From: Frieder Schrempf <[email protected]>
This driver is derived from the SPI NOR driver at
mtd/spi-nor/fsl-quadspi.c. It uses the new SPI memory interface
of the SPI framework to issue flash memory operations to up to
four connected flash chips (2 buses with 2 CS each).
The controller does not support generic SPI messages.
Signed-off-by: Frieder Schrempf <[email protected]>
---
drivers/spi/Kconfig | 11 +
drivers/spi/Makefile | 1 +
drivers/spi/spi-fsl-qspi.c | 948 ++++++++++++++++++++++++++++++++++++++++
3 files changed, 960 insertions(+)
diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
index 7d3a5c9..52e2298 100644
--- a/drivers/spi/Kconfig
+++ b/drivers/spi/Kconfig
@@ -259,6 +259,17 @@ config SPI_FSL_LPSPI
help
This enables Freescale i.MX LPSPI controllers in master mode.
+config SPI_FSL_QSPI
+ tristate "Freescale QSPI controller"
+ depends on ARCH_MXC || SOC_LS1021A || ARCH_LAYERSCAPE || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables support for the Quad SPI controller in master mode.
+ Up to four flash chips can be connected on two buses with two
+ chipselects each.
+ This controller does not support generic SPI messages. It only
+ supports the high-level SPI memory interface.
+
config SPI_GPIO
tristate "GPIO-based bitbanging SPI Master"
depends on GPIOLIB || COMPILE_TEST
diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
index 3575205..833b9e7 100644
--- a/drivers/spi/Makefile
+++ b/drivers/spi/Makefile
@@ -44,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl-dspi.o
obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o
obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o
obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o
+obj-$(CONFIG_SPI_FSL_QSPI) += spi-fsl-qspi.o
obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o
obj-$(CONFIG_SPI_GPIO) += spi-gpio.o
obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o
diff --git a/drivers/spi/spi-fsl-qspi.c b/drivers/spi/spi-fsl-qspi.c
new file mode 100644
index 0000000..a43cfe8
--- /dev/null
+++ b/drivers/spi/spi-fsl-qspi.c
@@ -0,0 +1,948 @@
+// SPDX-License-Identifier: GPL-2.0+
+
+/*
+ * Freescale QuadSPI driver.
+ *
+ * Copyright (C) 2013 Freescale Semiconductor, Inc.
+ * Copyright (C) 2018 Bootlin
+ * Copyright (C) 2018 exceet electronics GmbH
+ * Copyright (C) 2018 Kontron Electronics GmbH
+ *
+ * Transition to SPI MEM interface:
+ * Author:
+ * Boris Brezillion <[email protected]>
+ * Frieder Schrempf <[email protected]>
+ * Yogesh Gaur <[email protected]>
+ * Suresh Gupta <[email protected]>
+ *
+ * Based on the original fsl-quadspi.c spi-nor driver:
+ * Author: Freescale Semiconductor, Inc.
+ *
+ */
+
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_qos.h>
+#include <linux/sizes.h>
+
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+
+/*
+ * The driver only uses one single LUT entry, that is updated on
+ * each call of exec_op(). Index 0 is preset at boot with a basic
+ * read operation, so let's use the last entry (15).
+ */
+#define SEQID_LUT 15
+
+/* Registers used by the driver */
+#define QUADSPI_MCR 0x00
+#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
+#define QUADSPI_MCR_MDIS_MASK BIT(14)
+#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
+#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
+#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
+#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
+#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
+#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
+
+#define QUADSPI_IPCR 0x08
+#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
+
+#define QUADSPI_BUF3CR 0x1c
+#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
+#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
+#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
+
+#define QUADSPI_BFGENCR 0x20
+#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
+
+#define QUADSPI_BUF0IND 0x30
+#define QUADSPI_BUF1IND 0x34
+#define QUADSPI_BUF2IND 0x38
+#define QUADSPI_SFAR 0x100
+
+#define QUADSPI_SMPR 0x108
+#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
+#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
+#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
+#define QUADSPI_SMPR_HSENA_MASK BIT(0)
+
+#define QUADSPI_RBCT 0x110
+#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
+#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
+
+#define QUADSPI_TBDR 0x154
+
+#define QUADSPI_SR 0x15c
+#define QUADSPI_SR_IP_ACC_MASK BIT(1)
+#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
+
+#define QUADSPI_FR 0x160
+#define QUADSPI_FR_TFF_MASK BIT(0)
+
+#define QUADSPI_SPTRCLR 0x16c
+#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
+#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
+
+#define QUADSPI_SFA1AD 0x180
+#define QUADSPI_SFA2AD 0x184
+#define QUADSPI_SFB1AD 0x188
+#define QUADSPI_SFB2AD 0x18c
+#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
+
+#define QUADSPI_LUTKEY 0x300
+#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
+
+#define QUADSPI_LCKCR 0x304
+#define QUADSPI_LCKER_LOCK BIT(0)
+#define QUADSPI_LCKER_UNLOCK BIT(1)
+
+#define QUADSPI_RSER 0x164
+#define QUADSPI_RSER_TFIE BIT(0)
+
+#define QUADSPI_LUT_BASE 0x310
+#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
+#define QUADSPI_LUT_REG(idx) \
+ (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
+
+/* Instruction set for the LUT register */
+#define LUT_STOP 0
+#define LUT_CMD 1
+#define LUT_ADDR 2
+#define LUT_DUMMY 3
+#define LUT_MODE 4
+#define LUT_MODE2 5
+#define LUT_MODE4 6
+#define LUT_FSL_READ 7
+#define LUT_FSL_WRITE 8
+#define LUT_JMP_ON_CS 9
+#define LUT_ADDR_DDR 10
+#define LUT_MODE_DDR 11
+#define LUT_MODE2_DDR 12
+#define LUT_MODE4_DDR 13
+#define LUT_FSL_READ_DDR 14
+#define LUT_FSL_WRITE_DDR 15
+#define LUT_DATA_LEARN 16
+
+/*
+ * The PAD definitions for LUT register.
+ *
+ * The pad stands for the number of IO lines [0:3].
+ * For example, the quad read needs four IO lines,
+ * so you should use LUT_PAD(4).
+ */
+#define LUT_PAD(x) (fls(x) - 1)
+
+/*
+ * Macro for constructing the LUT entries with the following
+ * register layout:
+ *
+ * ---------------------------------------------------
+ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
+ * ---------------------------------------------------
+ */
+#define LUT_DEF(idx, ins, pad, opr) \
+ ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
+
+/* Controller needs driver to swap endianness */
+#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
+
+/* Controller needs 4x internal clock */
+#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
+
+/*
+ * TKT253890, the controller needs the driver to fill the txfifo with
+ * 16 bytes at least to trigger a data transfer, even though the extra
+ * data won't be transferred.
+ */
+#define QUADSPI_QUIRK_TKT253890 BIT(2)
+
+/* TKT245618, the controller cannot wake up from wait mode */
+#define QUADSPI_QUIRK_TKT245618 BIT(3)
+
+enum fsl_qspi_devtype {
+ FSL_QUADSPI_VYBRID,
+ FSL_QUADSPI_IMX6SX,
+ FSL_QUADSPI_IMX7D,
+ FSL_QUADSPI_IMX6UL,
+ FSL_QUADSPI_LS1021A,
+ FSL_QUADSPI_LS2080A,
+};
+
+struct fsl_qspi_devtype_data {
+ enum fsl_qspi_devtype devtype;
+ unsigned int rxfifo;
+ unsigned int txfifo;
+ unsigned int ahb_buf_size;
+ unsigned int quirks;
+ bool little_endian;
+};
+
+static const struct fsl_qspi_devtype_data vybrid_data = {
+ .devtype = FSL_QUADSPI_VYBRID,
+ .rxfifo = SZ_128,
+ .txfifo = SZ_64,
+ .ahb_buf_size = SZ_1K,
+ .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
+ .little_endian = true,
+};
+
+static const struct fsl_qspi_devtype_data imx6sx_data = {
+ .devtype = FSL_QUADSPI_IMX6SX,
+ .rxfifo = SZ_128,
+ .txfifo = SZ_512,
+ .ahb_buf_size = SZ_1K,
+ .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
+ .little_endian = true,
+};
+
+static const struct fsl_qspi_devtype_data imx7d_data = {
+ .devtype = FSL_QUADSPI_IMX7D,
+ .rxfifo = SZ_512,
+ .txfifo = SZ_512,
+ .ahb_buf_size = SZ_1K,
+ .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
+ .little_endian = true,
+};
+
+static const struct fsl_qspi_devtype_data imx6ul_data = {
+ .devtype = FSL_QUADSPI_IMX6UL,
+ .rxfifo = SZ_128,
+ .txfifo = SZ_512,
+ .ahb_buf_size = SZ_1K,
+ .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
+ .little_endian = true,
+};
+
+static const struct fsl_qspi_devtype_data ls1021a_data = {
+ .devtype = FSL_QUADSPI_LS1021A,
+ .rxfifo = SZ_128,
+ .txfifo = SZ_64,
+ .ahb_buf_size = SZ_1K,
+ .quirks = 0,
+ .little_endian = false,
+};
+
+static const struct fsl_qspi_devtype_data ls2080a_data = {
+ .devtype = FSL_QUADSPI_LS2080A,
+ .rxfifo = SZ_128,
+ .txfifo = SZ_64,
+ .ahb_buf_size = SZ_1K,
+ .quirks = QUADSPI_QUIRK_TKT253890,
+ .little_endian = true,
+};
+
+struct fsl_qspi {
+ void __iomem *iobase;
+ void __iomem *ahb_addr;
+ u32 memmap_phy;
+ struct clk *clk, *clk_en;
+ struct device *dev;
+ struct completion c;
+ const struct fsl_qspi_devtype_data *devtype_data;
+ struct mutex lock;
+ struct pm_qos_request pm_qos_req;
+ int selected;
+ u8 seq;
+ void (*write)(u32 val, void __iomem *addr);
+ u32 (*read)(void __iomem *addr);
+};
+
+static inline int needs_swap_endian(struct fsl_qspi *q)
+{
+ return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
+}
+
+static inline int needs_4x_clock(struct fsl_qspi *q)
+{
+ return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
+}
+
+static inline int needs_fill_txfifo(struct fsl_qspi *q)
+{
+ return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
+}
+
+static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
+{
+ return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
+}
+
+/*
+ * An IC bug makes it necessary to rearrange the 32-bit data.
+ * Later chips, such as IMX6SLX, have fixed this bug.
+ */
+static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
+{
+ return needs_swap_endian(q) ? __swab32(a) : a;
+}
+
+/*
+ * R/W functions for big- or little-endian registers:
+ * The QSPI controller's endianness is independent of
+ * the CPU core's endianness. So far, although the CPU
+ * core is little-endian the QSPI controller can use
+ * big-endian or little-endian.
+ */
+static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
+{
+ if (q->devtype_data->little_endian)
+ iowrite32(val, addr);
+ else
+ iowrite32be(val, addr);
+}
+
+static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
+{
+ if (q->devtype_data->little_endian)
+ return ioread32(addr);
+
+ return ioread32be(addr);
+}
+
+static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
+{
+ struct fsl_qspi *q = dev_id;
+ u32 reg;
+
+ /* clear interrupt */
+ reg = qspi_readl(q, q->iobase + QUADSPI_FR);
+ qspi_writel(q, reg, q->iobase + QUADSPI_FR);
+
+ if (reg & QUADSPI_FR_TFF_MASK)
+ complete(&q->c);
+
+ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
+ return IRQ_HANDLED;
+}
+
+static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
+{
+ switch (width) {
+ case 1:
+ case 2:
+ case 4:
+ return 0;
+ }
+
+ return -ENOTSUPP;
+}
+
+static bool fsl_qspi_supports_op(struct spi_mem *mem,
+ const struct spi_mem_op *op)
+{
+ struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
+ int ret;
+
+ ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
+
+ if (op->addr.nbytes)
+ ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
+
+ if (op->dummy.nbytes)
+ ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
+
+ if (op->data.nbytes)
+ ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
+
+ if (ret)
+ return false;
+
+ /*
+ * The number of instructions needed for the op, needs
+ * to fit into a single LUT entry.
+ */
+ if (op->addr.nbytes +
+ (op->dummy.nbytes ? 1:0) +
+ (op->data.nbytes ? 1:0) > 6)
+ return false;
+
+ /* Max 64 dummy clock cycles supported */
+ if (op->dummy.nbytes &&
+ (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
+ return false;
+
+ /* Max data length, check controller limits and alignment */
+ if (op->data.dir == SPI_MEM_DATA_IN &&
+ (op->data.nbytes > q->devtype_data->ahb_buf_size ||
+ (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
+ !IS_ALIGNED(op->data.nbytes, 8))))
+ return false;
+
+ if (op->data.dir == SPI_MEM_DATA_OUT &&
+ op->data.nbytes > q->devtype_data->txfifo)
+ return false;
+
+ return true;
+}
+
+static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
+ const struct spi_mem_op *op)
+{
+ void __iomem *base = q->iobase;
+ u32 lutval[4] = {};
+ int lutidx = 1, i;
+
+ lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
+ op->cmd.opcode);
+
+ /*
+ * For some unknown reason, using LUT_ADDR doesn't work in some
+ * cases (at least with only one byte long addresses), so
+ * let's use LUT_MODE to write the address bytes one by one
+ */
+ for (i = 0; i < op->addr.nbytes; i++) {
+ u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
+
+ lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
+ LUT_PAD(op->addr.buswidth),
+ addrbyte);
+ lutidx++;
+ }
+
+ if (op->dummy.nbytes) {
+ lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
+ LUT_PAD(op->dummy.buswidth),
+ op->dummy.nbytes * 8 /
+ op->dummy.buswidth);
+ lutidx++;
+ }
+
+ if (op->data.nbytes) {
+ lutval[lutidx / 2] |= LUT_DEF(lutidx,
+ op->data.dir == SPI_MEM_DATA_IN ?
+ LUT_FSL_READ : LUT_FSL_WRITE,
+ LUT_PAD(op->data.buswidth),
+ 0);
+ lutidx++;
+ }
+
+ lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
+
+ /* unlock LUT */
+ qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
+ qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
+
+ /* fill LUT */
+ for (i = 0; i < ARRAY_SIZE(lutval); i++)
+ qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
+
+ /* lock LUT */
+ qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
+ qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
+}
+
+static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
+{
+ int ret;
+
+ ret = clk_prepare_enable(q->clk_en);
+ if (ret)
+ return ret;
+
+ ret = clk_prepare_enable(q->clk);
+ if (ret) {
+ clk_disable_unprepare(q->clk_en);
+ return ret;
+ }
+
+ if (needs_wakeup_wait_mode(q))
+ pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
+
+ return 0;
+}
+
+static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
+{
+ if (needs_wakeup_wait_mode(q))
+ pm_qos_remove_request(&q->pm_qos_req);
+
+ clk_disable_unprepare(q->clk);
+ clk_disable_unprepare(q->clk_en);
+}
+
+static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
+{
+ unsigned long rate = spi->max_speed_hz;
+ int ret, i;
+ u32 map_addr;
+
+ if (q->selected == spi->chip_select)
+ return;
+
+ /*
+ * In HW there can be a maximum of four chips on two buses with
+ * two chip selects on each bus. We use four chip selects in SW
+ * to differentiate between the four chips.
+ * We use the SFA1AD, SFA2AD, SFB1AD, SFB2AD registers to select
+ * the chip we want to access.
+ */
+ for (i = 0; i < 4; i++) {
+ if (i < spi->chip_select)
+ map_addr = q->memmap_phy;
+ else
+ map_addr = q->memmap_phy +
+ 2 * q->devtype_data->ahb_buf_size;
+
+ qspi_writel(q, map_addr, q->iobase + QUADSPI_SFA1AD + (i * 4));
+ }
+
+ if (needs_4x_clock(q))
+ rate *= 4;
+
+ fsl_qspi_clk_disable_unprep(q);
+
+ ret = clk_set_rate(q->clk, rate);
+ if (ret)
+ return;
+
+ ret = fsl_qspi_clk_prep_enable(q);
+ if (ret)
+ return;
+
+ q->selected = spi->chip_select;
+}
+
+static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
+{
+ /*
+ * We want to avoid needing to invalidate the cache by issueing
+ * a reset to the AHB and Serial Flash domain, as this needs
+ * time. So we change the address on each read to trigger an
+ * actual read operation on the flash. The actual address for
+ * the flash memory is set by programming the LUT.
+ */
+ memcpy_fromio(op->data.buf.in,
+ q->ahb_addr +
+ (((q->seq & (1 << q->selected)) == 0 ? 0:1) *
+ q->devtype_data->ahb_buf_size),
+ op->data.nbytes);
+
+ q->seq ^= 1 << q->selected;
+}
+
+static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
+ const struct spi_mem_op *op)
+{
+ void __iomem *base = q->iobase;
+ int i;
+ u32 val;
+
+ for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
+ memcpy(&val, op->data.buf.out + i, 4);
+ val = fsl_qspi_endian_xchg(q, val);
+ qspi_writel(q, val, base + QUADSPI_TBDR);
+ }
+
+ if (i < op->data.nbytes) {
+ memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
+ val = fsl_qspi_endian_xchg(q, val);
+ qspi_writel(q, val, base + QUADSPI_TBDR);
+ }
+
+ if (needs_fill_txfifo(q)) {
+ for (i = op->data.nbytes; i < 16; i += 4)
+ qspi_writel(q, 0, base + QUADSPI_TBDR);
+ }
+}
+
+static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
+ const struct spi_mem_op *op)
+{
+ void __iomem *base = q->iobase;
+ int i;
+ u8 *buf = op->data.buf.in;
+ u32 val;
+
+ for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
+ val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
+ val = fsl_qspi_endian_xchg(q, val);
+ memcpy(buf + i, &val, 4);
+ }
+
+ if (i < op->data.nbytes) {
+ val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
+ val = fsl_qspi_endian_xchg(q, val);
+ memcpy(buf + i, &val, op->data.nbytes - i);
+ }
+}
+
+static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
+{
+ void __iomem *base = q->iobase;
+ int err = 0;
+
+ init_completion(&q->c);
+
+ /*
+ * Always start the sequence at the same index since we update
+ * the LUT at each exec_op() call. And also specify the DATA
+ * length, since it's has not been specified in the LUT.
+ */
+ qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
+ base + QUADSPI_IPCR);
+
+ /* Wait for the interrupt. */
+ if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
+ err = -ETIMEDOUT;
+
+ if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
+ fsl_qspi_read_rxfifo(q, op);
+
+ return err;
+}
+
+static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
+ u32 mask, u32 delay_us, u32 timeout_us)
+{
+ u32 reg;
+
+ if (!q->devtype_data->little_endian)
+ mask = (u32)cpu_to_be32(mask);
+
+ return readl_poll_timeout(base, reg, (reg & mask), delay_us,
+ timeout_us);
+}
+
+static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
+{
+ struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
+ void __iomem *base = q->iobase;
+ int err = 0;
+
+ mutex_lock(&q->lock);
+
+ fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
+ QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
+
+ fsl_qspi_select_mem(q, mem->spi);
+
+ qspi_writel(q, q->memmap_phy, base + QUADSPI_SFAR);
+
+ qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
+ QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
+ base + QUADSPI_MCR);
+
+ qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
+ base + QUADSPI_SPTRCLR);
+
+ fsl_qspi_prepare_lut(q, op);
+
+ /*
+ * If we have large chunks of data, we read them through the AHB bus
+ * by accessing the mapped memory. In all other cases we use
+ * IP commands to access the flash.
+ */
+ if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
+ op->data.dir == SPI_MEM_DATA_IN) {
+ fsl_qspi_read_ahb(q, op);
+ } else {
+ qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
+ QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
+
+ if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
+ fsl_qspi_fill_txfifo(q, op);
+
+ err = fsl_qspi_do_op(q, op);
+ }
+
+ mutex_unlock(&q->lock);
+
+ return err;
+}
+
+static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
+{
+ struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
+
+ if (op->data.dir == SPI_MEM_DATA_OUT) {
+ if (op->data.nbytes > q->devtype_data->txfifo)
+ op->data.nbytes = q->devtype_data->txfifo;
+ } else {
+ if (op->data.nbytes > q->devtype_data->ahb_buf_size)
+ op->data.nbytes = q->devtype_data->ahb_buf_size;
+ else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
+ op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
+ }
+
+ return 0;
+}
+
+static int fsl_qspi_default_setup(struct fsl_qspi *q)
+{
+ void __iomem *base = q->iobase;
+ u32 reg;
+ int ret;
+
+ /* disable and unprepare clock to avoid glitch pass to controller */
+ fsl_qspi_clk_disable_unprep(q);
+
+ /* the default frequency, we will change it later if necessary. */
+ ret = clk_set_rate(q->clk, 66000000);
+ if (ret)
+ return ret;
+
+ ret = fsl_qspi_clk_prep_enable(q);
+ if (ret)
+ return ret;
+
+ /* Reset the module */
+ qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
+ base + QUADSPI_MCR);
+ udelay(1);
+
+ /* Disable the module */
+ qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
+ base + QUADSPI_MCR);
+
+ reg = qspi_readl(q, base + QUADSPI_SMPR);
+ qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
+ | QUADSPI_SMPR_FSPHS_MASK
+ | QUADSPI_SMPR_HSENA_MASK
+ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
+
+ /* We only use the buffer3 for AHB read */
+ qspi_writel(q, 0, base + QUADSPI_BUF0IND);
+ qspi_writel(q, 0, base + QUADSPI_BUF1IND);
+ qspi_writel(q, 0, base + QUADSPI_BUF2IND);
+
+ qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
+ q->iobase + QUADSPI_BFGENCR);
+ qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
+ qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
+ QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
+ base + QUADSPI_BUF3CR);
+
+ q->selected = -1;
+ q->seq = 0;
+
+ /* Enable the module */
+ qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
+ base + QUADSPI_MCR);
+
+ /* clear all interrupt status */
+ qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
+
+ /* enable the interrupt */
+ qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
+
+ return 0;
+}
+
+static const char *fsl_qspi_get_name(struct spi_mem *mem)
+{
+ struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
+ struct device *dev = &mem->spi->dev;
+ const char *name;
+
+ /*
+ * In order to keep mtdparts compatible with the old MTD driver at
+ * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
+ * platform_device of the controller.
+ */
+ if (of_get_available_child_count(q->dev->of_node) == 1)
+ return dev_name(q->dev);
+
+ name = devm_kasprintf(dev, GFP_KERNEL,
+ "%s-%d", dev_name(q->dev),
+ mem->spi->chip_select);
+
+ if (!name) {
+ dev_err(dev, "failed to get memory for custom flash name\n");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ return name;
+}
+
+static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
+ .adjust_op_size = fsl_qspi_adjust_op_size,
+ .supports_op = fsl_qspi_supports_op,
+ .exec_op = fsl_qspi_exec_op,
+ .get_name = fsl_qspi_get_name,
+};
+
+static int fsl_qspi_probe(struct platform_device *pdev)
+{
+ struct spi_controller *ctlr;
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev->of_node;
+ struct resource *res;
+ struct fsl_qspi *q;
+ int ret;
+
+ ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
+ if (!ctlr)
+ return -ENOMEM;
+
+ ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
+ SPI_TX_DUAL | SPI_TX_QUAD;
+
+ q = spi_controller_get_devdata(ctlr);
+ q->dev = dev;
+ q->devtype_data = of_device_get_match_data(dev);
+ if (!q->devtype_data) {
+ ret = -ENODEV;
+ goto err_put_ctrl;
+ }
+
+ platform_set_drvdata(pdev, q);
+
+ /* find the resources */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
+ q->iobase = devm_ioremap_resource(dev, res);
+ if (IS_ERR(q->iobase)) {
+ ret = PTR_ERR(q->iobase);
+ goto err_put_ctrl;
+ }
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "QuadSPI-memory");
+ q->ahb_addr = devm_ioremap_resource(dev, res);
+ if (IS_ERR(q->ahb_addr)) {
+ ret = PTR_ERR(q->ahb_addr);
+ goto err_put_ctrl;
+ }
+
+ q->memmap_phy = res->start;
+
+ /* find the clocks */
+ q->clk_en = devm_clk_get(dev, "qspi_en");
+ if (IS_ERR(q->clk_en)) {
+ ret = PTR_ERR(q->clk_en);
+ goto err_put_ctrl;
+ }
+
+ q->clk = devm_clk_get(dev, "qspi");
+ if (IS_ERR(q->clk)) {
+ ret = PTR_ERR(q->clk);
+ goto err_put_ctrl;
+ }
+
+ ret = fsl_qspi_clk_prep_enable(q);
+ if (ret) {
+ dev_err(dev, "can not enable the clock\n");
+ goto err_put_ctrl;
+ }
+
+ /* find the irq */
+ ret = platform_get_irq(pdev, 0);
+ if (ret < 0) {
+ dev_err(dev, "failed to get the irq: %d\n", ret);
+ goto err_disable_clk;
+ }
+
+ ret = devm_request_irq(dev, ret,
+ fsl_qspi_irq_handler, 0, pdev->name, q);
+ if (ret) {
+ dev_err(dev, "failed to request irq: %d\n", ret);
+ goto err_disable_clk;
+ }
+
+ mutex_init(&q->lock);
+
+ ctlr->bus_num = -1;
+ ctlr->num_chipselect = 4;
+ ctlr->mem_ops = &fsl_qspi_mem_ops;
+
+ fsl_qspi_default_setup(q);
+
+ ctlr->dev.of_node = np;
+
+ ret = spi_register_controller(ctlr);
+ if (ret)
+ goto err_destroy_mutex;
+
+ return 0;
+
+err_destroy_mutex:
+ mutex_destroy(&q->lock);
+
+err_disable_clk:
+ fsl_qspi_clk_disable_unprep(q);
+
+err_put_ctrl:
+ spi_controller_put(ctlr);
+
+ dev_err(dev, "Freescale QuadSPI probe failed\n");
+ return ret;
+}
+
+static int fsl_qspi_remove(struct platform_device *pdev)
+{
+ struct fsl_qspi *q = platform_get_drvdata(pdev);
+
+ /* disable the hardware */
+ qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
+ qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
+
+ fsl_qspi_clk_disable_unprep(q);
+
+ mutex_destroy(&q->lock);
+
+ return 0;
+}
+
+static int fsl_qspi_suspend(struct device *dev)
+{
+ return 0;
+}
+
+static int fsl_qspi_resume(struct device *dev)
+{
+ struct fsl_qspi *q = dev_get_drvdata(dev);
+
+ fsl_qspi_default_setup(q);
+
+ return 0;
+}
+
+static const struct of_device_id fsl_qspi_dt_ids[] = {
+ { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
+ { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
+ { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
+ { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
+ { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
+ { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
+
+static const struct dev_pm_ops fsl_qspi_pm_ops = {
+ .suspend = fsl_qspi_suspend,
+ .resume = fsl_qspi_resume,
+};
+
+static struct platform_driver fsl_qspi_driver = {
+ .driver = {
+ .name = "fsl-quadspi",
+ .of_match_table = fsl_qspi_dt_ids,
+ .pm = &fsl_qspi_pm_ops,
+ },
+ .probe = fsl_qspi_probe,
+ .remove = fsl_qspi_remove,
+};
+module_platform_driver(fsl_qspi_driver);
+
+MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
+MODULE_AUTHOR("Freescale Semiconductor Inc.");
+MODULE_AUTHOR("Boris Brezillion <[email protected]>");
+MODULE_AUTHOR("Frieder Schrempf <[email protected]>");
+MODULE_AUTHOR("Yogesh Gaur <[email protected]>");
+MODULE_AUTHOR("Suresh Gupta <[email protected]>");
+MODULE_LICENSE("GPL v2");
--
2.7.4
Hi,
> -----Original Message-----
> From: Frieder Schrempf [mailto:[email protected]]
> Sent: Wednesday, November 7, 2018 8:13 PM
> To: [email protected]; [email protected]; linux-
> [email protected]
> Cc: [email protected]; [email protected];
> [email protected]; [email protected]; [email protected];
> [email protected]; David Wolfe <[email protected]>; Fabio Estevam
> <[email protected]>; Prabhakar Kushwaha
> <[email protected]>; Yogesh Narayan Gaur
> <[email protected]>; Han Xu <[email protected]>;
> [email protected]; Frieder Schrempf <[email protected]>; linux-
> [email protected]
> Subject: [PATCH v4 01/10] spi: Add a driver for the Freescale/NXP QuadSPI
> controller
>
> From: Frieder Schrempf <[email protected]>
>
> This driver is derived from the SPI NOR driver at mtd/spi-nor/fsl-quadspi.c. It
> uses the new SPI memory interface of the SPI framework to issue flash memory
> operations to up to four connected flash chips (2 buses with 2 CS each).
>
> The controller does not support generic SPI messages.
>
> Signed-off-by: Frieder Schrempf <[email protected]>
> ---
> drivers/spi/Kconfig | 11 +
> drivers/spi/Makefile | 1 +
> drivers/spi/spi-fsl-qspi.c | 948 ++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 960 insertions(+)
>
> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index 7d3a5c9..52e2298
> 100644
> --- a/drivers/spi/Kconfig
> +++ b/drivers/spi/Kconfig
> @@ -259,6 +259,17 @@ config SPI_FSL_LPSPI
> help
> This enables Freescale i.MX LPSPI controllers in master mode.
>
> +config SPI_FSL_QSPI
> + tristate "Freescale QSPI controller"
> + depends on ARCH_MXC || SOC_LS1021A || ARCH_LAYERSCAPE ||
> COMPILE_TEST
> + depends on HAS_IOMEM
> + help
> + This enables support for the Quad SPI controller in master mode.
> + Up to four flash chips can be connected on two buses with two
> + chipselects each.
> + This controller does not support generic SPI messages. It only
> + supports the high-level SPI memory interface.
> +
> config SPI_GPIO
> tristate "GPIO-based bitbanging SPI Master"
> depends on GPIOLIB || COMPILE_TEST
> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index 3575205..833b9e7
> 100644
> --- a/drivers/spi/Makefile
> +++ b/drivers/spi/Makefile
> @@ -44,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl-
> dspi.o
> obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o
> obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o
> obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o
> +obj-$(CONFIG_SPI_FSL_QSPI) += spi-fsl-qspi.o
> obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o
> obj-$(CONFIG_SPI_GPIO) += spi-gpio.o
> obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o
> diff --git a/drivers/spi/spi-fsl-qspi.c b/drivers/spi/spi-fsl-qspi.c new file mode
> 100644 index 0000000..a43cfe8
> --- /dev/null
> +++ b/drivers/spi/spi-fsl-qspi.c
> @@ -0,0 +1,948 @@
> +// SPDX-License-Identifier: GPL-2.0+
> +
> +/*
> + * Freescale QuadSPI driver.
> + *
> + * Copyright (C) 2013 Freescale Semiconductor, Inc.
> + * Copyright (C) 2018 Bootlin
> + * Copyright (C) 2018 exceet electronics GmbH
> + * Copyright (C) 2018 Kontron Electronics GmbH
> + *
> + * Transition to SPI MEM interface:
> + * Author:
> + * Boris Brezillion <[email protected]>
> + * Frieder Schrempf <[email protected]>
> + * Yogesh Gaur <[email protected]>
> + * Suresh Gupta <[email protected]>
> + *
> + * Based on the original fsl-quadspi.c spi-nor driver:
> + * Author: Freescale Semiconductor, Inc.
> + *
> + */
> +
> +#include <linux/bitops.h>
> +#include <linux/clk.h>
> +#include <linux/completion.h>
> +#include <linux/delay.h>
> +#include <linux/err.h>
> +#include <linux/errno.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/jiffies.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +#include <linux/mutex.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_qos.h>
> +#include <linux/sizes.h>
> +
> +#include <linux/spi/spi.h>
> +#include <linux/spi/spi-mem.h>
> +
> +/*
> + * The driver only uses one single LUT entry, that is updated on
> + * each call of exec_op(). Index 0 is preset at boot with a basic
> + * read operation, so let's use the last entry (15).
> + */
> +#define SEQID_LUT 15
> +
> +/* Registers used by the driver */
> +#define QUADSPI_MCR 0x00
> +#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
> +#define QUADSPI_MCR_MDIS_MASK BIT(14)
> +#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
> +#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
> +#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
> +#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
> +#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
> +#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
> +
> +#define QUADSPI_IPCR 0x08
> +#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
> +
> +#define QUADSPI_BUF3CR 0x1c
> +#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
> +#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
> +#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
> +
> +#define QUADSPI_BFGENCR 0x20
> +#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
> +
> +#define QUADSPI_BUF0IND 0x30
> +#define QUADSPI_BUF1IND 0x34
> +#define QUADSPI_BUF2IND 0x38
> +#define QUADSPI_SFAR 0x100
> +
> +#define QUADSPI_SMPR 0x108
> +#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
> +#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
> +#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
> +#define QUADSPI_SMPR_HSENA_MASK BIT(0)
> +
> +#define QUADSPI_RBCT 0x110
> +#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
> +#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
> +
> +#define QUADSPI_TBDR 0x154
> +
> +#define QUADSPI_SR 0x15c
> +#define QUADSPI_SR_IP_ACC_MASK BIT(1)
> +#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
> +
> +#define QUADSPI_FR 0x160
> +#define QUADSPI_FR_TFF_MASK BIT(0)
> +
> +#define QUADSPI_SPTRCLR 0x16c
> +#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
> +#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
> +
> +#define QUADSPI_SFA1AD 0x180
> +#define QUADSPI_SFA2AD 0x184
> +#define QUADSPI_SFB1AD 0x188
> +#define QUADSPI_SFB2AD 0x18c
> +#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
> +
> +#define QUADSPI_LUTKEY 0x300
> +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
> +
> +#define QUADSPI_LCKCR 0x304
> +#define QUADSPI_LCKER_LOCK BIT(0)
> +#define QUADSPI_LCKER_UNLOCK BIT(1)
> +
> +#define QUADSPI_RSER 0x164
> +#define QUADSPI_RSER_TFIE BIT(0)
> +
> +#define QUADSPI_LUT_BASE 0x310
> +#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
> +#define QUADSPI_LUT_REG(idx) \
> + (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
> +
> +/* Instruction set for the LUT register */
> +#define LUT_STOP 0
> +#define LUT_CMD 1
> +#define LUT_ADDR 2
> +#define LUT_DUMMY 3
> +#define LUT_MODE 4
> +#define LUT_MODE2 5
> +#define LUT_MODE4 6
> +#define LUT_FSL_READ 7
> +#define LUT_FSL_WRITE 8
> +#define LUT_JMP_ON_CS 9
> +#define LUT_ADDR_DDR 10
> +#define LUT_MODE_DDR 11
> +#define LUT_MODE2_DDR 12
> +#define LUT_MODE4_DDR 13
> +#define LUT_FSL_READ_DDR 14
> +#define LUT_FSL_WRITE_DDR 15
> +#define LUT_DATA_LEARN 16
> +
> +/*
> + * The PAD definitions for LUT register.
> + *
> + * The pad stands for the number of IO lines [0:3].
> + * For example, the quad read needs four IO lines,
> + * so you should use LUT_PAD(4).
> + */
> +#define LUT_PAD(x) (fls(x) - 1)
> +
> +/*
> + * Macro for constructing the LUT entries with the following
> + * register layout:
> + *
> + * ---------------------------------------------------
> + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
> + * ---------------------------------------------------
> + */
> +#define LUT_DEF(idx, ins, pad, opr) \
> + ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
> +
> +/* Controller needs driver to swap endianness */
> +#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
> +
> +/* Controller needs 4x internal clock */
> +#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
> +
> +/*
> + * TKT253890, the controller needs the driver to fill the txfifo with
> + * 16 bytes at least to trigger a data transfer, even though the extra
> + * data won't be transferred.
> + */
> +#define QUADSPI_QUIRK_TKT253890 BIT(2)
> +
> +/* TKT245618, the controller cannot wake up from wait mode */
> +#define QUADSPI_QUIRK_TKT245618 BIT(3)
> +
> +enum fsl_qspi_devtype {
> + FSL_QUADSPI_VYBRID,
> + FSL_QUADSPI_IMX6SX,
> + FSL_QUADSPI_IMX7D,
> + FSL_QUADSPI_IMX6UL,
> + FSL_QUADSPI_LS1021A,
> + FSL_QUADSPI_LS2080A,
> +};
> +
We can go away with this enum
> +struct fsl_qspi_devtype_data {
> + enum fsl_qspi_devtype devtype;
> + unsigned int rxfifo;
> + unsigned int txfifo;
> + unsigned int ahb_buf_size;
> + unsigned int quirks;
> + bool little_endian;
> +};
> +
> +static const struct fsl_qspi_devtype_data vybrid_data = {
> + .devtype = FSL_QUADSPI_VYBRID,
> + .rxfifo = SZ_128,
> + .txfifo = SZ_64,
> + .ahb_buf_size = SZ_1K,
> + .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
> + .little_endian = true,
> +};
> +
> +static const struct fsl_qspi_devtype_data imx6sx_data = {
> + .devtype = FSL_QUADSPI_IMX6SX,
> + .rxfifo = SZ_128,
> + .txfifo = SZ_512,
> + .ahb_buf_size = SZ_1K,
> + .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
> + .little_endian = true,
> +};
> +
> +static const struct fsl_qspi_devtype_data imx7d_data = {
> + .devtype = FSL_QUADSPI_IMX7D,
> + .rxfifo = SZ_512,
> + .txfifo = SZ_512,
> + .ahb_buf_size = SZ_1K,
> + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
> + .little_endian = true,
> +};
> +
> +static const struct fsl_qspi_devtype_data imx6ul_data = {
> + .devtype = FSL_QUADSPI_IMX6UL,
> + .rxfifo = SZ_128,
> + .txfifo = SZ_512,
> + .ahb_buf_size = SZ_1K,
> + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
> + .little_endian = true,
> +};
> +
> +static const struct fsl_qspi_devtype_data ls1021a_data = {
> + .devtype = FSL_QUADSPI_LS1021A,
> + .rxfifo = SZ_128,
> + .txfifo = SZ_64,
> + .ahb_buf_size = SZ_1K,
> + .quirks = 0,
> + .little_endian = false,
> +};
> +
> +static const struct fsl_qspi_devtype_data ls2080a_data = {
> + .devtype = FSL_QUADSPI_LS2080A,
> + .rxfifo = SZ_128,
> + .txfifo = SZ_64,
> + .ahb_buf_size = SZ_1K,
> + .quirks = QUADSPI_QUIRK_TKT253890,
> + .little_endian = true,
> +};
> +
> +struct fsl_qspi {
> + void __iomem *iobase;
> + void __iomem *ahb_addr;
> + u32 memmap_phy;
> + struct clk *clk, *clk_en;
> + struct device *dev;
> + struct completion c;
> + const struct fsl_qspi_devtype_data *devtype_data;
> + struct mutex lock;
> + struct pm_qos_request pm_qos_req;
> + int selected;
> + u8 seq;
> + void (*write)(u32 val, void __iomem *addr);
> + u32 (*read)(void __iomem *addr);
> +};
> +
> +static inline int needs_swap_endian(struct fsl_qspi *q) {
> + return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; }
> +
> +static inline int needs_4x_clock(struct fsl_qspi *q) {
> + return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; }
> +
> +static inline int needs_fill_txfifo(struct fsl_qspi *q) {
> + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; }
> +
> +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) {
> + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; }
> +
> +/*
> + * An IC bug makes it necessary to rearrange the 32-bit data.
> + * Later chips, such as IMX6SLX, have fixed this bug.
> + */
> +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) {
> + return needs_swap_endian(q) ? __swab32(a) : a; }
> +
> +/*
> + * R/W functions for big- or little-endian registers:
> + * The QSPI controller's endianness is independent of
> + * the CPU core's endianness. So far, although the CPU
> + * core is little-endian the QSPI controller can use
> + * big-endian or little-endian.
> + */
> +static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem
> +*addr) {
> + if (q->devtype_data->little_endian)
> + iowrite32(val, addr);
> + else
> + iowrite32be(val, addr);
> +}
> +
> +static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) {
> + if (q->devtype_data->little_endian)
> + return ioread32(addr);
> +
> + return ioread32be(addr);
> +}
> +
> +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) {
> + struct fsl_qspi *q = dev_id;
> + u32 reg;
> +
> + /* clear interrupt */
> + reg = qspi_readl(q, q->iobase + QUADSPI_FR);
> + qspi_writel(q, reg, q->iobase + QUADSPI_FR);
> +
> + if (reg & QUADSPI_FR_TFF_MASK)
> + complete(&q->c);
> +
> + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
> + return IRQ_HANDLED;
> +}
> +
> +static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) {
> + switch (width) {
> + case 1:
> + case 2:
> + case 4:
> + return 0;
> + }
> +
> + return -ENOTSUPP;
> +}
> +
> +static bool fsl_qspi_supports_op(struct spi_mem *mem,
> + const struct spi_mem_op *op)
> +{
> + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> + int ret;
> +
> + ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
> +
> + if (op->addr.nbytes)
> + ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
> +
> + if (op->dummy.nbytes)
> + ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
> +
> + if (op->data.nbytes)
> + ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
> +
> + if (ret)
> + return false;
> +
> + /*
> + * The number of instructions needed for the op, needs
> + * to fit into a single LUT entry.
> + */
> + if (op->addr.nbytes +
> + (op->dummy.nbytes ? 1:0) +
> + (op->data.nbytes ? 1:0) > 6)
> + return false;
> +
> + /* Max 64 dummy clock cycles supported */
> + if (op->dummy.nbytes &&
> + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
> + return false;
> +
> + /* Max data length, check controller limits and alignment */
> + if (op->data.dir == SPI_MEM_DATA_IN &&
> + (op->data.nbytes > q->devtype_data->ahb_buf_size ||
> + (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
> + !IS_ALIGNED(op->data.nbytes, 8))))
> + return false;
> +
> + if (op->data.dir == SPI_MEM_DATA_OUT &&
> + op->data.nbytes > q->devtype_data->txfifo)
> + return false;
> +
> + return true;
> +}
> +
> +static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
> + const struct spi_mem_op *op)
> +{
> + void __iomem *base = q->iobase;
> + u32 lutval[4] = {};
> + int lutidx = 1, i;
> +
> + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
> + op->cmd.opcode);
> +
> + /*
> + * For some unknown reason, using LUT_ADDR doesn't work in some
> + * cases (at least with only one byte long addresses), so
> + * let's use LUT_MODE to write the address bytes one by one
> + */
> + for (i = 0; i < op->addr.nbytes; i++) {
> + u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
> +
> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
> + LUT_PAD(op->addr.buswidth),
> + addrbyte);
> + lutidx++;
> + }
> +
> + if (op->dummy.nbytes) {
> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
> + LUT_PAD(op->dummy.buswidth),
> + op->dummy.nbytes * 8 /
> + op->dummy.buswidth);
> + lutidx++;
> + }
> +
> + if (op->data.nbytes) {
> + lutval[lutidx / 2] |= LUT_DEF(lutidx,
> + op->data.dir ==
> SPI_MEM_DATA_IN ?
> + LUT_FSL_READ : LUT_FSL_WRITE,
> + LUT_PAD(op->data.buswidth),
> + 0);
> + lutidx++;
> + }
> +
> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
> +
> + /* unlock LUT */
> + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
> + qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
> +
> + /* fill LUT */
> + for (i = 0; i < ARRAY_SIZE(lutval); i++)
> + qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
> +
> + /* lock LUT */
> + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
> + qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); }
> +
> +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) {
> + int ret;
> +
> + ret = clk_prepare_enable(q->clk_en);
> + if (ret)
> + return ret;
> +
> + ret = clk_prepare_enable(q->clk);
> + if (ret) {
> + clk_disable_unprepare(q->clk_en);
> + return ret;
> + }
> +
> + if (needs_wakeup_wait_mode(q))
> + pm_qos_add_request(&q->pm_qos_req,
> PM_QOS_CPU_DMA_LATENCY, 0);
> +
> + return 0;
> +}
> +
> +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) {
> + if (needs_wakeup_wait_mode(q))
> + pm_qos_remove_request(&q->pm_qos_req);
> +
> + clk_disable_unprepare(q->clk);
> + clk_disable_unprepare(q->clk_en);
> +}
> +
> +static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device
> +*spi) {
> + unsigned long rate = spi->max_speed_hz;
> + int ret, i;
> + u32 map_addr;
> +
> + if (q->selected == spi->chip_select)
> + return;
> +
> + /*
> + * In HW there can be a maximum of four chips on two buses with
> + * two chip selects on each bus. We use four chip selects in SW
> + * to differentiate between the four chips.
> + * We use the SFA1AD, SFA2AD, SFB1AD, SFB2AD registers to select
> + * the chip we want to access.
> + */
> + for (i = 0; i < 4; i++) {
> + if (i < spi->chip_select)
> + map_addr = q->memmap_phy;
> + else
> + map_addr = q->memmap_phy +
> + 2 * q->devtype_data->ahb_buf_size;
> +
> + qspi_writel(q, map_addr, q->iobase + QUADSPI_SFA1AD + (i *
> 4));
> + }
> +
> + if (needs_4x_clock(q))
> + rate *= 4;
> +
> + fsl_qspi_clk_disable_unprep(q);
> +
> + ret = clk_set_rate(q->clk, rate);
> + if (ret)
> + return;
> +
> + ret = fsl_qspi_clk_prep_enable(q);
> + if (ret)
> + return;
> +
> + q->selected = spi->chip_select;
> +}
> +
> +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct
> +spi_mem_op *op) {
> + /*
> + * We want to avoid needing to invalidate the cache by issueing
> + * a reset to the AHB and Serial Flash domain, as this needs
> + * time. So we change the address on each read to trigger an
> + * actual read operation on the flash. The actual address for
> + * the flash memory is set by programming the LUT.
> + */
As discussed previously, please go away with this hack and use AHB bus invalidation method with smaller timeout value.
I would start doing validation of this patch series from next version onward. As you have mentioned in other mail discussion about issue in the break condition for function fsl_qspi_readl_poll_tout().
--
Regards
Yogesh Gaur
> + memcpy_fromio(op->data.buf.in,
> + q->ahb_addr +
> + (((q->seq & (1 << q->selected)) == 0 ? 0:1) *
> + q->devtype_data->ahb_buf_size),
> + op->data.nbytes);
> +
> + q->seq ^= 1 << q->selected;
> +}
> +
> +static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
> + const struct spi_mem_op *op)
> +{
> + void __iomem *base = q->iobase;
> + int i;
> + u32 val;
> +
> + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
> + memcpy(&val, op->data.buf.out + i, 4);
> + val = fsl_qspi_endian_xchg(q, val);
> + qspi_writel(q, val, base + QUADSPI_TBDR);
> + }
> +
> + if (i < op->data.nbytes) {
> + memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
> + val = fsl_qspi_endian_xchg(q, val);
> + qspi_writel(q, val, base + QUADSPI_TBDR);
> + }
> +
> + if (needs_fill_txfifo(q)) {
> + for (i = op->data.nbytes; i < 16; i += 4)
> + qspi_writel(q, 0, base + QUADSPI_TBDR);
> + }
> +}
> +
> +static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
> + const struct spi_mem_op *op)
> +{
> + void __iomem *base = q->iobase;
> + int i;
> + u8 *buf = op->data.buf.in;
> + u32 val;
> +
> + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
> + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
> + val = fsl_qspi_endian_xchg(q, val);
> + memcpy(buf + i, &val, 4);
> + }
> +
> + if (i < op->data.nbytes) {
> + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
> + val = fsl_qspi_endian_xchg(q, val);
> + memcpy(buf + i, &val, op->data.nbytes - i);
> + }
> +}
> +
> +static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op
> +*op) {
> + void __iomem *base = q->iobase;
> + int err = 0;
> +
> + init_completion(&q->c);
> +
> + /*
> + * Always start the sequence at the same index since we update
> + * the LUT at each exec_op() call. And also specify the DATA
> + * length, since it's has not been specified in the LUT.
> + */
> + qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
> + base + QUADSPI_IPCR);
> +
> + /* Wait for the interrupt. */
> + if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
> + err = -ETIMEDOUT;
> +
> + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
> + fsl_qspi_read_rxfifo(q, op);
> +
> + return err;
> +}
> +
> +static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
> + u32 mask, u32 delay_us, u32 timeout_us) {
> + u32 reg;
> +
> + if (!q->devtype_data->little_endian)
> + mask = (u32)cpu_to_be32(mask);
> +
> + return readl_poll_timeout(base, reg, (reg & mask), delay_us,
> + timeout_us);
> +}
> +
> +static int fsl_qspi_exec_op(struct spi_mem *mem, const struct
> +spi_mem_op *op) {
> + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> + void __iomem *base = q->iobase;
> + int err = 0;
> +
> + mutex_lock(&q->lock);
> +
> + fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR,
> (QUADSPI_SR_IP_ACC_MASK |
> + QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
> +
> + fsl_qspi_select_mem(q, mem->spi);
> +
> + qspi_writel(q, q->memmap_phy, base + QUADSPI_SFAR);
> +
> + qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
> + QUADSPI_MCR_CLR_RXF_MASK |
> QUADSPI_MCR_CLR_TXF_MASK,
> + base + QUADSPI_MCR);
> +
> + qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
> + base + QUADSPI_SPTRCLR);
> +
> + fsl_qspi_prepare_lut(q, op);
> +
> + /*
> + * If we have large chunks of data, we read them through the AHB bus
> + * by accessing the mapped memory. In all other cases we use
> + * IP commands to access the flash.
> + */
> + if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
> + op->data.dir == SPI_MEM_DATA_IN) {
> + fsl_qspi_read_ahb(q, op);
> + } else {
> + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
> + QUADSPI_RBCT_RXBRD_USEIPS, base +
> QUADSPI_RBCT);
> +
> + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
> + fsl_qspi_fill_txfifo(q, op);
> +
> + err = fsl_qspi_do_op(q, op);
> + }
> +
> + mutex_unlock(&q->lock);
> +
> + return err;
> +}
> +
> +static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct
> +spi_mem_op *op) {
> + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> +
> + if (op->data.dir == SPI_MEM_DATA_OUT) {
> + if (op->data.nbytes > q->devtype_data->txfifo)
> + op->data.nbytes = q->devtype_data->txfifo;
> + } else {
> + if (op->data.nbytes > q->devtype_data->ahb_buf_size)
> + op->data.nbytes = q->devtype_data->ahb_buf_size;
> + else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
> + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
> + }
> +
> + return 0;
> +}
> +
> +static int fsl_qspi_default_setup(struct fsl_qspi *q) {
> + void __iomem *base = q->iobase;
> + u32 reg;
> + int ret;
> +
> + /* disable and unprepare clock to avoid glitch pass to controller */
> + fsl_qspi_clk_disable_unprep(q);
> +
> + /* the default frequency, we will change it later if necessary. */
> + ret = clk_set_rate(q->clk, 66000000);
> + if (ret)
> + return ret;
> +
> + ret = fsl_qspi_clk_prep_enable(q);
> + if (ret)
> + return ret;
> +
> + /* Reset the module */
> + qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK |
> QUADSPI_MCR_SWRSTHD_MASK,
> + base + QUADSPI_MCR);
> + udelay(1);
> +
> + /* Disable the module */
> + qspi_writel(q, QUADSPI_MCR_MDIS_MASK |
> QUADSPI_MCR_RESERVED_MASK,
> + base + QUADSPI_MCR);
> +
> + reg = qspi_readl(q, base + QUADSPI_SMPR);
> + qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
> + | QUADSPI_SMPR_FSPHS_MASK
> + | QUADSPI_SMPR_HSENA_MASK
> + | QUADSPI_SMPR_DDRSMP_MASK), base +
> QUADSPI_SMPR);
> +
> + /* We only use the buffer3 for AHB read */
> + qspi_writel(q, 0, base + QUADSPI_BUF0IND);
> + qspi_writel(q, 0, base + QUADSPI_BUF1IND);
> + qspi_writel(q, 0, base + QUADSPI_BUF2IND);
> +
> + qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
> + q->iobase + QUADSPI_BFGENCR);
> + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
> + qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
> + QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size /
> 8),
> + base + QUADSPI_BUF3CR);
> +
> + q->selected = -1;
> + q->seq = 0;
> +
> + /* Enable the module */
> + qspi_writel(q, QUADSPI_MCR_RESERVED_MASK |
> QUADSPI_MCR_END_CFG_MASK,
> + base + QUADSPI_MCR);
> +
> + /* clear all interrupt status */
> + qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
> +
> + /* enable the interrupt */
> + qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
> +
> + return 0;
> +}
> +
> +static const char *fsl_qspi_get_name(struct spi_mem *mem) {
> + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> + struct device *dev = &mem->spi->dev;
> + const char *name;
> +
> + /*
> + * In order to keep mtdparts compatible with the old MTD driver at
> + * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
> + * platform_device of the controller.
> + */
> + if (of_get_available_child_count(q->dev->of_node) == 1)
> + return dev_name(q->dev);
> +
> + name = devm_kasprintf(dev, GFP_KERNEL,
> + "%s-%d", dev_name(q->dev),
> + mem->spi->chip_select);
> +
> + if (!name) {
> + dev_err(dev, "failed to get memory for custom flash name\n");
> + return ERR_PTR(-ENOMEM);
> + }
> +
> + return name;
> +}
> +
> +static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
> + .adjust_op_size = fsl_qspi_adjust_op_size,
> + .supports_op = fsl_qspi_supports_op,
> + .exec_op = fsl_qspi_exec_op,
> + .get_name = fsl_qspi_get_name,
> +};
> +
> +static int fsl_qspi_probe(struct platform_device *pdev) {
> + struct spi_controller *ctlr;
> + struct device *dev = &pdev->dev;
> + struct device_node *np = dev->of_node;
> + struct resource *res;
> + struct fsl_qspi *q;
> + int ret;
> +
> + ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
> + if (!ctlr)
> + return -ENOMEM;
> +
> + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
> + SPI_TX_DUAL | SPI_TX_QUAD;
> +
> + q = spi_controller_get_devdata(ctlr);
> + q->dev = dev;
> + q->devtype_data = of_device_get_match_data(dev);
> + if (!q->devtype_data) {
> + ret = -ENODEV;
> + goto err_put_ctrl;
> + }
> +
> + platform_set_drvdata(pdev, q);
> +
> + /* find the resources */
> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> "QuadSPI");
> + q->iobase = devm_ioremap_resource(dev, res);
> + if (IS_ERR(q->iobase)) {
> + ret = PTR_ERR(q->iobase);
> + goto err_put_ctrl;
> + }
> +
> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> + "QuadSPI-memory");
> + q->ahb_addr = devm_ioremap_resource(dev, res);
> + if (IS_ERR(q->ahb_addr)) {
> + ret = PTR_ERR(q->ahb_addr);
> + goto err_put_ctrl;
> + }
> +
> + q->memmap_phy = res->start;
> +
> + /* find the clocks */
> + q->clk_en = devm_clk_get(dev, "qspi_en");
> + if (IS_ERR(q->clk_en)) {
> + ret = PTR_ERR(q->clk_en);
> + goto err_put_ctrl;
> + }
> +
> + q->clk = devm_clk_get(dev, "qspi");
> + if (IS_ERR(q->clk)) {
> + ret = PTR_ERR(q->clk);
> + goto err_put_ctrl;
> + }
> +
> + ret = fsl_qspi_clk_prep_enable(q);
> + if (ret) {
> + dev_err(dev, "can not enable the clock\n");
> + goto err_put_ctrl;
> + }
> +
> + /* find the irq */
> + ret = platform_get_irq(pdev, 0);
> + if (ret < 0) {
> + dev_err(dev, "failed to get the irq: %d\n", ret);
> + goto err_disable_clk;
> + }
> +
> + ret = devm_request_irq(dev, ret,
> + fsl_qspi_irq_handler, 0, pdev->name, q);
> + if (ret) {
> + dev_err(dev, "failed to request irq: %d\n", ret);
> + goto err_disable_clk;
> + }
> +
> + mutex_init(&q->lock);
> +
> + ctlr->bus_num = -1;
> + ctlr->num_chipselect = 4;
> + ctlr->mem_ops = &fsl_qspi_mem_ops;
> +
> + fsl_qspi_default_setup(q);
> +
> + ctlr->dev.of_node = np;
> +
> + ret = spi_register_controller(ctlr);
> + if (ret)
> + goto err_destroy_mutex;
> +
> + return 0;
> +
> +err_destroy_mutex:
> + mutex_destroy(&q->lock);
> +
> +err_disable_clk:
> + fsl_qspi_clk_disable_unprep(q);
> +
> +err_put_ctrl:
> + spi_controller_put(ctlr);
> +
> + dev_err(dev, "Freescale QuadSPI probe failed\n");
> + return ret;
> +}
> +
> +static int fsl_qspi_remove(struct platform_device *pdev) {
> + struct fsl_qspi *q = platform_get_drvdata(pdev);
> +
> + /* disable the hardware */
> + qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
> + qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
> +
> + fsl_qspi_clk_disable_unprep(q);
> +
> + mutex_destroy(&q->lock);
> +
> + return 0;
> +}
> +
> +static int fsl_qspi_suspend(struct device *dev) {
> + return 0;
> +}
> +
> +static int fsl_qspi_resume(struct device *dev) {
> + struct fsl_qspi *q = dev_get_drvdata(dev);
> +
> + fsl_qspi_default_setup(q);
> +
> + return 0;
> +}
> +
> +static const struct of_device_id fsl_qspi_dt_ids[] = {
> + { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
> + { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
> + { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
> + { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
> + { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
> + { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
> + { /* sentinel */ }
> +};
> +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
> +
> +static const struct dev_pm_ops fsl_qspi_pm_ops = {
> + .suspend = fsl_qspi_suspend,
> + .resume = fsl_qspi_resume,
> +};
> +
> +static struct platform_driver fsl_qspi_driver = {
> + .driver = {
> + .name = "fsl-quadspi",
> + .of_match_table = fsl_qspi_dt_ids,
> + .pm = &fsl_qspi_pm_ops,
> + },
> + .probe = fsl_qspi_probe,
> + .remove = fsl_qspi_remove,
> +};
> +module_platform_driver(fsl_qspi_driver);
> +
> +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
> +MODULE_AUTHOR("Freescale Semiconductor Inc."); MODULE_AUTHOR("Boris
> +Brezillion <[email protected]>"); MODULE_AUTHOR("Frieder
> +Schrempf <[email protected]>"); MODULE_AUTHOR("Yogesh Gaur
> +<[email protected]>"); MODULE_AUTHOR("Suresh Gupta
> +<[email protected]>"); MODULE_LICENSE("GPL v2");
> --
> 2.7.4
Hi,
> -----Original Message-----
> From: Yogesh Narayan Gaur
> Sent: Tuesday, November 13, 2018 1:53 PM
> To: 'Frieder Schrempf' <[email protected]>; linux-
> [email protected]; [email protected]; linux-
> [email protected]
> Cc: [email protected]; [email protected];
> [email protected]; [email protected]; [email protected];
> [email protected]; David Wolfe <[email protected]>; Fabio Estevam
> <[email protected]>; Prabhakar Kushwaha
> <[email protected]>; Han Xu <[email protected]>;
> [email protected]; Frieder Schrempf <[email protected]>; linux-
> [email protected]
> Subject: RE: [PATCH v4 01/10] spi: Add a driver for the Freescale/NXP QuadSPI
> controller
>
> Hi,
>
> > -----Original Message-----
> > From: Frieder Schrempf [mailto:[email protected]]
> > Sent: Wednesday, November 7, 2018 8:13 PM
> > To: [email protected]; [email protected]; linux-
> > [email protected]
> > Cc: [email protected]; [email protected];
> > [email protected]; [email protected]; [email protected];
> > [email protected]; David Wolfe <[email protected]>; Fabio Estevam
> > <[email protected]>; Prabhakar Kushwaha
> > <[email protected]>; Yogesh Narayan Gaur
> > <[email protected]>; Han Xu <[email protected]>;
> > [email protected]; Frieder Schrempf <[email protected]>;
> > linux- [email protected]
> > Subject: [PATCH v4 01/10] spi: Add a driver for the Freescale/NXP
> > QuadSPI controller
> >
> > From: Frieder Schrempf <[email protected]>
> >
> > This driver is derived from the SPI NOR driver at
> > mtd/spi-nor/fsl-quadspi.c. It uses the new SPI memory interface of the
> > SPI framework to issue flash memory operations to up to four connected flash
> chips (2 buses with 2 CS each).
> >
> > The controller does not support generic SPI messages.
> >
> > Signed-off-by: Frieder Schrempf <[email protected]>
> > ---
> > drivers/spi/Kconfig | 11 +
> > drivers/spi/Makefile | 1 +
> > drivers/spi/spi-fsl-qspi.c | 948
> > ++++++++++++++++++++++++++++++++++++++++
> > 3 files changed, 960 insertions(+)
> >
> > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index
> > 7d3a5c9..52e2298
> > 100644
> > --- a/drivers/spi/Kconfig
> > +++ b/drivers/spi/Kconfig
> > @@ -259,6 +259,17 @@ config SPI_FSL_LPSPI
> > help
> > This enables Freescale i.MX LPSPI controllers in master mode.
> >
> > +config SPI_FSL_QSPI
> > + tristate "Freescale QSPI controller"
> > + depends on ARCH_MXC || SOC_LS1021A || ARCH_LAYERSCAPE ||
> > COMPILE_TEST
> > + depends on HAS_IOMEM
> > + help
> > + This enables support for the Quad SPI controller in master mode.
> > + Up to four flash chips can be connected on two buses with two
> > + chipselects each.
> > + This controller does not support generic SPI messages. It only
> > + supports the high-level SPI memory interface.
> > +
> > config SPI_GPIO
> > tristate "GPIO-based bitbanging SPI Master"
> > depends on GPIOLIB || COMPILE_TEST
> > diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index
> > 3575205..833b9e7
> > 100644
> > --- a/drivers/spi/Makefile
> > +++ b/drivers/spi/Makefile
> > @@ -44,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl-
> > dspi.o
> > obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o
> > obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o
> > obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o
> > +obj-$(CONFIG_SPI_FSL_QSPI) += spi-fsl-qspi.o
> > obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o
> > obj-$(CONFIG_SPI_GPIO) += spi-gpio.o
> > obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o
> > diff --git a/drivers/spi/spi-fsl-qspi.c b/drivers/spi/spi-fsl-qspi.c
> > new file mode
> > 100644 index 0000000..a43cfe8
> > --- /dev/null
> > +++ b/drivers/spi/spi-fsl-qspi.c
> > @@ -0,0 +1,948 @@
> > +// SPDX-License-Identifier: GPL-2.0+
> > +
> > +/*
> > + * Freescale QuadSPI driver.
> > + *
> > + * Copyright (C) 2013 Freescale Semiconductor, Inc.
> > + * Copyright (C) 2018 Bootlin
> > + * Copyright (C) 2018 exceet electronics GmbH
> > + * Copyright (C) 2018 Kontron Electronics GmbH
> > + *
> > + * Transition to SPI MEM interface:
> > + * Author:
> > + * Boris Brezillion <[email protected]>
> > + * Frieder Schrempf <[email protected]>
> > + * Yogesh Gaur <[email protected]>
> > + * Suresh Gupta <[email protected]>
> > + *
> > + * Based on the original fsl-quadspi.c spi-nor driver:
> > + * Author: Freescale Semiconductor, Inc.
> > + *
> > + */
> > +
> > +#include <linux/bitops.h>
> > +#include <linux/clk.h>
> > +#include <linux/completion.h>
> > +#include <linux/delay.h>
> > +#include <linux/err.h>
> > +#include <linux/errno.h>
> > +#include <linux/interrupt.h>
> > +#include <linux/io.h>
> > +#include <linux/iopoll.h>
> > +#include <linux/jiffies.h>
> > +#include <linux/kernel.h>
> > +#include <linux/module.h>
> > +#include <linux/mutex.h>
> > +#include <linux/of.h>
> > +#include <linux/of_device.h>
> > +#include <linux/platform_device.h>
> > +#include <linux/pm_qos.h>
> > +#include <linux/sizes.h>
> > +
> > +#include <linux/spi/spi.h>
> > +#include <linux/spi/spi-mem.h>
> > +
> > +/*
> > + * The driver only uses one single LUT entry, that is updated on
> > + * each call of exec_op(). Index 0 is preset at boot with a basic
> > + * read operation, so let's use the last entry (15).
> > + */
> > +#define SEQID_LUT 15
> > +
> > +/* Registers used by the driver */
> > +#define QUADSPI_MCR 0x00
> > +#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
> > +#define QUADSPI_MCR_MDIS_MASK BIT(14)
> > +#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
> > +#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
> > +#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
> > +#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
> > +#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
> > +#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
> > +
> > +#define QUADSPI_IPCR 0x08
> > +#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
> > +
> > +#define QUADSPI_BUF3CR 0x1c
> > +#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
> > +#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
> > +#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
> > +
> > +#define QUADSPI_BFGENCR 0x20
> > +#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
> > +
> > +#define QUADSPI_BUF0IND 0x30
> > +#define QUADSPI_BUF1IND 0x34
> > +#define QUADSPI_BUF2IND 0x38
> > +#define QUADSPI_SFAR 0x100
> > +
> > +#define QUADSPI_SMPR 0x108
> > +#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
> > +#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
> > +#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
> > +#define QUADSPI_SMPR_HSENA_MASK BIT(0)
> > +
> > +#define QUADSPI_RBCT 0x110
> > +#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
> > +#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
> > +
> > +#define QUADSPI_TBDR 0x154
> > +
> > +#define QUADSPI_SR 0x15c
> > +#define QUADSPI_SR_IP_ACC_MASK BIT(1)
> > +#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
> > +
> > +#define QUADSPI_FR 0x160
> > +#define QUADSPI_FR_TFF_MASK BIT(0)
> > +
> > +#define QUADSPI_SPTRCLR 0x16c
> > +#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
> > +#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
> > +
> > +#define QUADSPI_SFA1AD 0x180
> > +#define QUADSPI_SFA2AD 0x184
> > +#define QUADSPI_SFB1AD 0x188
> > +#define QUADSPI_SFB2AD 0x18c
> > +#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
> > +
> > +#define QUADSPI_LUTKEY 0x300
> > +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
> > +
> > +#define QUADSPI_LCKCR 0x304
> > +#define QUADSPI_LCKER_LOCK BIT(0)
> > +#define QUADSPI_LCKER_UNLOCK BIT(1)
> > +
> > +#define QUADSPI_RSER 0x164
> > +#define QUADSPI_RSER_TFIE BIT(0)
> > +
> > +#define QUADSPI_LUT_BASE 0x310
> > +#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
> > +#define QUADSPI_LUT_REG(idx) \
> > + (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
> > +
> > +/* Instruction set for the LUT register */
> > +#define LUT_STOP 0
> > +#define LUT_CMD 1
> > +#define LUT_ADDR 2
> > +#define LUT_DUMMY 3
> > +#define LUT_MODE 4
> > +#define LUT_MODE2 5
> > +#define LUT_MODE4 6
> > +#define LUT_FSL_READ 7
> > +#define LUT_FSL_WRITE 8
> > +#define LUT_JMP_ON_CS 9
> > +#define LUT_ADDR_DDR 10
> > +#define LUT_MODE_DDR 11
> > +#define LUT_MODE2_DDR 12
> > +#define LUT_MODE4_DDR 13
> > +#define LUT_FSL_READ_DDR 14
> > +#define LUT_FSL_WRITE_DDR 15
> > +#define LUT_DATA_LEARN 16
> > +
> > +/*
> > + * The PAD definitions for LUT register.
> > + *
> > + * The pad stands for the number of IO lines [0:3].
> > + * For example, the quad read needs four IO lines,
> > + * so you should use LUT_PAD(4).
> > + */
> > +#define LUT_PAD(x) (fls(x) - 1)
> > +
> > +/*
> > + * Macro for constructing the LUT entries with the following
> > + * register layout:
> > + *
> > + * ---------------------------------------------------
> > + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
> > + * ---------------------------------------------------
> > + */
> > +#define LUT_DEF(idx, ins, pad, opr) \
> > + ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
> > +
> > +/* Controller needs driver to swap endianness */
> > +#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
> > +
> > +/* Controller needs 4x internal clock */
> > +#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
> > +
> > +/*
> > + * TKT253890, the controller needs the driver to fill the txfifo with
> > + * 16 bytes at least to trigger a data transfer, even though the
> > +extra
> > + * data won't be transferred.
> > + */
> > +#define QUADSPI_QUIRK_TKT253890 BIT(2)
> > +
> > +/* TKT245618, the controller cannot wake up from wait mode */
> > +#define QUADSPI_QUIRK_TKT245618 BIT(3)
> > +
> > +enum fsl_qspi_devtype {
> > + FSL_QUADSPI_VYBRID,
> > + FSL_QUADSPI_IMX6SX,
> > + FSL_QUADSPI_IMX7D,
> > + FSL_QUADSPI_IMX6UL,
> > + FSL_QUADSPI_LS1021A,
> > + FSL_QUADSPI_LS2080A,
> > +};
> > +
> We can go away with this enum
>
> > +struct fsl_qspi_devtype_data {
> > + enum fsl_qspi_devtype devtype;
> > + unsigned int rxfifo;
> > + unsigned int txfifo;
> > + unsigned int ahb_buf_size;
> > + unsigned int quirks;
> > + bool little_endian;
> > +};
> > +
> > +static const struct fsl_qspi_devtype_data vybrid_data = {
> > + .devtype = FSL_QUADSPI_VYBRID,
> > + .rxfifo = SZ_128,
> > + .txfifo = SZ_64,
> > + .ahb_buf_size = SZ_1K,
> > + .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
> > + .little_endian = true,
> > +};
> > +
> > +static const struct fsl_qspi_devtype_data imx6sx_data = {
> > + .devtype = FSL_QUADSPI_IMX6SX,
> > + .rxfifo = SZ_128,
> > + .txfifo = SZ_512,
> > + .ahb_buf_size = SZ_1K,
> > + .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
> > + .little_endian = true,
> > +};
> > +
> > +static const struct fsl_qspi_devtype_data imx7d_data = {
> > + .devtype = FSL_QUADSPI_IMX7D,
> > + .rxfifo = SZ_512,
> > + .txfifo = SZ_512,
> > + .ahb_buf_size = SZ_1K,
> > + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
> > + .little_endian = true,
> > +};
> > +
> > +static const struct fsl_qspi_devtype_data imx6ul_data = {
> > + .devtype = FSL_QUADSPI_IMX6UL,
> > + .rxfifo = SZ_128,
> > + .txfifo = SZ_512,
> > + .ahb_buf_size = SZ_1K,
> > + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
> > + .little_endian = true,
> > +};
> > +
> > +static const struct fsl_qspi_devtype_data ls1021a_data = {
> > + .devtype = FSL_QUADSPI_LS1021A,
> > + .rxfifo = SZ_128,
> > + .txfifo = SZ_64,
> > + .ahb_buf_size = SZ_1K,
> > + .quirks = 0,
> > + .little_endian = false,
> > +};
> > +
> > +static const struct fsl_qspi_devtype_data ls2080a_data = {
> > + .devtype = FSL_QUADSPI_LS2080A,
> > + .rxfifo = SZ_128,
> > + .txfifo = SZ_64,
> > + .ahb_buf_size = SZ_1K,
> > + .quirks = QUADSPI_QUIRK_TKT253890,
> > + .little_endian = true,
> > +};
> > +
> > +struct fsl_qspi {
> > + void __iomem *iobase;
> > + void __iomem *ahb_addr;
> > + u32 memmap_phy;
> > + struct clk *clk, *clk_en;
> > + struct device *dev;
> > + struct completion c;
> > + const struct fsl_qspi_devtype_data *devtype_data;
> > + struct mutex lock;
> > + struct pm_qos_request pm_qos_req;
> > + int selected;
> > + u8 seq;
> > + void (*write)(u32 val, void __iomem *addr);
> > + u32 (*read)(void __iomem *addr);
We can go away with these read and write function pointer.
--
Regards
Yogesh Gaur
> > +};
> > +
> > +static inline int needs_swap_endian(struct fsl_qspi *q) {
> > + return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; }
> > +
> > +static inline int needs_4x_clock(struct fsl_qspi *q) {
> > + return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; }
> > +
> > +static inline int needs_fill_txfifo(struct fsl_qspi *q) {
> > + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; }
> > +
> > +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) {
> > + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; }
> > +
> > +/*
> > + * An IC bug makes it necessary to rearrange the 32-bit data.
> > + * Later chips, such as IMX6SLX, have fixed this bug.
> > + */
> > +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) {
> > + return needs_swap_endian(q) ? __swab32(a) : a; }
> > +
> > +/*
> > + * R/W functions for big- or little-endian registers:
> > + * The QSPI controller's endianness is independent of
> > + * the CPU core's endianness. So far, although the CPU
> > + * core is little-endian the QSPI controller can use
> > + * big-endian or little-endian.
> > + */
> > +static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem
> > +*addr) {
> > + if (q->devtype_data->little_endian)
> > + iowrite32(val, addr);
> > + else
> > + iowrite32be(val, addr);
> > +}
> > +
> > +static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) {
> > + if (q->devtype_data->little_endian)
> > + return ioread32(addr);
> > +
> > + return ioread32be(addr);
> > +}
> > +
> > +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) {
> > + struct fsl_qspi *q = dev_id;
> > + u32 reg;
> > +
> > + /* clear interrupt */
> > + reg = qspi_readl(q, q->iobase + QUADSPI_FR);
> > + qspi_writel(q, reg, q->iobase + QUADSPI_FR);
> > +
> > + if (reg & QUADSPI_FR_TFF_MASK)
> > + complete(&q->c);
> > +
> > + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
> > + return IRQ_HANDLED;
> > +}
> > +
> > +static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) {
> > + switch (width) {
> > + case 1:
> > + case 2:
> > + case 4:
> > + return 0;
> > + }
> > +
> > + return -ENOTSUPP;
> > +}
> > +
> > +static bool fsl_qspi_supports_op(struct spi_mem *mem,
> > + const struct spi_mem_op *op)
> > +{
> > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> > + int ret;
> > +
> > + ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
> > +
> > + if (op->addr.nbytes)
> > + ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
> > +
> > + if (op->dummy.nbytes)
> > + ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
> > +
> > + if (op->data.nbytes)
> > + ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
> > +
> > + if (ret)
> > + return false;
> > +
> > + /*
> > + * The number of instructions needed for the op, needs
> > + * to fit into a single LUT entry.
> > + */
> > + if (op->addr.nbytes +
> > + (op->dummy.nbytes ? 1:0) +
> > + (op->data.nbytes ? 1:0) > 6)
> > + return false;
> > +
> > + /* Max 64 dummy clock cycles supported */
> > + if (op->dummy.nbytes &&
> > + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
> > + return false;
> > +
> > + /* Max data length, check controller limits and alignment */
> > + if (op->data.dir == SPI_MEM_DATA_IN &&
> > + (op->data.nbytes > q->devtype_data->ahb_buf_size ||
> > + (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
> > + !IS_ALIGNED(op->data.nbytes, 8))))
> > + return false;
> > +
> > + if (op->data.dir == SPI_MEM_DATA_OUT &&
> > + op->data.nbytes > q->devtype_data->txfifo)
> > + return false;
> > +
> > + return true;
> > +}
> > +
> > +static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
> > + const struct spi_mem_op *op)
> > +{
> > + void __iomem *base = q->iobase;
> > + u32 lutval[4] = {};
> > + int lutidx = 1, i;
> > +
> > + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
> > + op->cmd.opcode);
> > +
> > + /*
> > + * For some unknown reason, using LUT_ADDR doesn't work in some
> > + * cases (at least with only one byte long addresses), so
> > + * let's use LUT_MODE to write the address bytes one by one
> > + */
> > + for (i = 0; i < op->addr.nbytes; i++) {
> > + u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
> > +
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
> > + LUT_PAD(op->addr.buswidth),
> > + addrbyte);
> > + lutidx++;
> > + }
> > +
> > + if (op->dummy.nbytes) {
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
> > + LUT_PAD(op->dummy.buswidth),
> > + op->dummy.nbytes * 8 /
> > + op->dummy.buswidth);
> > + lutidx++;
> > + }
> > +
> > + if (op->data.nbytes) {
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx,
> > + op->data.dir ==
> > SPI_MEM_DATA_IN ?
> > + LUT_FSL_READ : LUT_FSL_WRITE,
> > + LUT_PAD(op->data.buswidth),
> > + 0);
> > + lutidx++;
> > + }
> > +
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
> > +
> > + /* unlock LUT */
> > + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
> > + qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
> > +
> > + /* fill LUT */
> > + for (i = 0; i < ARRAY_SIZE(lutval); i++)
> > + qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
> > +
> > + /* lock LUT */
> > + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
> > + qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); }
> > +
> > +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) {
> > + int ret;
> > +
> > + ret = clk_prepare_enable(q->clk_en);
> > + if (ret)
> > + return ret;
> > +
> > + ret = clk_prepare_enable(q->clk);
> > + if (ret) {
> > + clk_disable_unprepare(q->clk_en);
> > + return ret;
> > + }
> > +
> > + if (needs_wakeup_wait_mode(q))
> > + pm_qos_add_request(&q->pm_qos_req,
> > PM_QOS_CPU_DMA_LATENCY, 0);
> > +
> > + return 0;
> > +}
> > +
> > +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) {
> > + if (needs_wakeup_wait_mode(q))
> > + pm_qos_remove_request(&q->pm_qos_req);
> > +
> > + clk_disable_unprepare(q->clk);
> > + clk_disable_unprepare(q->clk_en);
> > +}
> > +
> > +static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device
> > +*spi) {
> > + unsigned long rate = spi->max_speed_hz;
> > + int ret, i;
> > + u32 map_addr;
> > +
> > + if (q->selected == spi->chip_select)
> > + return;
> > +
> > + /*
> > + * In HW there can be a maximum of four chips on two buses with
> > + * two chip selects on each bus. We use four chip selects in SW
> > + * to differentiate between the four chips.
> > + * We use the SFA1AD, SFA2AD, SFB1AD, SFB2AD registers to select
> > + * the chip we want to access.
> > + */
> > + for (i = 0; i < 4; i++) {
> > + if (i < spi->chip_select)
> > + map_addr = q->memmap_phy;
> > + else
> > + map_addr = q->memmap_phy +
> > + 2 * q->devtype_data->ahb_buf_size;
> > +
> > + qspi_writel(q, map_addr, q->iobase + QUADSPI_SFA1AD + (i *
> > 4));
> > + }
> > +
> > + if (needs_4x_clock(q))
> > + rate *= 4;
> > +
> > + fsl_qspi_clk_disable_unprep(q);
> > +
> > + ret = clk_set_rate(q->clk, rate);
> > + if (ret)
> > + return;
> > +
> > + ret = fsl_qspi_clk_prep_enable(q);
> > + if (ret)
> > + return;
> > +
> > + q->selected = spi->chip_select;
> > +}
> > +
> > +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct
> > +spi_mem_op *op) {
> > + /*
> > + * We want to avoid needing to invalidate the cache by issueing
> > + * a reset to the AHB and Serial Flash domain, as this needs
> > + * time. So we change the address on each read to trigger an
> > + * actual read operation on the flash. The actual address for
> > + * the flash memory is set by programming the LUT.
> > + */
> As discussed previously, please go away with this hack and use AHB bus
> invalidation method with smaller timeout value.
>
> I would start doing validation of this patch series from next version onward. As
> you have mentioned in other mail discussion about issue in the break condition
> for function fsl_qspi_readl_poll_tout().
>
> --
> Regards
> Yogesh Gaur
>
> > + memcpy_fromio(op->data.buf.in,
> > + q->ahb_addr +
> > + (((q->seq & (1 << q->selected)) == 0 ? 0:1) *
> > + q->devtype_data->ahb_buf_size),
> > + op->data.nbytes);
> > +
> > + q->seq ^= 1 << q->selected;
> > +}
> > +
> > +static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
> > + const struct spi_mem_op *op)
> > +{
> > + void __iomem *base = q->iobase;
> > + int i;
> > + u32 val;
> > +
> > + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
> > + memcpy(&val, op->data.buf.out + i, 4);
> > + val = fsl_qspi_endian_xchg(q, val);
> > + qspi_writel(q, val, base + QUADSPI_TBDR);
> > + }
> > +
> > + if (i < op->data.nbytes) {
> > + memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
> > + val = fsl_qspi_endian_xchg(q, val);
> > + qspi_writel(q, val, base + QUADSPI_TBDR);
> > + }
> > +
> > + if (needs_fill_txfifo(q)) {
> > + for (i = op->data.nbytes; i < 16; i += 4)
> > + qspi_writel(q, 0, base + QUADSPI_TBDR);
> > + }
> > +}
> > +
> > +static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
> > + const struct spi_mem_op *op)
> > +{
> > + void __iomem *base = q->iobase;
> > + int i;
> > + u8 *buf = op->data.buf.in;
> > + u32 val;
> > +
> > + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
> > + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
> > + val = fsl_qspi_endian_xchg(q, val);
> > + memcpy(buf + i, &val, 4);
> > + }
> > +
> > + if (i < op->data.nbytes) {
> > + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
> > + val = fsl_qspi_endian_xchg(q, val);
> > + memcpy(buf + i, &val, op->data.nbytes - i);
> > + }
> > +}
> > +
> > +static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op
> > +*op) {
> > + void __iomem *base = q->iobase;
> > + int err = 0;
> > +
> > + init_completion(&q->c);
> > +
> > + /*
> > + * Always start the sequence at the same index since we update
> > + * the LUT at each exec_op() call. And also specify the DATA
> > + * length, since it's has not been specified in the LUT.
> > + */
> > + qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
> > + base + QUADSPI_IPCR);
> > +
> > + /* Wait for the interrupt. */
> > + if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
> > + err = -ETIMEDOUT;
> > +
> > + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
> > + fsl_qspi_read_rxfifo(q, op);
> > +
> > + return err;
> > +}
> > +
> > +static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
> > + u32 mask, u32 delay_us, u32 timeout_us) {
> > + u32 reg;
> > +
> > + if (!q->devtype_data->little_endian)
> > + mask = (u32)cpu_to_be32(mask);
> > +
> > + return readl_poll_timeout(base, reg, (reg & mask), delay_us,
> > + timeout_us);
> > +}
> > +
> > +static int fsl_qspi_exec_op(struct spi_mem *mem, const struct
> > +spi_mem_op *op) {
> > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> > + void __iomem *base = q->iobase;
> > + int err = 0;
> > +
> > + mutex_lock(&q->lock);
> > +
> > + fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR,
> > (QUADSPI_SR_IP_ACC_MASK |
> > + QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
> > +
> > + fsl_qspi_select_mem(q, mem->spi);
> > +
> > + qspi_writel(q, q->memmap_phy, base + QUADSPI_SFAR);
> > +
> > + qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
> > + QUADSPI_MCR_CLR_RXF_MASK |
> > QUADSPI_MCR_CLR_TXF_MASK,
> > + base + QUADSPI_MCR);
> > +
> > + qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
> > + base + QUADSPI_SPTRCLR);
> > +
> > + fsl_qspi_prepare_lut(q, op);
> > +
> > + /*
> > + * If we have large chunks of data, we read them through the AHB bus
> > + * by accessing the mapped memory. In all other cases we use
> > + * IP commands to access the flash.
> > + */
> > + if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
> > + op->data.dir == SPI_MEM_DATA_IN) {
> > + fsl_qspi_read_ahb(q, op);
> > + } else {
> > + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
> > + QUADSPI_RBCT_RXBRD_USEIPS, base +
> > QUADSPI_RBCT);
> > +
> > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
> > + fsl_qspi_fill_txfifo(q, op);
> > +
> > + err = fsl_qspi_do_op(q, op);
> > + }
> > +
> > + mutex_unlock(&q->lock);
> > +
> > + return err;
> > +}
> > +
> > +static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct
> > +spi_mem_op *op) {
> > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> > +
> > + if (op->data.dir == SPI_MEM_DATA_OUT) {
> > + if (op->data.nbytes > q->devtype_data->txfifo)
> > + op->data.nbytes = q->devtype_data->txfifo;
> > + } else {
> > + if (op->data.nbytes > q->devtype_data->ahb_buf_size)
> > + op->data.nbytes = q->devtype_data->ahb_buf_size;
> > + else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
> > + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +static int fsl_qspi_default_setup(struct fsl_qspi *q) {
> > + void __iomem *base = q->iobase;
> > + u32 reg;
> > + int ret;
> > +
> > + /* disable and unprepare clock to avoid glitch pass to controller */
> > + fsl_qspi_clk_disable_unprep(q);
> > +
> > + /* the default frequency, we will change it later if necessary. */
> > + ret = clk_set_rate(q->clk, 66000000);
> > + if (ret)
> > + return ret;
> > +
> > + ret = fsl_qspi_clk_prep_enable(q);
> > + if (ret)
> > + return ret;
> > +
> > + /* Reset the module */
> > + qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK |
> > QUADSPI_MCR_SWRSTHD_MASK,
> > + base + QUADSPI_MCR);
> > + udelay(1);
> > +
> > + /* Disable the module */
> > + qspi_writel(q, QUADSPI_MCR_MDIS_MASK |
> > QUADSPI_MCR_RESERVED_MASK,
> > + base + QUADSPI_MCR);
> > +
> > + reg = qspi_readl(q, base + QUADSPI_SMPR);
> > + qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
> > + | QUADSPI_SMPR_FSPHS_MASK
> > + | QUADSPI_SMPR_HSENA_MASK
> > + | QUADSPI_SMPR_DDRSMP_MASK), base +
> > QUADSPI_SMPR);
> > +
> > + /* We only use the buffer3 for AHB read */
> > + qspi_writel(q, 0, base + QUADSPI_BUF0IND);
> > + qspi_writel(q, 0, base + QUADSPI_BUF1IND);
> > + qspi_writel(q, 0, base + QUADSPI_BUF2IND);
> > +
> > + qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
> > + q->iobase + QUADSPI_BFGENCR);
> > + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
> > + qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
> > + QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size /
> > 8),
> > + base + QUADSPI_BUF3CR);
> > +
> > + q->selected = -1;
> > + q->seq = 0;
> > +
> > + /* Enable the module */
> > + qspi_writel(q, QUADSPI_MCR_RESERVED_MASK |
> > QUADSPI_MCR_END_CFG_MASK,
> > + base + QUADSPI_MCR);
> > +
> > + /* clear all interrupt status */
> > + qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
> > +
> > + /* enable the interrupt */
> > + qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
> > +
> > + return 0;
> > +}
> > +
> > +static const char *fsl_qspi_get_name(struct spi_mem *mem) {
> > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
> > + struct device *dev = &mem->spi->dev;
> > + const char *name;
> > +
> > + /*
> > + * In order to keep mtdparts compatible with the old MTD driver at
> > + * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
> > + * platform_device of the controller.
> > + */
> > + if (of_get_available_child_count(q->dev->of_node) == 1)
> > + return dev_name(q->dev);
> > +
> > + name = devm_kasprintf(dev, GFP_KERNEL,
> > + "%s-%d", dev_name(q->dev),
> > + mem->spi->chip_select);
> > +
> > + if (!name) {
> > + dev_err(dev, "failed to get memory for custom flash name\n");
> > + return ERR_PTR(-ENOMEM);
> > + }
> > +
> > + return name;
> > +}
> > +
> > +static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
> > + .adjust_op_size = fsl_qspi_adjust_op_size,
> > + .supports_op = fsl_qspi_supports_op,
> > + .exec_op = fsl_qspi_exec_op,
> > + .get_name = fsl_qspi_get_name,
> > +};
> > +
> > +static int fsl_qspi_probe(struct platform_device *pdev) {
> > + struct spi_controller *ctlr;
> > + struct device *dev = &pdev->dev;
> > + struct device_node *np = dev->of_node;
> > + struct resource *res;
> > + struct fsl_qspi *q;
> > + int ret;
> > +
> > + ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
> > + if (!ctlr)
> > + return -ENOMEM;
> > +
> > + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
> > + SPI_TX_DUAL | SPI_TX_QUAD;
> > +
> > + q = spi_controller_get_devdata(ctlr);
> > + q->dev = dev;
> > + q->devtype_data = of_device_get_match_data(dev);
> > + if (!q->devtype_data) {
> > + ret = -ENODEV;
> > + goto err_put_ctrl;
> > + }
> > +
> > + platform_set_drvdata(pdev, q);
> > +
> > + /* find the resources */
> > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> > "QuadSPI");
> > + q->iobase = devm_ioremap_resource(dev, res);
> > + if (IS_ERR(q->iobase)) {
> > + ret = PTR_ERR(q->iobase);
> > + goto err_put_ctrl;
> > + }
> > +
> > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> > + "QuadSPI-memory");
> > + q->ahb_addr = devm_ioremap_resource(dev, res);
> > + if (IS_ERR(q->ahb_addr)) {
> > + ret = PTR_ERR(q->ahb_addr);
> > + goto err_put_ctrl;
> > + }
> > +
> > + q->memmap_phy = res->start;
> > +
> > + /* find the clocks */
> > + q->clk_en = devm_clk_get(dev, "qspi_en");
> > + if (IS_ERR(q->clk_en)) {
> > + ret = PTR_ERR(q->clk_en);
> > + goto err_put_ctrl;
> > + }
> > +
> > + q->clk = devm_clk_get(dev, "qspi");
> > + if (IS_ERR(q->clk)) {
> > + ret = PTR_ERR(q->clk);
> > + goto err_put_ctrl;
> > + }
> > +
> > + ret = fsl_qspi_clk_prep_enable(q);
> > + if (ret) {
> > + dev_err(dev, "can not enable the clock\n");
> > + goto err_put_ctrl;
> > + }
> > +
> > + /* find the irq */
> > + ret = platform_get_irq(pdev, 0);
> > + if (ret < 0) {
> > + dev_err(dev, "failed to get the irq: %d\n", ret);
> > + goto err_disable_clk;
> > + }
> > +
> > + ret = devm_request_irq(dev, ret,
> > + fsl_qspi_irq_handler, 0, pdev->name, q);
> > + if (ret) {
> > + dev_err(dev, "failed to request irq: %d\n", ret);
> > + goto err_disable_clk;
> > + }
> > +
> > + mutex_init(&q->lock);
> > +
> > + ctlr->bus_num = -1;
> > + ctlr->num_chipselect = 4;
> > + ctlr->mem_ops = &fsl_qspi_mem_ops;
> > +
> > + fsl_qspi_default_setup(q);
> > +
> > + ctlr->dev.of_node = np;
> > +
> > + ret = spi_register_controller(ctlr);
> > + if (ret)
> > + goto err_destroy_mutex;
> > +
> > + return 0;
> > +
> > +err_destroy_mutex:
> > + mutex_destroy(&q->lock);
> > +
> > +err_disable_clk:
> > + fsl_qspi_clk_disable_unprep(q);
> > +
> > +err_put_ctrl:
> > + spi_controller_put(ctlr);
> > +
> > + dev_err(dev, "Freescale QuadSPI probe failed\n");
> > + return ret;
> > +}
> > +
> > +static int fsl_qspi_remove(struct platform_device *pdev) {
> > + struct fsl_qspi *q = platform_get_drvdata(pdev);
> > +
> > + /* disable the hardware */
> > + qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
> > + qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
> > +
> > + fsl_qspi_clk_disable_unprep(q);
> > +
> > + mutex_destroy(&q->lock);
> > +
> > + return 0;
> > +}
> > +
> > +static int fsl_qspi_suspend(struct device *dev) {
> > + return 0;
> > +}
> > +
> > +static int fsl_qspi_resume(struct device *dev) {
> > + struct fsl_qspi *q = dev_get_drvdata(dev);
> > +
> > + fsl_qspi_default_setup(q);
> > +
> > + return 0;
> > +}
> > +
> > +static const struct of_device_id fsl_qspi_dt_ids[] = {
> > + { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
> > + { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
> > + { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
> > + { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
> > + { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
> > + { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
> > + { /* sentinel */ }
> > +};
> > +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
> > +
> > +static const struct dev_pm_ops fsl_qspi_pm_ops = {
> > + .suspend = fsl_qspi_suspend,
> > + .resume = fsl_qspi_resume,
> > +};
> > +
> > +static struct platform_driver fsl_qspi_driver = {
> > + .driver = {
> > + .name = "fsl-quadspi",
> > + .of_match_table = fsl_qspi_dt_ids,
> > + .pm = &fsl_qspi_pm_ops,
> > + },
> > + .probe = fsl_qspi_probe,
> > + .remove = fsl_qspi_remove,
> > +};
> > +module_platform_driver(fsl_qspi_driver);
> > +
> > +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
> > +MODULE_AUTHOR("Freescale Semiconductor Inc.");
> MODULE_AUTHOR("Boris
> > +Brezillion <[email protected]>"); MODULE_AUTHOR("Frieder
> > +Schrempf <[email protected]>"); MODULE_AUTHOR("Yogesh
> Gaur
> > +<[email protected]>"); MODULE_AUTHOR("Suresh Gupta
> > +<[email protected]>"); MODULE_LICENSE("GPL v2");
> > --
> > 2.7.4
Hi Yogesh,
On 13.11.18 09:22, Yogesh Narayan Gaur wrote:
[...]
>> +
>> +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct
>> +spi_mem_op *op) {
>> + /*
>> + * We want to avoid needing to invalidate the cache by issueing
>> + * a reset to the AHB and Serial Flash domain, as this needs
>> + * time. So we change the address on each read to trigger an
>> + * actual read operation on the flash. The actual address for
>> + * the flash memory is set by programming the LUT.
>> + */
> As discussed previously, please go away with this hack and use AHB bus invalidation method with smaller timeout value.
>
> I would start doing validation of this patch series from next version onward. As you have mentioned in other mail discussion about issue in the break condition for function fsl_qspi_readl_poll_tout().
Thank you for your comments. I just sent v5 with some fixes, including
fixed fsl_qspi_readl_poll_tout().
I also removed the hack above and I'm properly resetting the AHB domain
now. I'm using a 1us delay just like in the old driver. In my tests the
performance impact was very small (~2%) and it didn't get better when
using ndelay.
Thanks,
Frieder