On many modern CPUs, it is possible to compute the SHA-256 hash of two
equal-length messages in about the same time as a single message, if all
the instructions are interleaved. This is because each SHA-256 (and
also most other cryptographic hash functions) is inherently serialized
and therefore can't always take advantage of the CPU's full throughput.
An earlier attempt to support multibuffer hashing in Linux was based
around the ahash API. That approach had some major issues. This
patchset instead takes a much simpler approach of just adding a
synchronous API for hashing equal-length messages.
This works well for dm-verity and fsverity, which use Merkle trees and
therefore hash large numbers of equal-length messages.
This patchset is organized as follows:
- Patch 1-3 add crypto_shash_finup_mb() and tests for it.
- Patch 4-5 implement finup_mb on x86_64 and arm64, using an
interleaving factor of 2.
- Patch 6-8 update fsverity and dm-verity to use crypto_shash_finup_mb()
to hash pairs of data blocks when possible. Note: the patch
"dm-verity: hash blocks with shash import+finup when possible" is
revived from its original submission
(https://lore.kernel.org/dm-devel/[email protected]/)
because this new work provides a new motivation for it.
On CPUs that support multiple concurrent SHA-256's (all arm64 CPUs I
tested, and AMD Zen CPUs), raw SHA-256 hashing throughput increases by
70-98%, and the throughput of cold-cache reads from dm-verity and
fsverity increases by very roughly 35%.
Changed in v3:
- Change API from finup2x to finup_mb. It now takes arrays of data
buffer and output buffers, avoiding hardcoding 2x in the API.
Changed in v2:
- Rebase onto cryptodev/master
- Add more comments to assembly
- Reorganize some of the assembly slightly
- Fix the claimed throughput improvement on arm64
- Fix incorrect kunmap order in fs/verity/verify.c
- Adjust testmgr generation logic slightly
- Explicitly check for INT_MAX before casting unsigned int to int
- Mention SHA3 based parallel hashes
- Mention AVX512-based approach
Eric Biggers (8):
crypto: shash - add support for finup_mb
crypto: testmgr - generate power-of-2 lengths more often
crypto: testmgr - add tests for finup_mb
crypto: x86/sha256-ni - add support for finup_mb
crypto: arm64/sha256-ce - add support for finup_mb
fsverity: improve performance by using multibuffer hashing
dm-verity: hash blocks with shash import+finup when possible
dm-verity: improve performance by using multibuffer hashing
arch/arm64/crypto/sha2-ce-core.S | 281 +++++++++++++-
arch/arm64/crypto/sha2-ce-glue.c | 40 ++
arch/x86/crypto/sha256_ni_asm.S | 368 ++++++++++++++++++
arch/x86/crypto/sha256_ssse3_glue.c | 39 ++
crypto/shash.c | 60 +++
crypto/testmgr.c | 91 ++++-
drivers/md/dm-verity-fec.c | 31 +-
drivers/md/dm-verity-fec.h | 7 +-
drivers/md/dm-verity-target.c | 563 ++++++++++++++++++++--------
drivers/md/dm-verity.h | 43 +--
fs/verity/fsverity_private.h | 5 +
fs/verity/hash_algs.c | 32 +-
fs/verity/open.c | 6 +
fs/verity/verify.c | 177 +++++++--
include/crypto/hash.h | 45 ++-
15 files changed, 1543 insertions(+), 245 deletions(-)
base-commit: ed265f7fd9a635d77c8022fc6d9a1b735dd4dfd7
--
2.45.0
From: Eric Biggers <[email protected]>
Most cryptographic hash functions are serialized, in the sense that they
have an internal block size and the blocks must be processed serially.
(BLAKE3 is a notable exception that has tree-based hashing built-in, but
all the more common choices such as the SHAs and BLAKE2 are serialized.
ParallelHash and Sakura are parallel hashes based on SHA3, but SHA3 is
much slower than SHA256 in software even with the ARMv8 SHA3 extension.)
This limits the performance of computing a single hash. Yet, computing
multiple hashes simultaneously does not have this limitation. Modern
CPUs are superscalar and often can execute independent instructions in
parallel. As a result, on many modern CPUs, it is possible to hash two
equal-length messages in about the same time as a single message, if all
the instructions are interleaved.
Meanwhile, a very common use case for hashing in the Linux kernel is
dm-verity and fs-verity. Both use a Merkle tree that has a fixed block
size, usually 4096 bytes with an empty or 32-byte salt prepended. The
hash algorithm is usually SHA-256. Usually, many blocks need to be
hashed at a time. This is an ideal scenario for multibuffer hashing.
Linux actually used to support SHA-256 multibuffer hashing on x86_64,
before it was removed by commit ab8085c130ed ("crypto: x86 - remove SHA
multibuffer routines and mcryptd"). However, it was integrated with the
crypto API in a weird way, where it behaved as an asynchronous hash that
queued up and executed all requests on a global queue. This made it
very complex, buggy, and virtually unusable.
This patch takes a new approach of just adding an API
crypto_shash_finup_mb() that synchronously computes the hash of multiple
equal-length messages, starting from a common state that represents the
(possibly empty) common prefix shared by the messages.
The new API is part of the "shash" algorithm type, as it does not make
sense in "ahash". It does a "finup" operation rather than a "digest"
operation in order to support the salt that is used by dm-verity and
fs-verity. The data and output buffers are provided in arrays of length
@num_msgs in order to make the API itself extensible to interleaving
factors other than 2. (Though, initially only 2x will actually be used.
There are some platforms in which a higher factor could help, but there
are significant trade-offs.)
Signed-off-by: Eric Biggers <[email protected]>
---
crypto/shash.c | 60 +++++++++++++++++++++++++++++++++++++++++++
include/crypto/hash.h | 45 +++++++++++++++++++++++++++++++-
2 files changed, 104 insertions(+), 1 deletion(-)
diff --git a/crypto/shash.c b/crypto/shash.c
index 301ab42bf849..9d0e68ada704 100644
--- a/crypto/shash.c
+++ b/crypto/shash.c
@@ -73,10 +73,57 @@ int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
{
return crypto_shash_alg(desc->tfm)->finup(desc, data, len, out);
}
EXPORT_SYMBOL_GPL(crypto_shash_finup);
+static noinline_for_stack int
+shash_finup_mb_fallback(struct shash_desc *desc, const u8 * const data[],
+ unsigned int len, u8 * const outs[],
+ unsigned int num_msgs)
+{
+ struct crypto_shash *tfm = desc->tfm;
+ SHASH_DESC_ON_STACK(desc2, tfm);
+ unsigned int i;
+ int err;
+
+ if (num_msgs == 0)
+ return 0;
+
+ for (i = 0; i < num_msgs - 1; i++) {
+ desc2->tfm = tfm;
+ memcpy(shash_desc_ctx(desc2), shash_desc_ctx(desc),
+ crypto_shash_descsize(tfm));
+ err = crypto_shash_finup(desc2, data[i], len, outs[i]);
+ if (err)
+ return err;
+ }
+ return crypto_shash_finup(desc, data[i], len, outs[i]);
+}
+
+int crypto_shash_finup_mb(struct shash_desc *desc, const u8 * const data[],
+ unsigned int len, u8 * const outs[],
+ unsigned int num_msgs)
+{
+ struct shash_alg *alg = crypto_shash_alg(desc->tfm);
+ int err;
+
+ if (WARN_ON_ONCE(num_msgs > alg->mb_max_msgs))
+ goto fallback;
+
+ if (unlikely(num_msgs <= 1))
+ goto fallback;
+
+ err = alg->finup_mb(desc, data, len, outs, num_msgs);
+ if (unlikely(err == -EOPNOTSUPP))
+ goto fallback;
+ return err;
+
+fallback:
+ return shash_finup_mb_fallback(desc, data, len, outs, num_msgs);
+}
+EXPORT_SYMBOL_GPL(crypto_shash_finup_mb);
+
static int shash_default_digest(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
struct shash_alg *shash = crypto_shash_alg(desc->tfm);
@@ -312,10 +359,20 @@ static int shash_prepare_alg(struct shash_alg *alg)
return -EINVAL;
if ((alg->export && !alg->import) || (alg->import && !alg->export))
return -EINVAL;
+ if (alg->mb_max_msgs) {
+ if (alg->mb_max_msgs > HASH_MAX_MB_MSGS)
+ return -EINVAL;
+ if (!alg->finup_mb)
+ return -EINVAL;
+ } else {
+ if (alg->finup_mb)
+ return -EINVAL;
+ }
+
err = hash_prepare_alg(&alg->halg);
if (err)
return err;
base->cra_type = &crypto_shash_type;
@@ -339,10 +396,13 @@ static int shash_prepare_alg(struct shash_alg *alg)
if (!alg->export)
alg->halg.statesize = alg->descsize;
if (!alg->setkey)
alg->setkey = shash_no_setkey;
+ if (!alg->mb_max_msgs)
+ alg->mb_max_msgs = 1;
+
return 0;
}
int crypto_register_shash(struct shash_alg *alg)
{
diff --git a/include/crypto/hash.h b/include/crypto/hash.h
index 0014bdd81ab7..cb5f88d96a3a 100644
--- a/include/crypto/hash.h
+++ b/include/crypto/hash.h
@@ -154,11 +154,13 @@ struct ahash_alg {
struct shash_desc {
struct crypto_shash *tfm;
void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
};
-#define HASH_MAX_DIGESTSIZE 64
+#define HASH_MAX_DIGESTSIZE 64
+
+#define HASH_MAX_MB_MSGS 2 /* max value of crypto_shash_mb_max_msgs() */
/*
* Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
* containing a 'struct sha3_state'.
*/
@@ -177,10 +179,19 @@ struct shash_desc {
* @finup: see struct ahash_alg
* @digest: see struct ahash_alg
* @export: see struct ahash_alg
* @import: see struct ahash_alg
* @setkey: see struct ahash_alg
+ * @finup_mb: **[optional]** Multibuffer hashing support. Finish calculating
+ * the digests of multiple messages, interleaving the instructions to
+ * potentially achieve better performance than hashing each message
+ * individually. The num_msgs argument will be between 2 and
+ * @mb_max_msgs inclusively. If there are particular values of len
+ * or num_msgs, or a particular calling context (e.g. no-SIMD) that
+ * the implementation does not support with this method, the
+ * implementation may return -EOPNOTSUPP from this method in those
+ * cases to cause the crypto API to fall back to repeated finups.
* @init_tfm: Initialize the cryptographic transformation object.
* This function is called only once at the instantiation
* time, right after the transformation context was
* allocated. In case the cryptographic hardware has
* some special requirements which need to be handled
@@ -192,10 +203,11 @@ struct shash_desc {
* various changes set in @init_tfm.
* @clone_tfm: Copy transform into new object, may allocate memory.
* @descsize: Size of the operational state for the message digest. This state
* size is the memory size that needs to be allocated for
* shash_desc.__ctx
+ * @mb_max_msgs: Maximum supported value of num_msgs argument to @finup_mb
* @halg: see struct hash_alg_common
* @HASH_ALG_COMMON: see struct hash_alg_common
*/
struct shash_alg {
int (*init)(struct shash_desc *desc);
@@ -208,15 +220,19 @@ struct shash_alg {
unsigned int len, u8 *out);
int (*export)(struct shash_desc *desc, void *out);
int (*import)(struct shash_desc *desc, const void *in);
int (*setkey)(struct crypto_shash *tfm, const u8 *key,
unsigned int keylen);
+ int (*finup_mb)(struct shash_desc *desc, const u8 * const data[],
+ unsigned int len, u8 * const outs[],
+ unsigned int num_msgs);
int (*init_tfm)(struct crypto_shash *tfm);
void (*exit_tfm)(struct crypto_shash *tfm);
int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
unsigned int descsize;
+ unsigned int mb_max_msgs;
union {
struct HASH_ALG_COMMON;
struct hash_alg_common halg;
};
@@ -749,10 +765,20 @@ static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
{
return crypto_shash_alg(tfm)->statesize;
}
+/*
+ * Return the maximum supported multibuffer hashing interleaving factor, i.e.
+ * the maximum num_msgs that can be passed to crypto_shash_finup_mb(). The
+ * return value will be between 1 and HASH_MAX_MB_MSGS inclusively.
+ */
+static inline unsigned int crypto_shash_mb_max_msgs(struct crypto_shash *tfm)
+{
+ return crypto_shash_alg(tfm)->mb_max_msgs;
+}
+
static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
{
return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
}
@@ -842,10 +868,27 @@ int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
* Return: 0 on success; < 0 if an error occurred.
*/
int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
unsigned int len, u8 *out);
+/**
+ * crypto_shash_finup_mb() - multibuffer message hashing
+ * @desc: the starting state that is forked for each message. It contains the
+ * state after hashing a (possibly-empty) common prefix of the messages.
+ * @data: the data of each message (not including any common prefix from @desc)
+ * @len: length of each data buffer in bytes
+ * @outs: output buffer for each message digest
+ * @num_msgs: number of messages, i.e. the number of entries in @data and @outs.
+ * This can't be more than crypto_shash_mb_max_msgs().
+ *
+ * Context: Any context.
+ * Return: 0 on success; a negative errno value on failure.
+ */
+int crypto_shash_finup_mb(struct shash_desc *desc, const u8 * const data[],
+ unsigned int len, u8 * const outs[],
+ unsigned int num_msgs);
+
/**
* crypto_shash_export() - extract operational state for message digest
* @desc: reference to the operational state handle whose state is exported
* @out: output buffer of sufficient size that can hold the hash state
*
--
2.45.0
From: Eric Biggers <[email protected]>
Implementations of hash functions often have special cases when lengths
are a multiple of the hash function's internal block size (e.g. 64 for
SHA-256, 128 for SHA-512). Currently, when the fuzz testing code
generates lengths, it doesn't prefer any length mod 64 over any other.
This limits the coverage of these special cases.
Therefore, this patch updates the fuzz testing code to generate
power-of-2 lengths and divide messages exactly in half a bit more often.
Signed-off-by: Eric Biggers <[email protected]>
---
crypto/testmgr.c | 16 ++++++++++++----
1 file changed, 12 insertions(+), 4 deletions(-)
diff --git a/crypto/testmgr.c b/crypto/testmgr.c
index 00f5a6cf341a..2c57ebcaf368 100644
--- a/crypto/testmgr.c
+++ b/crypto/testmgr.c
@@ -901,18 +901,24 @@ static unsigned int generate_random_length(struct rnd_state *rng,
{
unsigned int len = prandom_u32_below(rng, max_len + 1);
switch (prandom_u32_below(rng, 4)) {
case 0:
- return len % 64;
+ len %= 64;
+ break;
case 1:
- return len % 256;
+ len %= 256;
+ break;
case 2:
- return len % 1024;
+ len %= 1024;
+ break;
default:
- return len;
+ break;
}
+ if (prandom_u32_below(rng, 4) == 0)
+ len = rounddown_pow_of_two(len);
+ return len;
}
/* Flip a random bit in the given nonempty data buffer */
static void flip_random_bit(struct rnd_state *rng, u8 *buf, size_t size)
{
@@ -1004,10 +1010,12 @@ static char *generate_random_sgl_divisions(struct rnd_state *rng,
unsigned int this_len;
const char *flushtype_str;
if (div == &divs[max_divs - 1] || prandom_bool(rng))
this_len = remaining;
+ else if (prandom_u32_below(rng, 4) == 0)
+ this_len = (remaining + 1) / 2;
else
this_len = prandom_u32_inclusive(rng, 1, remaining);
div->proportion_of_total = this_len;
if (prandom_u32_below(rng, 4) == 0)
--
2.45.0
From: Eric Biggers <[email protected]>
Update the shash self-tests to test the new finup_mb method when
CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y.
Signed-off-by: Eric Biggers <[email protected]>
---
crypto/testmgr.c | 74 +++++++++++++++++++++++++++++++++++++++++++-----
1 file changed, 67 insertions(+), 7 deletions(-)
diff --git a/crypto/testmgr.c b/crypto/testmgr.c
index 2c57ebcaf368..3253dc1501e4 100644
--- a/crypto/testmgr.c
+++ b/crypto/testmgr.c
@@ -227,10 +227,11 @@ enum flush_type {
/* finalization function for hash algorithms */
enum finalization_type {
FINALIZATION_TYPE_FINAL, /* use final() */
FINALIZATION_TYPE_FINUP, /* use finup() */
+ FINALIZATION_TYPE_FINUP_MB, /* use finup_mb() */
FINALIZATION_TYPE_DIGEST, /* use digest() */
};
/*
* Whether the crypto operation will occur in-place, and if so whether the
@@ -290,10 +291,15 @@ struct test_sg_division {
* the @iv_offset
* @key_offset: misalignment of the key, where 0 is default alignment
* @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to
* the @key_offset
* @finalization_type: what finalization function to use for hashes
+ * @multibuffer_index: random number used to generate the message index to use
+ * for finup_mb (if finup_mb is used).
+ * @multibuffer_count: random number used to generate the num_msgs parameter to
+ * finup_mb (if finup_mb is used).
+ *
* @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP.
*/
struct testvec_config {
const char *name;
enum inplace_mode inplace_mode;
@@ -303,10 +309,12 @@ struct testvec_config {
unsigned int iv_offset;
unsigned int key_offset;
bool iv_offset_relative_to_alignmask;
bool key_offset_relative_to_alignmask;
enum finalization_type finalization_type;
+ unsigned int multibuffer_index;
+ unsigned int multibuffer_count;
bool nosimd;
};
#define TESTVEC_CONFIG_NAMELEN 192
@@ -1109,19 +1117,27 @@ static void generate_random_testvec_config(struct rnd_state *rng,
if (prandom_bool(rng)) {
cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP;
p += scnprintf(p, end - p, " may_sleep");
}
- switch (prandom_u32_below(rng, 4)) {
+ switch (prandom_u32_below(rng, 8)) {
case 0:
+ case 1:
cfg->finalization_type = FINALIZATION_TYPE_FINAL;
p += scnprintf(p, end - p, " use_final");
break;
- case 1:
+ case 2:
cfg->finalization_type = FINALIZATION_TYPE_FINUP;
p += scnprintf(p, end - p, " use_finup");
break;
+ case 3:
+ case 4:
+ cfg->finalization_type = FINALIZATION_TYPE_FINUP_MB;
+ cfg->multibuffer_index = prandom_u32_state(rng);
+ cfg->multibuffer_count = prandom_u32_state(rng);
+ p += scnprintf(p, end - p, " use_finup_mb");
+ break;
default:
cfg->finalization_type = FINALIZATION_TYPE_DIGEST;
p += scnprintf(p, end - p, " use_digest");
break;
}
@@ -1270,10 +1286,37 @@ static inline int check_shash_op(const char *op, int err,
pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n",
driver, op, err, vec_name, cfg->name);
return err;
}
+static int do_finup_mb(struct shash_desc *desc,
+ const u8 *data, unsigned int len, u8 *result,
+ const struct testvec_config *cfg,
+ const struct test_sglist *tsgl)
+{
+ struct crypto_shash *tfm = desc->tfm;
+ const u8 *unused_data = tsgl->bufs[XBUFSIZE - 1];
+ u8 unused_result[HASH_MAX_DIGESTSIZE];
+ const u8 *datas[HASH_MAX_MB_MSGS];
+ u8 *outs[HASH_MAX_MB_MSGS];
+ unsigned int num_msgs;
+ unsigned int msg_idx;
+ unsigned int i;
+
+ num_msgs = 1 + (cfg->multibuffer_count % crypto_shash_mb_max_msgs(tfm));
+ if (WARN_ON_ONCE(num_msgs > HASH_MAX_MB_MSGS))
+ return -EINVAL;
+ msg_idx = cfg->multibuffer_index % num_msgs;
+ for (i = 0; i < num_msgs; i++) {
+ datas[i] = unused_data;
+ outs[i] = unused_result;
+ }
+ datas[msg_idx] = data;
+ outs[msg_idx] = result;
+ return crypto_shash_finup_mb(desc, datas, len, outs, num_msgs);
+}
+
/* Test one hash test vector in one configuration, using the shash API */
static int test_shash_vec_cfg(const struct hash_testvec *vec,
const char *vec_name,
const struct testvec_config *cfg,
struct shash_desc *desc,
@@ -1346,11 +1389,14 @@ static int test_shash_vec_cfg(const struct hash_testvec *vec,
return -EINVAL;
}
goto result_ready;
}
- /* Using init(), zero or more update(), then final() or finup() */
+ /*
+ * Using init(), zero or more update(), then either final(), finup(), or
+ * finup_mb().
+ */
if (cfg->nosimd)
crypto_disable_simd_for_test();
err = crypto_shash_init(desc);
if (cfg->nosimd)
@@ -1358,28 +1404,42 @@ static int test_shash_vec_cfg(const struct hash_testvec *vec,
err = check_shash_op("init", err, driver, vec_name, cfg);
if (err)
return err;
for (i = 0; i < tsgl->nents; i++) {
+ const u8 *data = sg_virt(&tsgl->sgl[i]);
+ unsigned int len = tsgl->sgl[i].length;
+
if (i + 1 == tsgl->nents &&
cfg->finalization_type == FINALIZATION_TYPE_FINUP) {
if (divs[i]->nosimd)
crypto_disable_simd_for_test();
- err = crypto_shash_finup(desc, sg_virt(&tsgl->sgl[i]),
- tsgl->sgl[i].length, result);
+ err = crypto_shash_finup(desc, data, len, result);
if (divs[i]->nosimd)
crypto_reenable_simd_for_test();
err = check_shash_op("finup", err, driver, vec_name,
cfg);
if (err)
return err;
goto result_ready;
}
+ if (i + 1 == tsgl->nents &&
+ cfg->finalization_type == FINALIZATION_TYPE_FINUP_MB) {
+ if (divs[i]->nosimd)
+ crypto_disable_simd_for_test();
+ err = do_finup_mb(desc, data, len, result, cfg, tsgl);
+ if (divs[i]->nosimd)
+ crypto_reenable_simd_for_test();
+ err = check_shash_op("finup_mb", err, driver, vec_name,
+ cfg);
+ if (err)
+ return err;
+ goto result_ready;
+ }
if (divs[i]->nosimd)
crypto_disable_simd_for_test();
- err = crypto_shash_update(desc, sg_virt(&tsgl->sgl[i]),
- tsgl->sgl[i].length);
+ err = crypto_shash_update(desc, data, len);
if (divs[i]->nosimd)
crypto_reenable_simd_for_test();
err = check_shash_op("update", err, driver, vec_name, cfg);
if (err)
return err;
--
2.45.0
From: Eric Biggers <[email protected]>
Add an implementation of finup_mb to sha256-ni, using an interleaving
factor of 2. It interleaves a finup operation for two equal-length
messages that share a common prefix. dm-verity and fs-verity will take
advantage of this for greatly improved performance on capable CPUs.
This increases the throughput of SHA-256 hashing 4096-byte messages by
the following amounts on the following CPUs:
AMD Zen 1: 84%
AMD Zen 4: 98%
Intel Ice Lake: 4%
Intel Sapphire Rapids: 20%
For now, this seems to benefit AMD much more than Intel. This seems to
be because current AMD CPUs support concurrent execution of the SHA-NI
instructions, but unfortunately current Intel CPUs don't, except for the
sha256msg2 instruction. Hopefully future Intel CPUs will support SHA-NI
on more execution ports. Zen 1 supports 2 concurrent sha256rnds2, and
Zen 4 supports 4 concurrent sha256rnds2, which suggests that even better
performance may be achievable on Zen 4 by interleaving more than two
hashes; however, doing so poses a number of trade-offs.
It's been reported that the method that achieves the highest SHA-256
throughput on Intel CPUs is actually computing 16 hashes simultaneously
using AVX512. That method would be quite different to the SHA-NI method
used in this patch. However, such a high interleaving factor isn't
practical for the use cases being targeted in the kernel.
Signed-off-by: Eric Biggers <[email protected]>
---
arch/x86/crypto/sha256_ni_asm.S | 368 ++++++++++++++++++++++++++++
arch/x86/crypto/sha256_ssse3_glue.c | 39 +++
2 files changed, 407 insertions(+)
diff --git a/arch/x86/crypto/sha256_ni_asm.S b/arch/x86/crypto/sha256_ni_asm.S
index d515a55a3bc1..5e97922a24e4 100644
--- a/arch/x86/crypto/sha256_ni_asm.S
+++ b/arch/x86/crypto/sha256_ni_asm.S
@@ -172,10 +172,378 @@ SYM_TYPED_FUNC_START(sha256_ni_transform)
.Ldone_hash:
RET
SYM_FUNC_END(sha256_ni_transform)
+#undef DIGEST_PTR
+#undef DATA_PTR
+#undef NUM_BLKS
+#undef SHA256CONSTANTS
+#undef MSG
+#undef STATE0
+#undef STATE1
+#undef MSG0
+#undef MSG1
+#undef MSG2
+#undef MSG3
+#undef TMP
+#undef SHUF_MASK
+#undef ABEF_SAVE
+#undef CDGH_SAVE
+
+// parameters for __sha256_ni_finup2x()
+#define SCTX %rdi
+#define DATA1 %rsi
+#define DATA2 %rdx
+#define LEN %ecx
+#define LEN8 %cl
+#define LEN64 %rcx
+#define OUT1 %r8
+#define OUT2 %r9
+
+// other scalar variables
+#define SHA256CONSTANTS %rax
+#define COUNT %r10
+#define COUNT32 %r10d
+#define FINAL_STEP %r11d
+
+// rbx is used as a temporary.
+
+#define MSG %xmm0 // sha256rnds2 implicit operand
+#define STATE0_A %xmm1
+#define STATE1_A %xmm2
+#define STATE0_B %xmm3
+#define STATE1_B %xmm4
+#define TMP_A %xmm5
+#define TMP_B %xmm6
+#define MSG0_A %xmm7
+#define MSG1_A %xmm8
+#define MSG2_A %xmm9
+#define MSG3_A %xmm10
+#define MSG0_B %xmm11
+#define MSG1_B %xmm12
+#define MSG2_B %xmm13
+#define MSG3_B %xmm14
+#define SHUF_MASK %xmm15
+
+#define OFFSETOF_STATE 0 // offsetof(struct sha256_state, state)
+#define OFFSETOF_COUNT 32 // offsetof(struct sha256_state, count)
+#define OFFSETOF_BUF 40 // offsetof(struct sha256_state, buf)
+
+// Do 4 rounds of SHA-256 for each of two messages (interleaved). m0_a and m0_b
+// contain the current 4 message schedule words for the first and second message
+// respectively.
+//
+// If not all the message schedule words have been computed yet, then this also
+// computes 4 more message schedule words for each message. m1_a-m3_a contain
+// the next 3 groups of 4 message schedule words for the first message, and
+// likewise m1_b-m3_b for the second. After consuming the current value of
+// m0_a, this macro computes the group after m3_a and writes it to m0_a, and
+// likewise for *_b. This means that the next (m0_a, m1_a, m2_a, m3_a) is the
+// current (m1_a, m2_a, m3_a, m0_a), and likewise for *_b, so the caller must
+// cycle through the registers accordingly.
+.macro do_4rounds_2x i, m0_a, m1_a, m2_a, m3_a, m0_b, m1_b, m2_b, m3_b
+ movdqa (\i-32)*4(SHA256CONSTANTS), TMP_A
+ movdqa TMP_A, TMP_B
+ paddd \m0_a, TMP_A
+ paddd \m0_b, TMP_B
+.if \i < 48
+ sha256msg1 \m1_a, \m0_a
+ sha256msg1 \m1_b, \m0_b
+.endif
+ movdqa TMP_A, MSG
+ sha256rnds2 STATE0_A, STATE1_A
+ movdqa TMP_B, MSG
+ sha256rnds2 STATE0_B, STATE1_B
+ pshufd $0x0E, TMP_A, MSG
+ sha256rnds2 STATE1_A, STATE0_A
+ pshufd $0x0E, TMP_B, MSG
+ sha256rnds2 STATE1_B, STATE0_B
+.if \i < 48
+ movdqa \m3_a, TMP_A
+ movdqa \m3_b, TMP_B
+ palignr $4, \m2_a, TMP_A
+ palignr $4, \m2_b, TMP_B
+ paddd TMP_A, \m0_a
+ paddd TMP_B, \m0_b
+ sha256msg2 \m3_a, \m0_a
+ sha256msg2 \m3_b, \m0_b
+.endif
+.endm
+
+//
+// void __sha256_ni_finup2x(const struct sha256_state *sctx,
+// const u8 *data1, const u8 *data2, int len,
+// u8 out1[SHA256_DIGEST_SIZE],
+// u8 out2[SHA256_DIGEST_SIZE]);
+//
+// This function computes the SHA-256 digests of two messages |data1| and
+// |data2| that are both |len| bytes long, starting from the initial state
+// |sctx|. |len| must be at least SHA256_BLOCK_SIZE.
+//
+// The instructions for the two SHA-256 operations are interleaved. On many
+// CPUs, this is almost twice as fast as hashing each message individually due
+// to taking better advantage of the CPU's SHA-256 and SIMD throughput.
+//
+SYM_FUNC_START(__sha256_ni_finup2x)
+ // Allocate 128 bytes of stack space, 16-byte aligned.
+ push %rbx
+ push %rbp
+ mov %rsp, %rbp
+ sub $128, %rsp
+ and $~15, %rsp
+
+ // Load the shuffle mask for swapping the endianness of 32-bit words.
+ movdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), SHUF_MASK
+
+ // Set up pointer to the round constants.
+ lea K256+32*4(%rip), SHA256CONSTANTS
+
+ // Initially we're not processing the final blocks.
+ xor FINAL_STEP, FINAL_STEP
+
+ // Load the initial state from sctx->state.
+ movdqu OFFSETOF_STATE+0*16(SCTX), STATE0_A // DCBA
+ movdqu OFFSETOF_STATE+1*16(SCTX), STATE1_A // HGFE
+ movdqa STATE0_A, TMP_A
+ punpcklqdq STATE1_A, STATE0_A // FEBA
+ punpckhqdq TMP_A, STATE1_A // DCHG
+ pshufd $0x1B, STATE0_A, STATE0_A // ABEF
+ pshufd $0xB1, STATE1_A, STATE1_A // CDGH
+
+ // Load sctx->count. Take the mod 64 of it to get the number of bytes
+ // that are buffered in sctx->buf. Also save it in a register with LEN
+ // added to it.
+ mov LEN, LEN
+ mov OFFSETOF_COUNT(SCTX), %rbx
+ lea (%rbx, LEN64, 1), COUNT
+ and $63, %ebx
+ jz .Lfinup2x_enter_loop // No bytes buffered?
+
+ // %ebx bytes (1 to 63) are currently buffered in sctx->buf. Load them
+ // followed by the first 64 - %ebx bytes of data. Since LEN >= 64, we
+ // just load 64 bytes from each of sctx->buf, DATA1, and DATA2
+ // unconditionally and rearrange the data as needed.
+
+ movdqu OFFSETOF_BUF+0*16(SCTX), MSG0_A
+ movdqu OFFSETOF_BUF+1*16(SCTX), MSG1_A
+ movdqu OFFSETOF_BUF+2*16(SCTX), MSG2_A
+ movdqu OFFSETOF_BUF+3*16(SCTX), MSG3_A
+ movdqa MSG0_A, 0*16(%rsp)
+ movdqa MSG1_A, 1*16(%rsp)
+ movdqa MSG2_A, 2*16(%rsp)
+ movdqa MSG3_A, 3*16(%rsp)
+
+ movdqu 0*16(DATA1), MSG0_A
+ movdqu 1*16(DATA1), MSG1_A
+ movdqu 2*16(DATA1), MSG2_A
+ movdqu 3*16(DATA1), MSG3_A
+ movdqu MSG0_A, 0*16(%rsp,%rbx)
+ movdqu MSG1_A, 1*16(%rsp,%rbx)
+ movdqu MSG2_A, 2*16(%rsp,%rbx)
+ movdqu MSG3_A, 3*16(%rsp,%rbx)
+ movdqa 0*16(%rsp), MSG0_A
+ movdqa 1*16(%rsp), MSG1_A
+ movdqa 2*16(%rsp), MSG2_A
+ movdqa 3*16(%rsp), MSG3_A
+
+ movdqu 0*16(DATA2), MSG0_B
+ movdqu 1*16(DATA2), MSG1_B
+ movdqu 2*16(DATA2), MSG2_B
+ movdqu 3*16(DATA2), MSG3_B
+ movdqu MSG0_B, 0*16(%rsp,%rbx)
+ movdqu MSG1_B, 1*16(%rsp,%rbx)
+ movdqu MSG2_B, 2*16(%rsp,%rbx)
+ movdqu MSG3_B, 3*16(%rsp,%rbx)
+ movdqa 0*16(%rsp), MSG0_B
+ movdqa 1*16(%rsp), MSG1_B
+ movdqa 2*16(%rsp), MSG2_B
+ movdqa 3*16(%rsp), MSG3_B
+
+ sub $64, %rbx // rbx = buffered - 64
+ sub %rbx, DATA1 // DATA1 += 64 - buffered
+ sub %rbx, DATA2 // DATA2 += 64 - buffered
+ add %ebx, LEN // LEN += buffered - 64
+ movdqa STATE0_A, STATE0_B
+ movdqa STATE1_A, STATE1_B
+ jmp .Lfinup2x_loop_have_data
+
+.Lfinup2x_enter_loop:
+ sub $64, LEN
+ movdqa STATE0_A, STATE0_B
+ movdqa STATE1_A, STATE1_B
+.Lfinup2x_loop:
+ // Load the next two data blocks.
+ movdqu 0*16(DATA1), MSG0_A
+ movdqu 0*16(DATA2), MSG0_B
+ movdqu 1*16(DATA1), MSG1_A
+ movdqu 1*16(DATA2), MSG1_B
+ movdqu 2*16(DATA1), MSG2_A
+ movdqu 2*16(DATA2), MSG2_B
+ movdqu 3*16(DATA1), MSG3_A
+ movdqu 3*16(DATA2), MSG3_B
+ add $64, DATA1
+ add $64, DATA2
+.Lfinup2x_loop_have_data:
+ // Convert the words of the data blocks from big endian.
+ pshufb SHUF_MASK, MSG0_A
+ pshufb SHUF_MASK, MSG0_B
+ pshufb SHUF_MASK, MSG1_A
+ pshufb SHUF_MASK, MSG1_B
+ pshufb SHUF_MASK, MSG2_A
+ pshufb SHUF_MASK, MSG2_B
+ pshufb SHUF_MASK, MSG3_A
+ pshufb SHUF_MASK, MSG3_B
+.Lfinup2x_loop_have_bswapped_data:
+
+ // Save the original state for each block.
+ movdqa STATE0_A, 0*16(%rsp)
+ movdqa STATE0_B, 1*16(%rsp)
+ movdqa STATE1_A, 2*16(%rsp)
+ movdqa STATE1_B, 3*16(%rsp)
+
+ // Do the SHA-256 rounds on each block.
+.irp i, 0, 16, 32, 48
+ do_4rounds_2x (\i + 0), MSG0_A, MSG1_A, MSG2_A, MSG3_A, \
+ MSG0_B, MSG1_B, MSG2_B, MSG3_B
+ do_4rounds_2x (\i + 4), MSG1_A, MSG2_A, MSG3_A, MSG0_A, \
+ MSG1_B, MSG2_B, MSG3_B, MSG0_B
+ do_4rounds_2x (\i + 8), MSG2_A, MSG3_A, MSG0_A, MSG1_A, \
+ MSG2_B, MSG3_B, MSG0_B, MSG1_B
+ do_4rounds_2x (\i + 12), MSG3_A, MSG0_A, MSG1_A, MSG2_A, \
+ MSG3_B, MSG0_B, MSG1_B, MSG2_B
+.endr
+
+ // Add the original state for each block.
+ paddd 0*16(%rsp), STATE0_A
+ paddd 1*16(%rsp), STATE0_B
+ paddd 2*16(%rsp), STATE1_A
+ paddd 3*16(%rsp), STATE1_B
+
+ // Update LEN and loop back if more blocks remain.
+ sub $64, LEN
+ jge .Lfinup2x_loop
+
+ // Check if any final blocks need to be handled.
+ // FINAL_STEP = 2: all done
+ // FINAL_STEP = 1: need to do count-only padding block
+ // FINAL_STEP = 0: need to do the block with 0x80 padding byte
+ cmp $1, FINAL_STEP
+ jg .Lfinup2x_done
+ je .Lfinup2x_finalize_countonly
+ add $64, LEN
+ jz .Lfinup2x_finalize_blockaligned
+
+ // Not block-aligned; 1 <= LEN <= 63 data bytes remain. Pad the block.
+ // To do this, write the padding starting with the 0x80 byte to
+ // &sp[64]. Then for each message, copy the last 64 data bytes to sp
+ // and load from &sp[64 - LEN] to get the needed padding block. This
+ // code relies on the data buffers being >= 64 bytes in length.
+ mov $64, %ebx
+ sub LEN, %ebx // ebx = 64 - LEN
+ sub %rbx, DATA1 // DATA1 -= 64 - LEN
+ sub %rbx, DATA2 // DATA2 -= 64 - LEN
+ mov $0x80, FINAL_STEP // using FINAL_STEP as a temporary
+ movd FINAL_STEP, MSG0_A
+ pxor MSG1_A, MSG1_A
+ movdqa MSG0_A, 4*16(%rsp)
+ movdqa MSG1_A, 5*16(%rsp)
+ movdqa MSG1_A, 6*16(%rsp)
+ movdqa MSG1_A, 7*16(%rsp)
+ cmp $56, LEN
+ jge 1f // will COUNT spill into its own block?
+ shl $3, COUNT
+ bswap COUNT
+ mov COUNT, 56(%rsp,%rbx)
+ mov $2, FINAL_STEP // won't need count-only block
+ jmp 2f
+1:
+ mov $1, FINAL_STEP // will need count-only block
+2:
+ movdqu 0*16(DATA1), MSG0_A
+ movdqu 1*16(DATA1), MSG1_A
+ movdqu 2*16(DATA1), MSG2_A
+ movdqu 3*16(DATA1), MSG3_A
+ movdqa MSG0_A, 0*16(%rsp)
+ movdqa MSG1_A, 1*16(%rsp)
+ movdqa MSG2_A, 2*16(%rsp)
+ movdqa MSG3_A, 3*16(%rsp)
+ movdqu 0*16(%rsp,%rbx), MSG0_A
+ movdqu 1*16(%rsp,%rbx), MSG1_A
+ movdqu 2*16(%rsp,%rbx), MSG2_A
+ movdqu 3*16(%rsp,%rbx), MSG3_A
+
+ movdqu 0*16(DATA2), MSG0_B
+ movdqu 1*16(DATA2), MSG1_B
+ movdqu 2*16(DATA2), MSG2_B
+ movdqu 3*16(DATA2), MSG3_B
+ movdqa MSG0_B, 0*16(%rsp)
+ movdqa MSG1_B, 1*16(%rsp)
+ movdqa MSG2_B, 2*16(%rsp)
+ movdqa MSG3_B, 3*16(%rsp)
+ movdqu 0*16(%rsp,%rbx), MSG0_B
+ movdqu 1*16(%rsp,%rbx), MSG1_B
+ movdqu 2*16(%rsp,%rbx), MSG2_B
+ movdqu 3*16(%rsp,%rbx), MSG3_B
+ jmp .Lfinup2x_loop_have_data
+
+ // Prepare a padding block, either:
+ //
+ // {0x80, 0, 0, 0, ..., count (as __be64)}
+ // This is for a block aligned message.
+ //
+ // { 0, 0, 0, 0, ..., count (as __be64)}
+ // This is for a message whose length mod 64 is >= 56.
+ //
+ // Pre-swap the endianness of the words.
+.Lfinup2x_finalize_countonly:
+ pxor MSG0_A, MSG0_A
+ jmp 1f
+
+.Lfinup2x_finalize_blockaligned:
+ mov $0x80000000, %ebx
+ movd %ebx, MSG0_A
+1:
+ pxor MSG1_A, MSG1_A
+ pxor MSG2_A, MSG2_A
+ ror $29, COUNT
+ movq COUNT, MSG3_A
+ pslldq $8, MSG3_A
+ movdqa MSG0_A, MSG0_B
+ pxor MSG1_B, MSG1_B
+ pxor MSG2_B, MSG2_B
+ movdqa MSG3_A, MSG3_B
+ mov $2, FINAL_STEP
+ jmp .Lfinup2x_loop_have_bswapped_data
+
+.Lfinup2x_done:
+ // Write the two digests with all bytes in the correct order.
+ movdqa STATE0_A, TMP_A
+ movdqa STATE0_B, TMP_B
+ punpcklqdq STATE1_A, STATE0_A // GHEF
+ punpcklqdq STATE1_B, STATE0_B
+ punpckhqdq TMP_A, STATE1_A // ABCD
+ punpckhqdq TMP_B, STATE1_B
+ pshufd $0xB1, STATE0_A, STATE0_A // HGFE
+ pshufd $0xB1, STATE0_B, STATE0_B
+ pshufd $0x1B, STATE1_A, STATE1_A // DCBA
+ pshufd $0x1B, STATE1_B, STATE1_B
+ pshufb SHUF_MASK, STATE0_A
+ pshufb SHUF_MASK, STATE0_B
+ pshufb SHUF_MASK, STATE1_A
+ pshufb SHUF_MASK, STATE1_B
+ movdqu STATE0_A, 1*16(OUT1)
+ movdqu STATE0_B, 1*16(OUT2)
+ movdqu STATE1_A, 0*16(OUT1)
+ movdqu STATE1_B, 0*16(OUT2)
+
+ mov %rbp, %rsp
+ pop %rbp
+ pop %rbx
+ RET
+SYM_FUNC_END(__sha256_ni_finup2x)
+
.section .rodata.cst256.K256, "aM", @progbits, 256
.align 64
K256:
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
diff --git a/arch/x86/crypto/sha256_ssse3_glue.c b/arch/x86/crypto/sha256_ssse3_glue.c
index e04a43d9f7d5..f5e6cc7afac7 100644
--- a/arch/x86/crypto/sha256_ssse3_glue.c
+++ b/arch/x86/crypto/sha256_ssse3_glue.c
@@ -331,10 +331,15 @@ static void unregister_sha256_avx2(void)
#ifdef CONFIG_AS_SHA256_NI
asmlinkage void sha256_ni_transform(struct sha256_state *digest,
const u8 *data, int rounds);
+asmlinkage void __sha256_ni_finup2x(const struct sha256_state *sctx,
+ const u8 *data1, const u8 *data2, int len,
+ u8 out1[SHA256_DIGEST_SIZE],
+ u8 out2[SHA256_DIGEST_SIZE]);
+
static int sha256_ni_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return _sha256_update(desc, data, len, sha256_ni_transform);
}
@@ -355,18 +360,52 @@ static int sha256_ni_digest(struct shash_desc *desc, const u8 *data,
{
return sha256_base_init(desc) ?:
sha256_ni_finup(desc, data, len, out);
}
+static int sha256_ni_finup_mb(struct shash_desc *desc,
+ const u8 * const data[], unsigned int len,
+ u8 * const outs[], unsigned int num_msgs)
+{
+ struct sha256_state *sctx = shash_desc_ctx(desc);
+
+ /*
+ * num_msgs != 2 should not happen here, since this algorithm sets
+ * mb_max_msgs=2, and the crypto API handles num_msgs <= 1 before
+ * calling into the algorithm's finup_mb method.
+ */
+ if (WARN_ON_ONCE(num_msgs != 2))
+ return -EOPNOTSUPP;
+
+ if (unlikely(!crypto_simd_usable()))
+ return -EOPNOTSUPP;
+
+ /* __sha256_ni_finup2x() assumes SHA256_BLOCK_SIZE <= len <= INT_MAX. */
+ if (unlikely(len < SHA256_BLOCK_SIZE || len > PAGE_SIZE))
+ return -EOPNOTSUPP;
+
+ /* __sha256_ni_finup2x() assumes the following offsets. */
+ BUILD_BUG_ON(offsetof(struct sha256_state, state) != 0);
+ BUILD_BUG_ON(offsetof(struct sha256_state, count) != 32);
+ BUILD_BUG_ON(offsetof(struct sha256_state, buf) != 40);
+
+ kernel_fpu_begin();
+ __sha256_ni_finup2x(sctx, data[0], data[1], len, outs[0], outs[1]);
+ kernel_fpu_end();
+ return 0;
+}
+
static struct shash_alg sha256_ni_algs[] = { {
.digestsize = SHA256_DIGEST_SIZE,
.init = sha256_base_init,
.update = sha256_ni_update,
.final = sha256_ni_final,
.finup = sha256_ni_finup,
.digest = sha256_ni_digest,
+ .finup_mb = sha256_ni_finup_mb,
.descsize = sizeof(struct sha256_state),
+ .mb_max_msgs = 2,
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-ni",
.cra_priority = 250,
.cra_blocksize = SHA256_BLOCK_SIZE,
--
2.45.0
From: Eric Biggers <[email protected]>
Add an implementation of finup_mb to sha256-ce, using an interleaving
factor of 2. It interleaves a finup operation for two equal-length
messages that share a common prefix. dm-verity and fs-verity will take
advantage of this for greatly improved performance on capable CPUs.
On an ARM Cortex-X1, this increases the throughput of SHA-256 hashing
4096-byte messages by 70%.
Signed-off-by: Eric Biggers <[email protected]>
---
arch/arm64/crypto/sha2-ce-core.S | 281 ++++++++++++++++++++++++++++++-
arch/arm64/crypto/sha2-ce-glue.c | 40 +++++
2 files changed, 315 insertions(+), 6 deletions(-)
diff --git a/arch/arm64/crypto/sha2-ce-core.S b/arch/arm64/crypto/sha2-ce-core.S
index fce84d88ddb2..fb5d5227e585 100644
--- a/arch/arm64/crypto/sha2-ce-core.S
+++ b/arch/arm64/crypto/sha2-ce-core.S
@@ -68,22 +68,26 @@
.word 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5
.word 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
.word 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208
.word 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+ .macro load_round_constants tmp
+ adr_l \tmp, .Lsha2_rcon
+ ld1 { v0.4s- v3.4s}, [\tmp], #64
+ ld1 { v4.4s- v7.4s}, [\tmp], #64
+ ld1 { v8.4s-v11.4s}, [\tmp], #64
+ ld1 {v12.4s-v15.4s}, [\tmp]
+ .endm
+
/*
* int __sha256_ce_transform(struct sha256_ce_state *sst, u8 const *src,
* int blocks)
*/
.text
SYM_FUNC_START(__sha256_ce_transform)
- /* load round constants */
- adr_l x8, .Lsha2_rcon
- ld1 { v0.4s- v3.4s}, [x8], #64
- ld1 { v4.4s- v7.4s}, [x8], #64
- ld1 { v8.4s-v11.4s}, [x8], #64
- ld1 {v12.4s-v15.4s}, [x8]
+
+ load_round_constants x8
/* load state */
ld1 {dgav.4s, dgbv.4s}, [x0]
/* load sha256_ce_state::finalize */
@@ -153,5 +157,270 @@ CPU_LE( rev32 v19.16b, v19.16b )
/* store new state */
3: st1 {dgav.4s, dgbv.4s}, [x0]
mov w0, w2
ret
SYM_FUNC_END(__sha256_ce_transform)
+
+ .unreq dga
+ .unreq dgav
+ .unreq dgb
+ .unreq dgbv
+ .unreq t0
+ .unreq t1
+ .unreq dg0q
+ .unreq dg0v
+ .unreq dg1q
+ .unreq dg1v
+ .unreq dg2q
+ .unreq dg2v
+
+ // parameters for __sha256_ce_finup2x()
+ sctx .req x0
+ data1 .req x1
+ data2 .req x2
+ len .req w3
+ out1 .req x4
+ out2 .req x5
+
+ // other scalar variables
+ count .req x6
+ final_step .req w7
+
+ // x8-x9 are used as temporaries.
+
+ // v0-v15 are used to cache the SHA-256 round constants.
+ // v16-v19 are used for the message schedule for the first message.
+ // v20-v23 are used for the message schedule for the second message.
+ // v24-v31 are used for the state and temporaries as given below.
+ // *_a are for the first message and *_b for the second.
+ state0_a_q .req q24
+ state0_a .req v24
+ state1_a_q .req q25
+ state1_a .req v25
+ state0_b_q .req q26
+ state0_b .req v26
+ state1_b_q .req q27
+ state1_b .req v27
+ t0_a .req v28
+ t0_b .req v29
+ t1_a_q .req q30
+ t1_a .req v30
+ t1_b_q .req q31
+ t1_b .req v31
+
+#define OFFSETOF_COUNT 32 // offsetof(struct sha256_state, count)
+#define OFFSETOF_BUF 40 // offsetof(struct sha256_state, buf)
+// offsetof(struct sha256_state, state) is assumed to be 0.
+
+ // Do 4 rounds of SHA-256 for each of two messages (interleaved). m0_a
+ // and m0_b contain the current 4 message schedule words for the first
+ // and second message respectively.
+ //
+ // If not all the message schedule words have been computed yet, then
+ // this also computes 4 more message schedule words for each message.
+ // m1_a-m3_a contain the next 3 groups of 4 message schedule words for
+ // the first message, and likewise m1_b-m3_b for the second. After
+ // consuming the current value of m0_a, this macro computes the group
+ // after m3_a and writes it to m0_a, and likewise for *_b. This means
+ // that the next (m0_a, m1_a, m2_a, m3_a) is the current (m1_a, m2_a,
+ // m3_a, m0_a), and likewise for *_b, so the caller must cycle through
+ // the registers accordingly.
+ .macro do_4rounds_2x i, k, m0_a, m1_a, m2_a, m3_a, \
+ m0_b, m1_b, m2_b, m3_b
+ add t0_a\().4s, \m0_a\().4s, \k\().4s
+ add t0_b\().4s, \m0_b\().4s, \k\().4s
+ .if \i < 48
+ sha256su0 \m0_a\().4s, \m1_a\().4s
+ sha256su0 \m0_b\().4s, \m1_b\().4s
+ sha256su1 \m0_a\().4s, \m2_a\().4s, \m3_a\().4s
+ sha256su1 \m0_b\().4s, \m2_b\().4s, \m3_b\().4s
+ .endif
+ mov t1_a.16b, state0_a.16b
+ mov t1_b.16b, state0_b.16b
+ sha256h state0_a_q, state1_a_q, t0_a\().4s
+ sha256h state0_b_q, state1_b_q, t0_b\().4s
+ sha256h2 state1_a_q, t1_a_q, t0_a\().4s
+ sha256h2 state1_b_q, t1_b_q, t0_b\().4s
+ .endm
+
+ .macro do_16rounds_2x i, k0, k1, k2, k3
+ do_4rounds_2x \i + 0, \k0, v16, v17, v18, v19, v20, v21, v22, v23
+ do_4rounds_2x \i + 4, \k1, v17, v18, v19, v16, v21, v22, v23, v20
+ do_4rounds_2x \i + 8, \k2, v18, v19, v16, v17, v22, v23, v20, v21
+ do_4rounds_2x \i + 12, \k3, v19, v16, v17, v18, v23, v20, v21, v22
+ .endm
+
+//
+// void __sha256_ce_finup2x(const struct sha256_state *sctx,
+// const u8 *data1, const u8 *data2, int len,
+// u8 out1[SHA256_DIGEST_SIZE],
+// u8 out2[SHA256_DIGEST_SIZE]);
+//
+// This function computes the SHA-256 digests of two messages |data1| and
+// |data2| that are both |len| bytes long, starting from the initial state
+// |sctx|. |len| must be at least SHA256_BLOCK_SIZE.
+//
+// The instructions for the two SHA-256 operations are interleaved. On many
+// CPUs, this is almost twice as fast as hashing each message individually due
+// to taking better advantage of the CPU's SHA-256 and SIMD throughput.
+//
+SYM_FUNC_START(__sha256_ce_finup2x)
+ sub sp, sp, #128
+ mov final_step, #0
+ load_round_constants x8
+
+ // Load the initial state from sctx->state.
+ ld1 {state0_a.4s-state1_a.4s}, [sctx]
+
+ // Load sctx->count. Take the mod 64 of it to get the number of bytes
+ // that are buffered in sctx->buf. Also save it in a register with len
+ // added to it.
+ ldr x8, [sctx, #OFFSETOF_COUNT]
+ add count, x8, len, sxtw
+ and x8, x8, #63
+ cbz x8, .Lfinup2x_enter_loop // No bytes buffered?
+
+ // x8 bytes (1 to 63) are currently buffered in sctx->buf. Load them
+ // followed by the first 64 - x8 bytes of data. Since len >= 64, we
+ // just load 64 bytes from each of sctx->buf, data1, and data2
+ // unconditionally and rearrange the data as needed.
+ add x9, sctx, #OFFSETOF_BUF
+ ld1 {v16.16b-v19.16b}, [x9]
+ st1 {v16.16b-v19.16b}, [sp]
+
+ ld1 {v16.16b-v19.16b}, [data1], #64
+ add x9, sp, x8
+ st1 {v16.16b-v19.16b}, [x9]
+ ld1 {v16.4s-v19.4s}, [sp]
+
+ ld1 {v20.16b-v23.16b}, [data2], #64
+ st1 {v20.16b-v23.16b}, [x9]
+ ld1 {v20.4s-v23.4s}, [sp]
+
+ sub len, len, #64
+ sub data1, data1, x8
+ sub data2, data2, x8
+ add len, len, w8
+ mov state0_b.16b, state0_a.16b
+ mov state1_b.16b, state1_a.16b
+ b .Lfinup2x_loop_have_data
+
+.Lfinup2x_enter_loop:
+ sub len, len, #64
+ mov state0_b.16b, state0_a.16b
+ mov state1_b.16b, state1_a.16b
+.Lfinup2x_loop:
+ // Load the next two data blocks.
+ ld1 {v16.4s-v19.4s}, [data1], #64
+ ld1 {v20.4s-v23.4s}, [data2], #64
+.Lfinup2x_loop_have_data:
+ // Convert the words of the data blocks from big endian.
+CPU_LE( rev32 v16.16b, v16.16b )
+CPU_LE( rev32 v17.16b, v17.16b )
+CPU_LE( rev32 v18.16b, v18.16b )
+CPU_LE( rev32 v19.16b, v19.16b )
+CPU_LE( rev32 v20.16b, v20.16b )
+CPU_LE( rev32 v21.16b, v21.16b )
+CPU_LE( rev32 v22.16b, v22.16b )
+CPU_LE( rev32 v23.16b, v23.16b )
+.Lfinup2x_loop_have_bswapped_data:
+
+ // Save the original state for each block.
+ st1 {state0_a.4s-state1_b.4s}, [sp]
+
+ // Do the SHA-256 rounds on each block.
+ do_16rounds_2x 0, v0, v1, v2, v3
+ do_16rounds_2x 16, v4, v5, v6, v7
+ do_16rounds_2x 32, v8, v9, v10, v11
+ do_16rounds_2x 48, v12, v13, v14, v15
+
+ // Add the original state for each block.
+ ld1 {v16.4s-v19.4s}, [sp]
+ add state0_a.4s, state0_a.4s, v16.4s
+ add state1_a.4s, state1_a.4s, v17.4s
+ add state0_b.4s, state0_b.4s, v18.4s
+ add state1_b.4s, state1_b.4s, v19.4s
+
+ // Update len and loop back if more blocks remain.
+ sub len, len, #64
+ tbz len, #31, .Lfinup2x_loop // len >= 0?
+
+ // Check if any final blocks need to be handled.
+ // final_step = 2: all done
+ // final_step = 1: need to do count-only padding block
+ // final_step = 0: need to do the block with 0x80 padding byte
+ tbnz final_step, #1, .Lfinup2x_done
+ tbnz final_step, #0, .Lfinup2x_finalize_countonly
+ add len, len, #64
+ cbz len, .Lfinup2x_finalize_blockaligned
+
+ // Not block-aligned; 1 <= len <= 63 data bytes remain. Pad the block.
+ // To do this, write the padding starting with the 0x80 byte to
+ // &sp[64]. Then for each message, copy the last 64 data bytes to sp
+ // and load from &sp[64 - len] to get the needed padding block. This
+ // code relies on the data buffers being >= 64 bytes in length.
+ sub w8, len, #64 // w8 = len - 64
+ add data1, data1, w8, sxtw // data1 += len - 64
+ add data2, data2, w8, sxtw // data2 += len - 64
+ mov x9, 0x80
+ fmov d16, x9
+ movi v17.16b, #0
+ stp q16, q17, [sp, #64]
+ stp q17, q17, [sp, #96]
+ sub x9, sp, w8, sxtw // x9 = &sp[64 - len]
+ cmp len, #56
+ b.ge 1f // will count spill into its own block?
+ lsl count, count, #3
+ rev count, count
+ str count, [x9, #56]
+ mov final_step, #2 // won't need count-only block
+ b 2f
+1:
+ mov final_step, #1 // will need count-only block
+2:
+ ld1 {v16.16b-v19.16b}, [data1]
+ st1 {v16.16b-v19.16b}, [sp]
+ ld1 {v16.4s-v19.4s}, [x9]
+ ld1 {v20.16b-v23.16b}, [data2]
+ st1 {v20.16b-v23.16b}, [sp]
+ ld1 {v20.4s-v23.4s}, [x9]
+ b .Lfinup2x_loop_have_data
+
+ // Prepare a padding block, either:
+ //
+ // {0x80, 0, 0, 0, ..., count (as __be64)}
+ // This is for a block aligned message.
+ //
+ // { 0, 0, 0, 0, ..., count (as __be64)}
+ // This is for a message whose length mod 64 is >= 56.
+ //
+ // Pre-swap the endianness of the words.
+.Lfinup2x_finalize_countonly:
+ movi v16.2d, #0
+ b 1f
+.Lfinup2x_finalize_blockaligned:
+ mov x8, #0x80000000
+ fmov d16, x8
+1:
+ movi v17.2d, #0
+ movi v18.2d, #0
+ ror count, count, #29 // ror(lsl(count, 3), 32)
+ mov v19.d[0], xzr
+ mov v19.d[1], count
+ mov v20.16b, v16.16b
+ movi v21.2d, #0
+ movi v22.2d, #0
+ mov v23.16b, v19.16b
+ mov final_step, #2
+ b .Lfinup2x_loop_have_bswapped_data
+
+.Lfinup2x_done:
+ // Write the two digests with all bytes in the correct order.
+CPU_LE( rev32 state0_a.16b, state0_a.16b )
+CPU_LE( rev32 state1_a.16b, state1_a.16b )
+CPU_LE( rev32 state0_b.16b, state0_b.16b )
+CPU_LE( rev32 state1_b.16b, state1_b.16b )
+ st1 {state0_a.4s-state1_a.4s}, [out1]
+ st1 {state0_b.4s-state1_b.4s}, [out2]
+ add sp, sp, #128
+ ret
+SYM_FUNC_END(__sha256_ce_finup2x)
diff --git a/arch/arm64/crypto/sha2-ce-glue.c b/arch/arm64/crypto/sha2-ce-glue.c
index 0a44d2e7ee1f..b37cffc4191f 100644
--- a/arch/arm64/crypto/sha2-ce-glue.c
+++ b/arch/arm64/crypto/sha2-ce-glue.c
@@ -31,10 +31,15 @@ extern const u32 sha256_ce_offsetof_count;
extern const u32 sha256_ce_offsetof_finalize;
asmlinkage int __sha256_ce_transform(struct sha256_ce_state *sst, u8 const *src,
int blocks);
+asmlinkage void __sha256_ce_finup2x(const struct sha256_state *sctx,
+ const u8 *data1, const u8 *data2, int len,
+ u8 out1[SHA256_DIGEST_SIZE],
+ u8 out2[SHA256_DIGEST_SIZE]);
+
static void sha256_ce_transform(struct sha256_state *sst, u8 const *src,
int blocks)
{
while (blocks) {
int rem;
@@ -122,10 +127,43 @@ static int sha256_ce_digest(struct shash_desc *desc, const u8 *data,
{
sha256_base_init(desc);
return sha256_ce_finup(desc, data, len, out);
}
+static int sha256_ce_finup_mb(struct shash_desc *desc,
+ const u8 * const data[], unsigned int len,
+ u8 * const outs[], unsigned int num_msgs)
+{
+ struct sha256_ce_state *sctx = shash_desc_ctx(desc);
+
+ /*
+ * num_msgs != 2 should not happen here, since this algorithm sets
+ * mb_max_msgs=2, and the crypto API handles num_msgs <= 1 before
+ * calling into the algorithm's finup_mb method.
+ */
+ if (WARN_ON_ONCE(num_msgs != 2))
+ return -EOPNOTSUPP;
+
+ if (unlikely(!crypto_simd_usable()))
+ return -EOPNOTSUPP;
+
+ /* __sha256_ce_finup2x() assumes SHA256_BLOCK_SIZE <= len <= INT_MAX. */
+ if (unlikely(len < SHA256_BLOCK_SIZE || len > INT_MAX))
+ return -EOPNOTSUPP;
+
+ /* __sha256_ce_finup2x() assumes the following offsets. */
+ BUILD_BUG_ON(offsetof(struct sha256_state, state) != 0);
+ BUILD_BUG_ON(offsetof(struct sha256_state, count) != 32);
+ BUILD_BUG_ON(offsetof(struct sha256_state, buf) != 40);
+
+ kernel_neon_begin();
+ __sha256_ce_finup2x(&sctx->sst, data[0], data[1], len, outs[0],
+ outs[1]);
+ kernel_neon_end();
+ return 0;
+}
+
static int sha256_ce_export(struct shash_desc *desc, void *out)
{
struct sha256_ce_state *sctx = shash_desc_ctx(desc);
memcpy(out, &sctx->sst, sizeof(struct sha256_state));
@@ -162,13 +200,15 @@ static struct shash_alg algs[] = { {
.init = sha256_base_init,
.update = sha256_ce_update,
.final = sha256_ce_final,
.finup = sha256_ce_finup,
.digest = sha256_ce_digest,
+ .finup_mb = sha256_ce_finup_mb,
.export = sha256_ce_export,
.import = sha256_ce_import,
.descsize = sizeof(struct sha256_ce_state),
+ .mb_max_msgs = 2,
.statesize = sizeof(struct sha256_state),
.digestsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-ce",
--
2.45.0
From: Eric Biggers <[email protected]>
When supported by the hash algorithm, use crypto_shash_finup_mb() to
interleave the hashing of pairs of data blocks. On some CPUs this
nearly doubles hashing performance. The increase in overall throughput
of cold-cache fsverity reads that I'm seeing on arm64 and x86_64 is
roughly 35% (though this metric is hard to measure as it jumps around a
lot).
For now this is only done on the verification path, and only for data
blocks, not Merkle tree blocks. We could use finup_mb on Merkle tree
blocks too, but that is less important as there aren't as many Merkle
tree blocks as data blocks, and that would require some additional code
restructuring. We could also use finup_mb to accelerate building the
Merkle tree, but verification performance is more important.
Signed-off-by: Eric Biggers <[email protected]>
---
fs/verity/fsverity_private.h | 5 +
fs/verity/hash_algs.c | 32 ++++++-
fs/verity/open.c | 6 ++
fs/verity/verify.c | 177 +++++++++++++++++++++++++++++------
4 files changed, 187 insertions(+), 33 deletions(-)
diff --git a/fs/verity/fsverity_private.h b/fs/verity/fsverity_private.h
index b3506f56e180..9fe1633f15d6 100644
--- a/fs/verity/fsverity_private.h
+++ b/fs/verity/fsverity_private.h
@@ -27,10 +27,11 @@ struct fsverity_hash_alg {
/*
* The HASH_ALGO_* constant for this algorithm. This is different from
* FS_VERITY_HASH_ALG_*, which uses a different numbering scheme.
*/
enum hash_algo algo_id;
+ bool supports_multibuffer; /* crypto_shash_mb_max_msgs(tfm) >= 2 */
};
/* Merkle tree parameters: hash algorithm, initial hash state, and topology */
struct merkle_tree_params {
const struct fsverity_hash_alg *hash_alg; /* the hash algorithm */
@@ -65,10 +66,11 @@ struct merkle_tree_params {
*/
struct fsverity_info {
struct merkle_tree_params tree_params;
u8 root_hash[FS_VERITY_MAX_DIGEST_SIZE];
u8 file_digest[FS_VERITY_MAX_DIGEST_SIZE];
+ u8 zero_block_hash[FS_VERITY_MAX_DIGEST_SIZE];
const struct inode *inode;
unsigned long *hash_block_verified;
};
#define FS_VERITY_MAX_SIGNATURE_SIZE (FS_VERITY_MAX_DESCRIPTOR_SIZE - \
@@ -82,10 +84,13 @@ const struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode,
unsigned int num);
const u8 *fsverity_prepare_hash_state(const struct fsverity_hash_alg *alg,
const u8 *salt, size_t salt_size);
int fsverity_hash_block(const struct merkle_tree_params *params,
const struct inode *inode, const void *data, u8 *out);
+int fsverity_hash_2_blocks(const struct merkle_tree_params *params,
+ const struct inode *inode, const void *data1,
+ const void *data2, u8 *out1, u8 *out2);
int fsverity_hash_buffer(const struct fsverity_hash_alg *alg,
const void *data, size_t size, u8 *out);
void __init fsverity_check_hash_algs(void);
/* init.c */
diff --git a/fs/verity/hash_algs.c b/fs/verity/hash_algs.c
index 6b08b1d9a7d7..71b6f74aaacd 100644
--- a/fs/verity/hash_algs.c
+++ b/fs/verity/hash_algs.c
@@ -82,12 +82,15 @@ const struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode,
if (WARN_ON_ONCE(alg->digest_size != crypto_shash_digestsize(tfm)))
goto err_free_tfm;
if (WARN_ON_ONCE(alg->block_size != crypto_shash_blocksize(tfm)))
goto err_free_tfm;
- pr_info("%s using implementation \"%s\"\n",
- alg->name, crypto_shash_driver_name(tfm));
+ alg->supports_multibuffer = (crypto_shash_mb_max_msgs(tfm) >= 2);
+
+ pr_info("%s using implementation \"%s\"%s\n",
+ alg->name, crypto_shash_driver_name(tfm),
+ alg->supports_multibuffer ? " (multibuffer)" : "");
/* pairs with smp_load_acquire() above */
smp_store_release(&alg->tfm, tfm);
goto out_unlock;
@@ -195,10 +198,35 @@ int fsverity_hash_block(const struct merkle_tree_params *params,
if (err)
fsverity_err(inode, "Error %d computing block hash", err);
return err;
}
+int fsverity_hash_2_blocks(const struct merkle_tree_params *params,
+ const struct inode *inode, const void *data1,
+ const void *data2, u8 *out1, u8 *out2)
+{
+ const u8 *data[2] = { data1, data2 };
+ u8 *outs[2] = { out1, out2 };
+ SHASH_DESC_ON_STACK(desc, params->hash_alg->tfm);
+ int err;
+
+ desc->tfm = params->hash_alg->tfm;
+
+ if (params->hashstate)
+ err = crypto_shash_import(desc, params->hashstate);
+ else
+ err = crypto_shash_init(desc);
+ if (err) {
+ fsverity_err(inode, "Error %d importing hash state", err);
+ return err;
+ }
+ err = crypto_shash_finup_mb(desc, data, params->block_size, outs, 2);
+ if (err)
+ fsverity_err(inode, "Error %d computing block hashes", err);
+ return err;
+}
+
/**
* fsverity_hash_buffer() - hash some data
* @alg: the hash algorithm to use
* @data: the data to hash
* @size: size of data to hash, in bytes
diff --git a/fs/verity/open.c b/fs/verity/open.c
index fdeb95eca3af..4ae07c689c56 100644
--- a/fs/verity/open.c
+++ b/fs/verity/open.c
@@ -206,10 +206,16 @@ struct fsverity_info *fsverity_create_info(const struct inode *inode,
if (err) {
fsverity_err(inode, "Error %d computing file digest", err);
goto fail;
}
+ err = fsverity_hash_block(&vi->tree_params, inode,
+ page_address(ZERO_PAGE(0)),
+ vi->zero_block_hash);
+ if (err)
+ goto fail;
+
err = fsverity_verify_signature(vi, desc->signature,
le32_to_cpu(desc->sig_size));
if (err)
goto fail;
diff --git a/fs/verity/verify.c b/fs/verity/verify.c
index 4fcad0825a12..38f1eb3dbd8e 100644
--- a/fs/verity/verify.c
+++ b/fs/verity/verify.c
@@ -77,29 +77,33 @@ static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage,
SetPageChecked(hpage);
return false;
}
/*
- * Verify a single data block against the file's Merkle tree.
+ * Verify the hash of a single data block against the file's Merkle tree.
+ *
+ * @real_dblock_hash specifies the hash of the data block, and @data_pos
+ * specifies the byte position of the data block within the file.
*
* In principle, we need to verify the entire path to the root node. However,
* for efficiency the filesystem may cache the hash blocks. Therefore we need
* only ascend the tree until an already-verified hash block is seen, and then
* verify the path to that block.
*
* Return: %true if the data block is valid, else %false.
*/
static bool
verify_data_block(struct inode *inode, struct fsverity_info *vi,
- const void *data, u64 data_pos, unsigned long max_ra_pages)
+ const u8 *real_dblock_hash, u64 data_pos,
+ unsigned long max_ra_pages)
{
const struct merkle_tree_params *params = &vi->tree_params;
const unsigned int hsize = params->digest_size;
int level;
u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
const u8 *want_hash;
- u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
+ u8 real_hblock_hash[FS_VERITY_MAX_DIGEST_SIZE];
/* The hash blocks that are traversed, indexed by level */
struct {
/* Page containing the hash block */
struct page *page;
/* Mapped address of the hash block (will be within @page) */
@@ -125,11 +129,12 @@ verify_data_block(struct inode *inode, struct fsverity_info *vi,
* doesn't cover data blocks fully past EOF. But the entire
* page spanning EOF can be visible to userspace via a mmap, and
* any part past EOF should be all zeroes. Therefore, we need
* to verify that any data blocks fully past EOF are all zeroes.
*/
- if (memchr_inv(data, 0, params->block_size)) {
+ if (memcmp(vi->zero_block_hash, real_dblock_hash,
+ params->block_size) != 0) {
fsverity_err(inode,
"FILE CORRUPTED! Data past EOF is not zeroed");
return false;
}
return true;
@@ -200,13 +205,14 @@ verify_data_block(struct inode *inode, struct fsverity_info *vi,
struct page *hpage = hblocks[level - 1].page;
const void *haddr = hblocks[level - 1].addr;
unsigned long hblock_idx = hblocks[level - 1].index;
unsigned int hoffset = hblocks[level - 1].hoffset;
- if (fsverity_hash_block(params, inode, haddr, real_hash) != 0)
+ if (fsverity_hash_block(params, inode, haddr,
+ real_hblock_hash) != 0)
goto error;
- if (memcmp(want_hash, real_hash, hsize) != 0)
+ if (memcmp(want_hash, real_hblock_hash, hsize) != 0)
goto corrupted;
/*
* Mark the hash block as verified. This must be atomic and
* idempotent, as the same hash block might be verified by
* multiple threads concurrently.
@@ -219,55 +225,145 @@ verify_data_block(struct inode *inode, struct fsverity_info *vi,
want_hash = _want_hash;
kunmap_local(haddr);
put_page(hpage);
}
- /* Finally, verify the data block. */
- if (fsverity_hash_block(params, inode, data, real_hash) != 0)
- goto error;
- if (memcmp(want_hash, real_hash, hsize) != 0)
+ /* Finally, verify the hash of the data block. */
+ if (memcmp(want_hash, real_dblock_hash, hsize) != 0)
goto corrupted;
return true;
corrupted:
fsverity_err(inode,
"FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
data_pos, level - 1,
params->hash_alg->name, hsize, want_hash,
- params->hash_alg->name, hsize, real_hash);
+ params->hash_alg->name, hsize,
+ level == 0 ? real_dblock_hash : real_hblock_hash);
error:
for (; level > 0; level--) {
kunmap_local(hblocks[level - 1].addr);
put_page(hblocks[level - 1].page);
}
return false;
}
+struct fsverity_verification_context {
+ struct inode *inode;
+ struct fsverity_info *vi;
+ unsigned long max_ra_pages;
+
+ /*
+ * pending_data and pending_pos are used when the selected hash
+ * algorithm supports multibuffer hashing. They're used to temporarily
+ * store the virtual address and position of a mapped data block that
+ * needs to be verified. If we then see another data block, we hash the
+ * two blocks simultaneously using the fast multibuffer hashing method.
+ */
+ const void *pending_data;
+ u64 pending_pos;
+
+ /* Buffers to temporarily store the calculated data block hashes */
+ u8 hash1[FS_VERITY_MAX_DIGEST_SIZE];
+ u8 hash2[FS_VERITY_MAX_DIGEST_SIZE];
+};
+
+static inline void
+fsverity_init_verification_context(struct fsverity_verification_context *ctx,
+ struct inode *inode,
+ unsigned long max_ra_pages)
+{
+ ctx->inode = inode;
+ ctx->vi = inode->i_verity_info;
+ ctx->max_ra_pages = max_ra_pages;
+ ctx->pending_data = NULL;
+}
+
+static bool
+fsverity_finish_verification(struct fsverity_verification_context *ctx)
+{
+ int err;
+
+ if (ctx->pending_data == NULL)
+ return true;
+ /*
+ * Multibuffer hashing is enabled but there was an odd number of data
+ * blocks. Hash and verify the last block by itself.
+ */
+ err = fsverity_hash_block(&ctx->vi->tree_params, ctx->inode,
+ ctx->pending_data, ctx->hash1);
+ kunmap_local(ctx->pending_data);
+ ctx->pending_data = NULL;
+ return err == 0 &&
+ verify_data_block(ctx->inode, ctx->vi, ctx->hash1,
+ ctx->pending_pos, ctx->max_ra_pages);
+}
+
+static inline void
+fsverity_abort_verification(struct fsverity_verification_context *ctx)
+{
+ if (ctx->pending_data) {
+ kunmap_local(ctx->pending_data);
+ ctx->pending_data = NULL;
+ }
+}
+
static bool
-verify_data_blocks(struct folio *data_folio, size_t len, size_t offset,
- unsigned long max_ra_pages)
+fsverity_add_data_blocks(struct fsverity_verification_context *ctx,
+ struct folio *data_folio, size_t len, size_t offset)
{
- struct inode *inode = data_folio->mapping->host;
- struct fsverity_info *vi = inode->i_verity_info;
- const unsigned int block_size = vi->tree_params.block_size;
- u64 pos = (u64)data_folio->index << PAGE_SHIFT;
+ struct inode *inode = ctx->inode;
+ struct fsverity_info *vi = ctx->vi;
+ const struct merkle_tree_params *params = &vi->tree_params;
+ const unsigned int block_size = params->block_size;
+ const bool multibuffer = params->hash_alg->supports_multibuffer;
+ u64 pos = ((u64)data_folio->index << PAGE_SHIFT) + offset;
if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size)))
return false;
if (WARN_ON_ONCE(!folio_test_locked(data_folio) ||
folio_test_uptodate(data_folio)))
return false;
do {
- void *data;
- bool valid;
-
- data = kmap_local_folio(data_folio, offset);
- valid = verify_data_block(inode, vi, data, pos + offset,
- max_ra_pages);
- kunmap_local(data);
- if (!valid)
- return false;
+ const void *data = kmap_local_folio(data_folio, offset);
+ int err;
+
+ if (multibuffer) {
+ if (ctx->pending_data) {
+ /* Hash and verify two data blocks. */
+ err = fsverity_hash_2_blocks(params,
+ inode,
+ ctx->pending_data,
+ data,
+ ctx->hash1,
+ ctx->hash2);
+ kunmap_local(data);
+ kunmap_local(ctx->pending_data);
+ ctx->pending_data = NULL;
+ if (err != 0 ||
+ !verify_data_block(inode, vi, ctx->hash1,
+ ctx->pending_pos,
+ ctx->max_ra_pages) ||
+ !verify_data_block(inode, vi, ctx->hash2,
+ pos, ctx->max_ra_pages))
+ return false;
+ } else {
+ /* Wait and see if there's another block. */
+ ctx->pending_data = data;
+ ctx->pending_pos = pos;
+ }
+ } else {
+ /* Hash and verify one data block. */
+ err = fsverity_hash_block(params, inode, data,
+ ctx->hash1);
+ kunmap_local(data);
+ if (err != 0 ||
+ !verify_data_block(inode, vi, ctx->hash1,
+ pos, ctx->max_ra_pages))
+ return false;
+ }
+ pos += block_size;
offset += block_size;
len -= block_size;
} while (len);
return true;
}
@@ -284,11 +380,19 @@ verify_data_blocks(struct folio *data_folio, size_t len, size_t offset,
*
* Return: %true if the data is valid, else %false.
*/
bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset)
{
- return verify_data_blocks(folio, len, offset, 0);
+ struct fsverity_verification_context ctx;
+
+ fsverity_init_verification_context(&ctx, folio->mapping->host, 0);
+
+ if (!fsverity_add_data_blocks(&ctx, folio, len, offset)) {
+ fsverity_abort_verification(&ctx);
+ return false;
+ }
+ return fsverity_finish_verification(&ctx);
}
EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
#ifdef CONFIG_BLOCK
/**
@@ -305,10 +409,12 @@ EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
* filesystems) must instead call fsverity_verify_page() directly on each page.
* All filesystems must also call fsverity_verify_page() on holes.
*/
void fsverity_verify_bio(struct bio *bio)
{
+ struct inode *inode = bio_first_folio_all(bio)->mapping->host;
+ struct fsverity_verification_context ctx;
struct folio_iter fi;
unsigned long max_ra_pages = 0;
if (bio->bi_opf & REQ_RAHEAD) {
/*
@@ -321,17 +427,26 @@ void fsverity_verify_bio(struct bio *bio)
* reduces the number of I/O requests made to the Merkle tree.
*/
max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2);
}
+ fsverity_init_verification_context(&ctx, inode, max_ra_pages);
+
bio_for_each_folio_all(fi, bio) {
- if (!verify_data_blocks(fi.folio, fi.length, fi.offset,
- max_ra_pages)) {
- bio->bi_status = BLK_STS_IOERR;
- break;
+ if (!fsverity_add_data_blocks(&ctx, fi.folio, fi.length,
+ fi.offset)) {
+ fsverity_abort_verification(&ctx);
+ goto ioerr;
}
}
+
+ if (!fsverity_finish_verification(&ctx))
+ goto ioerr;
+ return;
+
+ioerr:
+ bio->bi_status = BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(fsverity_verify_bio);
#endif /* CONFIG_BLOCK */
/**
--
2.45.0
From: Eric Biggers <[email protected]>
Currently dm-verity computes the hash of each block by using multiple
calls to the "ahash" crypto API. While the exact sequence depends on
the chosen dm-verity settings, in the vast majority of cases it is:
1. crypto_ahash_init()
2. crypto_ahash_update() [salt]
3. crypto_ahash_update() [data]
4. crypto_ahash_final()
This is inefficient for two main reasons:
- It makes multiple indirect calls, which is expensive on modern CPUs
especially when mitigations for CPU vulnerabilities are enabled.
Since the salt is the same across all blocks on a given dm-verity
device, a much more efficient sequence would be to do an import of the
pre-salted state, then a finup.
- It uses the ahash (asynchronous hash) API, despite the fact that
CPU-based hashing is almost always used in practice, and therefore it
experiences the overhead of the ahash-based wrapper for shash. This
also means that the new function crypto_shash_finup_mb(), which is
specifically designed for fast CPU-based hashing, is unavailable.
Since dm-verity was intentionally converted to ahash to support
off-CPU crypto accelerators, wholesale conversion to shash (reverting
that change) might not be acceptable. Yet, we should still provide a
fast path for shash with the most common dm-verity settings.
Therefore, this patch adds a new shash import+finup based fast path to
dm-verity. It is used automatically when appropriate, i.e. when the
ahash API and shash APIs resolve to the same underlying algorithm, the
dm-verity version is not 0 (so that the salt is hashed before the data),
and the data block size is not greater than the page size.
This makes dm-verity optimized for what the vast majority of users want:
CPU-based hashing with the most common settings, while still retaining
support for rarer settings and off-CPU crypto accelerators.
In benchmarks with veritysetup's default parameters (SHA-256, 4K data
and hash block sizes, 32-byte salt), which also match the parameters
that Android currently uses, this patch improves block hashing
performance by about 15% on an x86_64 system that supports the SHA-NI
instructions, or by about 5% on an arm64 system that supports the ARMv8
SHA2 instructions. This was with CONFIG_CRYPTO_STATS disabled; an even
larger improvement can be expected if that option is enabled.
Note that another benefit of using "import" to handle the salt is that
if the salt size is equal to the input size of the hash algorithm's
compression function, e.g. 64 bytes for SHA-256, then the performance is
exactly the same as no salt. (This doesn't seem to be much better than
veritysetup's current default of 32-byte salts, due to the way SHA-256's
finalization padding works, but it should be marginally better.)
In addition to the benchmarks mentioned above, I've tested this patch
with cryptsetup's 'verity-compat-test' script. I've also lightly tested
this patch with Android, where the new shash-based code gets used.
Signed-off-by: Eric Biggers <[email protected]>
---
drivers/md/dm-verity-fec.c | 13 +-
drivers/md/dm-verity-target.c | 336 ++++++++++++++++++++++++----------
drivers/md/dm-verity.h | 27 ++-
3 files changed, 263 insertions(+), 113 deletions(-)
diff --git a/drivers/md/dm-verity-fec.c b/drivers/md/dm-verity-fec.c
index e46aee6f932e..b436b8e4d750 100644
--- a/drivers/md/dm-verity-fec.c
+++ b/drivers/md/dm-verity-fec.c
@@ -184,13 +184,14 @@ static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
* Locate data block erasures using verity hashes.
*/
static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
u8 *want_digest, u8 *data)
{
- if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
- data, 1 << v->data_dev_block_bits,
- verity_io_real_digest(v, io), true)))
+ if (unlikely(verity_compute_hash_virt(v, io, data,
+ 1 << v->data_dev_block_bits,
+ verity_io_real_digest(v, io),
+ true)))
return 0;
return memcmp(verity_io_real_digest(v, io), want_digest,
v->digest_size) != 0;
}
@@ -386,13 +387,13 @@ static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
}
/* Always re-validate the corrected block against the expected hash */
- r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
- 1 << v->data_dev_block_bits,
- verity_io_real_digest(v, io), true);
+ r = verity_compute_hash_virt(v, io, fio->output,
+ 1 << v->data_dev_block_bits,
+ verity_io_real_digest(v, io), true);
if (unlikely(r < 0))
return r;
if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
v->digest_size)) {
diff --git a/drivers/md/dm-verity-target.c b/drivers/md/dm-verity-target.c
index bb5da66da4c1..2dd15f5e91b7 100644
--- a/drivers/md/dm-verity-target.c
+++ b/drivers/md/dm-verity-target.c
@@ -44,12 +44,16 @@
static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
+/* Is at least one dm-verity instance using the bh workqueue? */
static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
+/* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
+static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
+
struct dm_verity_prefetch_work {
struct work_struct work;
struct dm_verity *v;
unsigned short ioprio;
sector_t block;
@@ -100,13 +104,13 @@ static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
int level)
{
return block >> (level * v->hash_per_block_bits);
}
-static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
- const u8 *data, size_t len,
- struct crypto_wait *wait)
+static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
+ const u8 *data, size_t len,
+ struct crypto_wait *wait)
{
struct scatterlist sg;
if (likely(!is_vmalloc_addr(data))) {
sg_init_one(&sg, data, len);
@@ -133,16 +137,16 @@ static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
}
/*
* Wrapper for crypto_ahash_init, which handles verity salting.
*/
-static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
+static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
struct crypto_wait *wait, bool may_sleep)
{
int r;
- ahash_request_set_tfm(req, v->tfm);
+ ahash_request_set_tfm(req, v->ahash_tfm);
ahash_request_set_callback(req,
may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
crypto_req_done, (void *)wait);
crypto_init_wait(wait);
@@ -153,22 +157,22 @@ static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
DMERR("crypto_ahash_init failed: %d", r);
return r;
}
if (likely(v->salt_size && (v->version >= 1)))
- r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
+ r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
return r;
}
-static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
- u8 *digest, struct crypto_wait *wait)
+static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
+ u8 *digest, struct crypto_wait *wait)
{
int r;
if (unlikely(v->salt_size && (!v->version))) {
- r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
+ r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
if (r < 0) {
DMERR("%s failed updating salt: %d", __func__, r);
goto out;
}
@@ -178,27 +182,47 @@ static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
r = crypto_wait_req(crypto_ahash_final(req), wait);
out:
return r;
}
-int verity_hash(struct dm_verity *v, struct ahash_request *req,
- const u8 *data, size_t len, u8 *digest, bool may_sleep)
+int verity_compute_hash_virt(struct dm_verity *v, struct dm_verity_io *io,
+ const u8 *data, size_t len, u8 *digest,
+ bool may_sleep)
{
int r;
- struct crypto_wait wait;
- r = verity_hash_init(v, req, &wait, may_sleep);
- if (unlikely(r < 0))
- goto out;
+ if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
+ struct ahash_request *req = verity_io_hash_req(v, io);
+ struct crypto_wait wait;
- r = verity_hash_update(v, req, data, len, &wait);
- if (unlikely(r < 0))
- goto out;
+ r = verity_ahash_init(v, req, &wait, may_sleep);
+ if (unlikely(r))
+ goto error;
- r = verity_hash_final(v, req, digest, &wait);
+ r = verity_ahash_update(v, req, data, len, &wait);
+ if (unlikely(r))
+ goto error;
-out:
+ r = verity_ahash_final(v, req, digest, &wait);
+ if (unlikely(r))
+ goto error;
+ } else {
+ struct shash_desc *desc = verity_io_hash_req(v, io);
+
+ desc->tfm = v->shash_tfm;
+ r = crypto_shash_import(desc, v->initial_hashstate);
+ if (unlikely(r))
+ goto error;
+
+ r = crypto_shash_finup(desc, data, len, digest);
+ if (unlikely(r))
+ goto error;
+ }
+ return 0;
+
+error:
+ DMERR("Error hashing block from virt buffer: %d", r);
return r;
}
static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
sector_t *hash_block, unsigned int *offset)
@@ -323,13 +347,14 @@ static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
if (skip_unverified) {
r = 1;
goto release_ret_r;
}
- r = verity_hash(v, verity_io_hash_req(v, io),
- data, 1 << v->hash_dev_block_bits,
- verity_io_real_digest(v, io), !io->in_bh);
+ r = verity_compute_hash_virt(v, io, data,
+ 1 << v->hash_dev_block_bits,
+ verity_io_real_digest(v, io),
+ !io->in_bh);
if (unlikely(r < 0))
goto release_ret_r;
if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
v->digest_size) == 0))
@@ -403,14 +428,17 @@ int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
return r;
}
/*
- * Calculates the digest for the given bio
+ * Update the ahash_request of @io with the next data block from @iter, and
+ * advance @iter accordingly.
*/
-static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
- struct bvec_iter *iter, struct crypto_wait *wait)
+static int verity_ahash_update_block(struct dm_verity *v,
+ struct dm_verity_io *io,
+ struct bvec_iter *iter,
+ struct crypto_wait *wait)
{
unsigned int todo = 1 << v->data_dev_block_bits;
struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
struct scatterlist sg;
struct ahash_request *req = verity_io_hash_req(v, io);
@@ -445,10 +473,71 @@ static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
} while (todo);
return 0;
}
+static int verity_compute_hash(struct dm_verity *v, struct dm_verity_io *io,
+ struct bvec_iter *iter, u8 *digest,
+ bool may_sleep)
+{
+ int r;
+
+ if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
+ struct ahash_request *req = verity_io_hash_req(v, io);
+ struct crypto_wait wait;
+
+ r = verity_ahash_init(v, req, &wait, may_sleep);
+ if (unlikely(r))
+ goto error;
+
+ r = verity_ahash_update_block(v, io, iter, &wait);
+ if (unlikely(r))
+ goto error;
+
+ r = verity_ahash_final(v, req, digest, &wait);
+ if (unlikely(r))
+ goto error;
+ } else {
+ struct shash_desc *desc = verity_io_hash_req(v, io);
+ struct bio *bio =
+ dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+ struct bio_vec bv = bio_iter_iovec(bio, *iter);
+ const unsigned int len = 1 << v->data_dev_block_bits;
+ const void *virt;
+
+ if (unlikely(len > bv.bv_len)) {
+ /*
+ * Data block spans pages. This should not happen,
+ * since this code path is not used if the data block
+ * size is greater than the page size, and all I/O
+ * should be data block aligned because dm-verity sets
+ * logical_block_size to the data block size.
+ */
+ DMERR_LIMIT("unaligned io (data block spans pages)");
+ return -EIO;
+ }
+
+ desc->tfm = v->shash_tfm;
+ r = crypto_shash_import(desc, v->initial_hashstate);
+ if (unlikely(r))
+ goto error;
+
+ virt = bvec_kmap_local(&bv);
+ r = crypto_shash_finup(desc, virt, len, digest);
+ kunmap_local(virt);
+ if (unlikely(r))
+ goto error;
+
+ bio_advance_iter(bio, iter, len);
+ }
+ return 0;
+
+error:
+ DMERR("Error hashing block from bio iter: %d", r);
+ return r;
+}
+
/*
* Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
* starting from iter.
*/
int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
@@ -516,13 +605,12 @@ static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
if (unlikely(r))
goto free_ret;
- r = verity_hash(v, verity_io_hash_req(v, io), buffer,
- 1 << v->data_dev_block_bits,
- verity_io_real_digest(v, io), true);
+ r = verity_compute_hash_virt(v, io, buffer, 1 << v->data_dev_block_bits,
+ verity_io_real_digest(v, io), true);
if (unlikely(r))
goto free_ret;
if (memcmp(verity_io_real_digest(v, io),
verity_io_want_digest(v, io), v->digest_size)) {
@@ -569,11 +657,10 @@ static int verity_verify_io(struct dm_verity_io *io)
bool is_zero;
struct dm_verity *v = io->v;
struct bvec_iter start;
struct bvec_iter iter_copy;
struct bvec_iter *iter;
- struct crypto_wait wait;
struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
unsigned int b;
if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
/*
@@ -586,11 +673,10 @@ static int verity_verify_io(struct dm_verity_io *io)
iter = &io->iter;
for (b = 0; b < io->n_blocks; b++) {
int r;
sector_t cur_block = io->block + b;
- struct ahash_request *req = verity_io_hash_req(v, io);
if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
likely(test_bit(cur_block, v->validated_blocks))) {
verity_bv_skip_block(v, io, iter);
continue;
@@ -613,21 +699,14 @@ static int verity_verify_io(struct dm_verity_io *io)
return r;
continue;
}
- r = verity_hash_init(v, req, &wait, !io->in_bh);
- if (unlikely(r < 0))
- return r;
-
start = *iter;
- r = verity_for_io_block(v, io, iter, &wait);
- if (unlikely(r < 0))
- return r;
-
- r = verity_hash_final(v, req, verity_io_real_digest(v, io),
- &wait);
+ r = verity_compute_hash(v, io, iter,
+ verity_io_real_digest(v, io),
+ !io->in_bh);
if (unlikely(r < 0))
return r;
if (likely(memcmp(verity_io_real_digest(v, io),
verity_io_want_digest(v, io), v->digest_size) == 0)) {
@@ -1031,15 +1110,20 @@ static void verity_dtr(struct dm_target *ti)
if (v->bufio)
dm_bufio_client_destroy(v->bufio);
kvfree(v->validated_blocks);
kfree(v->salt);
+ kfree(v->initial_hashstate);
kfree(v->root_digest);
kfree(v->zero_digest);
- if (v->tfm)
- crypto_free_ahash(v->tfm);
+ if (v->ahash_tfm) {
+ static_branch_dec(&ahash_enabled);
+ crypto_free_ahash(v->ahash_tfm);
+ } else {
+ crypto_free_shash(v->shash_tfm);
+ }
kfree(v->alg_name);
if (v->hash_dev)
dm_put_device(ti, v->hash_dev);
@@ -1081,33 +1165,33 @@ static int verity_alloc_most_once(struct dm_verity *v)
}
static int verity_alloc_zero_digest(struct dm_verity *v)
{
int r = -ENOMEM;
- struct ahash_request *req;
+ struct dm_verity_io *io;
u8 *zero_data;
v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
if (!v->zero_digest)
return r;
- req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
+ io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
- if (!req)
+ if (!io)
return r; /* verity_dtr will free zero_digest */
zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
if (!zero_data)
goto out;
- r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
- v->zero_digest, true);
-
+ r = verity_compute_hash_virt(v, io, zero_data,
+ 1 << v->data_dev_block_bits,
+ v->zero_digest, true);
out:
- kfree(req);
+ kfree(io);
kfree(zero_data);
return r;
}
@@ -1224,10 +1308,109 @@ static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
} while (argc && !r);
return r;
}
+static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
+{
+ struct dm_target *ti = v->ti;
+ struct crypto_ahash *ahash;
+ struct crypto_shash *shash = NULL;
+ const char *driver_name;
+
+ v->alg_name = kstrdup(alg_name, GFP_KERNEL);
+ if (!v->alg_name) {
+ ti->error = "Cannot allocate algorithm name";
+ return -ENOMEM;
+ }
+
+ ahash = crypto_alloc_ahash(alg_name, 0,
+ v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
+ if (IS_ERR(ahash)) {
+ ti->error = "Cannot initialize hash function";
+ return PTR_ERR(ahash);
+ }
+ driver_name = crypto_ahash_driver_name(ahash);
+ if (v->version >= 1 /* salt prepended, not appended? */ &&
+ 1 << v->data_dev_block_bits <= PAGE_SIZE) {
+ shash = crypto_alloc_shash(alg_name, 0, 0);
+ if (!IS_ERR(shash) &&
+ strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
+ /*
+ * ahash gave a different driver than shash, so probably
+ * this is a case of real hardware offload. Use ahash.
+ */
+ crypto_free_shash(shash);
+ shash = NULL;
+ }
+ }
+ if (!IS_ERR_OR_NULL(shash)) {
+ crypto_free_ahash(ahash);
+ ahash = NULL;
+ v->shash_tfm = shash;
+ v->digest_size = crypto_shash_digestsize(shash);
+ v->hash_reqsize = sizeof(struct shash_desc) +
+ crypto_shash_descsize(shash);
+ DMINFO("%s using shash \"%s\"", alg_name, driver_name);
+ } else {
+ v->ahash_tfm = ahash;
+ static_branch_inc(&ahash_enabled);
+ v->digest_size = crypto_ahash_digestsize(ahash);
+ v->hash_reqsize = sizeof(struct ahash_request) +
+ crypto_ahash_reqsize(ahash);
+ DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
+ }
+ if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
+ ti->error = "Digest size too big";
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
+{
+ struct dm_target *ti = v->ti;
+
+ if (strcmp(arg, "-") != 0) {
+ v->salt_size = strlen(arg) / 2;
+ v->salt = kmalloc(v->salt_size, GFP_KERNEL);
+ if (!v->salt) {
+ ti->error = "Cannot allocate salt";
+ return -ENOMEM;
+ }
+ if (strlen(arg) != v->salt_size * 2 ||
+ hex2bin(v->salt, arg, v->salt_size)) {
+ ti->error = "Invalid salt";
+ return -EINVAL;
+ }
+ }
+ /*
+ * If the "shash with import+finup sequence" method has been selected
+ * (see verity_setup_hash_alg()), then create the initial hash state.
+ */
+ if (v->shash_tfm) {
+ SHASH_DESC_ON_STACK(desc, v->shash_tfm);
+ int r;
+
+ v->initial_hashstate = kmalloc(
+ crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
+ if (!v->initial_hashstate) {
+ ti->error = "Cannot allocate initial hash state";
+ return -ENOMEM;
+ }
+ desc->tfm = v->shash_tfm;
+ r = crypto_shash_init(desc) ?:
+ crypto_shash_update(desc, v->salt, v->salt_size) ?:
+ crypto_shash_export(desc, v->initial_hashstate);
+ if (r) {
+ ti->error = "Cannot set up initial hash state";
+ return r;
+ }
+ }
+ return 0;
+}
+
/*
* Target parameters:
* <version> The current format is version 1.
* Vsn 0 is compatible with original Chromium OS releases.
* <data device>
@@ -1348,42 +1531,13 @@ static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
r = -EINVAL;
goto bad;
}
v->hash_start = num_ll;
- v->alg_name = kstrdup(argv[7], GFP_KERNEL);
- if (!v->alg_name) {
- ti->error = "Cannot allocate algorithm name";
- r = -ENOMEM;
- goto bad;
- }
-
- v->tfm = crypto_alloc_ahash(v->alg_name, 0,
- v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
- if (IS_ERR(v->tfm)) {
- ti->error = "Cannot initialize hash function";
- r = PTR_ERR(v->tfm);
- v->tfm = NULL;
- goto bad;
- }
-
- /*
- * dm-verity performance can vary greatly depending on which hash
- * algorithm implementation is used. Help people debug performance
- * problems by logging the ->cra_driver_name.
- */
- DMINFO("%s using implementation \"%s\"", v->alg_name,
- crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
-
- v->digest_size = crypto_ahash_digestsize(v->tfm);
- if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
- ti->error = "Digest size too big";
- r = -EINVAL;
+ r = verity_setup_hash_alg(v, argv[7]);
+ if (r)
goto bad;
- }
- v->ahash_reqsize = sizeof(struct ahash_request) +
- crypto_ahash_reqsize(v->tfm);
v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
if (!v->root_digest) {
ti->error = "Cannot allocate root digest";
r = -ENOMEM;
@@ -1395,25 +1549,13 @@ static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
r = -EINVAL;
goto bad;
}
root_hash_digest_to_validate = argv[8];
- if (strcmp(argv[9], "-")) {
- v->salt_size = strlen(argv[9]) / 2;
- v->salt = kmalloc(v->salt_size, GFP_KERNEL);
- if (!v->salt) {
- ti->error = "Cannot allocate salt";
- r = -ENOMEM;
- goto bad;
- }
- if (strlen(argv[9]) != v->salt_size * 2 ||
- hex2bin(v->salt, argv[9], v->salt_size)) {
- ti->error = "Invalid salt";
- r = -EINVAL;
- goto bad;
- }
- }
+ r = verity_setup_salt_and_hashstate(v, argv[9]);
+ if (r)
+ goto bad;
argv += 10;
argc -= 10;
/* Optional parameters */
@@ -1512,11 +1654,11 @@ static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
r = -ENOMEM;
goto bad;
}
ti->per_io_data_size = sizeof(struct dm_verity_io) +
- v->ahash_reqsize + v->digest_size * 2;
+ v->hash_reqsize + v->digest_size * 2;
r = verity_fec_ctr(v);
if (r)
goto bad;
diff --git a/drivers/md/dm-verity.h b/drivers/md/dm-verity.h
index 20b1bcf03474..15ffb0881cc9 100644
--- a/drivers/md/dm-verity.h
+++ b/drivers/md/dm-verity.h
@@ -37,13 +37,15 @@ struct dm_verity {
struct dm_dev *data_dev;
struct dm_dev *hash_dev;
struct dm_target *ti;
struct dm_bufio_client *bufio;
char *alg_name;
- struct crypto_ahash *tfm;
+ struct crypto_ahash *ahash_tfm; /* either this or shash_tfm is set */
+ struct crypto_shash *shash_tfm; /* either this or ahash_tfm is set */
u8 *root_digest; /* digest of the root block */
u8 *salt; /* salt: its size is salt_size */
+ u8 *initial_hashstate; /* salted initial state, if shash_tfm is set */
u8 *zero_digest; /* digest for a zero block */
unsigned int salt_size;
sector_t data_start; /* data offset in 512-byte sectors */
sector_t hash_start; /* hash start in blocks */
sector_t data_blocks; /* the number of data blocks */
@@ -54,11 +56,11 @@ struct dm_verity {
unsigned char levels; /* the number of tree levels */
unsigned char version;
bool hash_failed:1; /* set if hash of any block failed */
bool use_bh_wq:1; /* try to verify in BH wq before normal work-queue */
unsigned int digest_size; /* digest size for the current hash algorithm */
- unsigned int ahash_reqsize;/* the size of temporary space for crypto */
+ unsigned int hash_reqsize; /* the size of temporary space for crypto */
enum verity_mode mode; /* mode for handling verification errors */
unsigned int corrupted_errs;/* Number of errors for corrupted blocks */
struct workqueue_struct *verify_wq;
@@ -92,45 +94,50 @@ struct dm_verity_io {
char *recheck_buffer;
/*
* Three variably-size fields follow this struct:
*
- * u8 hash_req[v->ahash_reqsize];
+ * u8 hash_req[v->hash_reqsize];
* u8 real_digest[v->digest_size];
* u8 want_digest[v->digest_size];
*
* To access them use: verity_io_hash_req(), verity_io_real_digest()
* and verity_io_want_digest().
+ *
+ * hash_req is either a struct ahash_request or a struct shash_desc,
+ * depending on whether ahash_tfm or shash_tfm is being used.
*/
};
-static inline struct ahash_request *verity_io_hash_req(struct dm_verity *v,
- struct dm_verity_io *io)
+static inline void *verity_io_hash_req(struct dm_verity *v,
+ struct dm_verity_io *io)
{
- return (struct ahash_request *)(io + 1);
+ return io + 1;
}
static inline u8 *verity_io_real_digest(struct dm_verity *v,
struct dm_verity_io *io)
{
- return (u8 *)(io + 1) + v->ahash_reqsize;
+ return (u8 *)(io + 1) + v->hash_reqsize;
}
static inline u8 *verity_io_want_digest(struct dm_verity *v,
struct dm_verity_io *io)
{
- return (u8 *)(io + 1) + v->ahash_reqsize + v->digest_size;
+ return (u8 *)(io + 1) + v->hash_reqsize + v->digest_size;
}
extern int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
struct bvec_iter *iter,
int (*process)(struct dm_verity *v,
struct dm_verity_io *io,
u8 *data, size_t len));
-extern int verity_hash(struct dm_verity *v, struct ahash_request *req,
- const u8 *data, size_t len, u8 *digest, bool may_sleep);
+extern int verity_compute_hash_virt(struct dm_verity *v,
+ struct dm_verity_io *io,
+ const u8 *data, size_t len, u8 *digest,
+ bool may_sleep);
extern int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
sector_t block, u8 *digest, bool *is_zero);
extern bool dm_is_verity_target(struct dm_target *ti);
--
2.45.0
From: Eric Biggers <[email protected]>
When supported by the hash algorithm, use crypto_shash_finup_mb() to
interleave the hashing of pairs of data blocks. On some CPUs this
nearly doubles hashing performance. The increase in overall throughput
of cold-cache dm-verity reads that I'm seeing on arm64 and x86_64 is
roughly 35% (though this metric is hard to measure as it jumps around a
lot).
For now this is only done on data blocks, not Merkle tree blocks. We
could use finup_mb on Merkle tree blocks too, but that is less important
as there aren't as many Merkle tree blocks as data blocks, and that
would require some additional code restructuring.
Signed-off-by: Eric Biggers <[email protected]>
---
drivers/md/dm-verity-fec.c | 24 +--
drivers/md/dm-verity-fec.h | 7 +-
drivers/md/dm-verity-target.c | 363 +++++++++++++++++++++++-----------
drivers/md/dm-verity.h | 28 +--
4 files changed, 264 insertions(+), 158 deletions(-)
diff --git a/drivers/md/dm-verity-fec.c b/drivers/md/dm-verity-fec.c
index b436b8e4d750..c1677137a682 100644
--- a/drivers/md/dm-verity-fec.c
+++ b/drivers/md/dm-verity-fec.c
@@ -184,18 +184,18 @@ static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
* Locate data block erasures using verity hashes.
*/
static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
u8 *want_digest, u8 *data)
{
+ u8 real_digest[HASH_MAX_DIGESTSIZE];
+
if (unlikely(verity_compute_hash_virt(v, io, data,
1 << v->data_dev_block_bits,
- verity_io_real_digest(v, io),
- true)))
+ real_digest, true)))
return 0;
- return memcmp(verity_io_real_digest(v, io), want_digest,
- v->digest_size) != 0;
+ return memcmp(real_digest, want_digest, v->digest_size) != 0;
}
/*
* Read data blocks that are part of the RS block and deinterleave as much as
* fits into buffers. Check for erasure locations if @neras is non-NULL.
@@ -362,14 +362,15 @@ static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
* (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
* hashes to locate erasures.
*/
static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
- bool use_erasures)
+ const u8 *want_digest, bool use_erasures)
{
int r, neras = 0;
unsigned int pos;
+ u8 real_digest[HASH_MAX_DIGESTSIZE];
r = fec_alloc_bufs(v, fio);
if (unlikely(r < 0))
return r;
@@ -389,16 +390,15 @@ static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
}
/* Always re-validate the corrected block against the expected hash */
r = verity_compute_hash_virt(v, io, fio->output,
1 << v->data_dev_block_bits,
- verity_io_real_digest(v, io), true);
+ real_digest, true);
if (unlikely(r < 0))
return r;
- if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
- v->digest_size)) {
+ if (memcmp(real_digest, want_digest, v->digest_size)) {
DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
v->data_dev->name, (unsigned long long)rsb, neras);
return -EILSEQ;
}
@@ -419,12 +419,12 @@ static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
/*
* Correct errors in a block. Copies corrected block to dest if non-NULL,
* otherwise to a bio_vec starting from iter.
*/
int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
- enum verity_block_type type, sector_t block, u8 *dest,
- struct bvec_iter *iter)
+ enum verity_block_type type, sector_t block,
+ const u8 *want_digest, u8 *dest, struct bvec_iter *iter)
{
int r;
struct dm_verity_fec_io *fio = fec_io(io);
u64 offset, res, rsb;
@@ -463,13 +463,13 @@ int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
/*
* Locating erasures is slow, so attempt to recover the block without
* them first. Do a second attempt with erasures if the corruption is
* bad enough.
*/
- r = fec_decode_rsb(v, io, fio, rsb, offset, false);
+ r = fec_decode_rsb(v, io, fio, rsb, offset, want_digest, false);
if (r < 0) {
- r = fec_decode_rsb(v, io, fio, rsb, offset, true);
+ r = fec_decode_rsb(v, io, fio, rsb, offset, want_digest, true);
if (r < 0)
goto done;
}
if (dest)
diff --git a/drivers/md/dm-verity-fec.h b/drivers/md/dm-verity-fec.h
index 8454070d2824..57c3f674cae9 100644
--- a/drivers/md/dm-verity-fec.h
+++ b/drivers/md/dm-verity-fec.h
@@ -68,11 +68,12 @@ struct dm_verity_fec_io {
extern bool verity_fec_is_enabled(struct dm_verity *v);
extern int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
enum verity_block_type type, sector_t block,
- u8 *dest, struct bvec_iter *iter);
+ const u8 *want_digest, u8 *dest,
+ struct bvec_iter *iter);
extern unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
char *result, unsigned int maxlen);
extern void verity_fec_finish_io(struct dm_verity_io *io);
@@ -97,12 +98,12 @@ static inline bool verity_fec_is_enabled(struct dm_verity *v)
return false;
}
static inline int verity_fec_decode(struct dm_verity *v,
struct dm_verity_io *io,
- enum verity_block_type type,
- sector_t block, u8 *dest,
+ enum verity_block_type type, sector_t block,
+ const u8 *want_digest, u8 *dest,
struct bvec_iter *iter)
{
return -EOPNOTSUPP;
}
diff --git a/drivers/md/dm-verity-target.c b/drivers/md/dm-verity-target.c
index 2dd15f5e91b7..d367198aefe7 100644
--- a/drivers/md/dm-verity-target.c
+++ b/drivers/md/dm-verity-target.c
@@ -300,16 +300,16 @@ static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
/*
* Verify hash of a metadata block pertaining to the specified data block
* ("block" argument) at a specified level ("level" argument).
*
- * On successful return, verity_io_want_digest(v, io) contains the hash value
- * for a lower tree level or for the data block (if we're at the lowest level).
+ * On successful return, want_digest contains the hash value for a lower tree
+ * level or for the data block (if we're at the lowest level).
*
* If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
* If "skip_unverified" is false, unverified buffer is hashed and verified
- * against current value of verity_io_want_digest(v, io).
+ * against current value of want_digest.
*/
static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
sector_t block, int level, bool skip_unverified,
u8 *want_digest)
{
@@ -318,10 +318,11 @@ static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
u8 *data;
int r;
sector_t hash_block;
unsigned int offset;
struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+ u8 real_digest[HASH_MAX_DIGESTSIZE];
verity_hash_at_level(v, block, level, &hash_block, &offset);
if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
data = dm_bufio_get(v->bufio, hash_block, &buf);
@@ -349,27 +350,26 @@ static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
goto release_ret_r;
}
r = verity_compute_hash_virt(v, io, data,
1 << v->hash_dev_block_bits,
- verity_io_real_digest(v, io),
- !io->in_bh);
+ real_digest, !io->in_bh);
if (unlikely(r < 0))
goto release_ret_r;
- if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
- v->digest_size) == 0))
+ if (likely(!memcmp(real_digest, want_digest, v->digest_size)))
aux->hash_verified = 1;
else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
/*
* Error handling code (FEC included) cannot be run in a
* tasklet since it may sleep, so fallback to work-queue.
*/
r = -EAGAIN;
goto release_ret_r;
} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
- hash_block, data, NULL) == 0)
+ hash_block, want_digest,
+ data, NULL) == 0)
aux->hash_verified = 1;
else if (verity_handle_err(v,
DM_VERITY_BLOCK_TYPE_METADATA,
hash_block)) {
struct bio *bio =
@@ -473,71 +473,10 @@ static int verity_ahash_update_block(struct dm_verity *v,
} while (todo);
return 0;
}
-static int verity_compute_hash(struct dm_verity *v, struct dm_verity_io *io,
- struct bvec_iter *iter, u8 *digest,
- bool may_sleep)
-{
- int r;
-
- if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
- struct ahash_request *req = verity_io_hash_req(v, io);
- struct crypto_wait wait;
-
- r = verity_ahash_init(v, req, &wait, may_sleep);
- if (unlikely(r))
- goto error;
-
- r = verity_ahash_update_block(v, io, iter, &wait);
- if (unlikely(r))
- goto error;
-
- r = verity_ahash_final(v, req, digest, &wait);
- if (unlikely(r))
- goto error;
- } else {
- struct shash_desc *desc = verity_io_hash_req(v, io);
- struct bio *bio =
- dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
- struct bio_vec bv = bio_iter_iovec(bio, *iter);
- const unsigned int len = 1 << v->data_dev_block_bits;
- const void *virt;
-
- if (unlikely(len > bv.bv_len)) {
- /*
- * Data block spans pages. This should not happen,
- * since this code path is not used if the data block
- * size is greater than the page size, and all I/O
- * should be data block aligned because dm-verity sets
- * logical_block_size to the data block size.
- */
- DMERR_LIMIT("unaligned io (data block spans pages)");
- return -EIO;
- }
-
- desc->tfm = v->shash_tfm;
- r = crypto_shash_import(desc, v->initial_hashstate);
- if (unlikely(r))
- goto error;
-
- virt = bvec_kmap_local(&bv);
- r = crypto_shash_finup(desc, virt, len, digest);
- kunmap_local(virt);
- if (unlikely(r))
- goto error;
-
- bio_advance_iter(bio, iter, len);
- }
- return 0;
-
-error:
- DMERR("Error hashing block from bio iter: %d", r);
- return r;
-}
-
/*
* Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
* starting from iter.
*/
int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
@@ -581,41 +520,42 @@ static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
io->recheck_buffer += len;
return 0;
}
-static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
- struct bvec_iter start, sector_t cur_block)
+static int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
+ struct bvec_iter start, sector_t blkno,
+ const u8 *want_digest)
{
struct page *page;
void *buffer;
int r;
struct dm_io_request io_req;
struct dm_io_region io_loc;
+ u8 real_digest[HASH_MAX_DIGESTSIZE];
page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
buffer = page_to_virt(page);
io_req.bi_opf = REQ_OP_READ;
io_req.mem.type = DM_IO_KMEM;
io_req.mem.ptr.addr = buffer;
io_req.notify.fn = NULL;
io_req.client = v->io;
io_loc.bdev = v->data_dev->bdev;
- io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
+ io_loc.sector = blkno << (v->data_dev_block_bits - SECTOR_SHIFT);
io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
if (unlikely(r))
goto free_ret;
r = verity_compute_hash_virt(v, io, buffer, 1 << v->data_dev_block_bits,
- verity_io_real_digest(v, io), true);
+ real_digest, true);
if (unlikely(r))
goto free_ret;
- if (memcmp(verity_io_real_digest(v, io),
- verity_io_want_digest(v, io), v->digest_size)) {
+ if (memcmp(real_digest, want_digest, v->digest_size)) {
r = -EIO;
goto free_ret;
}
io->recheck_buffer = buffer;
@@ -647,22 +587,84 @@ static inline void verity_bv_skip_block(struct dm_verity *v,
struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
}
+static noinline int
+__verity_handle_data_hash_mismatch(struct dm_verity *v, struct dm_verity_io *io,
+ struct bio *bio, struct bvec_iter *start,
+ sector_t blkno, const u8 *want_digest)
+{
+ if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
+ /*
+ * Error handling code (FEC included) cannot be run in the
+ * BH workqueue, so fallback to a standard workqueue.
+ */
+ return -EAGAIN;
+ }
+ if (verity_recheck(v, io, *start, blkno, want_digest) == 0) {
+ if (v->validated_blocks)
+ set_bit(blkno, v->validated_blocks);
+ return 0;
+ }
+#if defined(CONFIG_DM_VERITY_FEC)
+ if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
+ want_digest, NULL, start) == 0)
+ return 0;
+#endif
+ if (bio->bi_status)
+ return -EIO; /* Error correction failed; Just return error */
+
+ if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
+ dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
+ return -EIO;
+ }
+ return 0;
+}
+
+static __always_inline int
+verity_check_data_block_hash(struct dm_verity *v, struct dm_verity_io *io,
+ struct bio *bio, struct bvec_iter *start,
+ sector_t blkno,
+ const u8 *real_digest, const u8 *want_digest)
+{
+ if (likely(memcmp(real_digest, want_digest, v->digest_size) == 0)) {
+ if (v->validated_blocks)
+ set_bit(blkno, v->validated_blocks);
+ return 0;
+ }
+ return __verity_handle_data_hash_mismatch(v, io, bio, start, blkno,
+ want_digest);
+}
+
/*
* Verify one "dm_verity_io" structure.
*/
static int verity_verify_io(struct dm_verity_io *io)
{
- bool is_zero;
struct dm_verity *v = io->v;
+ const unsigned int block_size = 1 << v->data_dev_block_bits;
+ struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+ u8 want_digest[HASH_MAX_DIGESTSIZE];
+ u8 real_digest[HASH_MAX_DIGESTSIZE];
struct bvec_iter start;
struct bvec_iter iter_copy;
struct bvec_iter *iter;
- struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+ /*
+ * The pending_* variables are used when the selected hash algorithm
+ * supports multibuffer hashing. They're used to temporarily store the
+ * virtual address and position of a mapped data block that needs to be
+ * verified. If we then see another data block, we hash the two blocks
+ * simultaneously using the fast multibuffer hashing method.
+ */
+ const void *pending_data = NULL;
+ sector_t pending_blkno;
+ struct bvec_iter pending_start;
+ u8 pending_want_digest[HASH_MAX_DIGESTSIZE];
+ u8 pending_real_digest[HASH_MAX_DIGESTSIZE];
unsigned int b;
+ int r;
if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
/*
* Copy the iterator in case we need to restart
* verification in a work-queue.
@@ -671,82 +673,177 @@ static int verity_verify_io(struct dm_verity_io *io)
iter = &iter_copy;
} else
iter = &io->iter;
for (b = 0; b < io->n_blocks; b++) {
- int r;
- sector_t cur_block = io->block + b;
+ sector_t blkno = io->block + b;
+ bool is_zero;
if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
- likely(test_bit(cur_block, v->validated_blocks))) {
+ likely(test_bit(blkno, v->validated_blocks))) {
verity_bv_skip_block(v, io, iter);
continue;
}
- r = verity_hash_for_block(v, io, cur_block,
- verity_io_want_digest(v, io),
- &is_zero);
+ r = verity_hash_for_block(v, io, blkno, want_digest, &is_zero);
if (unlikely(r < 0))
- return r;
+ goto error;
if (is_zero) {
/*
* If we expect a zero block, don't validate, just
* return zeros.
*/
r = verity_for_bv_block(v, io, iter,
verity_bv_zero);
if (unlikely(r < 0))
- return r;
+ goto error;
continue;
}
start = *iter;
- r = verity_compute_hash(v, io, iter,
- verity_io_real_digest(v, io),
- !io->in_bh);
- if (unlikely(r < 0))
- return r;
-
- if (likely(memcmp(verity_io_real_digest(v, io),
- verity_io_want_digest(v, io), v->digest_size) == 0)) {
- if (v->validated_blocks)
- set_bit(cur_block, v->validated_blocks);
- continue;
- } else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
- /*
- * Error handling code (FEC included) cannot be run in a
- * tasklet since it may sleep, so fallback to work-queue.
- */
- return -EAGAIN;
- } else if (verity_recheck(v, io, start, cur_block) == 0) {
- if (v->validated_blocks)
- set_bit(cur_block, v->validated_blocks);
- continue;
-#if defined(CONFIG_DM_VERITY_FEC)
- } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
- cur_block, NULL, &start) == 0) {
- continue;
-#endif
+ if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
+ /* Hash and verify one data block using ahash. */
+ struct ahash_request *req = verity_io_hash_req(v, io);
+ struct crypto_wait wait;
+
+ r = verity_ahash_init(v, req, &wait, !io->in_bh);
+ if (unlikely(r))
+ goto hash_error;
+
+ r = verity_ahash_update_block(v, io, iter, &wait);
+ if (unlikely(r))
+ goto hash_error;
+
+ r = verity_ahash_final(v, req, real_digest, &wait);
+ if (unlikely(r))
+ goto hash_error;
+
+ r = verity_check_data_block_hash(v, io, bio, &start,
+ blkno, real_digest,
+ want_digest);
+ if (unlikely(r))
+ goto error;
} else {
- if (bio->bi_status) {
+ struct shash_desc *desc = verity_io_hash_req(v, io);
+ struct bio_vec bv = bio_iter_iovec(bio, *iter);
+ const void *data;
+
+ if (unlikely(bv.bv_len < block_size)) {
/*
- * Error correction failed; Just return error
+ * Data block spans pages. This should not
+ * happen, since this code path is not used if
+ * the data block size is greater than the page
+ * size, and all I/O should be data block
+ * aligned because dm-verity sets
+ * logical_block_size to the data block size.
*/
- return -EIO;
+ DMERR_LIMIT("unaligned io (data block spans pages)");
+ r = -EIO;
+ goto error;
}
- if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
- cur_block)) {
- dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
- bio, cur_block, 0);
- return -EIO;
+
+ data = bvec_kmap_local(&bv);
+
+ if (v->use_finup_mb) {
+ if (pending_data) {
+ const u8 *datas[2] = { pending_data,
+ data };
+ u8 *outs[2] = { pending_real_digest,
+ real_digest };
+ /* Hash and verify two data blocks. */
+ desc->tfm = v->shash_tfm;
+ r = crypto_shash_import(desc,
+ v->initial_hashstate) ?:
+ crypto_shash_finup_mb(desc,
+ datas,
+ block_size,
+ outs,
+ 2);
+ kunmap_local(data);
+ kunmap_local(pending_data);
+ pending_data = NULL;
+ if (unlikely(r))
+ goto hash_error;
+ r = verity_check_data_block_hash(
+ v, io, bio,
+ &pending_start,
+ pending_blkno,
+ pending_real_digest,
+ pending_want_digest);
+ if (unlikely(r))
+ goto error;
+ r = verity_check_data_block_hash(
+ v, io, bio,
+ &start,
+ blkno,
+ real_digest,
+ want_digest);
+ if (unlikely(r))
+ goto error;
+ } else {
+ /* Wait and see if there's another block. */
+ pending_data = data;
+ pending_blkno = blkno;
+ pending_start = start;
+ memcpy(pending_want_digest, want_digest,
+ v->digest_size);
+ }
+ } else {
+ /* Hash and verify one data block. */
+ desc->tfm = v->shash_tfm;
+ r = crypto_shash_import(desc,
+ v->initial_hashstate) ?:
+ crypto_shash_finup(desc, data, block_size,
+ real_digest);
+ kunmap_local(data);
+ if (unlikely(r))
+ goto hash_error;
+ r = verity_check_data_block_hash(
+ v, io, bio, &start, blkno,
+ real_digest, want_digest);
+ if (unlikely(r))
+ goto error;
}
+
+ bio_advance_iter(bio, iter, block_size);
}
}
+ if (pending_data) {
+ /*
+ * Multibuffer hashing is enabled but there was an odd number of
+ * data blocks. Hash and verify the last block by itself.
+ */
+ struct shash_desc *desc = verity_io_hash_req(v, io);
+
+ desc->tfm = v->shash_tfm;
+ r = crypto_shash_import(desc, v->initial_hashstate) ?:
+ crypto_shash_finup(desc, pending_data, block_size,
+ pending_real_digest);
+ kunmap_local(pending_data);
+ pending_data = NULL;
+ if (unlikely(r))
+ goto hash_error;
+ r = verity_check_data_block_hash(v, io, bio,
+ &pending_start,
+ pending_blkno,
+ pending_real_digest,
+ pending_want_digest);
+ if (unlikely(r))
+ goto error;
+ }
+
return 0;
+
+hash_error:
+ DMERR("Error hashing block from bio iter: %d", r);
+error:
+ if (pending_data)
+ kunmap_local(pending_data);
+ return r;
}
/*
* Skip verity work in response to I/O error when system is shutting down.
*/
@@ -1321,10 +1418,34 @@ static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
if (!v->alg_name) {
ti->error = "Cannot allocate algorithm name";
return -ENOMEM;
}
+ /*
+ * Allocate the hash transformation object that this dm-verity instance
+ * will use. We have a choice of two APIs: shash and ahash. Most
+ * dm-verity users use CPU-based hashing, and for this shash is optimal
+ * since it matches the underlying algorithm implementations and also
+ * allows the use of fast multibuffer hashing (crypto_shash_finup_mb()).
+ * ahash adds support for off-CPU hash offloading. It also provides
+ * access to shash algorithms, but does so less efficiently.
+ *
+ * Meanwhile, hashing a block in dm-verity in general requires an
+ * init+update+final sequence with multiple updates. However, usually
+ * the salt is prepended to the block rather than appended, and the data
+ * block size is not greater than the page size. In this very common
+ * case, the sequence can be optimized to import+finup, where the first
+ * step imports the pre-computed state after init+update(salt). This
+ * can reduce the crypto API overhead significantly.
+ *
+ * To provide optimal performance for the vast majority of dm-verity
+ * users while still supporting off-CPU hash offloading and the rarer
+ * dm-verity settings, we therefore have two code paths: one using shash
+ * where we use import+finup or import+finup_mb, and one using ahash
+ * where we use init+update(s)+final. We use the former code path when
+ * it's possible to use and shash gives the same algorithm as ahash.
+ */
ahash = crypto_alloc_ahash(alg_name, 0,
v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
if (IS_ERR(ahash)) {
ti->error = "Cannot initialize hash function";
return PTR_ERR(ahash);
@@ -1345,14 +1466,16 @@ static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
}
if (!IS_ERR_OR_NULL(shash)) {
crypto_free_ahash(ahash);
ahash = NULL;
v->shash_tfm = shash;
+ v->use_finup_mb = crypto_shash_mb_max_msgs(shash);
v->digest_size = crypto_shash_digestsize(shash);
v->hash_reqsize = sizeof(struct shash_desc) +
crypto_shash_descsize(shash);
- DMINFO("%s using shash \"%s\"", alg_name, driver_name);
+ DMINFO("%s using shash \"%s\"%s", alg_name, driver_name,
+ v->use_finup_mb ? " (multibuffer)" : "");
} else {
v->ahash_tfm = ahash;
static_branch_inc(&ahash_enabled);
v->digest_size = crypto_ahash_digestsize(ahash);
v->hash_reqsize = sizeof(struct ahash_request) +
diff --git a/drivers/md/dm-verity.h b/drivers/md/dm-verity.h
index 15ffb0881cc9..d5f659e1bdef 100644
--- a/drivers/md/dm-verity.h
+++ b/drivers/md/dm-verity.h
@@ -55,10 +55,11 @@ struct dm_verity {
unsigned char hash_per_block_bits; /* log2(hashes in hash block) */
unsigned char levels; /* the number of tree levels */
unsigned char version;
bool hash_failed:1; /* set if hash of any block failed */
bool use_bh_wq:1; /* try to verify in BH wq before normal work-queue */
+ bool use_finup_mb:1; /* use crypto_shash_finup_mb() */
unsigned int digest_size; /* digest size for the current hash algorithm */
unsigned int hash_reqsize; /* the size of temporary space for crypto */
enum verity_mode mode; /* mode for handling verification errors */
unsigned int corrupted_errs;/* Number of errors for corrupted blocks */
@@ -92,42 +93,23 @@ struct dm_verity_io {
struct work_struct bh_work;
char *recheck_buffer;
/*
- * Three variably-size fields follow this struct:
- *
- * u8 hash_req[v->hash_reqsize];
- * u8 real_digest[v->digest_size];
- * u8 want_digest[v->digest_size];
- *
- * To access them use: verity_io_hash_req(), verity_io_real_digest()
- * and verity_io_want_digest().
- *
- * hash_req is either a struct ahash_request or a struct shash_desc,
- * depending on whether ahash_tfm or shash_tfm is being used.
+ * This struct is followed by a variable-sized hash request of size
+ * v->hash_reqsize, either a struct ahash_request or a struct shash_desc
+ * (depending on whether ahash_tfm or shash_tfm is being used). To
+ * access it, use verity_io_hash_req().
*/
};
static inline void *verity_io_hash_req(struct dm_verity *v,
struct dm_verity_io *io)
{
return io + 1;
}
-static inline u8 *verity_io_real_digest(struct dm_verity *v,
- struct dm_verity_io *io)
-{
- return (u8 *)(io + 1) + v->hash_reqsize;
-}
-
-static inline u8 *verity_io_want_digest(struct dm_verity *v,
- struct dm_verity_io *io)
-{
- return (u8 *)(io + 1) + v->hash_reqsize + v->digest_size;
-}
-
extern int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
struct bvec_iter *iter,
int (*process)(struct dm_verity *v,
struct dm_verity_io *io,
u8 *data, size_t len));
--
2.45.0
On Fri, May 31, 2024 at 12:50:20PM +0800, Herbert Xu wrote:
> Eric Biggers <[email protected]> wrote:
> >
> > + if (multibuffer) {
> > + if (ctx->pending_data) {
> > + /* Hash and verify two data blocks. */
> > + err = fsverity_hash_2_blocks(params,
> > + inode,
> > + ctx->pending_data,
> > + data,
> > + ctx->hash1,
> > + ctx->hash2);
> > + kunmap_local(data);
> > + kunmap_local(ctx->pending_data);
> > + ctx->pending_data = NULL;
> > + if (err != 0 ||
> > + !verify_data_block(inode, vi, ctx->hash1,
> > + ctx->pending_pos,
> > + ctx->max_ra_pages) ||
> > + !verify_data_block(inode, vi, ctx->hash2,
> > + pos, ctx->max_ra_pages))
> > + return false;
> > + } else {
> > + /* Wait and see if there's another block. */
> > + ctx->pending_data = data;
> > + ctx->pending_pos = pos;
> > + }
> > + } else {
> > + /* Hash and verify one data block. */
> > + err = fsverity_hash_block(params, inode, data,
> > + ctx->hash1);
> > + kunmap_local(data);
> > + if (err != 0 ||
> > + !verify_data_block(inode, vi, ctx->hash1,
> > + pos, ctx->max_ra_pages))
> > + return false;
> > + }
> > + pos += block_size;
>
> I think this complexity is gross. Look at how we did GSO in
> networking. There should be a unified code-path for aggregated
> data and simple data, not an aggregated path versus a simple path.
>
> I think ultimately it stems from the fact that this code went from
> ahash to shash. What were the issues back then? If it's just vmalloc
> we should fix ahash to support that, rather than making users of the
> Crypto API go through contortions like this.
It can't be asynchronous, period. As I've explained, that would be far too
complex, and it would also defeat the purpose because it would make performance
worse. Messages *must* be queued up and hashed in the caller's context.
What could make sense would be some helper functions and an associated struct
for queueing up messages for a particular crypto_shash, up to its mb_max_msgs
value, and then flushing them and retrieving the digests. These would be
provided by the crypto API.
I think this would address your concern, in that the users (fsverity and
dm-verity) would have a unified code path for multiple vs. single blocks.
I didn't think it would be worthwhile to go there yet, given that fsverity and
dm-verity just want 2x or 1x, and it ends up being simpler and more efficient to
handle those cases directly. But we could go with the more general queueing
helper functions instead if you feel they should be included from the start.
- Eric
On Thu, May 30, 2024 at 11:13:48PM -0700, Eric Biggers wrote:
> On Fri, May 31, 2024 at 12:50:20PM +0800, Herbert Xu wrote:
> > Eric Biggers <[email protected]> wrote:
> > >
> > > + if (multibuffer) {
> > > + if (ctx->pending_data) {
> > > + /* Hash and verify two data blocks. */
> > > + err = fsverity_hash_2_blocks(params,
> > > + inode,
> > > + ctx->pending_data,
> > > + data,
> > > + ctx->hash1,
> > > + ctx->hash2);
> > > + kunmap_local(data);
> > > + kunmap_local(ctx->pending_data);
> > > + ctx->pending_data = NULL;
> > > + if (err != 0 ||
> > > + !verify_data_block(inode, vi, ctx->hash1,
> > > + ctx->pending_pos,
> > > + ctx->max_ra_pages) ||
> > > + !verify_data_block(inode, vi, ctx->hash2,
> > > + pos, ctx->max_ra_pages))
> > > + return false;
> > > + } else {
> > > + /* Wait and see if there's another block. */
> > > + ctx->pending_data = data;
> > > + ctx->pending_pos = pos;
> > > + }
> > > + } else {
> > > + /* Hash and verify one data block. */
> > > + err = fsverity_hash_block(params, inode, data,
> > > + ctx->hash1);
> > > + kunmap_local(data);
> > > + if (err != 0 ||
> > > + !verify_data_block(inode, vi, ctx->hash1,
> > > + pos, ctx->max_ra_pages))
> > > + return false;
> > > + }
> > > + pos += block_size;
> >
> > I think this complexity is gross. Look at how we did GSO in
> > networking. There should be a unified code-path for aggregated
> > data and simple data, not an aggregated path versus a simple path.
> >
> > I think ultimately it stems from the fact that this code went from
> > ahash to shash. What were the issues back then? If it's just vmalloc
> > we should fix ahash to support that, rather than making users of the
> > Crypto API go through contortions like this.
>
> It can't be asynchronous, period. As I've explained, that would be far too
> complex, and it would also defeat the purpose because it would make performance
> worse. Messages *must* be queued up and hashed in the caller's context.
>
> What could make sense would be some helper functions and an associated struct
> for queueing up messages for a particular crypto_shash, up to its mb_max_msgs
> value, and then flushing them and retrieving the digests. These would be
> provided by the crypto API.
>
> I think this would address your concern, in that the users (fsverity and
> dm-verity) would have a unified code path for multiple vs. single blocks.
>
> I didn't think it would be worthwhile to go there yet, given that fsverity and
> dm-verity just want 2x or 1x, and it ends up being simpler and more efficient to
> handle those cases directly. But we could go with the more general queueing
> helper functions instead if you feel they should be included from the start.
>
Looking at it again a bit more closely, both fsverity and dm-verity have
per-block information that they need to keep track of in the queue in addition
to the data buffers and hashes: the block number, and in dm-verity's case also a
bvec_iter pointing to that block.
So I think it really does make sense to have them both handle the queueing
themselves, and not have it split between them and some crypto API helper
functions (i.e. two queues that mirror each other).
It would be possible, though, to organize the code in dm-verity and fsverity to
represent the queue as an array and operate on it as such. That would also
address your concern about the two code paths. Again, things would end up being
a bit less efficient than my more optimized code that handles 1x and 2x (which
is all that's actually needed for now) specifically, but it would work, I think.
- Eric
On Fri, May 31, 2024 at 04:49:28PM +0800, Herbert Xu wrote:
> On Thu, May 30, 2024 at 11:52:58PM -0700, Eric Biggers wrote:
> >
> > Looking at it again a bit more closely, both fsverity and dm-verity have
> > per-block information that they need to keep track of in the queue in addition
> > to the data buffers and hashes: the block number, and in dm-verity's case also a
> > bvec_iter pointing to that block.
>
> Again I'm not asking you to make this API asynchronous at all.
What exactly are you suggesting, then? It seems that you want multibuffer
hashing to be supported by the existing ahash API. However, that only works if
it's made asynchronous, given how the messages would have to be queued up on a
global queue. That has a huge number of issues which I've already explained.
(And it was even tried before, and it failed.)
> I was just commenting on the added complexity in fsverify due to
> the use of the linear shash API instead of the page-based ahash API.
It's the other way around. The shash version is much simpler. Just look at the
diff of commit 8fcd94add6c5 that changed from ahash to shash:
4 files changed, 71 insertions(+), 200 deletions(-)
> This complexity was then compounded by the multi-buffer support.
fsverity and dm-verity will have to be updated to use multibuffer hashing
anyway, given that transparently supporting it in the existing API is not
viable. If your concern is that in my current patchset fsverity and dm-verity
have separate code paths for multibuffer vs. single-buffer, as I mentioned I can
address that by restructuring them to operate on arrays (similar to what I
already did with the crypto API part).
> I think this would look a lot simpler if it moved back to ahash.
>
> The original commit mentioned that ahash was bad for fsverify
> because of vmalloc. But the only use of linear pointers in fsverify
> seems to be from kmalloc. Where is the vmalloc coming from?
XFS is working on adding support for fsverity, and XFS was planning to provide
their Merkle tree blocks in vmalloced buffers. Their plans have shifted several
times, and I think their latest plan no longer uses vmalloced buffers. But in
any case it's still very convenient and much simpler to be able to just use
virtual addresses without having to worry about what type of memory it is.
- Eric
On Fri, May 31, 2024 at 11:51:26AM -0700, Eric Biggers wrote:
> On Fri, May 31, 2024 at 04:49:28PM +0800, Herbert Xu wrote:
> > On Thu, May 30, 2024 at 11:52:58PM -0700, Eric Biggers wrote:
> > >
> > > Looking at it again a bit more closely, both fsverity and dm-verity have
> > > per-block information that they need to keep track of in the queue in addition
> > > to the data buffers and hashes: the block number, and in dm-verity's case also a
> > > bvec_iter pointing to that block.
> >
> > Again I'm not asking you to make this API asynchronous at all.
>
> What exactly are you suggesting, then? It seems that you want multibuffer
> hashing to be supported by the existing ahash API. However, that only works if
> it's made asynchronous, given how the messages would have to be queued up on a
> global queue. That has a huge number of issues which I've already explained.
> (And it was even tried before, and it failed.)
>
> > I was just commenting on the added complexity in fsverify due to
> > the use of the linear shash API instead of the page-based ahash API.
>
> It's the other way around. The shash version is much simpler. Just look at the
> diff of commit 8fcd94add6c5 that changed from ahash to shash:
>
> 4 files changed, 71 insertions(+), 200 deletions(-)
>
> > This complexity was then compounded by the multi-buffer support.
>
> fsverity and dm-verity will have to be updated to use multibuffer hashing
> anyway, given that transparently supporting it in the existing API is not
> viable. If your concern is that in my current patchset fsverity and dm-verity
> have separate code paths for multibuffer vs. single-buffer, as I mentioned I can
> address that by restructuring them to operate on arrays (similar to what I
> already did with the crypto API part).
>
> > I think this would look a lot simpler if it moved back to ahash.
> >
> > The original commit mentioned that ahash was bad for fsverify
> > because of vmalloc. But the only use of linear pointers in fsverify
> > seems to be from kmalloc. Where is the vmalloc coming from?
>
> XFS is working on adding support for fsverity, and XFS was planning to provide
> their Merkle tree blocks in vmalloced buffers. Their plans have shifted several
> times, and I think their latest plan no longer uses vmalloced buffers. But in
> any case it's still very convenient and much simpler to be able to just use
> virtual addresses without having to worry about what type of memory it is.
>
I've now unified the code paths for single-block and multi-block processing in
fsverity and dm-verity, which I think addresses your remaining concern that's
feasible to address. Your feedback has been conflating different issues, and it
only comes in once every few weeks, so it's a bit hard to follow. But I think
the remaining thing that you're asking for is to make the API to be part of
"ahash" and use the existing async completion callback. That's not actually
feasible, for the reasons that I've explained in detail. See in particular
https://lore.kernel.org/linux-crypto/[email protected]/.
Thanks,
- Eric