2022-06-16 20:18:48

by Ignat Korchagin

[permalink] [raw]
Subject: [PATCH] crypto: rsa - implement Chinese Remainder Theorem for faster private key operations

The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.

This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.

This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).

The benchmark used:

```
package keyring_test

import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)

type KeySerial int32
type Keyring int32

const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)

var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)

func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}

return KeySerial(serial), errno
}

type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}

// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))

_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(&params)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}

return errno
}

func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}

pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}

serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}

b.Logf("loaded test rsa key: %v", serial)

digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}

sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}

err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```

[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm

Signed-off-by: Ignat Korchagin <[email protected]>
---
crypto/rsa.c | 78 ++++++++++++++++++++++++++++++++++++++++++++++++----
1 file changed, 73 insertions(+), 5 deletions(-)

diff --git a/crypto/rsa.c b/crypto/rsa.c
index 39e04176b04b..0e555ee4addb 100644
--- a/crypto/rsa.c
+++ b/crypto/rsa.c
@@ -17,6 +17,11 @@ struct rsa_mpi_key {
MPI n;
MPI e;
MPI d;
+ MPI p;
+ MPI q;
+ MPI dp;
+ MPI dq;
+ MPI qinv;
};

/*
@@ -35,16 +40,49 @@ static int _rsa_enc(const struct rsa_mpi_key *key, MPI c, MPI m)

/*
* RSADP function [RFC3447 sec 5.1.2]
- * m = c^d mod n;
+ * m_1 = c^dP mod p;
+ * m_2 = c^dQ mod q;
+ * h = (m_1 - m_2) * qInv mod p;
+ * m = m_2 + q * h;
*/
-static int _rsa_dec(const struct rsa_mpi_key *key, MPI m, MPI c)
+static int _rsa_dec_crt(const struct rsa_mpi_key *key, MPI m_or_m1_or_h, MPI c)
{
+ MPI m2, m12_or_qh;
+ int ret = -ENOMEM;
+
/* (1) Validate 0 <= c < n */
if (mpi_cmp_ui(c, 0) < 0 || mpi_cmp(c, key->n) >= 0)
return -EINVAL;

- /* (2) m = c^d mod n */
- return mpi_powm(m, c, key->d, key->n);
+ m2 = mpi_alloc(0);
+ m12_or_qh = mpi_alloc(0);
+ if (!m2 || !m12_or_qh)
+ goto err_free_mpi;
+
+ /* (2i) m_1 = c^dP mod p */
+ ret = mpi_powm(m_or_m1_or_h, c, key->dp, key->p);
+ if (ret)
+ goto err_free_mpi;
+
+ /* (2i) m_2 = c^dQ mod q */
+ ret = mpi_powm(m2, c, key->dq, key->q);
+ if (ret)
+ goto err_free_mpi;
+
+ /* (2iii) h = (m_1 - m_2) * qInv mod p */
+ mpi_sub(m12_or_qh, m_or_m1_or_h, m2);
+ mpi_mulm(m_or_m1_or_h, m12_or_qh, key->qinv, key->p);
+
+ /* (2iv) m = m_2 + q * h */
+ mpi_mul(m12_or_qh, key->q, m_or_m1_or_h);
+ mpi_addm(m_or_m1_or_h, m2, m12_or_qh, key->n);
+
+ ret = 0;
+
+err_free_mpi:
+ mpi_free(m12_or_qh);
+ mpi_free(m2);
+ return ret;
}

static inline struct rsa_mpi_key *rsa_get_key(struct crypto_akcipher *tfm)
@@ -112,7 +150,7 @@ static int rsa_dec(struct akcipher_request *req)
if (!c)
goto err_free_m;

- ret = _rsa_dec(pkey, m, c);
+ ret = _rsa_dec_crt(pkey, m, c);
if (ret)
goto err_free_c;

@@ -134,9 +172,19 @@ static void rsa_free_mpi_key(struct rsa_mpi_key *key)
mpi_free(key->d);
mpi_free(key->e);
mpi_free(key->n);
+ mpi_free(key->p);
+ mpi_free(key->q);
+ mpi_free(key->dp);
+ mpi_free(key->dq);
+ mpi_free(key->qinv);
key->d = NULL;
key->e = NULL;
key->n = NULL;
+ key->p = NULL;
+ key->q = NULL;
+ key->dp = NULL;
+ key->dq = NULL;
+ key->qinv = NULL;
}

static int rsa_check_key_length(unsigned int len)
@@ -217,6 +265,26 @@ static int rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
if (!mpi_key->n)
goto err;

+ mpi_key->p = mpi_read_raw_data(raw_key.p, raw_key.p_sz);
+ if (!mpi_key->p)
+ goto err;
+
+ mpi_key->q = mpi_read_raw_data(raw_key.q, raw_key.q_sz);
+ if (!mpi_key->q)
+ goto err;
+
+ mpi_key->dp = mpi_read_raw_data(raw_key.dp, raw_key.dp_sz);
+ if (!mpi_key->dp)
+ goto err;
+
+ mpi_key->dq = mpi_read_raw_data(raw_key.dq, raw_key.dq_sz);
+ if (!mpi_key->dq)
+ goto err;
+
+ mpi_key->qinv = mpi_read_raw_data(raw_key.qinv, raw_key.qinv_sz);
+ if (!mpi_key->qinv)
+ goto err;
+
if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
rsa_free_mpi_key(mpi_key);
return -EINVAL;
--
2.36.1


2022-06-17 04:07:58

by kernel test robot

[permalink] [raw]
Subject: Re: [PATCH] crypto: rsa - implement Chinese Remainder Theorem for faster private key operations

Hi Ignat,

Thank you for the patch! Yet something to improve:

[auto build test ERROR on herbert-cryptodev-2.6/master]
[also build test ERROR on herbert-crypto-2.6/master linus/master v5.19-rc2 next-20220616]
[If your patch is applied to the wrong git tree, kindly drop us a note.
And when submitting patch, we suggest to use '--base' as documented in
https://git-scm.com/docs/git-format-patch]

url: https://github.com/intel-lab-lkp/linux/commits/Ignat-Korchagin/crypto-rsa-implement-Chinese-Remainder-Theorem-for-faster-private-key-operations/20220617-041735
base: https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master
config: m68k-defconfig (https://download.01.org/0day-ci/archive/20220617/[email protected]/config)
compiler: m68k-linux-gcc (GCC) 11.3.0
reproduce (this is a W=1 build):
wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross
chmod +x ~/bin/make.cross
# https://github.com/intel-lab-lkp/linux/commit/a81c4debaedb63c8b5af51564fdf596d560a23af
git remote add linux-review https://github.com/intel-lab-lkp/linux
git fetch --no-tags linux-review Ignat-Korchagin/crypto-rsa-implement-Chinese-Remainder-Theorem-for-faster-private-key-operations/20220617-041735
git checkout a81c4debaedb63c8b5af51564fdf596d560a23af
# save the config file
mkdir build_dir && cp config build_dir/.config
COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-11.3.0 make.cross W=1 O=build_dir ARCH=m68k SHELL=/bin/bash

If you fix the issue, kindly add following tag where applicable
Reported-by: kernel test robot <[email protected]>

All errors (new ones prefixed by >>, old ones prefixed by <<):

>> ERROR: modpost: "mpi_sub" [crypto/rsa_generic.ko] undefined!
>> ERROR: modpost: "mpi_mul" [crypto/rsa_generic.ko] undefined!

--
0-DAY CI Kernel Test Service
https://01.org/lkp