDEV(event_major, 0), EVENT_MAX_DEV);
> > + class_unregister(&event_class);
> > + ida_destroy(&event_ida);
> > +}
> > +
> > +module_init(event_module_init);
> > +module_exit(event_module_exit);
> > +
> > +MODULE_AUTHOR("Nick Crews <[email protected]>");
> > +MODULE_DESCRIPTION("Wilco EC ACPI event driver");
> > +MODULE_LICENSE("GPL v2");
> > +MODULE_ALIAS("platform:" DRV_NAME);
> > --
> > 2.21.0.rc0.258.g878e2cd30e-goog
> >

2019-03-11 18:09:56

by Nick Crews

[permalink] [raw]
Subject: Re: [PATCH v2] platform/chrome: Add Wilco EC Event Handling

Bump so this doesn't get lost :)

On Mon, Mar 4, 2019 at 4:54 PM Nick Crews <[email protected]> wrote:
>
> Hi Enric,
>
> On Tue, Feb 26, 2019 at 8:04 AM Enric Balletbo Serra
> <[email protected]> wrote:
> >
> > Hi Nick,
> >
> > Missatge de Nick Crews <[email protected]> del dia dl., 25 de febr.
> > 2019 a les 20:13:
> > >
> > > This patch is meant to be applied on top of the current
> > > for-next top of tree in the chrome/platform repo, at
> > > https://git.kernel.org/pub/scm/linux/kernel/git/chrome-platform/linux.git/log/?h=for-next
> > >
> > > The Wilco Embedded Controller can return extended events that
> > > are not handled by standard ACPI objects. These events can
> > > contain information about changes in EC controlled features,
> > > such as the charger or battery getting plugged/unplugged.
> > >
> >
> > To understand better this I think would be good to know what kind of
> > events or which specific events do you expect to handle through this
> > interface. Because if these events are like the ones you described
> > above (charger/battery plugged/unplugged) this should go again through
> > the power-supply subsystem and use the standard interface for that.
>
> I didn't fully understand what was going on here either, so I had to figure
> it out myself as well :)
>
> I had a bad description for what sort of events this driver will be used for.
> There are two general classes of events that are generated by the EC and
> sent to the OS over ACPI: Standard ones (such as charger/battery/lid stuff
> as you mention) and the special ones that we care about. These special events
> include errors and notifications from the optional charging/display
> dock accessory,
> for instance "The cable you connected with is not supported". The
> standard ones are
> indeed handled through the standard interfaces. This interface also
> gets notified
> for a few of the standard events such as the battery getting plugged
> and unplugged,
> and that's why I was getting confused.
>
> You can see in some of the coreboot code where ACPI determines whether
> or not to forward these special "QS events" to this driver or to the
> standard ACPI system:
> https://review.coreboot.org/cgit/coreboot.git/tree/src/ec/google/wilco/acpi/event.asl#n80
>
> >
> > I suspect that what you want here, is different kernel drivers
> > accessing this event interface. E.g a wilco_ec_charger hooked to this
> > event interface that is able to get the event when the battery is
> > charging or not charging or charged. Maybe something similar to MKBP
> > events in cros-ec? Is that what you want?
>
> This is not what we want, I should have explained the use case in my
> original message.
> The point of this driver is to allow telemetry and diagnostics management for
> enterprise uses. A telemetry daemon will be running on the device
> waiting for events,
> (such as "The video port on the dock is not working.") and will report
> them to a cloud service.
> An example daemon that will use this is here:
> https://chromium-review.googlesource.com/c/chromiumos/platform2/+/1390115
>
> With these explanations, do you now think that we should keep this structure,
> and not move to the power_supply subsystem?
>
> Thanks for your thoughts,
> Nick