2020-08-24 12:59:34

by Alex Shi

[permalink] [raw]
Subject: [PATCH v18 23/32] mm/lru: revise the comments of lru_lock

From: Hugh Dickins <[email protected]>

Since we changed the pgdat->lru_lock to lruvec->lru_lock, it's time to
fix the incorrect comments in code. Also fixed some zone->lru_lock comment
error from ancient time. etc.

Signed-off-by: Hugh Dickins <[email protected]>
Signed-off-by: Alex Shi <[email protected]>
Cc: Andrew Morton <[email protected]>
Cc: Tejun Heo <[email protected]>
Cc: Andrey Ryabinin <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Mel Gorman <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
---
Documentation/admin-guide/cgroup-v1/memcg_test.rst | 15 +++------------
Documentation/admin-guide/cgroup-v1/memory.rst | 21 +++++++++------------
Documentation/trace/events-kmem.rst | 2 +-
Documentation/vm/unevictable-lru.rst | 22 ++++++++--------------
include/linux/mm_types.h | 2 +-
include/linux/mmzone.h | 3 +--
mm/filemap.c | 4 ++--
mm/memcontrol.c | 2 +-
mm/rmap.c | 4 ++--
mm/vmscan.c | 12 ++++++++----
10 files changed, 36 insertions(+), 51 deletions(-)

diff --git a/Documentation/admin-guide/cgroup-v1/memcg_test.rst b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
index 3f7115e07b5d..0b9f91589d3d 100644
--- a/Documentation/admin-guide/cgroup-v1/memcg_test.rst
+++ b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
@@ -133,18 +133,9 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.

8. LRU
======
- Each memcg has its own private LRU. Now, its handling is under global
- VM's control (means that it's handled under global pgdat->lru_lock).
- Almost all routines around memcg's LRU is called by global LRU's
- list management functions under pgdat->lru_lock.
-
- A special function is mem_cgroup_isolate_pages(). This scans
- memcg's private LRU and call __isolate_lru_page() to extract a page
- from LRU.
-
- (By __isolate_lru_page(), the page is removed from both of global and
- private LRU.)
-
+ Each memcg has its own vector of LRUs (inactive anon, active anon,
+ inactive file, active file, unevictable) of pages from each node,
+ each LRU handled under a single lru_lock for that memcg and node.

9. Typical Tests.
=================
diff --git a/Documentation/admin-guide/cgroup-v1/memory.rst b/Documentation/admin-guide/cgroup-v1/memory.rst
index 12757e63b26c..24450696579f 100644
--- a/Documentation/admin-guide/cgroup-v1/memory.rst
+++ b/Documentation/admin-guide/cgroup-v1/memory.rst
@@ -285,20 +285,17 @@ When oom event notifier is registered, event will be delivered.
2.6 Locking
-----------

- lock_page_cgroup()/unlock_page_cgroup() should not be called under
- the i_pages lock.
+Lock order is as follows:

- Other lock order is following:
+ Page lock (PG_locked bit of page->flags)
+ mm->page_table_lock or split pte_lock
+ lock_page_memcg (memcg->move_lock)
+ mapping->i_pages lock
+ lruvec->lru_lock.

- PG_locked.
- mm->page_table_lock
- pgdat->lru_lock
- lock_page_cgroup.
-
- In many cases, just lock_page_cgroup() is called.
-
- per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
- pgdat->lru_lock, it has no lock of its own.
+Per-node-per-memcgroup LRU (cgroup's private LRU) is guarded by
+lruvec->lru_lock; PG_lru bit of page->flags is cleared before
+isolating a page from its LRU under lruvec->lru_lock.

2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
-----------------------------------------------
diff --git a/Documentation/trace/events-kmem.rst b/Documentation/trace/events-kmem.rst
index 555484110e36..68fa75247488 100644
--- a/Documentation/trace/events-kmem.rst
+++ b/Documentation/trace/events-kmem.rst
@@ -69,7 +69,7 @@ When pages are freed in batch, the also mm_page_free_batched is triggered.
Broadly speaking, pages are taken off the LRU lock in bulk and
freed in batch with a page list. Significant amounts of activity here could
indicate that the system is under memory pressure and can also indicate
-contention on the zone->lru_lock.
+contention on the lruvec->lru_lock.

4. Per-CPU Allocator Activity
=============================
diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst
index 17d0861b0f1d..0e1490524f53 100644
--- a/Documentation/vm/unevictable-lru.rst
+++ b/Documentation/vm/unevictable-lru.rst
@@ -33,7 +33,7 @@ reclaim in Linux. The problems have been observed at customer sites on large
memory x86_64 systems.

To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of
-main memory will have over 32 million 4k pages in a single zone. When a large
+main memory will have over 32 million 4k pages in a single node. When a large
fraction of these pages are not evictable for any reason [see below], vmscan
will spend a lot of time scanning the LRU lists looking for the small fraction
of pages that are evictable. This can result in a situation where all CPUs are
@@ -55,7 +55,7 @@ unevictable, either by definition or by circumstance, in the future.
The Unevictable Page List
-------------------------

-The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
+The Unevictable LRU infrastructure consists of an additional, per-node, LRU list
called the "unevictable" list and an associated page flag, PG_unevictable, to
indicate that the page is being managed on the unevictable list.

@@ -84,15 +84,9 @@ The unevictable list does not differentiate between file-backed and anonymous,
swap-backed pages. This differentiation is only important while the pages are,
in fact, evictable.

-The unevictable list benefits from the "arrayification" of the per-zone LRU
+The unevictable list benefits from the "arrayification" of the per-node LRU
lists and statistics originally proposed and posted by Christoph Lameter.

-The unevictable list does not use the LRU pagevec mechanism. Rather,
-unevictable pages are placed directly on the page's zone's unevictable list
-under the zone lru_lock. This allows us to prevent the stranding of pages on
-the unevictable list when one task has the page isolated from the LRU and other
-tasks are changing the "evictability" state of the page.
-

Memory Control Group Interaction
--------------------------------
@@ -101,8 +95,8 @@ The unevictable LRU facility interacts with the memory control group [aka
memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by extending the
lru_list enum.

-The memory controller data structure automatically gets a per-zone unevictable
-list as a result of the "arrayification" of the per-zone LRU lists (one per
+The memory controller data structure automatically gets a per-node unevictable
+list as a result of the "arrayification" of the per-node LRU lists (one per
lru_list enum element). The memory controller tracks the movement of pages to
and from the unevictable list.

@@ -196,7 +190,7 @@ for the sake of expediency, to leave a unevictable page on one of the regular
active/inactive LRU lists for vmscan to deal with. vmscan checks for such
pages in all of the shrink_{active|inactive|page}_list() functions and will
"cull" such pages that it encounters: that is, it diverts those pages to the
-unevictable list for the zone being scanned.
+unevictable list for the node being scanned.

There may be situations where a page is mapped into a VM_LOCKED VMA, but the
page is not marked as PG_mlocked. Such pages will make it all the way to
@@ -328,7 +322,7 @@ If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
page from the LRU, as it is likely on the appropriate active or inactive list
at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will put
back the page - by calling putback_lru_page() - which will notice that the page
-is now mlocked and divert the page to the zone's unevictable list. If
+is now mlocked and divert the page to the node's unevictable list. If
mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
it later if and when it attempts to reclaim the page.

@@ -603,7 +597,7 @@ Some examples of these unevictable pages on the LRU lists are:
unevictable list in mlock_vma_page().

shrink_inactive_list() also diverts any unevictable pages that it finds on the
-inactive lists to the appropriate zone's unevictable list.
+inactive lists to the appropriate node's unevictable list.

shrink_inactive_list() should only see SHM_LOCK'd pages that became SHM_LOCK'd
after shrink_active_list() had moved them to the inactive list, or pages mapped
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index 496c3ff97cce..c3f1e76720af 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -78,7 +78,7 @@ struct page {
struct { /* Page cache and anonymous pages */
/**
* @lru: Pageout list, eg. active_list protected by
- * pgdat->lru_lock. Sometimes used as a generic list
+ * lruvec->lru_lock. Sometimes used as a generic list
* by the page owner.
*/
struct list_head lru;
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
index 27a1513a43fc..f0596e634863 100644
--- a/include/linux/mmzone.h
+++ b/include/linux/mmzone.h
@@ -113,8 +113,7 @@ static inline bool free_area_empty(struct free_area *area, int migratetype)
struct pglist_data;

/*
- * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
- * So add a wild amount of padding here to ensure that they fall into separate
+ * Add a wild amount of padding here to ensure datas fall into separate
* cachelines. There are very few zone structures in the machine, so space
* consumption is not a concern here.
*/
diff --git a/mm/filemap.c b/mm/filemap.c
index 1aaea26556cc..6f8d58fb16db 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -102,8 +102,8 @@
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->i_pages lock (try_to_unmap_one)
- * ->pgdat->lru_lock (follow_page->mark_page_accessed)
- * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
+ * ->lruvec->lru_lock (follow_page->mark_page_accessed)
+ * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->i_pages lock (page_remove_rmap->set_page_dirty)
* bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 5b95529e64a4..454b3f205d1b 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -3279,7 +3279,7 @@ void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
- * Because tail pages are not marked as "used", set it. We're under
+ * Because tail pages are not marked as "used", set it. Don't need
* lruvec->lru_lock and migration entries setup in all page mappings.
*/
void mem_cgroup_split_huge_fixup(struct page *head)
diff --git a/mm/rmap.c b/mm/rmap.c
index 83cc459edc40..259c323e06ea 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -28,12 +28,12 @@
* hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* anon_vma->rwsem
* mm->page_table_lock or pte_lock
- * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
* swap_lock (in swap_duplicate, swap_info_get)
* mmlist_lock (in mmput, drain_mmlist and others)
* mapping->private_lock (in __set_page_dirty_buffers)
- * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
+ * lock_page_memcg move_lock (in __set_page_dirty_buffers)
* i_pages lock (widely used)
+ * lruvec->lru_lock (in lock_page_lruvec_irq)
* inode->i_lock (in set_page_dirty's __mark_inode_dirty)
* bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
* sb_lock (within inode_lock in fs/fs-writeback.c)
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 04ef94190530..601fbcb994fb 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -1614,14 +1614,16 @@ static __always_inline void update_lru_sizes(struct lruvec *lruvec,
}

/**
- * pgdat->lru_lock is heavily contended. Some of the functions that
+ * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
+ *
+ * lruvec->lru_lock is heavily contended. Some of the functions that
* shrink the lists perform better by taking out a batch of pages
* and working on them outside the LRU lock.
*
* For pagecache intensive workloads, this function is the hottest
* spot in the kernel (apart from copy_*_user functions).
*
- * Appropriate locks must be held before calling this function.
+ * Lru_lock must be held before calling this function.
*
* @nr_to_scan: The number of eligible pages to look through on the list.
* @lruvec: The LRU vector to pull pages from.
@@ -1820,14 +1822,16 @@ static int too_many_isolated(struct pglist_data *pgdat, int file,

/*
* This moves pages from @list to corresponding LRU list.
+ * The pages from @list is out of any lruvec, and in the end list reuses as
+ * pages_to_free list.
*
* We move them the other way if the page is referenced by one or more
* processes, from rmap.
*
* If the pages are mostly unmapped, the processing is fast and it is
- * appropriate to hold zone_lru_lock across the whole operation. But if
+ * appropriate to hold lru_lock across the whole operation. But if
* the pages are mapped, the processing is slow (page_referenced()) so we
- * should drop zone_lru_lock around each page. It's impossible to balance
+ * should drop lru_lock around each page. It's impossible to balance
* this, so instead we remove the pages from the LRU while processing them.
* It is safe to rely on PG_active against the non-LRU pages in here because
* nobody will play with that bit on a non-LRU page.
--
1.8.3.1


2020-09-22 08:28:33

by Hugh Dickins

[permalink] [raw]
Subject: Re: [PATCH v18 23/32] mm/lru: revise the comments of lru_lock

On Mon, 24 Aug 2020, Alex Shi wrote:

> From: Hugh Dickins <[email protected]>
>
> Since we changed the pgdat->lru_lock to lruvec->lru_lock, it's time to
> fix the incorrect comments in code. Also fixed some zone->lru_lock comment
> error from ancient time. etc.
>
> Signed-off-by: Hugh Dickins <[email protected]>
> Signed-off-by: Alex Shi <[email protected]>

I'm not the right person to be Acking this one; but when I scanned
through, I did notice some wording had been added that I want to
change. I should just send you a new version, but not tonight.

> Cc: Andrew Morton <[email protected]>
> Cc: Tejun Heo <[email protected]>
> Cc: Andrey Ryabinin <[email protected]>
> Cc: Jann Horn <[email protected]>
> Cc: Mel Gorman <[email protected]>
> Cc: Johannes Weiner <[email protected]>
> Cc: Matthew Wilcox <[email protected]>
> Cc: Hugh Dickins <[email protected]>
> Cc: [email protected]
> Cc: [email protected]
> Cc: [email protected]
> ---
> Documentation/admin-guide/cgroup-v1/memcg_test.rst | 15 +++------------
> Documentation/admin-guide/cgroup-v1/memory.rst | 21 +++++++++------------
> Documentation/trace/events-kmem.rst | 2 +-
> Documentation/vm/unevictable-lru.rst | 22 ++++++++--------------
> include/linux/mm_types.h | 2 +-
> include/linux/mmzone.h | 3 +--
> mm/filemap.c | 4 ++--
> mm/memcontrol.c | 2 +-
> mm/rmap.c | 4 ++--
> mm/vmscan.c | 12 ++++++++----
> 10 files changed, 36 insertions(+), 51 deletions(-)
>
> diff --git a/Documentation/admin-guide/cgroup-v1/memcg_test.rst b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
> index 3f7115e07b5d..0b9f91589d3d 100644
> --- a/Documentation/admin-guide/cgroup-v1/memcg_test.rst
> +++ b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
> @@ -133,18 +133,9 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
>
> 8. LRU
> ======
> - Each memcg has its own private LRU. Now, its handling is under global
> - VM's control (means that it's handled under global pgdat->lru_lock).
> - Almost all routines around memcg's LRU is called by global LRU's
> - list management functions under pgdat->lru_lock.
> -
> - A special function is mem_cgroup_isolate_pages(). This scans
> - memcg's private LRU and call __isolate_lru_page() to extract a page
> - from LRU.
> -
> - (By __isolate_lru_page(), the page is removed from both of global and
> - private LRU.)
> -
> + Each memcg has its own vector of LRUs (inactive anon, active anon,
> + inactive file, active file, unevictable) of pages from each node,
> + each LRU handled under a single lru_lock for that memcg and node.
>
> 9. Typical Tests.
> =================
> diff --git a/Documentation/admin-guide/cgroup-v1/memory.rst b/Documentation/admin-guide/cgroup-v1/memory.rst
> index 12757e63b26c..24450696579f 100644
> --- a/Documentation/admin-guide/cgroup-v1/memory.rst
> +++ b/Documentation/admin-guide/cgroup-v1/memory.rst
> @@ -285,20 +285,17 @@ When oom event notifier is registered, event will be delivered.
> 2.6 Locking
> -----------
>
> - lock_page_cgroup()/unlock_page_cgroup() should not be called under
> - the i_pages lock.
> +Lock order is as follows:
>
> - Other lock order is following:
> + Page lock (PG_locked bit of page->flags)
> + mm->page_table_lock or split pte_lock
> + lock_page_memcg (memcg->move_lock)
> + mapping->i_pages lock
> + lruvec->lru_lock.
>
> - PG_locked.
> - mm->page_table_lock
> - pgdat->lru_lock
> - lock_page_cgroup.
> -
> - In many cases, just lock_page_cgroup() is called.
> -
> - per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
> - pgdat->lru_lock, it has no lock of its own.
> +Per-node-per-memcgroup LRU (cgroup's private LRU) is guarded by
> +lruvec->lru_lock; PG_lru bit of page->flags is cleared before
> +isolating a page from its LRU under lruvec->lru_lock.
>
> 2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
> -----------------------------------------------
> diff --git a/Documentation/trace/events-kmem.rst b/Documentation/trace/events-kmem.rst
> index 555484110e36..68fa75247488 100644
> --- a/Documentation/trace/events-kmem.rst
> +++ b/Documentation/trace/events-kmem.rst
> @@ -69,7 +69,7 @@ When pages are freed in batch, the also mm_page_free_batched is triggered.
> Broadly speaking, pages are taken off the LRU lock in bulk and
> freed in batch with a page list. Significant amounts of activity here could
> indicate that the system is under memory pressure and can also indicate
> -contention on the zone->lru_lock.
> +contention on the lruvec->lru_lock.
>
> 4. Per-CPU Allocator Activity
> =============================
> diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst
> index 17d0861b0f1d..0e1490524f53 100644
> --- a/Documentation/vm/unevictable-lru.rst
> +++ b/Documentation/vm/unevictable-lru.rst
> @@ -33,7 +33,7 @@ reclaim in Linux. The problems have been observed at customer sites on large
> memory x86_64 systems.
>
> To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of
> -main memory will have over 32 million 4k pages in a single zone. When a large
> +main memory will have over 32 million 4k pages in a single node. When a large
> fraction of these pages are not evictable for any reason [see below], vmscan
> will spend a lot of time scanning the LRU lists looking for the small fraction
> of pages that are evictable. This can result in a situation where all CPUs are
> @@ -55,7 +55,7 @@ unevictable, either by definition or by circumstance, in the future.
> The Unevictable Page List
> -------------------------
>
> -The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
> +The Unevictable LRU infrastructure consists of an additional, per-node, LRU list
> called the "unevictable" list and an associated page flag, PG_unevictable, to
> indicate that the page is being managed on the unevictable list.
>
> @@ -84,15 +84,9 @@ The unevictable list does not differentiate between file-backed and anonymous,
> swap-backed pages. This differentiation is only important while the pages are,
> in fact, evictable.
>
> -The unevictable list benefits from the "arrayification" of the per-zone LRU
> +The unevictable list benefits from the "arrayification" of the per-node LRU
> lists and statistics originally proposed and posted by Christoph Lameter.
>
> -The unevictable list does not use the LRU pagevec mechanism. Rather,
> -unevictable pages are placed directly on the page's zone's unevictable list
> -under the zone lru_lock. This allows us to prevent the stranding of pages on
> -the unevictable list when one task has the page isolated from the LRU and other
> -tasks are changing the "evictability" state of the page.
> -
>
> Memory Control Group Interaction
> --------------------------------
> @@ -101,8 +95,8 @@ The unevictable LRU facility interacts with the memory control group [aka
> memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by extending the
> lru_list enum.
>
> -The memory controller data structure automatically gets a per-zone unevictable
> -list as a result of the "arrayification" of the per-zone LRU lists (one per
> +The memory controller data structure automatically gets a per-node unevictable
> +list as a result of the "arrayification" of the per-node LRU lists (one per
> lru_list enum element). The memory controller tracks the movement of pages to
> and from the unevictable list.
>
> @@ -196,7 +190,7 @@ for the sake of expediency, to leave a unevictable page on one of the regular
> active/inactive LRU lists for vmscan to deal with. vmscan checks for such
> pages in all of the shrink_{active|inactive|page}_list() functions and will
> "cull" such pages that it encounters: that is, it diverts those pages to the
> -unevictable list for the zone being scanned.
> +unevictable list for the node being scanned.
>
> There may be situations where a page is mapped into a VM_LOCKED VMA, but the
> page is not marked as PG_mlocked. Such pages will make it all the way to
> @@ -328,7 +322,7 @@ If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
> page from the LRU, as it is likely on the appropriate active or inactive list
> at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will put
> back the page - by calling putback_lru_page() - which will notice that the page
> -is now mlocked and divert the page to the zone's unevictable list. If
> +is now mlocked and divert the page to the node's unevictable list. If
> mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
> it later if and when it attempts to reclaim the page.
>
> @@ -603,7 +597,7 @@ Some examples of these unevictable pages on the LRU lists are:
> unevictable list in mlock_vma_page().
>
> shrink_inactive_list() also diverts any unevictable pages that it finds on the
> -inactive lists to the appropriate zone's unevictable list.
> +inactive lists to the appropriate node's unevictable list.
>
> shrink_inactive_list() should only see SHM_LOCK'd pages that became SHM_LOCK'd
> after shrink_active_list() had moved them to the inactive list, or pages mapped
> diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
> index 496c3ff97cce..c3f1e76720af 100644
> --- a/include/linux/mm_types.h
> +++ b/include/linux/mm_types.h
> @@ -78,7 +78,7 @@ struct page {
> struct { /* Page cache and anonymous pages */
> /**
> * @lru: Pageout list, eg. active_list protected by
> - * pgdat->lru_lock. Sometimes used as a generic list
> + * lruvec->lru_lock. Sometimes used as a generic list
> * by the page owner.
> */
> struct list_head lru;
> diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
> index 27a1513a43fc..f0596e634863 100644
> --- a/include/linux/mmzone.h
> +++ b/include/linux/mmzone.h
> @@ -113,8 +113,7 @@ static inline bool free_area_empty(struct free_area *area, int migratetype)
> struct pglist_data;
>
> /*
> - * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
> - * So add a wild amount of padding here to ensure that they fall into separate
> + * Add a wild amount of padding here to ensure datas fall into separate
> * cachelines. There are very few zone structures in the machine, so space
> * consumption is not a concern here.
> */
> diff --git a/mm/filemap.c b/mm/filemap.c
> index 1aaea26556cc..6f8d58fb16db 100644
> --- a/mm/filemap.c
> +++ b/mm/filemap.c
> @@ -102,8 +102,8 @@
> * ->swap_lock (try_to_unmap_one)
> * ->private_lock (try_to_unmap_one)
> * ->i_pages lock (try_to_unmap_one)
> - * ->pgdat->lru_lock (follow_page->mark_page_accessed)
> - * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
> + * ->lruvec->lru_lock (follow_page->mark_page_accessed)
> + * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
> * ->private_lock (page_remove_rmap->set_page_dirty)
> * ->i_pages lock (page_remove_rmap->set_page_dirty)
> * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
> index 5b95529e64a4..454b3f205d1b 100644
> --- a/mm/memcontrol.c
> +++ b/mm/memcontrol.c
> @@ -3279,7 +3279,7 @@ void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
> #ifdef CONFIG_TRANSPARENT_HUGEPAGE
>
> /*
> - * Because tail pages are not marked as "used", set it. We're under
> + * Because tail pages are not marked as "used", set it. Don't need
> * lruvec->lru_lock and migration entries setup in all page mappings.
> */
> void mem_cgroup_split_huge_fixup(struct page *head)
> diff --git a/mm/rmap.c b/mm/rmap.c
> index 83cc459edc40..259c323e06ea 100644
> --- a/mm/rmap.c
> +++ b/mm/rmap.c
> @@ -28,12 +28,12 @@
> * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
> * anon_vma->rwsem
> * mm->page_table_lock or pte_lock
> - * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
> * swap_lock (in swap_duplicate, swap_info_get)
> * mmlist_lock (in mmput, drain_mmlist and others)
> * mapping->private_lock (in __set_page_dirty_buffers)
> - * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
> + * lock_page_memcg move_lock (in __set_page_dirty_buffers)
> * i_pages lock (widely used)
> + * lruvec->lru_lock (in lock_page_lruvec_irq)
> * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
> * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
> * sb_lock (within inode_lock in fs/fs-writeback.c)
> diff --git a/mm/vmscan.c b/mm/vmscan.c
> index 04ef94190530..601fbcb994fb 100644
> --- a/mm/vmscan.c
> +++ b/mm/vmscan.c
> @@ -1614,14 +1614,16 @@ static __always_inline void update_lru_sizes(struct lruvec *lruvec,
> }
>
> /**
> - * pgdat->lru_lock is heavily contended. Some of the functions that
> + * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
> + *
> + * lruvec->lru_lock is heavily contended. Some of the functions that
> * shrink the lists perform better by taking out a batch of pages
> * and working on them outside the LRU lock.
> *
> * For pagecache intensive workloads, this function is the hottest
> * spot in the kernel (apart from copy_*_user functions).
> *
> - * Appropriate locks must be held before calling this function.
> + * Lru_lock must be held before calling this function.
> *
> * @nr_to_scan: The number of eligible pages to look through on the list.
> * @lruvec: The LRU vector to pull pages from.
> @@ -1820,14 +1822,16 @@ static int too_many_isolated(struct pglist_data *pgdat, int file,
>
> /*
> * This moves pages from @list to corresponding LRU list.
> + * The pages from @list is out of any lruvec, and in the end list reuses as
> + * pages_to_free list.
> *
> * We move them the other way if the page is referenced by one or more
> * processes, from rmap.
> *
> * If the pages are mostly unmapped, the processing is fast and it is
> - * appropriate to hold zone_lru_lock across the whole operation. But if
> + * appropriate to hold lru_lock across the whole operation. But if
> * the pages are mapped, the processing is slow (page_referenced()) so we
> - * should drop zone_lru_lock around each page. It's impossible to balance
> + * should drop lru_lock around each page. It's impossible to balance
> * this, so instead we remove the pages from the LRU while processing them.
> * It is safe to rely on PG_active against the non-LRU pages in here because
> * nobody will play with that bit on a non-LRU page.
> --
> 1.8.3.1
>
>