My another attempt to get my patches reviewed. For
the convenience of a prospective reviewer I've written
a set of tests for this kernel change. One may get them using:
git clone http://pentium.hopto.org/~thinred/repos/clock-test.git
During our work we encountered a problem of obtaining
a reliable and fine-grained measurements of CPU time/wall time
of a process/thread. The existing methods (taskstats, procfs,
POSIX CPU clocks) have either unfriendly interface (taskstats)
or give unsatisfactory precision (procfs). However, even
the most precise and clean interface, POSIX CPU clocks,
is limited only to threads in the same thread group.
The following patches introduce three changes:
* new per process/thread wall time clocks --
CLOCK_PROCESS_WALLTIME_ID and CLOCK_THREAD_WALLTIME_ID;
one can also access wall time of a process/thread
using clocks constructed from macros in posix-timers.h
* less restricted access to CPU and wall clocks --
user can access them for all their threads
* minor refactoring/renaming to reflect the changes.
Tomasz Buchert (4):
posix-timers: Refactoring of CPUCLOCK* macros
posix-cpu-timers: Introduction of wall clocks
posix-cpu-timers: Wider access to the thread clocks
posix-cpu-timers: posix-cpu-timers.c renamed to posix-task-timers.c
include/linux/posix-timers.h | 52 +-
include/linux/sched.h | 2 +-
include/linux/time.h | 2 +
kernel/Makefile | 2 +-
kernel/itimer.c | 14 +-
kernel/posix-cpu-timers.c | 1642 -------------------------------------
kernel/posix-task-timers.c | 1852 ++++++++++++++++++++++++++++++++++++++++++
kernel/posix-timers.c | 25 +-
8 files changed, 1924 insertions(+), 1667 deletions(-)
delete mode 100644 kernel/posix-cpu-timers.c
create mode 100644 kernel/posix-task-timers.c
Per-thread clocks are so far accessible only within
the same thread group. This patch makes it possible to get
this information for any thread of the same user and for
a user with CAP_SYS_ADMIN capability.
same_thread_group is not used anymore because if the thread is in
the same thread group as 'current' then they will have the same
owner anyway.
Signed-off-by: Tomasz Buchert <[email protected]>
Signed-off-by: Lucas Nussbaum <[email protected]>
---
kernel/posix-cpu-timers.c | 34 +++++++++++++++++++++++++++-------
1 files changed, 27 insertions(+), 7 deletions(-)
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index 78ad536..04f49ce 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -25,6 +25,26 @@ void update_rlimit_cpu(unsigned long rlim_new)
spin_unlock_irq(¤t->sighand->siglock);
}
+/* RCU lock needed */
+static int thread_clock_allowed(struct task_struct *p)
+{
+ const struct cred *cred, *pcred;
+
+ if (unlikely(capable(CAP_SYS_ADMIN)))
+ return 1;
+ cred = current_cred();
+ pcred = __task_cred(p);
+
+ return (cred->euid == pcred->euid ||
+ cred->euid == pcred->uid);
+}
+
+/* RCU read lock needed */
+static inline int process_clock_allowed(struct task_struct *p)
+{
+ return thread_group_leader(p);
+}
+
static int check_task_clock(const clockid_t which_clock)
{
int error = 0;
@@ -37,7 +57,7 @@ static int check_task_clock(const clockid_t which_clock)
rcu_read_lock();
p = find_task_by_vpid(pid);
if (!p || !(POSIX_CLOCK_PERTHREAD(which_clock) ?
- same_thread_group(p, current) : thread_group_leader(p))) {
+ thread_clock_allowed(p) : process_clock_allowed(p))) {
error = -EINVAL;
}
rcu_read_unlock();
@@ -68,9 +88,9 @@ static int get_start_time(clockid_t which_clock, struct timespec *start)
find_task_by_vpid(POSIX_CLOCK_PID(which_clock));
if (p && (
(POSIX_CLOCK_PERTHREAD(which_clock) &&
- same_thread_group(p, current)) ||
+ thread_clock_allowed(p)) ||
(!POSIX_CLOCK_PERTHREAD(which_clock) &&
- thread_group_leader(p) && p->sighand))) {
+ process_clock_allowed(p) && p->sighand))) {
*start = p->start_time;
return 0;
}
@@ -529,13 +549,13 @@ int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
p = find_task_by_vpid(pid);
if (p) {
if (POSIX_CLOCK_PERTHREAD(which_clock)) {
- if (same_thread_group(p, current)) {
+ if (thread_clock_allowed(p)) {
error = cpu_clock_sample(which_clock,
p, &rtn);
}
} else {
read_lock(&tasklist_lock);
- if (thread_group_leader(p) && p->sighand) {
+ if (process_clock_allowed(p) && p->sighand) {
error =
cpu_clock_sample_group(which_clock,
p, &rtn);
@@ -575,7 +595,7 @@ int posix_cpu_timer_create(struct k_itimer *new_timer)
p = current;
} else {
p = find_task_by_vpid(pid);
- if (p && !same_thread_group(p, current))
+ if (p && !thread_clock_allowed(p))
p = NULL;
}
} else {
@@ -583,7 +603,7 @@ int posix_cpu_timer_create(struct k_itimer *new_timer)
p = current->group_leader;
} else {
p = find_task_by_vpid(pid);
- if (p && !thread_group_leader(p))
+ if (p && !process_clock_allowed(p))
p = NULL;
}
}
--
1.6.3.3
This rename reflects the fact that posix-cpu-timers.c contains
both CPU clock implementation and wall clock implementation.
Signed-off-by: Tomasz Buchert <[email protected]>
---
kernel/Makefile | 2 +-
kernel/posix-cpu-timers.c | 1852 --------------------------------------------
kernel/posix-task-timers.c | 1852 ++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 1853 insertions(+), 1853 deletions(-)
delete mode 100644 kernel/posix-cpu-timers.c
create mode 100644 kernel/posix-task-timers.c
diff --git a/kernel/Makefile b/kernel/Makefile
index 057472f..21e5fe8 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -7,7 +7,7 @@ obj-y = sched.o fork.o exec_domain.o panic.o printk.o \
sysctl.o sysctl_binary.o capability.o ptrace.o timer.o user.o \
signal.o sys.o kmod.o workqueue.o pid.o \
rcupdate.o extable.o params.o posix-timers.o \
- kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
+ kthread.o wait.o kfifo.o sys_ni.o posix-task-timers.o mutex.o \
hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \
notifier.o ksysfs.o pm_qos_params.o sched_clock.o cred.o \
async.o range.o
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
deleted file mode 100644
index 04f49ce..0000000
--- a/kernel/posix-cpu-timers.c
+++ /dev/null
@@ -1,1852 +0,0 @@
-/*
- * Implement CPU time clocks for the POSIX clock interface.
- */
-
-#include <linux/sched.h>
-#include <linux/posix-timers.h>
-#include <linux/errno.h>
-#include <linux/math64.h>
-#include <asm/uaccess.h>
-#include <linux/kernel_stat.h>
-#include <trace/events/timer.h>
-
-/*
- * Called after updating RLIMIT_CPU to run cpu timer and update
- * tsk->signal->cputime_expires expiration cache if necessary. Needs
- * siglock protection since other code may update expiration cache as
- * well.
- */
-void update_rlimit_cpu(unsigned long rlim_new)
-{
- cputime_t cputime = secs_to_cputime(rlim_new);
-
- spin_lock_irq(¤t->sighand->siglock);
- set_process_cpu_timer(current, POSIX_CLOCK_PROF, &cputime, NULL);
- spin_unlock_irq(¤t->sighand->siglock);
-}
-
-/* RCU lock needed */
-static int thread_clock_allowed(struct task_struct *p)
-{
- const struct cred *cred, *pcred;
-
- if (unlikely(capable(CAP_SYS_ADMIN)))
- return 1;
- cred = current_cred();
- pcred = __task_cred(p);
-
- return (cred->euid == pcred->euid ||
- cred->euid == pcred->uid);
-}
-
-/* RCU read lock needed */
-static inline int process_clock_allowed(struct task_struct *p)
-{
- return thread_group_leader(p);
-}
-
-static int check_task_clock(const clockid_t which_clock)
-{
- int error = 0;
- struct task_struct *p;
- const pid_t pid = POSIX_CLOCK_PID(which_clock);
-
- if (pid == 0)
- return 0;
-
- rcu_read_lock();
- p = find_task_by_vpid(pid);
- if (!p || !(POSIX_CLOCK_PERTHREAD(which_clock) ?
- thread_clock_allowed(p) : process_clock_allowed(p))) {
- error = -EINVAL;
- }
- rcu_read_unlock();
-
- return error;
-}
-
-static inline int check_cpu_clock(const clockid_t which_clock)
-{
- return !IS_CPU_CLOCK(which_clock) ?
- -EINVAL : check_task_clock(which_clock);
-}
-
-static inline int check_wall_clock(const clockid_t which_clock)
-{
- return !IS_WALL_CLOCK(which_clock) ?
- -EINVAL : check_task_clock(which_clock);
-}
-
-/* Wall time clocks */
-
-/* Get the start time of the process/thread referenced by the wall clock.
- * RCU lock required. */
-
-static int get_start_time(clockid_t which_clock, struct timespec *start)
-{
- struct task_struct *p =
- find_task_by_vpid(POSIX_CLOCK_PID(which_clock));
- if (p && (
- (POSIX_CLOCK_PERTHREAD(which_clock) &&
- thread_clock_allowed(p)) ||
- (!POSIX_CLOCK_PERTHREAD(which_clock) &&
- process_clock_allowed(p) && p->sighand))) {
- *start = p->start_time;
- return 0;
- }
- return -EINVAL;
-}
-
-/* monotonic clock is used to get start_time and uptime
- * so the precision is twice the precision of the monotonic clock */
-
-int wall_clock_getres(clockid_t which_clock, struct timespec *tp)
-{
- int error = check_wall_clock(which_clock);
- if (error)
- return error;
- error = hrtimer_get_res(CLOCK_MONOTONIC, tp);
- if (error)
- return error;
- *tp = timespec_add_safe(*tp, *tp);
- return 0;
-}
-
-int wall_clock_get(clockid_t which_clock, struct timespec *tp)
-{
- struct timespec uptime, start;
- int error = -EINVAL;
-
- if (!IS_WALL_CLOCK(which_clock))
- return error;
-
- if (POSIX_CLOCK_PID(which_clock) == 0) {
- start = (POSIX_CLOCK_PERTHREAD(which_clock) ?
- current : current->group_leader)->start_time;
- error = 0;
- } else {
- rcu_read_lock();
- error = get_start_time(which_clock, &start);
- rcu_read_unlock();
- }
-
- if (error)
- return error;
-
- do_posix_clock_monotonic_gettime(&uptime);
- *tp = timespec_sub(uptime, start);
-
- return 0;
-}
-
-int wall_clock_set(const clockid_t which_clock,
- struct timespec *tp)
-{
- return check_wall_clock(which_clock) ?: -EPERM;
-}
-
-int wall_nsleep(const clockid_t which_clock, int flags,
- struct timespec *tsave, struct timespec __user *rmtp)
-{
- if (!IS_WALL_CLOCK(which_clock))
- return -EINVAL;
-
- if (flags & TIMER_ABSTIME) {
- int error;
- struct timespec start;
-
- rcu_read_lock();
- error = get_start_time(which_clock, &start);
- rcu_read_unlock();
-
- if (error)
- return error;
- *tsave = timespec_add_safe(*tsave, start);
- }
- return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
- HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
- CLOCK_MONOTONIC);
-}
-
-long wall_nsleep_restart(struct restart_block *restart_block)
-{
- return -EINVAL;
-}
-
-int wall_timer_get(struct k_itimer *timr,
- struct itimerspec *cur_setting)
-{
- return -EINVAL;
-}
-
-int wall_timer_create(struct k_itimer *new_timer)
-{
- return -EINVAL;
-}
-
-int wall_timer_set(struct k_itimer *timr, int flags,
- struct itimerspec *new_setting,
- struct itimerspec *old_setting)
-{
- return -EINVAL;
-}
-
-int wall_timer_del(struct k_itimer *timer)
-{
- return -EINVAL;
-}
-
-#define PROCESS_WALLCLOCK MAKE_PROCESS_WALLCLOCK(0)
-#define THREAD_WALLCLOCK MAKE_THREAD_WALLCLOCK(0)
-
-static int process_wall_getres(const clockid_t which_clock,
- struct timespec *tp)
-{
- return wall_clock_getres(PROCESS_WALLCLOCK, tp);
-}
-static int process_wall_get(const clockid_t which_clock, struct timespec *tp)
-{
- return wall_clock_get(PROCESS_WALLCLOCK, tp);
-}
-static int process_wall_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp,
- struct timespec __user *rmtp)
-{
- return wall_nsleep(PROCESS_WALLCLOCK, flags, rqtp, rmtp);
-}
-static long process_wall_nsleep_restart(struct restart_block *restart_block)
-{
- return -EINVAL;
-}
-static int thread_wall_getres(const clockid_t which_clock,
- struct timespec *tp)
-{
- return wall_clock_getres(THREAD_WALLCLOCK, tp);
-}
-static int thread_wall_get(const clockid_t which_clock, struct timespec *tp)
-{
- return wall_clock_get(THREAD_WALLCLOCK, tp);
-}
-static int thread_wall_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp,
- struct timespec __user *rmtp)
-{
- return wall_nsleep(THREAD_WALLCLOCK, flags, rqtp, rmtp);
-}
-static long thread_wall_nsleep_restart(struct restart_block *restart_block)
-{
- return -EINVAL;
-}
-
-/* CPU time clocks */
-
-static inline union cpu_time_count
-timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
-{
- union cpu_time_count ret;
- ret.sched = 0; /* high half always zero when .cpu used */
- if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
- ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
- } else {
- ret.cpu = timespec_to_cputime(tp);
- }
- return ret;
-}
-
-static void sample_to_timespec(const clockid_t which_clock,
- union cpu_time_count cpu,
- struct timespec *tp)
-{
- if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED)
- *tp = ns_to_timespec(cpu.sched);
- else
- cputime_to_timespec(cpu.cpu, tp);
-}
-
-static inline int cpu_time_before(const clockid_t which_clock,
- union cpu_time_count now,
- union cpu_time_count then)
-{
- if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
- return now.sched < then.sched;
- } else {
- return cputime_lt(now.cpu, then.cpu);
- }
-}
-static inline void cpu_time_add(const clockid_t which_clock,
- union cpu_time_count *acc,
- union cpu_time_count val)
-{
- if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
- acc->sched += val.sched;
- } else {
- acc->cpu = cputime_add(acc->cpu, val.cpu);
- }
-}
-static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
- union cpu_time_count a,
- union cpu_time_count b)
-{
- if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
- a.sched -= b.sched;
- } else {
- a.cpu = cputime_sub(a.cpu, b.cpu);
- }
- return a;
-}
-
-/*
- * Divide and limit the result to res >= 1
- *
- * This is necessary to prevent signal delivery starvation, when the result of
- * the division would be rounded down to 0.
- */
-static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
-{
- cputime_t res = cputime_div(time, div);
-
- return max_t(cputime_t, res, 1);
-}
-
-/*
- * Update expiry time from increment, and increase overrun count,
- * given the current clock sample.
- */
-static void bump_cpu_timer(struct k_itimer *timer,
- union cpu_time_count now)
-{
- int i;
-
- if (timer->it.cpu.incr.sched == 0)
- return;
-
- if (POSIX_CLOCK_WHICH(timer->it_clock) == POSIX_CLOCK_SCHED) {
- unsigned long long delta, incr;
-
- if (now.sched < timer->it.cpu.expires.sched)
- return;
- incr = timer->it.cpu.incr.sched;
- delta = now.sched + incr - timer->it.cpu.expires.sched;
- /* Don't use (incr*2 < delta), incr*2 might overflow. */
- for (i = 0; incr < delta - incr; i++)
- incr = incr << 1;
- for (; i >= 0; incr >>= 1, i--) {
- if (delta < incr)
- continue;
- timer->it.cpu.expires.sched += incr;
- timer->it_overrun += 1 << i;
- delta -= incr;
- }
- } else {
- cputime_t delta, incr;
-
- if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
- return;
- incr = timer->it.cpu.incr.cpu;
- delta = cputime_sub(cputime_add(now.cpu, incr),
- timer->it.cpu.expires.cpu);
- /* Don't use (incr*2 < delta), incr*2 might overflow. */
- for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
- incr = cputime_add(incr, incr);
- for (; i >= 0; incr = cputime_halve(incr), i--) {
- if (cputime_lt(delta, incr))
- continue;
- timer->it.cpu.expires.cpu =
- cputime_add(timer->it.cpu.expires.cpu, incr);
- timer->it_overrun += 1 << i;
- delta = cputime_sub(delta, incr);
- }
- }
-}
-
-static inline cputime_t prof_ticks(struct task_struct *p)
-{
- return cputime_add(p->utime, p->stime);
-}
-static inline cputime_t virt_ticks(struct task_struct *p)
-{
- return p->utime;
-}
-
-int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
-{
- int error = check_cpu_clock(which_clock);
- if (!error) {
- tp->tv_sec = 0;
- tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
- if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
- /*
- * If sched_clock is using a cycle counter, we
- * don't have any idea of its true resolution
- * exported, but it is much more than 1s/HZ.
- */
- tp->tv_nsec = 1;
- }
- }
- return error;
-}
-
-int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
-{
- /*
- * You can never reset a CPU clock, but we check for other errors
- * in the call before failing with EPERM.
- */
- int error = check_cpu_clock(which_clock);
- if (error == 0) {
- error = -EPERM;
- }
- return error;
-}
-
-
-/*
- * Sample a per-thread clock for the given task.
- */
-static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
- union cpu_time_count *cpu)
-{
- switch (POSIX_CLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case POSIX_CLOCK_PROF:
- cpu->cpu = prof_ticks(p);
- break;
- case POSIX_CLOCK_VIRT:
- cpu->cpu = virt_ticks(p);
- break;
- case POSIX_CLOCK_SCHED:
- cpu->sched = task_sched_runtime(p);
- break;
- }
- return 0;
-}
-
-void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
-{
- struct sighand_struct *sighand;
- struct signal_struct *sig;
- struct task_struct *t;
-
- *times = INIT_CPUTIME;
-
- rcu_read_lock();
- sighand = rcu_dereference(tsk->sighand);
- if (!sighand)
- goto out;
-
- sig = tsk->signal;
-
- t = tsk;
- do {
- times->utime = cputime_add(times->utime, t->utime);
- times->stime = cputime_add(times->stime, t->stime);
- times->sum_exec_runtime += t->se.sum_exec_runtime;
-
- t = next_thread(t);
- } while (t != tsk);
-
- times->utime = cputime_add(times->utime, sig->utime);
- times->stime = cputime_add(times->stime, sig->stime);
- times->sum_exec_runtime += sig->sum_sched_runtime;
-out:
- rcu_read_unlock();
-}
-
-static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
-{
- if (cputime_gt(b->utime, a->utime))
- a->utime = b->utime;
-
- if (cputime_gt(b->stime, a->stime))
- a->stime = b->stime;
-
- if (b->sum_exec_runtime > a->sum_exec_runtime)
- a->sum_exec_runtime = b->sum_exec_runtime;
-}
-
-void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
-{
- struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
- struct task_cputime sum;
- unsigned long flags;
-
- spin_lock_irqsave(&cputimer->lock, flags);
- if (!cputimer->running) {
- cputimer->running = 1;
- /*
- * The POSIX timer interface allows for absolute time expiry
- * values through the TIMER_ABSTIME flag, therefore we have
- * to synchronize the timer to the clock every time we start
- * it.
- */
- thread_group_cputime(tsk, &sum);
- update_gt_cputime(&cputimer->cputime, &sum);
- }
- *times = cputimer->cputime;
- spin_unlock_irqrestore(&cputimer->lock, flags);
-}
-
-/*
- * Sample a process (thread group) clock for the given group_leader task.
- * Must be called with tasklist_lock held for reading.
- */
-static int cpu_clock_sample_group(const clockid_t which_clock,
- struct task_struct *p,
- union cpu_time_count *cpu)
-{
- struct task_cputime cputime;
-
- switch (POSIX_CLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case POSIX_CLOCK_PROF:
- thread_group_cputime(p, &cputime);
- cpu->cpu = cputime_add(cputime.utime, cputime.stime);
- break;
- case POSIX_CLOCK_VIRT:
- thread_group_cputime(p, &cputime);
- cpu->cpu = cputime.utime;
- break;
- case POSIX_CLOCK_SCHED:
- cpu->sched = thread_group_sched_runtime(p);
- break;
- }
- return 0;
-}
-
-
-int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
-{
- const pid_t pid = POSIX_CLOCK_PID(which_clock);
- int error = -EINVAL;
- union cpu_time_count rtn;
-
- if (pid == 0) {
- /*
- * Special case constant value for our own clocks.
- * We don't have to do any lookup to find ourselves.
- */
- if (POSIX_CLOCK_PERTHREAD(which_clock)) {
- /*
- * Sampling just ourselves we can do with no locking.
- */
- error = cpu_clock_sample(which_clock,
- current, &rtn);
- } else {
- read_lock(&tasklist_lock);
- error = cpu_clock_sample_group(which_clock,
- current, &rtn);
- read_unlock(&tasklist_lock);
- }
- } else {
- /*
- * Find the given PID, and validate that the caller
- * should be able to see it.
- */
- struct task_struct *p;
- rcu_read_lock();
- p = find_task_by_vpid(pid);
- if (p) {
- if (POSIX_CLOCK_PERTHREAD(which_clock)) {
- if (thread_clock_allowed(p)) {
- error = cpu_clock_sample(which_clock,
- p, &rtn);
- }
- } else {
- read_lock(&tasklist_lock);
- if (process_clock_allowed(p) && p->sighand) {
- error =
- cpu_clock_sample_group(which_clock,
- p, &rtn);
- }
- read_unlock(&tasklist_lock);
- }
- }
- rcu_read_unlock();
- }
-
- if (error)
- return error;
- sample_to_timespec(which_clock, rtn, tp);
- return 0;
-}
-
-
-/*
- * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
- * This is called from sys_timer_create() and do_cpu_nanosleep() with the
- * new timer already all-zeros initialized.
- */
-int posix_cpu_timer_create(struct k_itimer *new_timer)
-{
- int ret = 0;
- const pid_t pid = POSIX_CLOCK_PID(new_timer->it_clock);
- struct task_struct *p;
-
- if (POSIX_CLOCK_WHICH(new_timer->it_clock) >= POSIX_CLOCK_MAX)
- return -EINVAL;
-
- INIT_LIST_HEAD(&new_timer->it.cpu.entry);
-
- read_lock(&tasklist_lock);
- if (POSIX_CLOCK_PERTHREAD(new_timer->it_clock)) {
- if (pid == 0) {
- p = current;
- } else {
- p = find_task_by_vpid(pid);
- if (p && !thread_clock_allowed(p))
- p = NULL;
- }
- } else {
- if (pid == 0) {
- p = current->group_leader;
- } else {
- p = find_task_by_vpid(pid);
- if (p && !process_clock_allowed(p))
- p = NULL;
- }
- }
- new_timer->it.cpu.task = p;
- if (p) {
- get_task_struct(p);
- } else {
- ret = -EINVAL;
- }
- read_unlock(&tasklist_lock);
-
- return ret;
-}
-
-/*
- * Clean up a CPU-clock timer that is about to be destroyed.
- * This is called from timer deletion with the timer already locked.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
-int posix_cpu_timer_del(struct k_itimer *timer)
-{
- struct task_struct *p = timer->it.cpu.task;
- int ret = 0;
-
- if (likely(p != NULL)) {
- read_lock(&tasklist_lock);
- if (unlikely(p->sighand == NULL)) {
- /*
- * We raced with the reaping of the task.
- * The deletion should have cleared us off the list.
- */
- BUG_ON(!list_empty(&timer->it.cpu.entry));
- } else {
- spin_lock(&p->sighand->siglock);
- if (timer->it.cpu.firing)
- ret = TIMER_RETRY;
- else
- list_del(&timer->it.cpu.entry);
- spin_unlock(&p->sighand->siglock);
- }
- read_unlock(&tasklist_lock);
-
- if (!ret)
- put_task_struct(p);
- }
-
- return ret;
-}
-
-/*
- * Clean out CPU timers still ticking when a thread exited. The task
- * pointer is cleared, and the expiry time is replaced with the residual
- * time for later timer_gettime calls to return.
- * This must be called with the siglock held.
- */
-static void cleanup_timers(struct list_head *head,
- cputime_t utime, cputime_t stime,
- unsigned long long sum_exec_runtime)
-{
- struct cpu_timer_list *timer, *next;
- cputime_t ptime = cputime_add(utime, stime);
-
- list_for_each_entry_safe(timer, next, head, entry) {
- list_del_init(&timer->entry);
- if (cputime_lt(timer->expires.cpu, ptime)) {
- timer->expires.cpu = cputime_zero;
- } else {
- timer->expires.cpu = cputime_sub(timer->expires.cpu,
- ptime);
- }
- }
-
- ++head;
- list_for_each_entry_safe(timer, next, head, entry) {
- list_del_init(&timer->entry);
- if (cputime_lt(timer->expires.cpu, utime)) {
- timer->expires.cpu = cputime_zero;
- } else {
- timer->expires.cpu = cputime_sub(timer->expires.cpu,
- utime);
- }
- }
-
- ++head;
- list_for_each_entry_safe(timer, next, head, entry) {
- list_del_init(&timer->entry);
- if (timer->expires.sched < sum_exec_runtime) {
- timer->expires.sched = 0;
- } else {
- timer->expires.sched -= sum_exec_runtime;
- }
- }
-}
-
-/*
- * These are both called with the siglock held, when the current thread
- * is being reaped. When the final (leader) thread in the group is reaped,
- * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
- */
-void posix_cpu_timers_exit(struct task_struct *tsk)
-{
- cleanup_timers(tsk->cpu_timers,
- tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
-
-}
-void posix_cpu_timers_exit_group(struct task_struct *tsk)
-{
- struct signal_struct *const sig = tsk->signal;
-
- cleanup_timers(tsk->signal->cpu_timers,
- cputime_add(tsk->utime, sig->utime),
- cputime_add(tsk->stime, sig->stime),
- tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
-}
-
-static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
-{
- /*
- * That's all for this thread or process.
- * We leave our residual in expires to be reported.
- */
- put_task_struct(timer->it.cpu.task);
- timer->it.cpu.task = NULL;
- timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
- timer->it.cpu.expires,
- now);
-}
-
-static inline int expires_gt(cputime_t expires, cputime_t new_exp)
-{
- return cputime_eq(expires, cputime_zero) ||
- cputime_gt(expires, new_exp);
-}
-
-/*
- * Insert the timer on the appropriate list before any timers that
- * expire later. This must be called with the tasklist_lock held
- * for reading, interrupts disabled and p->sighand->siglock taken.
- */
-static void arm_timer(struct k_itimer *timer)
-{
- struct task_struct *p = timer->it.cpu.task;
- struct list_head *head, *listpos;
- struct task_cputime *cputime_expires;
- struct cpu_timer_list *const nt = &timer->it.cpu;
- struct cpu_timer_list *next;
-
- if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
- head = p->cpu_timers;
- cputime_expires = &p->cputime_expires;
- } else {
- head = p->signal->cpu_timers;
- cputime_expires = &p->signal->cputime_expires;
- }
- head += POSIX_CLOCK_WHICH(timer->it_clock);
-
- listpos = head;
- list_for_each_entry(next, head, entry) {
- if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
- break;
- listpos = &next->entry;
- }
- list_add(&nt->entry, listpos);
-
- if (listpos == head) {
- union cpu_time_count *exp = &nt->expires;
-
- /*
- * We are the new earliest-expiring POSIX 1.b timer, hence
- * need to update expiration cache. Take into account that
- * for process timers we share expiration cache with itimers
- * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
- */
-
- switch (POSIX_CLOCK_WHICH(timer->it_clock)) {
- case POSIX_CLOCK_PROF:
- if (expires_gt(cputime_expires->prof_exp, exp->cpu))
- cputime_expires->prof_exp = exp->cpu;
- break;
- case POSIX_CLOCK_VIRT:
- if (expires_gt(cputime_expires->virt_exp, exp->cpu))
- cputime_expires->virt_exp = exp->cpu;
- break;
- case POSIX_CLOCK_SCHED:
- if (cputime_expires->sched_exp == 0 ||
- cputime_expires->sched_exp > exp->sched)
- cputime_expires->sched_exp = exp->sched;
- break;
- }
- }
-}
-
-/*
- * The timer is locked, fire it and arrange for its reload.
- */
-static void cpu_timer_fire(struct k_itimer *timer)
-{
- if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
- /*
- * User don't want any signal.
- */
- timer->it.cpu.expires.sched = 0;
- } else if (unlikely(timer->sigq == NULL)) {
- /*
- * This a special case for clock_nanosleep,
- * not a normal timer from sys_timer_create.
- */
- wake_up_process(timer->it_process);
- timer->it.cpu.expires.sched = 0;
- } else if (timer->it.cpu.incr.sched == 0) {
- /*
- * One-shot timer. Clear it as soon as it's fired.
- */
- posix_timer_event(timer, 0);
- timer->it.cpu.expires.sched = 0;
- } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
- /*
- * The signal did not get queued because the signal
- * was ignored, so we won't get any callback to
- * reload the timer. But we need to keep it
- * ticking in case the signal is deliverable next time.
- */
- posix_cpu_timer_schedule(timer);
- }
-}
-
-/*
- * Sample a process (thread group) timer for the given group_leader task.
- * Must be called with tasklist_lock held for reading.
- */
-static int cpu_timer_sample_group(const clockid_t which_clock,
- struct task_struct *p,
- union cpu_time_count *cpu)
-{
- struct task_cputime cputime;
-
- thread_group_cputimer(p, &cputime);
- switch (POSIX_CLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case POSIX_CLOCK_PROF:
- cpu->cpu = cputime_add(cputime.utime, cputime.stime);
- break;
- case POSIX_CLOCK_VIRT:
- cpu->cpu = cputime.utime;
- break;
- case POSIX_CLOCK_SCHED:
- cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
- break;
- }
- return 0;
-}
-
-/*
- * Guts of sys_timer_settime for CPU timers.
- * This is called with the timer locked and interrupts disabled.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
-int posix_cpu_timer_set(struct k_itimer *timer, int flags,
- struct itimerspec *new, struct itimerspec *old)
-{
- struct task_struct *p = timer->it.cpu.task;
- union cpu_time_count old_expires, new_expires, old_incr, val;
- int ret;
-
- if (unlikely(p == NULL)) {
- /*
- * Timer refers to a dead task's clock.
- */
- return -ESRCH;
- }
-
- new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
-
- read_lock(&tasklist_lock);
- /*
- * We need the tasklist_lock to protect against reaping that
- * clears p->sighand. If p has just been reaped, we can no
- * longer get any information about it at all.
- */
- if (unlikely(p->sighand == NULL)) {
- read_unlock(&tasklist_lock);
- put_task_struct(p);
- timer->it.cpu.task = NULL;
- return -ESRCH;
- }
-
- /*
- * Disarm any old timer after extracting its expiry time.
- */
- BUG_ON(!irqs_disabled());
-
- ret = 0;
- old_incr = timer->it.cpu.incr;
- spin_lock(&p->sighand->siglock);
- old_expires = timer->it.cpu.expires;
- if (unlikely(timer->it.cpu.firing)) {
- timer->it.cpu.firing = -1;
- ret = TIMER_RETRY;
- } else
- list_del_init(&timer->it.cpu.entry);
-
- /*
- * We need to sample the current value to convert the new
- * value from to relative and absolute, and to convert the
- * old value from absolute to relative. To set a process
- * timer, we need a sample to balance the thread expiry
- * times (in arm_timer). With an absolute time, we must
- * check if it's already passed. In short, we need a sample.
- */
- if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &val);
- } else {
- cpu_timer_sample_group(timer->it_clock, p, &val);
- }
-
- if (old) {
- if (old_expires.sched == 0) {
- old->it_value.tv_sec = 0;
- old->it_value.tv_nsec = 0;
- } else {
- /*
- * Update the timer in case it has
- * overrun already. If it has,
- * we'll report it as having overrun
- * and with the next reloaded timer
- * already ticking, though we are
- * swallowing that pending
- * notification here to install the
- * new setting.
- */
- bump_cpu_timer(timer, val);
- if (cpu_time_before(timer->it_clock, val,
- timer->it.cpu.expires)) {
- old_expires = cpu_time_sub(
- timer->it_clock,
- timer->it.cpu.expires, val);
- sample_to_timespec(timer->it_clock,
- old_expires,
- &old->it_value);
- } else {
- old->it_value.tv_nsec = 1;
- old->it_value.tv_sec = 0;
- }
- }
- }
-
- if (unlikely(ret)) {
- /*
- * We are colliding with the timer actually firing.
- * Punt after filling in the timer's old value, and
- * disable this firing since we are already reporting
- * it as an overrun (thanks to bump_cpu_timer above).
- */
- spin_unlock(&p->sighand->siglock);
- read_unlock(&tasklist_lock);
- goto out;
- }
-
- if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
- cpu_time_add(timer->it_clock, &new_expires, val);
- }
-
- /*
- * Install the new expiry time (or zero).
- * For a timer with no notification action, we don't actually
- * arm the timer (we'll just fake it for timer_gettime).
- */
- timer->it.cpu.expires = new_expires;
- if (new_expires.sched != 0 &&
- cpu_time_before(timer->it_clock, val, new_expires)) {
- arm_timer(timer);
- }
-
- spin_unlock(&p->sighand->siglock);
- read_unlock(&tasklist_lock);
-
- /*
- * Install the new reload setting, and
- * set up the signal and overrun bookkeeping.
- */
- timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
- &new->it_interval);
-
- /*
- * This acts as a modification timestamp for the timer,
- * so any automatic reload attempt will punt on seeing
- * that we have reset the timer manually.
- */
- timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
- ~REQUEUE_PENDING;
- timer->it_overrun_last = 0;
- timer->it_overrun = -1;
-
- if (new_expires.sched != 0 &&
- !cpu_time_before(timer->it_clock, val, new_expires)) {
- /*
- * The designated time already passed, so we notify
- * immediately, even if the thread never runs to
- * accumulate more time on this clock.
- */
- cpu_timer_fire(timer);
- }
-
- ret = 0;
- out:
- if (old) {
- sample_to_timespec(timer->it_clock,
- old_incr, &old->it_interval);
- }
- return ret;
-}
-
-void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
-{
- union cpu_time_count now;
- struct task_struct *p = timer->it.cpu.task;
- int clear_dead;
-
- /*
- * Easy part: convert the reload time.
- */
- sample_to_timespec(timer->it_clock,
- timer->it.cpu.incr, &itp->it_interval);
-
- if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
- itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
- return;
- }
-
- if (unlikely(p == NULL)) {
- /*
- * This task already died and the timer will never fire.
- * In this case, expires is actually the dead value.
- */
- dead:
- sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
- &itp->it_value);
- return;
- }
-
- /*
- * Sample the clock to take the difference with the expiry time.
- */
- if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &now);
- clear_dead = p->exit_state;
- } else {
- read_lock(&tasklist_lock);
- if (unlikely(p->sighand == NULL)) {
- /*
- * The process has been reaped.
- * We can't even collect a sample any more.
- * Call the timer disarmed, nothing else to do.
- */
- put_task_struct(p);
- timer->it.cpu.task = NULL;
- timer->it.cpu.expires.sched = 0;
- read_unlock(&tasklist_lock);
- goto dead;
- } else {
- cpu_timer_sample_group(timer->it_clock, p, &now);
- clear_dead = (unlikely(p->exit_state) &&
- thread_group_empty(p));
- }
- read_unlock(&tasklist_lock);
- }
-
- if (unlikely(clear_dead)) {
- /*
- * We've noticed that the thread is dead, but
- * not yet reaped. Take this opportunity to
- * drop our task ref.
- */
- clear_dead_task(timer, now);
- goto dead;
- }
-
- if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
- sample_to_timespec(timer->it_clock,
- cpu_time_sub(timer->it_clock,
- timer->it.cpu.expires, now),
- &itp->it_value);
- } else {
- /*
- * The timer should have expired already, but the firing
- * hasn't taken place yet. Say it's just about to expire.
- */
- itp->it_value.tv_nsec = 1;
- itp->it_value.tv_sec = 0;
- }
-}
-
-/*
- * Check for any per-thread CPU timers that have fired and move them off
- * the tsk->cpu_timers[N] list onto the firing list. Here we update the
- * tsk->it_*_expires values to reflect the remaining thread CPU timers.
- */
-static void check_thread_timers(struct task_struct *tsk,
- struct list_head *firing)
-{
- int maxfire;
- struct list_head *timers = tsk->cpu_timers;
- struct signal_struct *const sig = tsk->signal;
- unsigned long soft;
-
- maxfire = 20;
- tsk->cputime_expires.prof_exp = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
- tsk->cputime_expires.prof_exp = t->expires.cpu;
- break;
- }
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
-
- ++timers;
- maxfire = 20;
- tsk->cputime_expires.virt_exp = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
- tsk->cputime_expires.virt_exp = t->expires.cpu;
- break;
- }
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
-
- ++timers;
- maxfire = 20;
- tsk->cputime_expires.sched_exp = 0;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
- tsk->cputime_expires.sched_exp = t->expires.sched;
- break;
- }
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
-
- /*
- * Check for the special case thread timers.
- */
- soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
- if (soft != RLIM_INFINITY) {
- unsigned long hard =
- ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
-
- if (hard != RLIM_INFINITY &&
- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
- */
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
- if (soft < hard) {
- soft += USEC_PER_SEC;
- sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
- }
- printk(KERN_INFO
- "RT Watchdog Timeout: %s[%d]\n",
- tsk->comm, task_pid_nr(tsk));
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- }
- }
-}
-
-static void stop_process_timers(struct signal_struct *sig)
-{
- struct thread_group_cputimer *cputimer = &sig->cputimer;
- unsigned long flags;
-
- spin_lock_irqsave(&cputimer->lock, flags);
- cputimer->running = 0;
- spin_unlock_irqrestore(&cputimer->lock, flags);
-}
-
-static u32 onecputick;
-
-static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
- cputime_t *expires, cputime_t cur_time, int signo)
-{
- if (cputime_eq(it->expires, cputime_zero))
- return;
-
- if (cputime_ge(cur_time, it->expires)) {
- if (!cputime_eq(it->incr, cputime_zero)) {
- it->expires = cputime_add(it->expires, it->incr);
- it->error += it->incr_error;
- if (it->error >= onecputick) {
- it->expires = cputime_sub(it->expires,
- cputime_one_jiffy);
- it->error -= onecputick;
- }
- } else {
- it->expires = cputime_zero;
- }
-
- trace_itimer_expire(signo == SIGPROF ?
- ITIMER_PROF : ITIMER_VIRTUAL,
- tsk->signal->leader_pid, cur_time);
- __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
- }
-
- if (!cputime_eq(it->expires, cputime_zero) &&
- (cputime_eq(*expires, cputime_zero) ||
- cputime_lt(it->expires, *expires))) {
- *expires = it->expires;
- }
-}
-
-/**
- * task_cputime_zero - Check a task_cputime struct for all zero fields.
- *
- * @cputime: The struct to compare.
- *
- * Checks @cputime to see if all fields are zero. Returns true if all fields
- * are zero, false if any field is nonzero.
- */
-static inline int task_cputime_zero(const struct task_cputime *cputime)
-{
- if (cputime_eq(cputime->utime, cputime_zero) &&
- cputime_eq(cputime->stime, cputime_zero) &&
- cputime->sum_exec_runtime == 0)
- return 1;
- return 0;
-}
-
-/*
- * Check for any per-thread CPU timers that have fired and move them
- * off the tsk->*_timers list onto the firing list. Per-thread timers
- * have already been taken off.
- */
-static void check_process_timers(struct task_struct *tsk,
- struct list_head *firing)
-{
- int maxfire;
- struct signal_struct *const sig = tsk->signal;
- cputime_t utime, ptime, virt_expires, prof_expires;
- unsigned long long sum_sched_runtime, sched_expires;
- struct list_head *timers = sig->cpu_timers;
- struct task_cputime cputime;
- unsigned long soft;
-
- /*
- * Collect the current process totals.
- */
- thread_group_cputimer(tsk, &cputime);
- utime = cputime.utime;
- ptime = cputime_add(utime, cputime.stime);
- sum_sched_runtime = cputime.sum_exec_runtime;
- maxfire = 20;
- prof_expires = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *tl = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
- prof_expires = tl->expires.cpu;
- break;
- }
- tl->firing = 1;
- list_move_tail(&tl->entry, firing);
- }
-
- ++timers;
- maxfire = 20;
- virt_expires = cputime_zero;
- while (!list_empty(timers)) {
- struct cpu_timer_list *tl = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
- virt_expires = tl->expires.cpu;
- break;
- }
- tl->firing = 1;
- list_move_tail(&tl->entry, firing);
- }
-
- ++timers;
- maxfire = 20;
- sched_expires = 0;
- while (!list_empty(timers)) {
- struct cpu_timer_list *tl = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
- if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
- sched_expires = tl->expires.sched;
- break;
- }
- tl->firing = 1;
- list_move_tail(&tl->entry, firing);
- }
-
- /*
- * Check for the special case process timers.
- */
- check_cpu_itimer(tsk, &sig->it[POSIX_CLOCK_PROF], &prof_expires, ptime,
- SIGPROF);
- check_cpu_itimer(tsk, &sig->it[POSIX_CLOCK_VIRT], &virt_expires, utime,
- SIGVTALRM);
- soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
- if (soft != RLIM_INFINITY) {
- unsigned long psecs = cputime_to_secs(ptime);
- unsigned long hard =
- ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
- cputime_t x;
- if (psecs >= hard) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
- */
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
- if (psecs >= soft) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- if (soft < hard) {
- soft++;
- sig->rlim[RLIMIT_CPU].rlim_cur = soft;
- }
- }
- x = secs_to_cputime(soft);
- if (cputime_eq(prof_expires, cputime_zero) ||
- cputime_lt(x, prof_expires)) {
- prof_expires = x;
- }
- }
-
- sig->cputime_expires.prof_exp = prof_expires;
- sig->cputime_expires.virt_exp = virt_expires;
- sig->cputime_expires.sched_exp = sched_expires;
- if (task_cputime_zero(&sig->cputime_expires))
- stop_process_timers(sig);
-}
-
-/*
- * This is called from the signal code (via do_schedule_next_timer)
- * when the last timer signal was delivered and we have to reload the timer.
- */
-void posix_cpu_timer_schedule(struct k_itimer *timer)
-{
- struct task_struct *p = timer->it.cpu.task;
- union cpu_time_count now;
-
- if (unlikely(p == NULL))
- /*
- * The task was cleaned up already, no future firings.
- */
- goto out;
-
- /*
- * Fetch the current sample and update the timer's expiry time.
- */
- if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &now);
- bump_cpu_timer(timer, now);
- if (unlikely(p->exit_state)) {
- clear_dead_task(timer, now);
- goto out;
- }
- read_lock(&tasklist_lock); /* arm_timer needs it. */
- spin_lock(&p->sighand->siglock);
- } else {
- read_lock(&tasklist_lock);
- if (unlikely(p->sighand == NULL)) {
- /*
- * The process has been reaped.
- * We can't even collect a sample any more.
- */
- put_task_struct(p);
- timer->it.cpu.task = p = NULL;
- timer->it.cpu.expires.sched = 0;
- goto out_unlock;
- } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
- /*
- * We've noticed that the thread is dead, but
- * not yet reaped. Take this opportunity to
- * drop our task ref.
- */
- clear_dead_task(timer, now);
- goto out_unlock;
- }
- spin_lock(&p->sighand->siglock);
- cpu_timer_sample_group(timer->it_clock, p, &now);
- bump_cpu_timer(timer, now);
- /* Leave the tasklist_lock locked for the call below. */
- }
-
- /*
- * Now re-arm for the new expiry time.
- */
- BUG_ON(!irqs_disabled());
- arm_timer(timer);
- spin_unlock(&p->sighand->siglock);
-
-out_unlock:
- read_unlock(&tasklist_lock);
-
-out:
- timer->it_overrun_last = timer->it_overrun;
- timer->it_overrun = -1;
- ++timer->it_requeue_pending;
-}
-
-/**
- * task_cputime_expired - Compare two task_cputime entities.
- *
- * @sample: The task_cputime structure to be checked for expiration.
- * @expires: Expiration times, against which @sample will be checked.
- *
- * Checks @sample against @expires to see if any field of @sample has expired.
- * Returns true if any field of the former is greater than the corresponding
- * field of the latter if the latter field is set. Otherwise returns false.
- */
-static inline int task_cputime_expired(const struct task_cputime *sample,
- const struct task_cputime *expires)
-{
- if (!cputime_eq(expires->utime, cputime_zero) &&
- cputime_ge(sample->utime, expires->utime))
- return 1;
- if (!cputime_eq(expires->stime, cputime_zero) &&
- cputime_ge(cputime_add(sample->utime, sample->stime),
- expires->stime))
- return 1;
- if (expires->sum_exec_runtime != 0 &&
- sample->sum_exec_runtime >= expires->sum_exec_runtime)
- return 1;
- return 0;
-}
-
-/**
- * fastpath_timer_check - POSIX CPU timers fast path.
- *
- * @tsk: The task (thread) being checked.
- *
- * Check the task and thread group timers. If both are zero (there are no
- * timers set) return false. Otherwise snapshot the task and thread group
- * timers and compare them with the corresponding expiration times. Return
- * true if a timer has expired, else return false.
- */
-static inline int fastpath_timer_check(struct task_struct *tsk)
-{
- struct signal_struct *sig;
-
- /* tsk == current, ensure it is safe to use ->signal/sighand */
- if (unlikely(tsk->exit_state))
- return 0;
-
- if (!task_cputime_zero(&tsk->cputime_expires)) {
- struct task_cputime task_sample = {
- .utime = tsk->utime,
- .stime = tsk->stime,
- .sum_exec_runtime = tsk->se.sum_exec_runtime
- };
-
- if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
- return 1;
- }
-
- sig = tsk->signal;
- if (sig->cputimer.running) {
- struct task_cputime group_sample;
-
- thread_group_cputimer(tsk, &group_sample);
- if (task_cputime_expired(&group_sample, &sig->cputime_expires))
- return 1;
- }
-
- return 0;
-}
-
-/*
- * This is called from the timer interrupt handler. The irq handler has
- * already updated our counts. We need to check if any timers fire now.
- * Interrupts are disabled.
- */
-void run_posix_cpu_timers(struct task_struct *tsk)
-{
- LIST_HEAD(firing);
- struct k_itimer *timer, *next;
-
- BUG_ON(!irqs_disabled());
-
- /*
- * The fast path checks that there are no expired thread or thread
- * group timers. If that's so, just return.
- */
- if (!fastpath_timer_check(tsk))
- return;
-
- spin_lock(&tsk->sighand->siglock);
- /*
- * Here we take off tsk->signal->cpu_timers[N] and
- * tsk->cpu_timers[N] all the timers that are firing, and
- * put them on the firing list.
- */
- check_thread_timers(tsk, &firing);
- /*
- * If there are any active process wide timers (POSIX 1.b, itimers,
- * RLIMIT_CPU) cputimer must be running.
- */
- if (tsk->signal->cputimer.running)
- check_process_timers(tsk, &firing);
-
- /*
- * We must release these locks before taking any timer's lock.
- * There is a potential race with timer deletion here, as the
- * siglock now protects our private firing list. We have set
- * the firing flag in each timer, so that a deletion attempt
- * that gets the timer lock before we do will give it up and
- * spin until we've taken care of that timer below.
- */
- spin_unlock(&tsk->sighand->siglock);
-
- /*
- * Now that all the timers on our list have the firing flag,
- * noone will touch their list entries but us. We'll take
- * each timer's lock before clearing its firing flag, so no
- * timer call will interfere.
- */
- list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
- int cpu_firing;
-
- spin_lock(&timer->it_lock);
- list_del_init(&timer->it.cpu.entry);
- cpu_firing = timer->it.cpu.firing;
- timer->it.cpu.firing = 0;
- /*
- * The firing flag is -1 if we collided with a reset
- * of the timer, which already reported this
- * almost-firing as an overrun. So don't generate an event.
- */
- if (likely(cpu_firing >= 0))
- cpu_timer_fire(timer);
- spin_unlock(&timer->it_lock);
- }
-}
-
-/*
- * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
- * The tsk->sighand->siglock must be held by the caller.
- */
-void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
- cputime_t *newval, cputime_t *oldval)
-{
- union cpu_time_count now;
-
- BUG_ON(clock_idx == POSIX_CLOCK_SCHED);
- cpu_timer_sample_group(clock_idx, tsk, &now);
-
- if (oldval) {
- /*
- * We are setting itimer. The *oldval is absolute and we update
- * it to be relative, *newval argument is relative and we update
- * it to be absolute.
- */
- if (!cputime_eq(*oldval, cputime_zero)) {
- if (cputime_le(*oldval, now.cpu)) {
- /* Just about to fire. */
- *oldval = cputime_one_jiffy;
- } else {
- *oldval = cputime_sub(*oldval, now.cpu);
- }
- }
-
- if (cputime_eq(*newval, cputime_zero))
- return;
- *newval = cputime_add(*newval, now.cpu);
- }
-
- /*
- * Update expiration cache if we are the earliest timer, or eventually
- * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
- */
- switch (clock_idx) {
- case POSIX_CLOCK_PROF:
- if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
- tsk->signal->cputime_expires.prof_exp = *newval;
- break;
- case POSIX_CLOCK_VIRT:
- if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
- tsk->signal->cputime_expires.virt_exp = *newval;
- break;
- }
-}
-
-static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp, struct itimerspec *it)
-{
- struct k_itimer timer;
- int error;
-
- /*
- * Set up a temporary timer and then wait for it to go off.
- */
- memset(&timer, 0, sizeof timer);
- spin_lock_init(&timer.it_lock);
- timer.it_clock = which_clock;
- timer.it_overrun = -1;
- error = posix_cpu_timer_create(&timer);
- timer.it_process = current;
- if (!error) {
- static struct itimerspec zero_it;
-
- memset(it, 0, sizeof *it);
- it->it_value = *rqtp;
-
- spin_lock_irq(&timer.it_lock);
- error = posix_cpu_timer_set(&timer, flags, it, NULL);
- if (error) {
- spin_unlock_irq(&timer.it_lock);
- return error;
- }
-
- while (!signal_pending(current)) {
- if (timer.it.cpu.expires.sched == 0) {
- /*
- * Our timer fired and was reset.
- */
- spin_unlock_irq(&timer.it_lock);
- return 0;
- }
-
- /*
- * Block until cpu_timer_fire (or a signal) wakes us.
- */
- __set_current_state(TASK_INTERRUPTIBLE);
- spin_unlock_irq(&timer.it_lock);
- schedule();
- spin_lock_irq(&timer.it_lock);
- }
-
- /*
- * We were interrupted by a signal.
- */
- sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
- posix_cpu_timer_set(&timer, 0, &zero_it, it);
- spin_unlock_irq(&timer.it_lock);
-
- if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
- /*
- * It actually did fire already.
- */
- return 0;
- }
-
- error = -ERESTART_RESTARTBLOCK;
- }
-
- return error;
-}
-
-int posix_cpu_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp, struct timespec __user *rmtp)
-{
- struct restart_block *restart_block =
- ¤t_thread_info()->restart_block;
- struct itimerspec it;
- int error;
-
- /*
- * Diagnose required errors first.
- */
- if (POSIX_CLOCK_PERTHREAD(which_clock) &&
- (POSIX_CLOCK_PID(which_clock) == 0 ||
- POSIX_CLOCK_PID(which_clock) == current->pid))
- return -EINVAL;
-
- error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
-
- if (error == -ERESTART_RESTARTBLOCK) {
-
- if (flags & TIMER_ABSTIME)
- return -ERESTARTNOHAND;
- /*
- * Report back to the user the time still remaining.
- */
- if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
- return -EFAULT;
-
- restart_block->fn = posix_cpu_nsleep_restart;
- restart_block->arg0 = which_clock;
- restart_block->arg1 = (unsigned long) rmtp;
- restart_block->arg2 = rqtp->tv_sec;
- restart_block->arg3 = rqtp->tv_nsec;
- }
- return error;
-}
-
-long posix_cpu_nsleep_restart(struct restart_block *restart_block)
-{
- clockid_t which_clock = restart_block->arg0;
- struct timespec __user *rmtp;
- struct timespec t;
- struct itimerspec it;
- int error;
-
- rmtp = (struct timespec __user *) restart_block->arg1;
- t.tv_sec = restart_block->arg2;
- t.tv_nsec = restart_block->arg3;
-
- restart_block->fn = do_no_restart_syscall;
- error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
-
- if (error == -ERESTART_RESTARTBLOCK) {
- /*
- * Report back to the user the time still remaining.
- */
- if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
- return -EFAULT;
-
- restart_block->fn = posix_cpu_nsleep_restart;
- restart_block->arg0 = which_clock;
- restart_block->arg1 = (unsigned long) rmtp;
- restart_block->arg2 = t.tv_sec;
- restart_block->arg3 = t.tv_nsec;
- }
- return error;
-
-}
-
-
-#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, POSIX_CLOCK_SCHED)
-#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, POSIX_CLOCK_SCHED)
-
-static int process_cpu_clock_getres(const clockid_t which_clock,
- struct timespec *tp)
-{
- return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
-}
-static int process_cpu_clock_get(const clockid_t which_clock,
- struct timespec *tp)
-{
- return posix_cpu_clock_get(PROCESS_CLOCK, tp);
-}
-static int process_cpu_timer_create(struct k_itimer *timer)
-{
- timer->it_clock = PROCESS_CLOCK;
- return posix_cpu_timer_create(timer);
-}
-static int process_cpu_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp,
- struct timespec __user *rmtp)
-{
- return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
-}
-static long process_cpu_nsleep_restart(struct restart_block *restart_block)
-{
- return -EINVAL;
-}
-static int thread_cpu_clock_getres(const clockid_t which_clock,
- struct timespec *tp)
-{
- return posix_cpu_clock_getres(THREAD_CLOCK, tp);
-}
-static int thread_cpu_clock_get(const clockid_t which_clock,
- struct timespec *tp)
-{
- return posix_cpu_clock_get(THREAD_CLOCK, tp);
-}
-static int thread_cpu_timer_create(struct k_itimer *timer)
-{
- timer->it_clock = THREAD_CLOCK;
- return posix_cpu_timer_create(timer);
-}
-static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
- struct timespec *rqtp, struct timespec __user *rmtp)
-{
- return -EINVAL;
-}
-static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
-{
- return -EINVAL;
-}
-
-static __init int init_posix_cpu_timers(void)
-{
- struct k_clock cpu_process = {
- .clock_getres = process_cpu_clock_getres,
- .clock_get = process_cpu_clock_get,
- .clock_set = do_posix_clock_nosettime,
- .timer_create = process_cpu_timer_create,
- .nsleep = process_cpu_nsleep,
- .nsleep_restart = process_cpu_nsleep_restart,
- };
- struct k_clock cpu_thread = {
- .clock_getres = thread_cpu_clock_getres,
- .clock_get = thread_cpu_clock_get,
- .clock_set = do_posix_clock_nosettime,
- .timer_create = thread_cpu_timer_create,
- .nsleep = thread_cpu_nsleep,
- .nsleep_restart = thread_cpu_nsleep_restart,
- };
- struct k_clock wall_process = {
- .clock_getres = process_wall_getres,
- .clock_get = process_wall_get,
- .clock_set = wall_clock_set,
- .timer_create = wall_timer_create,
- .nsleep = process_wall_nsleep,
- .nsleep_restart = process_wall_nsleep_restart,
- };
- struct k_clock wall_thread = {
- .clock_getres = thread_wall_getres,
- .clock_get = thread_wall_get,
- .clock_set = wall_clock_set,
- .timer_create = wall_timer_create,
- .nsleep = thread_wall_nsleep,
- .nsleep_restart = thread_wall_nsleep_restart,
- };
- struct timespec ts;
-
- register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &cpu_process);
- register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &cpu_thread);
- register_posix_clock(CLOCK_PROCESS_WALLTIME_ID, &wall_process);
- register_posix_clock(CLOCK_THREAD_WALLTIME_ID, &wall_thread);
-
- cputime_to_timespec(cputime_one_jiffy, &ts);
- onecputick = ts.tv_nsec;
- WARN_ON(ts.tv_sec != 0);
-
- return 0;
-}
-__initcall(init_posix_cpu_timers);
diff --git a/kernel/posix-task-timers.c b/kernel/posix-task-timers.c
new file mode 100644
index 0000000..88c2f4c
--- /dev/null
+++ b/kernel/posix-task-timers.c
@@ -0,0 +1,1852 @@
+/*
+ * Implementation of CPU time and wall time clocks.
+ */
+
+#include <linux/sched.h>
+#include <linux/posix-timers.h>
+#include <linux/errno.h>
+#include <linux/math64.h>
+#include <asm/uaccess.h>
+#include <linux/kernel_stat.h>
+#include <trace/events/timer.h>
+
+/*
+ * Called after updating RLIMIT_CPU to run cpu timer and update
+ * tsk->signal->cputime_expires expiration cache if necessary. Needs
+ * siglock protection since other code may update expiration cache as
+ * well.
+ */
+void update_rlimit_cpu(unsigned long rlim_new)
+{
+ cputime_t cputime = secs_to_cputime(rlim_new);
+
+ spin_lock_irq(¤t->sighand->siglock);
+ set_process_cpu_timer(current, POSIX_CLOCK_PROF, &cputime, NULL);
+ spin_unlock_irq(¤t->sighand->siglock);
+}
+
+/* RCU lock needed */
+static int thread_clock_allowed(struct task_struct *p)
+{
+ const struct cred *cred, *pcred;
+
+ if (unlikely(capable(CAP_SYS_ADMIN)))
+ return 1;
+ cred = current_cred();
+ pcred = __task_cred(p);
+
+ return (cred->euid == pcred->euid ||
+ cred->euid == pcred->uid);
+}
+
+/* RCU read lock needed */
+static inline int process_clock_allowed(struct task_struct *p)
+{
+ return thread_group_leader(p);
+}
+
+static int check_task_clock(const clockid_t which_clock)
+{
+ int error = 0;
+ struct task_struct *p;
+ const pid_t pid = POSIX_CLOCK_PID(which_clock);
+
+ if (pid == 0)
+ return 0;
+
+ rcu_read_lock();
+ p = find_task_by_vpid(pid);
+ if (!p || !(POSIX_CLOCK_PERTHREAD(which_clock) ?
+ thread_clock_allowed(p) : process_clock_allowed(p))) {
+ error = -EINVAL;
+ }
+ rcu_read_unlock();
+
+ return error;
+}
+
+static inline int check_cpu_clock(const clockid_t which_clock)
+{
+ return !IS_CPU_CLOCK(which_clock) ?
+ -EINVAL : check_task_clock(which_clock);
+}
+
+static inline int check_wall_clock(const clockid_t which_clock)
+{
+ return !IS_WALL_CLOCK(which_clock) ?
+ -EINVAL : check_task_clock(which_clock);
+}
+
+/* Wall time clocks */
+
+/* Get the start time of the process/thread referenced by the wall clock.
+ * RCU lock required. */
+
+static int get_start_time(clockid_t which_clock, struct timespec *start)
+{
+ struct task_struct *p =
+ find_task_by_vpid(POSIX_CLOCK_PID(which_clock));
+ if (p && (
+ (POSIX_CLOCK_PERTHREAD(which_clock) &&
+ thread_clock_allowed(p)) ||
+ (!POSIX_CLOCK_PERTHREAD(which_clock) &&
+ process_clock_allowed(p) && p->sighand))) {
+ *start = p->start_time;
+ return 0;
+ }
+ return -EINVAL;
+}
+
+/* monotonic clock is used to get start_time and uptime
+ * so the precision is twice the precision of the monotonic clock */
+
+int wall_clock_getres(clockid_t which_clock, struct timespec *tp)
+{
+ int error = check_wall_clock(which_clock);
+ if (error)
+ return error;
+ error = hrtimer_get_res(CLOCK_MONOTONIC, tp);
+ if (error)
+ return error;
+ *tp = timespec_add_safe(*tp, *tp);
+ return 0;
+}
+
+int wall_clock_get(clockid_t which_clock, struct timespec *tp)
+{
+ struct timespec uptime, start;
+ int error = -EINVAL;
+
+ if (!IS_WALL_CLOCK(which_clock))
+ return error;
+
+ if (POSIX_CLOCK_PID(which_clock) == 0) {
+ start = (POSIX_CLOCK_PERTHREAD(which_clock) ?
+ current : current->group_leader)->start_time;
+ error = 0;
+ } else {
+ rcu_read_lock();
+ error = get_start_time(which_clock, &start);
+ rcu_read_unlock();
+ }
+
+ if (error)
+ return error;
+
+ do_posix_clock_monotonic_gettime(&uptime);
+ *tp = timespec_sub(uptime, start);
+
+ return 0;
+}
+
+int wall_clock_set(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return check_wall_clock(which_clock) ?: -EPERM;
+}
+
+int wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *tsave, struct timespec __user *rmtp)
+{
+ if (!IS_WALL_CLOCK(which_clock))
+ return -EINVAL;
+
+ if (flags & TIMER_ABSTIME) {
+ int error;
+ struct timespec start;
+
+ rcu_read_lock();
+ error = get_start_time(which_clock, &start);
+ rcu_read_unlock();
+
+ if (error)
+ return error;
+ *tsave = timespec_add_safe(*tsave, start);
+ }
+ return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
+ HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
+ CLOCK_MONOTONIC);
+}
+
+long wall_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+
+int wall_timer_get(struct k_itimer *timr,
+ struct itimerspec *cur_setting)
+{
+ return -EINVAL;
+}
+
+int wall_timer_create(struct k_itimer *new_timer)
+{
+ return -EINVAL;
+}
+
+int wall_timer_set(struct k_itimer *timr, int flags,
+ struct itimerspec *new_setting,
+ struct itimerspec *old_setting)
+{
+ return -EINVAL;
+}
+
+int wall_timer_del(struct k_itimer *timer)
+{
+ return -EINVAL;
+}
+
+#define PROCESS_WALLCLOCK MAKE_PROCESS_WALLCLOCK(0)
+#define THREAD_WALLCLOCK MAKE_THREAD_WALLCLOCK(0)
+
+static int process_wall_getres(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return wall_clock_getres(PROCESS_WALLCLOCK, tp);
+}
+static int process_wall_get(const clockid_t which_clock, struct timespec *tp)
+{
+ return wall_clock_get(PROCESS_WALLCLOCK, tp);
+}
+static int process_wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp,
+ struct timespec __user *rmtp)
+{
+ return wall_nsleep(PROCESS_WALLCLOCK, flags, rqtp, rmtp);
+}
+static long process_wall_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+static int thread_wall_getres(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return wall_clock_getres(THREAD_WALLCLOCK, tp);
+}
+static int thread_wall_get(const clockid_t which_clock, struct timespec *tp)
+{
+ return wall_clock_get(THREAD_WALLCLOCK, tp);
+}
+static int thread_wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp,
+ struct timespec __user *rmtp)
+{
+ return wall_nsleep(THREAD_WALLCLOCK, flags, rqtp, rmtp);
+}
+static long thread_wall_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+
+/* CPU time clocks */
+
+static inline union cpu_time_count
+timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
+{
+ union cpu_time_count ret;
+ ret.sched = 0; /* high half always zero when .cpu used */
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
+ ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
+ } else {
+ ret.cpu = timespec_to_cputime(tp);
+ }
+ return ret;
+}
+
+static void sample_to_timespec(const clockid_t which_clock,
+ union cpu_time_count cpu,
+ struct timespec *tp)
+{
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED)
+ *tp = ns_to_timespec(cpu.sched);
+ else
+ cputime_to_timespec(cpu.cpu, tp);
+}
+
+static inline int cpu_time_before(const clockid_t which_clock,
+ union cpu_time_count now,
+ union cpu_time_count then)
+{
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
+ return now.sched < then.sched;
+ } else {
+ return cputime_lt(now.cpu, then.cpu);
+ }
+}
+static inline void cpu_time_add(const clockid_t which_clock,
+ union cpu_time_count *acc,
+ union cpu_time_count val)
+{
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
+ acc->sched += val.sched;
+ } else {
+ acc->cpu = cputime_add(acc->cpu, val.cpu);
+ }
+}
+static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
+ union cpu_time_count a,
+ union cpu_time_count b)
+{
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
+ a.sched -= b.sched;
+ } else {
+ a.cpu = cputime_sub(a.cpu, b.cpu);
+ }
+ return a;
+}
+
+/*
+ * Divide and limit the result to res >= 1
+ *
+ * This is necessary to prevent signal delivery starvation, when the result of
+ * the division would be rounded down to 0.
+ */
+static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
+{
+ cputime_t res = cputime_div(time, div);
+
+ return max_t(cputime_t, res, 1);
+}
+
+/*
+ * Update expiry time from increment, and increase overrun count,
+ * given the current clock sample.
+ */
+static void bump_cpu_timer(struct k_itimer *timer,
+ union cpu_time_count now)
+{
+ int i;
+
+ if (timer->it.cpu.incr.sched == 0)
+ return;
+
+ if (POSIX_CLOCK_WHICH(timer->it_clock) == POSIX_CLOCK_SCHED) {
+ unsigned long long delta, incr;
+
+ if (now.sched < timer->it.cpu.expires.sched)
+ return;
+ incr = timer->it.cpu.incr.sched;
+ delta = now.sched + incr - timer->it.cpu.expires.sched;
+ /* Don't use (incr*2 < delta), incr*2 might overflow. */
+ for (i = 0; incr < delta - incr; i++)
+ incr = incr << 1;
+ for (; i >= 0; incr >>= 1, i--) {
+ if (delta < incr)
+ continue;
+ timer->it.cpu.expires.sched += incr;
+ timer->it_overrun += 1 << i;
+ delta -= incr;
+ }
+ } else {
+ cputime_t delta, incr;
+
+ if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
+ return;
+ incr = timer->it.cpu.incr.cpu;
+ delta = cputime_sub(cputime_add(now.cpu, incr),
+ timer->it.cpu.expires.cpu);
+ /* Don't use (incr*2 < delta), incr*2 might overflow. */
+ for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
+ incr = cputime_add(incr, incr);
+ for (; i >= 0; incr = cputime_halve(incr), i--) {
+ if (cputime_lt(delta, incr))
+ continue;
+ timer->it.cpu.expires.cpu =
+ cputime_add(timer->it.cpu.expires.cpu, incr);
+ timer->it_overrun += 1 << i;
+ delta = cputime_sub(delta, incr);
+ }
+ }
+}
+
+static inline cputime_t prof_ticks(struct task_struct *p)
+{
+ return cputime_add(p->utime, p->stime);
+}
+static inline cputime_t virt_ticks(struct task_struct *p)
+{
+ return p->utime;
+}
+
+int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
+{
+ int error = check_cpu_clock(which_clock);
+ if (!error) {
+ tp->tv_sec = 0;
+ tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
+ /*
+ * If sched_clock is using a cycle counter, we
+ * don't have any idea of its true resolution
+ * exported, but it is much more than 1s/HZ.
+ */
+ tp->tv_nsec = 1;
+ }
+ }
+ return error;
+}
+
+int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
+{
+ /*
+ * You can never reset a CPU clock, but we check for other errors
+ * in the call before failing with EPERM.
+ */
+ int error = check_cpu_clock(which_clock);
+ if (error == 0) {
+ error = -EPERM;
+ }
+ return error;
+}
+
+
+/*
+ * Sample a per-thread clock for the given task.
+ */
+static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
+ union cpu_time_count *cpu)
+{
+ switch (POSIX_CLOCK_WHICH(which_clock)) {
+ default:
+ return -EINVAL;
+ case POSIX_CLOCK_PROF:
+ cpu->cpu = prof_ticks(p);
+ break;
+ case POSIX_CLOCK_VIRT:
+ cpu->cpu = virt_ticks(p);
+ break;
+ case POSIX_CLOCK_SCHED:
+ cpu->sched = task_sched_runtime(p);
+ break;
+ }
+ return 0;
+}
+
+void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
+{
+ struct sighand_struct *sighand;
+ struct signal_struct *sig;
+ struct task_struct *t;
+
+ *times = INIT_CPUTIME;
+
+ rcu_read_lock();
+ sighand = rcu_dereference(tsk->sighand);
+ if (!sighand)
+ goto out;
+
+ sig = tsk->signal;
+
+ t = tsk;
+ do {
+ times->utime = cputime_add(times->utime, t->utime);
+ times->stime = cputime_add(times->stime, t->stime);
+ times->sum_exec_runtime += t->se.sum_exec_runtime;
+
+ t = next_thread(t);
+ } while (t != tsk);
+
+ times->utime = cputime_add(times->utime, sig->utime);
+ times->stime = cputime_add(times->stime, sig->stime);
+ times->sum_exec_runtime += sig->sum_sched_runtime;
+out:
+ rcu_read_unlock();
+}
+
+static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
+{
+ if (cputime_gt(b->utime, a->utime))
+ a->utime = b->utime;
+
+ if (cputime_gt(b->stime, a->stime))
+ a->stime = b->stime;
+
+ if (b->sum_exec_runtime > a->sum_exec_runtime)
+ a->sum_exec_runtime = b->sum_exec_runtime;
+}
+
+void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
+{
+ struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
+ struct task_cputime sum;
+ unsigned long flags;
+
+ spin_lock_irqsave(&cputimer->lock, flags);
+ if (!cputimer->running) {
+ cputimer->running = 1;
+ /*
+ * The POSIX timer interface allows for absolute time expiry
+ * values through the TIMER_ABSTIME flag, therefore we have
+ * to synchronize the timer to the clock every time we start
+ * it.
+ */
+ thread_group_cputime(tsk, &sum);
+ update_gt_cputime(&cputimer->cputime, &sum);
+ }
+ *times = cputimer->cputime;
+ spin_unlock_irqrestore(&cputimer->lock, flags);
+}
+
+/*
+ * Sample a process (thread group) clock for the given group_leader task.
+ * Must be called with tasklist_lock held for reading.
+ */
+static int cpu_clock_sample_group(const clockid_t which_clock,
+ struct task_struct *p,
+ union cpu_time_count *cpu)
+{
+ struct task_cputime cputime;
+
+ switch (POSIX_CLOCK_WHICH(which_clock)) {
+ default:
+ return -EINVAL;
+ case POSIX_CLOCK_PROF:
+ thread_group_cputime(p, &cputime);
+ cpu->cpu = cputime_add(cputime.utime, cputime.stime);
+ break;
+ case POSIX_CLOCK_VIRT:
+ thread_group_cputime(p, &cputime);
+ cpu->cpu = cputime.utime;
+ break;
+ case POSIX_CLOCK_SCHED:
+ cpu->sched = thread_group_sched_runtime(p);
+ break;
+ }
+ return 0;
+}
+
+
+int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
+{
+ const pid_t pid = POSIX_CLOCK_PID(which_clock);
+ int error = -EINVAL;
+ union cpu_time_count rtn;
+
+ if (pid == 0) {
+ /*
+ * Special case constant value for our own clocks.
+ * We don't have to do any lookup to find ourselves.
+ */
+ if (POSIX_CLOCK_PERTHREAD(which_clock)) {
+ /*
+ * Sampling just ourselves we can do with no locking.
+ */
+ error = cpu_clock_sample(which_clock,
+ current, &rtn);
+ } else {
+ read_lock(&tasklist_lock);
+ error = cpu_clock_sample_group(which_clock,
+ current, &rtn);
+ read_unlock(&tasklist_lock);
+ }
+ } else {
+ /*
+ * Find the given PID, and validate that the caller
+ * should be able to see it.
+ */
+ struct task_struct *p;
+ rcu_read_lock();
+ p = find_task_by_vpid(pid);
+ if (p) {
+ if (POSIX_CLOCK_PERTHREAD(which_clock)) {
+ if (thread_clock_allowed(p)) {
+ error = cpu_clock_sample(which_clock,
+ p, &rtn);
+ }
+ } else {
+ read_lock(&tasklist_lock);
+ if (process_clock_allowed(p) && p->sighand) {
+ error =
+ cpu_clock_sample_group(which_clock,
+ p, &rtn);
+ }
+ read_unlock(&tasklist_lock);
+ }
+ }
+ rcu_read_unlock();
+ }
+
+ if (error)
+ return error;
+ sample_to_timespec(which_clock, rtn, tp);
+ return 0;
+}
+
+
+/*
+ * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
+ * This is called from sys_timer_create() and do_cpu_nanosleep() with the
+ * new timer already all-zeros initialized.
+ */
+int posix_cpu_timer_create(struct k_itimer *new_timer)
+{
+ int ret = 0;
+ const pid_t pid = POSIX_CLOCK_PID(new_timer->it_clock);
+ struct task_struct *p;
+
+ if (POSIX_CLOCK_WHICH(new_timer->it_clock) >= POSIX_CLOCK_MAX)
+ return -EINVAL;
+
+ INIT_LIST_HEAD(&new_timer->it.cpu.entry);
+
+ read_lock(&tasklist_lock);
+ if (POSIX_CLOCK_PERTHREAD(new_timer->it_clock)) {
+ if (pid == 0) {
+ p = current;
+ } else {
+ p = find_task_by_vpid(pid);
+ if (p && !thread_clock_allowed(p))
+ p = NULL;
+ }
+ } else {
+ if (pid == 0) {
+ p = current->group_leader;
+ } else {
+ p = find_task_by_vpid(pid);
+ if (p && !process_clock_allowed(p))
+ p = NULL;
+ }
+ }
+ new_timer->it.cpu.task = p;
+ if (p) {
+ get_task_struct(p);
+ } else {
+ ret = -EINVAL;
+ }
+ read_unlock(&tasklist_lock);
+
+ return ret;
+}
+
+/*
+ * Clean up a CPU-clock timer that is about to be destroyed.
+ * This is called from timer deletion with the timer already locked.
+ * If we return TIMER_RETRY, it's necessary to release the timer's lock
+ * and try again. (This happens when the timer is in the middle of firing.)
+ */
+int posix_cpu_timer_del(struct k_itimer *timer)
+{
+ struct task_struct *p = timer->it.cpu.task;
+ int ret = 0;
+
+ if (likely(p != NULL)) {
+ read_lock(&tasklist_lock);
+ if (unlikely(p->sighand == NULL)) {
+ /*
+ * We raced with the reaping of the task.
+ * The deletion should have cleared us off the list.
+ */
+ BUG_ON(!list_empty(&timer->it.cpu.entry));
+ } else {
+ spin_lock(&p->sighand->siglock);
+ if (timer->it.cpu.firing)
+ ret = TIMER_RETRY;
+ else
+ list_del(&timer->it.cpu.entry);
+ spin_unlock(&p->sighand->siglock);
+ }
+ read_unlock(&tasklist_lock);
+
+ if (!ret)
+ put_task_struct(p);
+ }
+
+ return ret;
+}
+
+/*
+ * Clean out CPU timers still ticking when a thread exited. The task
+ * pointer is cleared, and the expiry time is replaced with the residual
+ * time for later timer_gettime calls to return.
+ * This must be called with the siglock held.
+ */
+static void cleanup_timers(struct list_head *head,
+ cputime_t utime, cputime_t stime,
+ unsigned long long sum_exec_runtime)
+{
+ struct cpu_timer_list *timer, *next;
+ cputime_t ptime = cputime_add(utime, stime);
+
+ list_for_each_entry_safe(timer, next, head, entry) {
+ list_del_init(&timer->entry);
+ if (cputime_lt(timer->expires.cpu, ptime)) {
+ timer->expires.cpu = cputime_zero;
+ } else {
+ timer->expires.cpu = cputime_sub(timer->expires.cpu,
+ ptime);
+ }
+ }
+
+ ++head;
+ list_for_each_entry_safe(timer, next, head, entry) {
+ list_del_init(&timer->entry);
+ if (cputime_lt(timer->expires.cpu, utime)) {
+ timer->expires.cpu = cputime_zero;
+ } else {
+ timer->expires.cpu = cputime_sub(timer->expires.cpu,
+ utime);
+ }
+ }
+
+ ++head;
+ list_for_each_entry_safe(timer, next, head, entry) {
+ list_del_init(&timer->entry);
+ if (timer->expires.sched < sum_exec_runtime) {
+ timer->expires.sched = 0;
+ } else {
+ timer->expires.sched -= sum_exec_runtime;
+ }
+ }
+}
+
+/*
+ * These are both called with the siglock held, when the current thread
+ * is being reaped. When the final (leader) thread in the group is reaped,
+ * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
+ */
+void posix_cpu_timers_exit(struct task_struct *tsk)
+{
+ cleanup_timers(tsk->cpu_timers,
+ tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
+
+}
+void posix_cpu_timers_exit_group(struct task_struct *tsk)
+{
+ struct signal_struct *const sig = tsk->signal;
+
+ cleanup_timers(tsk->signal->cpu_timers,
+ cputime_add(tsk->utime, sig->utime),
+ cputime_add(tsk->stime, sig->stime),
+ tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
+}
+
+static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
+{
+ /*
+ * That's all for this thread or process.
+ * We leave our residual in expires to be reported.
+ */
+ put_task_struct(timer->it.cpu.task);
+ timer->it.cpu.task = NULL;
+ timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
+ timer->it.cpu.expires,
+ now);
+}
+
+static inline int expires_gt(cputime_t expires, cputime_t new_exp)
+{
+ return cputime_eq(expires, cputime_zero) ||
+ cputime_gt(expires, new_exp);
+}
+
+/*
+ * Insert the timer on the appropriate list before any timers that
+ * expire later. This must be called with the tasklist_lock held
+ * for reading, interrupts disabled and p->sighand->siglock taken.
+ */
+static void arm_timer(struct k_itimer *timer)
+{
+ struct task_struct *p = timer->it.cpu.task;
+ struct list_head *head, *listpos;
+ struct task_cputime *cputime_expires;
+ struct cpu_timer_list *const nt = &timer->it.cpu;
+ struct cpu_timer_list *next;
+
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
+ head = p->cpu_timers;
+ cputime_expires = &p->cputime_expires;
+ } else {
+ head = p->signal->cpu_timers;
+ cputime_expires = &p->signal->cputime_expires;
+ }
+ head += POSIX_CLOCK_WHICH(timer->it_clock);
+
+ listpos = head;
+ list_for_each_entry(next, head, entry) {
+ if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
+ break;
+ listpos = &next->entry;
+ }
+ list_add(&nt->entry, listpos);
+
+ if (listpos == head) {
+ union cpu_time_count *exp = &nt->expires;
+
+ /*
+ * We are the new earliest-expiring POSIX 1.b timer, hence
+ * need to update expiration cache. Take into account that
+ * for process timers we share expiration cache with itimers
+ * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
+ */
+
+ switch (POSIX_CLOCK_WHICH(timer->it_clock)) {
+ case POSIX_CLOCK_PROF:
+ if (expires_gt(cputime_expires->prof_exp, exp->cpu))
+ cputime_expires->prof_exp = exp->cpu;
+ break;
+ case POSIX_CLOCK_VIRT:
+ if (expires_gt(cputime_expires->virt_exp, exp->cpu))
+ cputime_expires->virt_exp = exp->cpu;
+ break;
+ case POSIX_CLOCK_SCHED:
+ if (cputime_expires->sched_exp == 0 ||
+ cputime_expires->sched_exp > exp->sched)
+ cputime_expires->sched_exp = exp->sched;
+ break;
+ }
+ }
+}
+
+/*
+ * The timer is locked, fire it and arrange for its reload.
+ */
+static void cpu_timer_fire(struct k_itimer *timer)
+{
+ if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
+ /*
+ * User don't want any signal.
+ */
+ timer->it.cpu.expires.sched = 0;
+ } else if (unlikely(timer->sigq == NULL)) {
+ /*
+ * This a special case for clock_nanosleep,
+ * not a normal timer from sys_timer_create.
+ */
+ wake_up_process(timer->it_process);
+ timer->it.cpu.expires.sched = 0;
+ } else if (timer->it.cpu.incr.sched == 0) {
+ /*
+ * One-shot timer. Clear it as soon as it's fired.
+ */
+ posix_timer_event(timer, 0);
+ timer->it.cpu.expires.sched = 0;
+ } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
+ /*
+ * The signal did not get queued because the signal
+ * was ignored, so we won't get any callback to
+ * reload the timer. But we need to keep it
+ * ticking in case the signal is deliverable next time.
+ */
+ posix_cpu_timer_schedule(timer);
+ }
+}
+
+/*
+ * Sample a process (thread group) timer for the given group_leader task.
+ * Must be called with tasklist_lock held for reading.
+ */
+static int cpu_timer_sample_group(const clockid_t which_clock,
+ struct task_struct *p,
+ union cpu_time_count *cpu)
+{
+ struct task_cputime cputime;
+
+ thread_group_cputimer(p, &cputime);
+ switch (POSIX_CLOCK_WHICH(which_clock)) {
+ default:
+ return -EINVAL;
+ case POSIX_CLOCK_PROF:
+ cpu->cpu = cputime_add(cputime.utime, cputime.stime);
+ break;
+ case POSIX_CLOCK_VIRT:
+ cpu->cpu = cputime.utime;
+ break;
+ case POSIX_CLOCK_SCHED:
+ cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
+ break;
+ }
+ return 0;
+}
+
+/*
+ * Guts of sys_timer_settime for CPU timers.
+ * This is called with the timer locked and interrupts disabled.
+ * If we return TIMER_RETRY, it's necessary to release the timer's lock
+ * and try again. (This happens when the timer is in the middle of firing.)
+ */
+int posix_cpu_timer_set(struct k_itimer *timer, int flags,
+ struct itimerspec *new, struct itimerspec *old)
+{
+ struct task_struct *p = timer->it.cpu.task;
+ union cpu_time_count old_expires, new_expires, old_incr, val;
+ int ret;
+
+ if (unlikely(p == NULL)) {
+ /*
+ * Timer refers to a dead task's clock.
+ */
+ return -ESRCH;
+ }
+
+ new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
+
+ read_lock(&tasklist_lock);
+ /*
+ * We need the tasklist_lock to protect against reaping that
+ * clears p->sighand. If p has just been reaped, we can no
+ * longer get any information about it at all.
+ */
+ if (unlikely(p->sighand == NULL)) {
+ read_unlock(&tasklist_lock);
+ put_task_struct(p);
+ timer->it.cpu.task = NULL;
+ return -ESRCH;
+ }
+
+ /*
+ * Disarm any old timer after extracting its expiry time.
+ */
+ BUG_ON(!irqs_disabled());
+
+ ret = 0;
+ old_incr = timer->it.cpu.incr;
+ spin_lock(&p->sighand->siglock);
+ old_expires = timer->it.cpu.expires;
+ if (unlikely(timer->it.cpu.firing)) {
+ timer->it.cpu.firing = -1;
+ ret = TIMER_RETRY;
+ } else
+ list_del_init(&timer->it.cpu.entry);
+
+ /*
+ * We need to sample the current value to convert the new
+ * value from to relative and absolute, and to convert the
+ * old value from absolute to relative. To set a process
+ * timer, we need a sample to balance the thread expiry
+ * times (in arm_timer). With an absolute time, we must
+ * check if it's already passed. In short, we need a sample.
+ */
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
+ cpu_clock_sample(timer->it_clock, p, &val);
+ } else {
+ cpu_timer_sample_group(timer->it_clock, p, &val);
+ }
+
+ if (old) {
+ if (old_expires.sched == 0) {
+ old->it_value.tv_sec = 0;
+ old->it_value.tv_nsec = 0;
+ } else {
+ /*
+ * Update the timer in case it has
+ * overrun already. If it has,
+ * we'll report it as having overrun
+ * and with the next reloaded timer
+ * already ticking, though we are
+ * swallowing that pending
+ * notification here to install the
+ * new setting.
+ */
+ bump_cpu_timer(timer, val);
+ if (cpu_time_before(timer->it_clock, val,
+ timer->it.cpu.expires)) {
+ old_expires = cpu_time_sub(
+ timer->it_clock,
+ timer->it.cpu.expires, val);
+ sample_to_timespec(timer->it_clock,
+ old_expires,
+ &old->it_value);
+ } else {
+ old->it_value.tv_nsec = 1;
+ old->it_value.tv_sec = 0;
+ }
+ }
+ }
+
+ if (unlikely(ret)) {
+ /*
+ * We are colliding with the timer actually firing.
+ * Punt after filling in the timer's old value, and
+ * disable this firing since we are already reporting
+ * it as an overrun (thanks to bump_cpu_timer above).
+ */
+ spin_unlock(&p->sighand->siglock);
+ read_unlock(&tasklist_lock);
+ goto out;
+ }
+
+ if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
+ cpu_time_add(timer->it_clock, &new_expires, val);
+ }
+
+ /*
+ * Install the new expiry time (or zero).
+ * For a timer with no notification action, we don't actually
+ * arm the timer (we'll just fake it for timer_gettime).
+ */
+ timer->it.cpu.expires = new_expires;
+ if (new_expires.sched != 0 &&
+ cpu_time_before(timer->it_clock, val, new_expires)) {
+ arm_timer(timer);
+ }
+
+ spin_unlock(&p->sighand->siglock);
+ read_unlock(&tasklist_lock);
+
+ /*
+ * Install the new reload setting, and
+ * set up the signal and overrun bookkeeping.
+ */
+ timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
+ &new->it_interval);
+
+ /*
+ * This acts as a modification timestamp for the timer,
+ * so any automatic reload attempt will punt on seeing
+ * that we have reset the timer manually.
+ */
+ timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
+ ~REQUEUE_PENDING;
+ timer->it_overrun_last = 0;
+ timer->it_overrun = -1;
+
+ if (new_expires.sched != 0 &&
+ !cpu_time_before(timer->it_clock, val, new_expires)) {
+ /*
+ * The designated time already passed, so we notify
+ * immediately, even if the thread never runs to
+ * accumulate more time on this clock.
+ */
+ cpu_timer_fire(timer);
+ }
+
+ ret = 0;
+ out:
+ if (old) {
+ sample_to_timespec(timer->it_clock,
+ old_incr, &old->it_interval);
+ }
+ return ret;
+}
+
+void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
+{
+ union cpu_time_count now;
+ struct task_struct *p = timer->it.cpu.task;
+ int clear_dead;
+
+ /*
+ * Easy part: convert the reload time.
+ */
+ sample_to_timespec(timer->it_clock,
+ timer->it.cpu.incr, &itp->it_interval);
+
+ if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
+ itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
+ return;
+ }
+
+ if (unlikely(p == NULL)) {
+ /*
+ * This task already died and the timer will never fire.
+ * In this case, expires is actually the dead value.
+ */
+ dead:
+ sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
+ &itp->it_value);
+ return;
+ }
+
+ /*
+ * Sample the clock to take the difference with the expiry time.
+ */
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
+ cpu_clock_sample(timer->it_clock, p, &now);
+ clear_dead = p->exit_state;
+ } else {
+ read_lock(&tasklist_lock);
+ if (unlikely(p->sighand == NULL)) {
+ /*
+ * The process has been reaped.
+ * We can't even collect a sample any more.
+ * Call the timer disarmed, nothing else to do.
+ */
+ put_task_struct(p);
+ timer->it.cpu.task = NULL;
+ timer->it.cpu.expires.sched = 0;
+ read_unlock(&tasklist_lock);
+ goto dead;
+ } else {
+ cpu_timer_sample_group(timer->it_clock, p, &now);
+ clear_dead = (unlikely(p->exit_state) &&
+ thread_group_empty(p));
+ }
+ read_unlock(&tasklist_lock);
+ }
+
+ if (unlikely(clear_dead)) {
+ /*
+ * We've noticed that the thread is dead, but
+ * not yet reaped. Take this opportunity to
+ * drop our task ref.
+ */
+ clear_dead_task(timer, now);
+ goto dead;
+ }
+
+ if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
+ sample_to_timespec(timer->it_clock,
+ cpu_time_sub(timer->it_clock,
+ timer->it.cpu.expires, now),
+ &itp->it_value);
+ } else {
+ /*
+ * The timer should have expired already, but the firing
+ * hasn't taken place yet. Say it's just about to expire.
+ */
+ itp->it_value.tv_nsec = 1;
+ itp->it_value.tv_sec = 0;
+ }
+}
+
+/*
+ * Check for any per-thread CPU timers that have fired and move them off
+ * the tsk->cpu_timers[N] list onto the firing list. Here we update the
+ * tsk->it_*_expires values to reflect the remaining thread CPU timers.
+ */
+static void check_thread_timers(struct task_struct *tsk,
+ struct list_head *firing)
+{
+ int maxfire;
+ struct list_head *timers = tsk->cpu_timers;
+ struct signal_struct *const sig = tsk->signal;
+ unsigned long soft;
+
+ maxfire = 20;
+ tsk->cputime_expires.prof_exp = cputime_zero;
+ while (!list_empty(timers)) {
+ struct cpu_timer_list *t = list_first_entry(timers,
+ struct cpu_timer_list,
+ entry);
+ if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
+ tsk->cputime_expires.prof_exp = t->expires.cpu;
+ break;
+ }
+ t->firing = 1;
+ list_move_tail(&t->entry, firing);
+ }
+
+ ++timers;
+ maxfire = 20;
+ tsk->cputime_expires.virt_exp = cputime_zero;
+ while (!list_empty(timers)) {
+ struct cpu_timer_list *t = list_first_entry(timers,
+ struct cpu_timer_list,
+ entry);
+ if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
+ tsk->cputime_expires.virt_exp = t->expires.cpu;
+ break;
+ }
+ t->firing = 1;
+ list_move_tail(&t->entry, firing);
+ }
+
+ ++timers;
+ maxfire = 20;
+ tsk->cputime_expires.sched_exp = 0;
+ while (!list_empty(timers)) {
+ struct cpu_timer_list *t = list_first_entry(timers,
+ struct cpu_timer_list,
+ entry);
+ if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
+ tsk->cputime_expires.sched_exp = t->expires.sched;
+ break;
+ }
+ t->firing = 1;
+ list_move_tail(&t->entry, firing);
+ }
+
+ /*
+ * Check for the special case thread timers.
+ */
+ soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
+ if (soft != RLIM_INFINITY) {
+ unsigned long hard =
+ ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
+
+ if (hard != RLIM_INFINITY &&
+ tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
+ /*
+ * At the hard limit, we just die.
+ * No need to calculate anything else now.
+ */
+ __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
+ return;
+ }
+ if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
+ /*
+ * At the soft limit, send a SIGXCPU every second.
+ */
+ if (soft < hard) {
+ soft += USEC_PER_SEC;
+ sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
+ }
+ printk(KERN_INFO
+ "RT Watchdog Timeout: %s[%d]\n",
+ tsk->comm, task_pid_nr(tsk));
+ __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
+ }
+ }
+}
+
+static void stop_process_timers(struct signal_struct *sig)
+{
+ struct thread_group_cputimer *cputimer = &sig->cputimer;
+ unsigned long flags;
+
+ spin_lock_irqsave(&cputimer->lock, flags);
+ cputimer->running = 0;
+ spin_unlock_irqrestore(&cputimer->lock, flags);
+}
+
+static u32 onecputick;
+
+static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
+ cputime_t *expires, cputime_t cur_time, int signo)
+{
+ if (cputime_eq(it->expires, cputime_zero))
+ return;
+
+ if (cputime_ge(cur_time, it->expires)) {
+ if (!cputime_eq(it->incr, cputime_zero)) {
+ it->expires = cputime_add(it->expires, it->incr);
+ it->error += it->incr_error;
+ if (it->error >= onecputick) {
+ it->expires = cputime_sub(it->expires,
+ cputime_one_jiffy);
+ it->error -= onecputick;
+ }
+ } else {
+ it->expires = cputime_zero;
+ }
+
+ trace_itimer_expire(signo == SIGPROF ?
+ ITIMER_PROF : ITIMER_VIRTUAL,
+ tsk->signal->leader_pid, cur_time);
+ __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
+ }
+
+ if (!cputime_eq(it->expires, cputime_zero) &&
+ (cputime_eq(*expires, cputime_zero) ||
+ cputime_lt(it->expires, *expires))) {
+ *expires = it->expires;
+ }
+}
+
+/**
+ * task_cputime_zero - Check a task_cputime struct for all zero fields.
+ *
+ * @cputime: The struct to compare.
+ *
+ * Checks @cputime to see if all fields are zero. Returns true if all fields
+ * are zero, false if any field is nonzero.
+ */
+static inline int task_cputime_zero(const struct task_cputime *cputime)
+{
+ if (cputime_eq(cputime->utime, cputime_zero) &&
+ cputime_eq(cputime->stime, cputime_zero) &&
+ cputime->sum_exec_runtime == 0)
+ return 1;
+ return 0;
+}
+
+/*
+ * Check for any per-thread CPU timers that have fired and move them
+ * off the tsk->*_timers list onto the firing list. Per-thread timers
+ * have already been taken off.
+ */
+static void check_process_timers(struct task_struct *tsk,
+ struct list_head *firing)
+{
+ int maxfire;
+ struct signal_struct *const sig = tsk->signal;
+ cputime_t utime, ptime, virt_expires, prof_expires;
+ unsigned long long sum_sched_runtime, sched_expires;
+ struct list_head *timers = sig->cpu_timers;
+ struct task_cputime cputime;
+ unsigned long soft;
+
+ /*
+ * Collect the current process totals.
+ */
+ thread_group_cputimer(tsk, &cputime);
+ utime = cputime.utime;
+ ptime = cputime_add(utime, cputime.stime);
+ sum_sched_runtime = cputime.sum_exec_runtime;
+ maxfire = 20;
+ prof_expires = cputime_zero;
+ while (!list_empty(timers)) {
+ struct cpu_timer_list *tl = list_first_entry(timers,
+ struct cpu_timer_list,
+ entry);
+ if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
+ prof_expires = tl->expires.cpu;
+ break;
+ }
+ tl->firing = 1;
+ list_move_tail(&tl->entry, firing);
+ }
+
+ ++timers;
+ maxfire = 20;
+ virt_expires = cputime_zero;
+ while (!list_empty(timers)) {
+ struct cpu_timer_list *tl = list_first_entry(timers,
+ struct cpu_timer_list,
+ entry);
+ if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
+ virt_expires = tl->expires.cpu;
+ break;
+ }
+ tl->firing = 1;
+ list_move_tail(&tl->entry, firing);
+ }
+
+ ++timers;
+ maxfire = 20;
+ sched_expires = 0;
+ while (!list_empty(timers)) {
+ struct cpu_timer_list *tl = list_first_entry(timers,
+ struct cpu_timer_list,
+ entry);
+ if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
+ sched_expires = tl->expires.sched;
+ break;
+ }
+ tl->firing = 1;
+ list_move_tail(&tl->entry, firing);
+ }
+
+ /*
+ * Check for the special case process timers.
+ */
+ check_cpu_itimer(tsk, &sig->it[POSIX_CLOCK_PROF], &prof_expires, ptime,
+ SIGPROF);
+ check_cpu_itimer(tsk, &sig->it[POSIX_CLOCK_VIRT], &virt_expires, utime,
+ SIGVTALRM);
+ soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
+ if (soft != RLIM_INFINITY) {
+ unsigned long psecs = cputime_to_secs(ptime);
+ unsigned long hard =
+ ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
+ cputime_t x;
+ if (psecs >= hard) {
+ /*
+ * At the hard limit, we just die.
+ * No need to calculate anything else now.
+ */
+ __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
+ return;
+ }
+ if (psecs >= soft) {
+ /*
+ * At the soft limit, send a SIGXCPU every second.
+ */
+ __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
+ if (soft < hard) {
+ soft++;
+ sig->rlim[RLIMIT_CPU].rlim_cur = soft;
+ }
+ }
+ x = secs_to_cputime(soft);
+ if (cputime_eq(prof_expires, cputime_zero) ||
+ cputime_lt(x, prof_expires)) {
+ prof_expires = x;
+ }
+ }
+
+ sig->cputime_expires.prof_exp = prof_expires;
+ sig->cputime_expires.virt_exp = virt_expires;
+ sig->cputime_expires.sched_exp = sched_expires;
+ if (task_cputime_zero(&sig->cputime_expires))
+ stop_process_timers(sig);
+}
+
+/*
+ * This is called from the signal code (via do_schedule_next_timer)
+ * when the last timer signal was delivered and we have to reload the timer.
+ */
+void posix_cpu_timer_schedule(struct k_itimer *timer)
+{
+ struct task_struct *p = timer->it.cpu.task;
+ union cpu_time_count now;
+
+ if (unlikely(p == NULL))
+ /*
+ * The task was cleaned up already, no future firings.
+ */
+ goto out;
+
+ /*
+ * Fetch the current sample and update the timer's expiry time.
+ */
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
+ cpu_clock_sample(timer->it_clock, p, &now);
+ bump_cpu_timer(timer, now);
+ if (unlikely(p->exit_state)) {
+ clear_dead_task(timer, now);
+ goto out;
+ }
+ read_lock(&tasklist_lock); /* arm_timer needs it. */
+ spin_lock(&p->sighand->siglock);
+ } else {
+ read_lock(&tasklist_lock);
+ if (unlikely(p->sighand == NULL)) {
+ /*
+ * The process has been reaped.
+ * We can't even collect a sample any more.
+ */
+ put_task_struct(p);
+ timer->it.cpu.task = p = NULL;
+ timer->it.cpu.expires.sched = 0;
+ goto out_unlock;
+ } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
+ /*
+ * We've noticed that the thread is dead, but
+ * not yet reaped. Take this opportunity to
+ * drop our task ref.
+ */
+ clear_dead_task(timer, now);
+ goto out_unlock;
+ }
+ spin_lock(&p->sighand->siglock);
+ cpu_timer_sample_group(timer->it_clock, p, &now);
+ bump_cpu_timer(timer, now);
+ /* Leave the tasklist_lock locked for the call below. */
+ }
+
+ /*
+ * Now re-arm for the new expiry time.
+ */
+ BUG_ON(!irqs_disabled());
+ arm_timer(timer);
+ spin_unlock(&p->sighand->siglock);
+
+out_unlock:
+ read_unlock(&tasklist_lock);
+
+out:
+ timer->it_overrun_last = timer->it_overrun;
+ timer->it_overrun = -1;
+ ++timer->it_requeue_pending;
+}
+
+/**
+ * task_cputime_expired - Compare two task_cputime entities.
+ *
+ * @sample: The task_cputime structure to be checked for expiration.
+ * @expires: Expiration times, against which @sample will be checked.
+ *
+ * Checks @sample against @expires to see if any field of @sample has expired.
+ * Returns true if any field of the former is greater than the corresponding
+ * field of the latter if the latter field is set. Otherwise returns false.
+ */
+static inline int task_cputime_expired(const struct task_cputime *sample,
+ const struct task_cputime *expires)
+{
+ if (!cputime_eq(expires->utime, cputime_zero) &&
+ cputime_ge(sample->utime, expires->utime))
+ return 1;
+ if (!cputime_eq(expires->stime, cputime_zero) &&
+ cputime_ge(cputime_add(sample->utime, sample->stime),
+ expires->stime))
+ return 1;
+ if (expires->sum_exec_runtime != 0 &&
+ sample->sum_exec_runtime >= expires->sum_exec_runtime)
+ return 1;
+ return 0;
+}
+
+/**
+ * fastpath_timer_check - POSIX CPU timers fast path.
+ *
+ * @tsk: The task (thread) being checked.
+ *
+ * Check the task and thread group timers. If both are zero (there are no
+ * timers set) return false. Otherwise snapshot the task and thread group
+ * timers and compare them with the corresponding expiration times. Return
+ * true if a timer has expired, else return false.
+ */
+static inline int fastpath_timer_check(struct task_struct *tsk)
+{
+ struct signal_struct *sig;
+
+ /* tsk == current, ensure it is safe to use ->signal/sighand */
+ if (unlikely(tsk->exit_state))
+ return 0;
+
+ if (!task_cputime_zero(&tsk->cputime_expires)) {
+ struct task_cputime task_sample = {
+ .utime = tsk->utime,
+ .stime = tsk->stime,
+ .sum_exec_runtime = tsk->se.sum_exec_runtime
+ };
+
+ if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
+ return 1;
+ }
+
+ sig = tsk->signal;
+ if (sig->cputimer.running) {
+ struct task_cputime group_sample;
+
+ thread_group_cputimer(tsk, &group_sample);
+ if (task_cputime_expired(&group_sample, &sig->cputime_expires))
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * This is called from the timer interrupt handler. The irq handler has
+ * already updated our counts. We need to check if any timers fire now.
+ * Interrupts are disabled.
+ */
+void run_posix_cpu_timers(struct task_struct *tsk)
+{
+ LIST_HEAD(firing);
+ struct k_itimer *timer, *next;
+
+ BUG_ON(!irqs_disabled());
+
+ /*
+ * The fast path checks that there are no expired thread or thread
+ * group timers. If that's so, just return.
+ */
+ if (!fastpath_timer_check(tsk))
+ return;
+
+ spin_lock(&tsk->sighand->siglock);
+ /*
+ * Here we take off tsk->signal->cpu_timers[N] and
+ * tsk->cpu_timers[N] all the timers that are firing, and
+ * put them on the firing list.
+ */
+ check_thread_timers(tsk, &firing);
+ /*
+ * If there are any active process wide timers (POSIX 1.b, itimers,
+ * RLIMIT_CPU) cputimer must be running.
+ */
+ if (tsk->signal->cputimer.running)
+ check_process_timers(tsk, &firing);
+
+ /*
+ * We must release these locks before taking any timer's lock.
+ * There is a potential race with timer deletion here, as the
+ * siglock now protects our private firing list. We have set
+ * the firing flag in each timer, so that a deletion attempt
+ * that gets the timer lock before we do will give it up and
+ * spin until we've taken care of that timer below.
+ */
+ spin_unlock(&tsk->sighand->siglock);
+
+ /*
+ * Now that all the timers on our list have the firing flag,
+ * noone will touch their list entries but us. We'll take
+ * each timer's lock before clearing its firing flag, so no
+ * timer call will interfere.
+ */
+ list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
+ int cpu_firing;
+
+ spin_lock(&timer->it_lock);
+ list_del_init(&timer->it.cpu.entry);
+ cpu_firing = timer->it.cpu.firing;
+ timer->it.cpu.firing = 0;
+ /*
+ * The firing flag is -1 if we collided with a reset
+ * of the timer, which already reported this
+ * almost-firing as an overrun. So don't generate an event.
+ */
+ if (likely(cpu_firing >= 0))
+ cpu_timer_fire(timer);
+ spin_unlock(&timer->it_lock);
+ }
+}
+
+/*
+ * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
+ * The tsk->sighand->siglock must be held by the caller.
+ */
+void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
+ cputime_t *newval, cputime_t *oldval)
+{
+ union cpu_time_count now;
+
+ BUG_ON(clock_idx == POSIX_CLOCK_SCHED);
+ cpu_timer_sample_group(clock_idx, tsk, &now);
+
+ if (oldval) {
+ /*
+ * We are setting itimer. The *oldval is absolute and we update
+ * it to be relative, *newval argument is relative and we update
+ * it to be absolute.
+ */
+ if (!cputime_eq(*oldval, cputime_zero)) {
+ if (cputime_le(*oldval, now.cpu)) {
+ /* Just about to fire. */
+ *oldval = cputime_one_jiffy;
+ } else {
+ *oldval = cputime_sub(*oldval, now.cpu);
+ }
+ }
+
+ if (cputime_eq(*newval, cputime_zero))
+ return;
+ *newval = cputime_add(*newval, now.cpu);
+ }
+
+ /*
+ * Update expiration cache if we are the earliest timer, or eventually
+ * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
+ */
+ switch (clock_idx) {
+ case POSIX_CLOCK_PROF:
+ if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
+ tsk->signal->cputime_expires.prof_exp = *newval;
+ break;
+ case POSIX_CLOCK_VIRT:
+ if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
+ tsk->signal->cputime_expires.virt_exp = *newval;
+ break;
+ }
+}
+
+static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp, struct itimerspec *it)
+{
+ struct k_itimer timer;
+ int error;
+
+ /*
+ * Set up a temporary timer and then wait for it to go off.
+ */
+ memset(&timer, 0, sizeof timer);
+ spin_lock_init(&timer.it_lock);
+ timer.it_clock = which_clock;
+ timer.it_overrun = -1;
+ error = posix_cpu_timer_create(&timer);
+ timer.it_process = current;
+ if (!error) {
+ static struct itimerspec zero_it;
+
+ memset(it, 0, sizeof *it);
+ it->it_value = *rqtp;
+
+ spin_lock_irq(&timer.it_lock);
+ error = posix_cpu_timer_set(&timer, flags, it, NULL);
+ if (error) {
+ spin_unlock_irq(&timer.it_lock);
+ return error;
+ }
+
+ while (!signal_pending(current)) {
+ if (timer.it.cpu.expires.sched == 0) {
+ /*
+ * Our timer fired and was reset.
+ */
+ spin_unlock_irq(&timer.it_lock);
+ return 0;
+ }
+
+ /*
+ * Block until cpu_timer_fire (or a signal) wakes us.
+ */
+ __set_current_state(TASK_INTERRUPTIBLE);
+ spin_unlock_irq(&timer.it_lock);
+ schedule();
+ spin_lock_irq(&timer.it_lock);
+ }
+
+ /*
+ * We were interrupted by a signal.
+ */
+ sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
+ posix_cpu_timer_set(&timer, 0, &zero_it, it);
+ spin_unlock_irq(&timer.it_lock);
+
+ if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
+ /*
+ * It actually did fire already.
+ */
+ return 0;
+ }
+
+ error = -ERESTART_RESTARTBLOCK;
+ }
+
+ return error;
+}
+
+int posix_cpu_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp, struct timespec __user *rmtp)
+{
+ struct restart_block *restart_block =
+ ¤t_thread_info()->restart_block;
+ struct itimerspec it;
+ int error;
+
+ /*
+ * Diagnose required errors first.
+ */
+ if (POSIX_CLOCK_PERTHREAD(which_clock) &&
+ (POSIX_CLOCK_PID(which_clock) == 0 ||
+ POSIX_CLOCK_PID(which_clock) == current->pid))
+ return -EINVAL;
+
+ error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
+
+ if (error == -ERESTART_RESTARTBLOCK) {
+
+ if (flags & TIMER_ABSTIME)
+ return -ERESTARTNOHAND;
+ /*
+ * Report back to the user the time still remaining.
+ */
+ if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
+ return -EFAULT;
+
+ restart_block->fn = posix_cpu_nsleep_restart;
+ restart_block->arg0 = which_clock;
+ restart_block->arg1 = (unsigned long) rmtp;
+ restart_block->arg2 = rqtp->tv_sec;
+ restart_block->arg3 = rqtp->tv_nsec;
+ }
+ return error;
+}
+
+long posix_cpu_nsleep_restart(struct restart_block *restart_block)
+{
+ clockid_t which_clock = restart_block->arg0;
+ struct timespec __user *rmtp;
+ struct timespec t;
+ struct itimerspec it;
+ int error;
+
+ rmtp = (struct timespec __user *) restart_block->arg1;
+ t.tv_sec = restart_block->arg2;
+ t.tv_nsec = restart_block->arg3;
+
+ restart_block->fn = do_no_restart_syscall;
+ error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
+
+ if (error == -ERESTART_RESTARTBLOCK) {
+ /*
+ * Report back to the user the time still remaining.
+ */
+ if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
+ return -EFAULT;
+
+ restart_block->fn = posix_cpu_nsleep_restart;
+ restart_block->arg0 = which_clock;
+ restart_block->arg1 = (unsigned long) rmtp;
+ restart_block->arg2 = t.tv_sec;
+ restart_block->arg3 = t.tv_nsec;
+ }
+ return error;
+
+}
+
+
+#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, POSIX_CLOCK_SCHED)
+#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, POSIX_CLOCK_SCHED)
+
+static int process_cpu_clock_getres(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
+}
+static int process_cpu_clock_get(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return posix_cpu_clock_get(PROCESS_CLOCK, tp);
+}
+static int process_cpu_timer_create(struct k_itimer *timer)
+{
+ timer->it_clock = PROCESS_CLOCK;
+ return posix_cpu_timer_create(timer);
+}
+static int process_cpu_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp,
+ struct timespec __user *rmtp)
+{
+ return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
+}
+static long process_cpu_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+static int thread_cpu_clock_getres(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return posix_cpu_clock_getres(THREAD_CLOCK, tp);
+}
+static int thread_cpu_clock_get(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return posix_cpu_clock_get(THREAD_CLOCK, tp);
+}
+static int thread_cpu_timer_create(struct k_itimer *timer)
+{
+ timer->it_clock = THREAD_CLOCK;
+ return posix_cpu_timer_create(timer);
+}
+static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp, struct timespec __user *rmtp)
+{
+ return -EINVAL;
+}
+static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+
+static __init int init_posix_cpu_timers(void)
+{
+ struct k_clock cpu_process = {
+ .clock_getres = process_cpu_clock_getres,
+ .clock_get = process_cpu_clock_get,
+ .clock_set = do_posix_clock_nosettime,
+ .timer_create = process_cpu_timer_create,
+ .nsleep = process_cpu_nsleep,
+ .nsleep_restart = process_cpu_nsleep_restart,
+ };
+ struct k_clock cpu_thread = {
+ .clock_getres = thread_cpu_clock_getres,
+ .clock_get = thread_cpu_clock_get,
+ .clock_set = do_posix_clock_nosettime,
+ .timer_create = thread_cpu_timer_create,
+ .nsleep = thread_cpu_nsleep,
+ .nsleep_restart = thread_cpu_nsleep_restart,
+ };
+ struct k_clock wall_process = {
+ .clock_getres = process_wall_getres,
+ .clock_get = process_wall_get,
+ .clock_set = wall_clock_set,
+ .timer_create = wall_timer_create,
+ .nsleep = process_wall_nsleep,
+ .nsleep_restart = process_wall_nsleep_restart,
+ };
+ struct k_clock wall_thread = {
+ .clock_getres = thread_wall_getres,
+ .clock_get = thread_wall_get,
+ .clock_set = wall_clock_set,
+ .timer_create = wall_timer_create,
+ .nsleep = thread_wall_nsleep,
+ .nsleep_restart = thread_wall_nsleep_restart,
+ };
+ struct timespec ts;
+
+ register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &cpu_process);
+ register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &cpu_thread);
+ register_posix_clock(CLOCK_PROCESS_WALLTIME_ID, &wall_process);
+ register_posix_clock(CLOCK_THREAD_WALLTIME_ID, &wall_thread);
+
+ cputime_to_timespec(cputime_one_jiffy, &ts);
+ onecputick = ts.tv_nsec;
+ WARN_ON(ts.tv_sec != 0);
+
+ return 0;
+}
+__initcall(init_posix_cpu_timers);
--
1.6.3.3
Currently Linux lacks a good way to get an elapsed time
of a process/thread. This patch adds the interface to
obtain this piece of information. The access to the new
thread/process clock is restricted according to the same
rules as the access to the CPU clocks.
POSIX_CLOCK_WALL occupies previously unused value
(POSIX_CLOCK_MAX) in the clockid_t representation of a clock.
Signed-off-by: Tomasz Buchert <[email protected]>
---
include/linux/posix-timers.h | 27 ++++++
include/linux/time.h | 2 +
kernel/posix-cpu-timers.c | 214 +++++++++++++++++++++++++++++++++++++++---
kernel/posix-timers.c | 25 ++++-
4 files changed, 252 insertions(+), 16 deletions(-)
diff --git a/include/linux/posix-timers.h b/include/linux/posix-timers.h
index 07f33d2..d747870 100644
--- a/include/linux/posix-timers.h
+++ b/include/linux/posix-timers.h
@@ -28,12 +28,22 @@ struct cpu_timer_list {
#define POSIX_CLOCK_PROF 0
#define POSIX_CLOCK_VIRT 1
#define POSIX_CLOCK_SCHED 2
+#define POSIX_CLOCK_WALL 3
#define POSIX_CLOCK_MAX 3
+#define IS_CPU_CLOCK(clock) ((clock) < 0 && \
+ (POSIX_CLOCK_WHICH(clock) ^ POSIX_CLOCK_WALL))
+#define IS_WALL_CLOCK(clock) ((clock) < 0 && \
+ !(POSIX_CLOCK_WHICH(clock) ^ POSIX_CLOCK_WALL))
+
#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
((~(clockid_t) (pid) << 3) | (clockid_t) (clock))
#define MAKE_THREAD_CPUCLOCK(tid, clock) \
MAKE_PROCESS_CPUCLOCK((tid), (clock) | POSIX_CLOCK_PERTHREAD_MASK)
+#define MAKE_PROCESS_WALLCLOCK(pid) \
+ MAKE_PROCESS_CPUCLOCK(pid, POSIX_CLOCK_WALL)
+#define MAKE_THREAD_WALLCLOCK(pid) \
+ MAKE_THREAD_CPUCLOCK(pid, POSIX_CLOCK_WALL)
/* POSIX.1b interval timer structure. */
struct k_itimer {
@@ -95,6 +105,8 @@ int do_posix_clock_nosettime(const clockid_t, struct timespec *tp);
/* function to call to trigger timer event */
int posix_timer_event(struct k_itimer *timr, int si_private);
+/* CPU clocks */
+
int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *ts);
int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *ts);
int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *ts);
@@ -120,4 +132,19 @@ long clock_nanosleep_restart(struct restart_block *restart_block);
void update_rlimit_cpu(unsigned long rlim_new);
+/* Wall clocks */
+
+int wall_clock_getres(clockid_t which_clock, struct timespec *tp);
+int wall_clock_get(clockid_t which_clock, struct timespec *tp);
+int wall_clock_set(const clockid_t which_clock, struct timespec *tp);
+int wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *tsave, struct timespec __user *rmtp);
+long wall_nsleep_restart(struct restart_block *restart_block);
+int wall_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting);
+int wall_timer_create(struct k_itimer *new_timer);
+int wall_timer_set(struct k_itimer *timr, int flags,
+ struct itimerspec *new_setting,
+ struct itimerspec *old_setting);
+int wall_timer_del(struct k_itimer *timer);
+
#endif
diff --git a/include/linux/time.h b/include/linux/time.h
index ea3559f..596e6fb 100644
--- a/include/linux/time.h
+++ b/include/linux/time.h
@@ -275,6 +275,8 @@ struct itimerval {
#define CLOCK_MONOTONIC_RAW 4
#define CLOCK_REALTIME_COARSE 5
#define CLOCK_MONOTONIC_COARSE 6
+#define CLOCK_PROCESS_WALLTIME_ID 7
+#define CLOCK_THREAD_WALLTIME_ID 8
/*
* The IDs of various hardware clocks:
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index f106ac6..78ad536 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -25,29 +25,201 @@ void update_rlimit_cpu(unsigned long rlim_new)
spin_unlock_irq(¤t->sighand->siglock);
}
-static int check_clock(const clockid_t which_clock)
+static int check_task_clock(const clockid_t which_clock)
{
int error = 0;
struct task_struct *p;
const pid_t pid = POSIX_CLOCK_PID(which_clock);
- if (POSIX_CLOCK_WHICH(which_clock) >= POSIX_CLOCK_MAX)
- return -EINVAL;
-
if (pid == 0)
return 0;
- read_lock(&tasklist_lock);
+ rcu_read_lock();
p = find_task_by_vpid(pid);
if (!p || !(POSIX_CLOCK_PERTHREAD(which_clock) ?
same_thread_group(p, current) : thread_group_leader(p))) {
error = -EINVAL;
}
- read_unlock(&tasklist_lock);
+ rcu_read_unlock();
return error;
}
+static inline int check_cpu_clock(const clockid_t which_clock)
+{
+ return !IS_CPU_CLOCK(which_clock) ?
+ -EINVAL : check_task_clock(which_clock);
+}
+
+static inline int check_wall_clock(const clockid_t which_clock)
+{
+ return !IS_WALL_CLOCK(which_clock) ?
+ -EINVAL : check_task_clock(which_clock);
+}
+
+/* Wall time clocks */
+
+/* Get the start time of the process/thread referenced by the wall clock.
+ * RCU lock required. */
+
+static int get_start_time(clockid_t which_clock, struct timespec *start)
+{
+ struct task_struct *p =
+ find_task_by_vpid(POSIX_CLOCK_PID(which_clock));
+ if (p && (
+ (POSIX_CLOCK_PERTHREAD(which_clock) &&
+ same_thread_group(p, current)) ||
+ (!POSIX_CLOCK_PERTHREAD(which_clock) &&
+ thread_group_leader(p) && p->sighand))) {
+ *start = p->start_time;
+ return 0;
+ }
+ return -EINVAL;
+}
+
+/* monotonic clock is used to get start_time and uptime
+ * so the precision is twice the precision of the monotonic clock */
+
+int wall_clock_getres(clockid_t which_clock, struct timespec *tp)
+{
+ int error = check_wall_clock(which_clock);
+ if (error)
+ return error;
+ error = hrtimer_get_res(CLOCK_MONOTONIC, tp);
+ if (error)
+ return error;
+ *tp = timespec_add_safe(*tp, *tp);
+ return 0;
+}
+
+int wall_clock_get(clockid_t which_clock, struct timespec *tp)
+{
+ struct timespec uptime, start;
+ int error = -EINVAL;
+
+ if (!IS_WALL_CLOCK(which_clock))
+ return error;
+
+ if (POSIX_CLOCK_PID(which_clock) == 0) {
+ start = (POSIX_CLOCK_PERTHREAD(which_clock) ?
+ current : current->group_leader)->start_time;
+ error = 0;
+ } else {
+ rcu_read_lock();
+ error = get_start_time(which_clock, &start);
+ rcu_read_unlock();
+ }
+
+ if (error)
+ return error;
+
+ do_posix_clock_monotonic_gettime(&uptime);
+ *tp = timespec_sub(uptime, start);
+
+ return 0;
+}
+
+int wall_clock_set(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return check_wall_clock(which_clock) ?: -EPERM;
+}
+
+int wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *tsave, struct timespec __user *rmtp)
+{
+ if (!IS_WALL_CLOCK(which_clock))
+ return -EINVAL;
+
+ if (flags & TIMER_ABSTIME) {
+ int error;
+ struct timespec start;
+
+ rcu_read_lock();
+ error = get_start_time(which_clock, &start);
+ rcu_read_unlock();
+
+ if (error)
+ return error;
+ *tsave = timespec_add_safe(*tsave, start);
+ }
+ return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
+ HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
+ CLOCK_MONOTONIC);
+}
+
+long wall_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+
+int wall_timer_get(struct k_itimer *timr,
+ struct itimerspec *cur_setting)
+{
+ return -EINVAL;
+}
+
+int wall_timer_create(struct k_itimer *new_timer)
+{
+ return -EINVAL;
+}
+
+int wall_timer_set(struct k_itimer *timr, int flags,
+ struct itimerspec *new_setting,
+ struct itimerspec *old_setting)
+{
+ return -EINVAL;
+}
+
+int wall_timer_del(struct k_itimer *timer)
+{
+ return -EINVAL;
+}
+
+#define PROCESS_WALLCLOCK MAKE_PROCESS_WALLCLOCK(0)
+#define THREAD_WALLCLOCK MAKE_THREAD_WALLCLOCK(0)
+
+static int process_wall_getres(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return wall_clock_getres(PROCESS_WALLCLOCK, tp);
+}
+static int process_wall_get(const clockid_t which_clock, struct timespec *tp)
+{
+ return wall_clock_get(PROCESS_WALLCLOCK, tp);
+}
+static int process_wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp,
+ struct timespec __user *rmtp)
+{
+ return wall_nsleep(PROCESS_WALLCLOCK, flags, rqtp, rmtp);
+}
+static long process_wall_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+static int thread_wall_getres(const clockid_t which_clock,
+ struct timespec *tp)
+{
+ return wall_clock_getres(THREAD_WALLCLOCK, tp);
+}
+static int thread_wall_get(const clockid_t which_clock, struct timespec *tp)
+{
+ return wall_clock_get(THREAD_WALLCLOCK, tp);
+}
+static int thread_wall_nsleep(const clockid_t which_clock, int flags,
+ struct timespec *rqtp,
+ struct timespec __user *rmtp)
+{
+ return wall_nsleep(THREAD_WALLCLOCK, flags, rqtp, rmtp);
+}
+static long thread_wall_nsleep_restart(struct restart_block *restart_block)
+{
+ return -EINVAL;
+}
+
+/* CPU time clocks */
+
static inline union cpu_time_count
timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
{
@@ -178,7 +350,7 @@ static inline cputime_t virt_ticks(struct task_struct *p)
int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
- int error = check_clock(which_clock);
+ int error = check_cpu_clock(which_clock);
if (!error) {
tp->tv_sec = 0;
tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
@@ -200,7 +372,7 @@ int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
* You can never reset a CPU clock, but we check for other errors
* in the call before failing with EPERM.
*/
- int error = check_clock(which_clock);
+ int error = check_cpu_clock(which_clock);
if (error == 0) {
error = -EPERM;
}
@@ -1612,7 +1784,7 @@ static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
static __init int init_posix_cpu_timers(void)
{
- struct k_clock process = {
+ struct k_clock cpu_process = {
.clock_getres = process_cpu_clock_getres,
.clock_get = process_cpu_clock_get,
.clock_set = do_posix_clock_nosettime,
@@ -1620,7 +1792,7 @@ static __init int init_posix_cpu_timers(void)
.nsleep = process_cpu_nsleep,
.nsleep_restart = process_cpu_nsleep_restart,
};
- struct k_clock thread = {
+ struct k_clock cpu_thread = {
.clock_getres = thread_cpu_clock_getres,
.clock_get = thread_cpu_clock_get,
.clock_set = do_posix_clock_nosettime,
@@ -1628,10 +1800,28 @@ static __init int init_posix_cpu_timers(void)
.nsleep = thread_cpu_nsleep,
.nsleep_restart = thread_cpu_nsleep_restart,
};
+ struct k_clock wall_process = {
+ .clock_getres = process_wall_getres,
+ .clock_get = process_wall_get,
+ .clock_set = wall_clock_set,
+ .timer_create = wall_timer_create,
+ .nsleep = process_wall_nsleep,
+ .nsleep_restart = process_wall_nsleep_restart,
+ };
+ struct k_clock wall_thread = {
+ .clock_getres = thread_wall_getres,
+ .clock_get = thread_wall_get,
+ .clock_set = wall_clock_set,
+ .timer_create = wall_timer_create,
+ .nsleep = thread_wall_nsleep,
+ .nsleep_restart = thread_wall_nsleep_restart,
+ };
struct timespec ts;
- register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
- register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
+ register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &cpu_process);
+ register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &cpu_thread);
+ register_posix_clock(CLOCK_PROCESS_WALLTIME_ID, &wall_process);
+ register_posix_clock(CLOCK_THREAD_WALLTIME_ID, &wall_thread);
cputime_to_timespec(cputime_one_jiffy, &ts);
onecputick = ts.tv_nsec;
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index ad72342..beaef9e 100644
--- a/kernel/posix-timers.c
+++ b/kernel/posix-timers.c
@@ -153,12 +153,29 @@ static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
}
/*
+ * Call either POSIX CPU clocks or wall clocks.
+ */
+
+#define CLOCK_DISPATCH_PERTASK(clock, call, arglist) \
+ (IS_CPU_CLOCK(clock) ? \
+ posix_cpu_##call arglist : wall_##call arglist)
+
+/*
* Call the k_clock hook function if non-null, or the default function.
*/
+
+#define CLOCK_DISPATCH_NORMAL(clock, call, arglist) \
+ (posix_clocks[clock].call != NULL ? \
+ (*posix_clocks[clock].call) arglist : common_##call arglist)
+
+/*
+ * Dispatch between thread/process clocks and global clocks.
+ */
+
#define CLOCK_DISPATCH(clock, call, arglist) \
- ((clock) < 0 ? posix_cpu_##call arglist : \
- (posix_clocks[clock].call != NULL \
- ? (*posix_clocks[clock].call) arglist : common_##call arglist))
+ ((clock) < 0 ? \
+ CLOCK_DISPATCH_PERTASK((clock), call, arglist) : \
+ CLOCK_DISPATCH_NORMAL((clock), call, arglist))
/*
* Default clock hook functions when the struct k_clock passed
@@ -213,7 +230,7 @@ static int no_nsleep(const clockid_t which_clock, int flags,
*/
static inline int invalid_clockid(const clockid_t which_clock)
{
- if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
+ if (which_clock < 0) /* per task clock, checked later */
return 0;
if ((unsigned) which_clock >= MAX_CLOCKS)
return 1;
--
1.6.3.3
This is merely a preparation to introduce wall time
clocks for threads/processes. All occurences of
CPUCLOCK* macros were replaced by POSIX_CLOCK*.
Signed-off-by: Tomasz Buchert <[email protected]>
---
include/linux/posix-timers.h | 25 ++++++-----
include/linux/sched.h | 2 +-
kernel/itimer.c | 14 +++---
kernel/posix-cpu-timers.c | 96 +++++++++++++++++++++---------------------
4 files changed, 69 insertions(+), 68 deletions(-)
diff --git a/include/linux/posix-timers.h b/include/linux/posix-timers.h
index 4f71bf4..07f33d2 100644
--- a/include/linux/posix-timers.h
+++ b/include/linux/posix-timers.h
@@ -17,22 +17,23 @@ struct cpu_timer_list {
int firing;
};
-#define CPUCLOCK_PID(clock) ((pid_t) ~((clock) >> 3))
-#define CPUCLOCK_PERTHREAD(clock) \
- (((clock) & (clockid_t) CPUCLOCK_PERTHREAD_MASK) != 0)
-#define CPUCLOCK_PID_MASK 7
-#define CPUCLOCK_PERTHREAD_MASK 4
-#define CPUCLOCK_WHICH(clock) ((clock) & (clockid_t) CPUCLOCK_CLOCK_MASK)
-#define CPUCLOCK_CLOCK_MASK 3
-#define CPUCLOCK_PROF 0
-#define CPUCLOCK_VIRT 1
-#define CPUCLOCK_SCHED 2
-#define CPUCLOCK_MAX 3
+#define POSIX_CLOCK_PID(clock) ((pid_t) ~((clock) >> 3))
+#define POSIX_CLOCK_PERTHREAD(clock) \
+ (((clock) & (clockid_t) POSIX_CLOCK_PERTHREAD_MASK) != 0)
+#define POSIX_CLOCK_PID_MASK 7
+#define POSIX_CLOCK_PERTHREAD_MASK 4
+#define POSIX_CLOCK_WHICH(clock) \
+ ((clock) & (clockid_t) POSIX_CLOCK_WHICH_MASK)
+#define POSIX_CLOCK_WHICH_MASK 3
+#define POSIX_CLOCK_PROF 0
+#define POSIX_CLOCK_VIRT 1
+#define POSIX_CLOCK_SCHED 2
+#define POSIX_CLOCK_MAX 3
#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
((~(clockid_t) (pid) << 3) | (clockid_t) (clock))
#define MAKE_THREAD_CPUCLOCK(tid, clock) \
- MAKE_PROCESS_CPUCLOCK((tid), (clock) | CPUCLOCK_PERTHREAD_MASK)
+ MAKE_PROCESS_CPUCLOCK((tid), (clock) | POSIX_CLOCK_PERTHREAD_MASK)
/* POSIX.1b interval timer structure. */
struct k_itimer {
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 0478888..c632b74 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -563,7 +563,7 @@ struct signal_struct {
/*
* ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
- * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
+ * POSIX_CLOCK_PROF and POSIX_CLOCK_VIRT for indexing array as these
* values are defined to 0 and 1 respectively
*/
struct cpu_itimer it[2];
diff --git a/kernel/itimer.c b/kernel/itimer.c
index d802883..3a916ed 100644
--- a/kernel/itimer.c
+++ b/kernel/itimer.c
@@ -57,10 +57,10 @@ static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
cputime_t t;
thread_group_cputimer(tsk, &cputime);
- if (clock_id == CPUCLOCK_PROF)
+ if (clock_id == POSIX_CLOCK_PROF)
t = cputime_add(cputime.utime, cputime.stime);
else
- /* CPUCLOCK_VIRT */
+ /* POSIX_CLOCK_VIRT */
t = cputime.utime;
if (cputime_le(cval, t))
@@ -89,10 +89,10 @@ int do_getitimer(int which, struct itimerval *value)
spin_unlock_irq(&tsk->sighand->siglock);
break;
case ITIMER_VIRTUAL:
- get_cpu_itimer(tsk, CPUCLOCK_VIRT, value);
+ get_cpu_itimer(tsk, POSIX_CLOCK_VIRT, value);
break;
case ITIMER_PROF:
- get_cpu_itimer(tsk, CPUCLOCK_PROF, value);
+ get_cpu_itimer(tsk, POSIX_CLOCK_PROF, value);
break;
default:
return(-EINVAL);
@@ -171,7 +171,7 @@ static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
it->incr = ninterval;
it->error = error;
it->incr_error = incr_error;
- trace_itimer_state(clock_id == CPUCLOCK_VIRT ?
+ trace_itimer_state(clock_id == POSIX_CLOCK_VIRT ?
ITIMER_VIRTUAL : ITIMER_PROF, value, nval);
spin_unlock_irq(&tsk->sighand->siglock);
@@ -228,10 +228,10 @@ again:
spin_unlock_irq(&tsk->sighand->siglock);
break;
case ITIMER_VIRTUAL:
- set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue);
+ set_cpu_itimer(tsk, POSIX_CLOCK_VIRT, value, ovalue);
break;
case ITIMER_PROF:
- set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue);
+ set_cpu_itimer(tsk, POSIX_CLOCK_PROF, value, ovalue);
break;
default:
return -EINVAL;
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index 9829646..f106ac6 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -21,7 +21,7 @@ void update_rlimit_cpu(unsigned long rlim_new)
cputime_t cputime = secs_to_cputime(rlim_new);
spin_lock_irq(¤t->sighand->siglock);
- set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
+ set_process_cpu_timer(current, POSIX_CLOCK_PROF, &cputime, NULL);
spin_unlock_irq(¤t->sighand->siglock);
}
@@ -29,9 +29,9 @@ static int check_clock(const clockid_t which_clock)
{
int error = 0;
struct task_struct *p;
- const pid_t pid = CPUCLOCK_PID(which_clock);
+ const pid_t pid = POSIX_CLOCK_PID(which_clock);
- if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
+ if (POSIX_CLOCK_WHICH(which_clock) >= POSIX_CLOCK_MAX)
return -EINVAL;
if (pid == 0)
@@ -39,7 +39,7 @@ static int check_clock(const clockid_t which_clock)
read_lock(&tasklist_lock);
p = find_task_by_vpid(pid);
- if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
+ if (!p || !(POSIX_CLOCK_PERTHREAD(which_clock) ?
same_thread_group(p, current) : thread_group_leader(p))) {
error = -EINVAL;
}
@@ -53,7 +53,7 @@ timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
{
union cpu_time_count ret;
ret.sched = 0; /* high half always zero when .cpu used */
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
} else {
ret.cpu = timespec_to_cputime(tp);
@@ -65,7 +65,7 @@ static void sample_to_timespec(const clockid_t which_clock,
union cpu_time_count cpu,
struct timespec *tp)
{
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED)
*tp = ns_to_timespec(cpu.sched);
else
cputime_to_timespec(cpu.cpu, tp);
@@ -75,7 +75,7 @@ static inline int cpu_time_before(const clockid_t which_clock,
union cpu_time_count now,
union cpu_time_count then)
{
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
return now.sched < then.sched;
} else {
return cputime_lt(now.cpu, then.cpu);
@@ -85,7 +85,7 @@ static inline void cpu_time_add(const clockid_t which_clock,
union cpu_time_count *acc,
union cpu_time_count val)
{
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
acc->sched += val.sched;
} else {
acc->cpu = cputime_add(acc->cpu, val.cpu);
@@ -95,7 +95,7 @@ static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
union cpu_time_count a,
union cpu_time_count b)
{
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
a.sched -= b.sched;
} else {
a.cpu = cputime_sub(a.cpu, b.cpu);
@@ -128,7 +128,7 @@ static void bump_cpu_timer(struct k_itimer *timer,
if (timer->it.cpu.incr.sched == 0)
return;
- if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
+ if (POSIX_CLOCK_WHICH(timer->it_clock) == POSIX_CLOCK_SCHED) {
unsigned long long delta, incr;
if (now.sched < timer->it.cpu.expires.sched)
@@ -182,7 +182,7 @@ int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
if (!error) {
tp->tv_sec = 0;
tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
+ if (POSIX_CLOCK_WHICH(which_clock) == POSIX_CLOCK_SCHED) {
/*
* If sched_clock is using a cycle counter, we
* don't have any idea of its true resolution
@@ -214,16 +214,16 @@ int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
union cpu_time_count *cpu)
{
- switch (CPUCLOCK_WHICH(which_clock)) {
+ switch (POSIX_CLOCK_WHICH(which_clock)) {
default:
return -EINVAL;
- case CPUCLOCK_PROF:
+ case POSIX_CLOCK_PROF:
cpu->cpu = prof_ticks(p);
break;
- case CPUCLOCK_VIRT:
+ case POSIX_CLOCK_VIRT:
cpu->cpu = virt_ticks(p);
break;
- case CPUCLOCK_SCHED:
+ case POSIX_CLOCK_SCHED:
cpu->sched = task_sched_runtime(p);
break;
}
@@ -305,18 +305,18 @@ static int cpu_clock_sample_group(const clockid_t which_clock,
{
struct task_cputime cputime;
- switch (CPUCLOCK_WHICH(which_clock)) {
+ switch (POSIX_CLOCK_WHICH(which_clock)) {
default:
return -EINVAL;
- case CPUCLOCK_PROF:
+ case POSIX_CLOCK_PROF:
thread_group_cputime(p, &cputime);
cpu->cpu = cputime_add(cputime.utime, cputime.stime);
break;
- case CPUCLOCK_VIRT:
+ case POSIX_CLOCK_VIRT:
thread_group_cputime(p, &cputime);
cpu->cpu = cputime.utime;
break;
- case CPUCLOCK_SCHED:
+ case POSIX_CLOCK_SCHED:
cpu->sched = thread_group_sched_runtime(p);
break;
}
@@ -326,7 +326,7 @@ static int cpu_clock_sample_group(const clockid_t which_clock,
int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
{
- const pid_t pid = CPUCLOCK_PID(which_clock);
+ const pid_t pid = POSIX_CLOCK_PID(which_clock);
int error = -EINVAL;
union cpu_time_count rtn;
@@ -335,7 +335,7 @@ int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
* Special case constant value for our own clocks.
* We don't have to do any lookup to find ourselves.
*/
- if (CPUCLOCK_PERTHREAD(which_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(which_clock)) {
/*
* Sampling just ourselves we can do with no locking.
*/
@@ -356,7 +356,7 @@ int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
rcu_read_lock();
p = find_task_by_vpid(pid);
if (p) {
- if (CPUCLOCK_PERTHREAD(which_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(which_clock)) {
if (same_thread_group(p, current)) {
error = cpu_clock_sample(which_clock,
p, &rtn);
@@ -389,16 +389,16 @@ int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
int posix_cpu_timer_create(struct k_itimer *new_timer)
{
int ret = 0;
- const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
+ const pid_t pid = POSIX_CLOCK_PID(new_timer->it_clock);
struct task_struct *p;
- if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
+ if (POSIX_CLOCK_WHICH(new_timer->it_clock) >= POSIX_CLOCK_MAX)
return -EINVAL;
INIT_LIST_HEAD(&new_timer->it.cpu.entry);
read_lock(&tasklist_lock);
- if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(new_timer->it_clock)) {
if (pid == 0) {
p = current;
} else {
@@ -560,14 +560,14 @@ static void arm_timer(struct k_itimer *timer)
struct cpu_timer_list *const nt = &timer->it.cpu;
struct cpu_timer_list *next;
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
head = p->cpu_timers;
cputime_expires = &p->cputime_expires;
} else {
head = p->signal->cpu_timers;
cputime_expires = &p->signal->cputime_expires;
}
- head += CPUCLOCK_WHICH(timer->it_clock);
+ head += POSIX_CLOCK_WHICH(timer->it_clock);
listpos = head;
list_for_each_entry(next, head, entry) {
@@ -587,16 +587,16 @@ static void arm_timer(struct k_itimer *timer)
* and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
*/
- switch (CPUCLOCK_WHICH(timer->it_clock)) {
- case CPUCLOCK_PROF:
+ switch (POSIX_CLOCK_WHICH(timer->it_clock)) {
+ case POSIX_CLOCK_PROF:
if (expires_gt(cputime_expires->prof_exp, exp->cpu))
cputime_expires->prof_exp = exp->cpu;
break;
- case CPUCLOCK_VIRT:
+ case POSIX_CLOCK_VIRT:
if (expires_gt(cputime_expires->virt_exp, exp->cpu))
cputime_expires->virt_exp = exp->cpu;
break;
- case CPUCLOCK_SCHED:
+ case POSIX_CLOCK_SCHED:
if (cputime_expires->sched_exp == 0 ||
cputime_expires->sched_exp > exp->sched)
cputime_expires->sched_exp = exp->sched;
@@ -650,16 +650,16 @@ static int cpu_timer_sample_group(const clockid_t which_clock,
struct task_cputime cputime;
thread_group_cputimer(p, &cputime);
- switch (CPUCLOCK_WHICH(which_clock)) {
+ switch (POSIX_CLOCK_WHICH(which_clock)) {
default:
return -EINVAL;
- case CPUCLOCK_PROF:
+ case POSIX_CLOCK_PROF:
cpu->cpu = cputime_add(cputime.utime, cputime.stime);
break;
- case CPUCLOCK_VIRT:
+ case POSIX_CLOCK_VIRT:
cpu->cpu = cputime.utime;
break;
- case CPUCLOCK_SCHED:
+ case POSIX_CLOCK_SCHED:
cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
break;
}
@@ -724,7 +724,7 @@ int posix_cpu_timer_set(struct k_itimer *timer, int flags,
* times (in arm_timer). With an absolute time, we must
* check if it's already passed. In short, we need a sample.
*/
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &val);
} else {
cpu_timer_sample_group(timer->it_clock, p, &val);
@@ -858,7 +858,7 @@ void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
/*
* Sample the clock to take the difference with the expiry time.
*/
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &now);
clear_dead = p->exit_state;
} else {
@@ -1128,9 +1128,9 @@ static void check_process_timers(struct task_struct *tsk,
/*
* Check for the special case process timers.
*/
- check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
+ check_cpu_itimer(tsk, &sig->it[POSIX_CLOCK_PROF], &prof_expires, ptime,
SIGPROF);
- check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
+ check_cpu_itimer(tsk, &sig->it[POSIX_CLOCK_VIRT], &virt_expires, utime,
SIGVTALRM);
soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
if (soft != RLIM_INFINITY) {
@@ -1188,7 +1188,7 @@ void posix_cpu_timer_schedule(struct k_itimer *timer)
/*
* Fetch the current sample and update the timer's expiry time.
*/
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
+ if (POSIX_CLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &now);
bump_cpu_timer(timer, now);
if (unlikely(p->exit_state)) {
@@ -1382,7 +1382,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
{
union cpu_time_count now;
- BUG_ON(clock_idx == CPUCLOCK_SCHED);
+ BUG_ON(clock_idx == POSIX_CLOCK_SCHED);
cpu_timer_sample_group(clock_idx, tsk, &now);
if (oldval) {
@@ -1410,11 +1410,11 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
* RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
*/
switch (clock_idx) {
- case CPUCLOCK_PROF:
+ case POSIX_CLOCK_PROF:
if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
tsk->signal->cputime_expires.prof_exp = *newval;
break;
- case CPUCLOCK_VIRT:
+ case POSIX_CLOCK_VIRT:
if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
tsk->signal->cputime_expires.virt_exp = *newval;
break;
@@ -1498,9 +1498,9 @@ int posix_cpu_nsleep(const clockid_t which_clock, int flags,
/*
* Diagnose required errors first.
*/
- if (CPUCLOCK_PERTHREAD(which_clock) &&
- (CPUCLOCK_PID(which_clock) == 0 ||
- CPUCLOCK_PID(which_clock) == current->pid))
+ if (POSIX_CLOCK_PERTHREAD(which_clock) &&
+ (POSIX_CLOCK_PID(which_clock) == 0 ||
+ POSIX_CLOCK_PID(which_clock) == current->pid))
return -EINVAL;
error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
@@ -1557,8 +1557,8 @@ long posix_cpu_nsleep_restart(struct restart_block *restart_block)
}
-#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
-#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
+#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, POSIX_CLOCK_SCHED)
+#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, POSIX_CLOCK_SCHED)
static int process_cpu_clock_getres(const clockid_t which_clock,
struct timespec *tp)
--
1.6.3.3
Hi Tomasz
On Fri, 30 Jul 2010 11:57:43 +0200
Tomasz Buchert <[email protected]> wrote:
> During our work we encountered a problem of obtaining
> a reliable and fine-grained measurements of CPU time/wall time
> of a process/thread. The existing methods (taskstats, procfs,
> POSIX CPU clocks) have either unfriendly interface (taskstats)
Well, "unfriendly" is not technical word ... Taskstat was designed
as extensible method to provide statistics to user space, including
some special needs like yours. What your patches basically do, is get
the value of wall_time(p) = uptime - p->start_time . I do not see
any reason why this calculation can not be done in userspace, getting
uptime and p->start_time from kernel by existing methods (or adding
new one for p->start_time if precise method does not really exist).
Is enough to read p->start_time only once at the beginning, this value
does not change.
Anyway, I think we need better rationale, before we can consider your wall
clock patches inclusion into the kernel.
BTW: If you will repost please cc Thomas Gleixner as he is kernel/*timers*
maintainer.
Cheers
Stanislaw
On Fri, 30 Jul 2010 11:57:45 +0200
Tomasz Buchert <[email protected]> wrote:
> - read_lock(&tasklist_lock);
> + rcu_read_lock();
> p = find_task_by_vpid(pid);
> if (!p || !(POSIX_CLOCK_PERTHREAD(which_clock) ?
> same_thread_group(p, current) : thread_group_leader(p))) {
> error = -EINVAL;
> }
> - read_unlock(&tasklist_lock);
> + rcu_read_unlock();
IIRC thread_group_leader(p) is wrong here, has_group_leader_pid(p)
should be used. Beside this change alone should be a separate patch,
not part of a "new feature" patch.
Stanislaw
On Fri, 30 Jul 2010 13:23:43 +0200
Stanislaw Gruszka <[email protected]> wrote:
> Anyway, I think we need better rationale, before we can consider your wall
> clock patches inclusion into the kernel.
To clarify. I'm not against your patches. I just would like to know
why patches are needed (or maybe even how they are used) to see if there
is no other/better way to solve your problem. We do not want add new
code to kernel (and what more important - maintain it), if problem can
be solved differently.
Stanislaw
Hi!
To begin with, there are two main things that my patches concern:
A) Limited access to POSIX CPU clocks
B) Access to wall time information of a process/thread.
By CPU time I understand "user time" + "system time".
The scenerio I have, is (making the long story short) that my process
supervises a set of tasks. It "freezes" them (using freezer cgroups)
when their (CPU time) / (wall time) ratio reaches a certain threshold.
Now, to make this decision as precise as possible, I need to get a good
measurement of CPU/wall time of a task (identified by TID). If internally
the kernel time-keeping is in nanoseconds (well, at least on my x86 machine)
why shouldn't I expect to have access to it?
Let's agree at the very beginning that procfs is not feasible
to achieve that with acceptable quality. /proc/[pid]/stat
and /proc/[tid]/task/[tid]/stat expose CPU time in clock ticks
(on my machine I have sysconf(_SC_CLK_TCK) = 100 so precision is 10ms).
Start time of a process is given in a number of ticks
after the system boot and the boot time itself is given in /proc/stat in ...
a number of seconds after the beginning of Unix epoch. That's not good enough.
Ad. A)
clock_gettime is a very nice interface with nanosecond precision
(again on my x86 machine). You can ask for CPU time of a thread
or a process. And finally you can clock_nanosleep on it.
When asking for CPU time of a task, however, you can only query
tasks from your own thread group. I see no reason why this
couldn't be extended to all tasks of the same user (extending
it further could introduce potential security risks). I think
also that a root user could have the access to all clocks in the system.
This kind of information may be retrieved via taskstats anyway
(for EVERY task in the system), but with only ms precision
(because of the mentioned security problems?)
Ad. B)
As far I can tell, the only good way to obtain elapsed time
of a process/thread is to use taskstats interface. It's not THAT bad,
I agree with Stanislaw on that, it gives you some valuable pieces of information.
The precision is 2ms for the CPU time and 1us for elapsed time. In fact
with CONFIG_TASK_DELAY_ACCT enabled you can get CPU time with nanosecond precision
(it's not compiled in on my Ubuntu 9.10 kernel but it is in on one Debian machine
I have somewhere). Another exotic way to get CPU time is to use CONFIG_SCHEDSTATS
and read the first number in /proc/[tid]/schedstat. Interestingly, this is available
by default on my Ubuntu box but not in the previously mentioned Debian :).
The most portable way would be to use taskstats (it's in both kernels...:) ).
I didn't like the CPU time precision given and the whole messy code needed to use
netlink interface, though. Moreover, to get the best available precision
I would have to use POSIX clocks to get CPU time (assuming the change A would accepted!)
and taskstats to get WALL time (the precision would be however still 1us). I didn't
like this idea at all.
That's why I started to dig the kernel a little bit. After some time I found unused slot
in clockid_t which would perfectly fit an additional clock. What I like about this interface:
1) clean and simple
2) nanosecond precision
3) cheap, compared to taskstats
4) unified access to 2 important clocks of a process: CPU clock and WALL clock
The nice thing also is that you can clock_nanosleep on that clock. I have this kind
of scenario on mind: I control a process and, say, want to kill it after 1 sec
(because it is only allowed to run for that amount of time). It is easily and robustly
done with this interface: you just sleep on the WALL time clock of that process until
absolute time of 1s. Sadly, right now you can't do it precisely and correctly at the same time.
I agree that these problems could be addressed with giving the access to start_time
field, as Stanislaw suggested. Adding new fields with the same meaning but with
higher precision to taskstats is a terrible idea of course.
I simply felt, that adding a new clock type is a nice and consistent approach.
That's it.
Tomasz