2015-08-03 05:08:27

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v3 0/5] mtd: Qualcomm NAND controller driver

Add support for the NAND controller driver for SoC's that contain EBI2.
For now, the only SoC upstream that has EBI2 is IPQ806x.

The original version was posted a while back. The main comments were
about the driver not being able to use nand_bbt. This was because the
controller could read factory bad block markers only in RAW mode. This
forced us to implement our own versions of chip->block_bad and
chip->blobk_markbad, and also we had to skip creating a BBT.

Discussions with Kevin Cernekee concluded that having a new BBT flag
that incorporates this controller's special requirement is a possible
option.

The new version makes use of this flag and now uses nand_bbt, at the
cost of implement read_oob_raw and write_oob_raw ops.

The patchset requires the v6 ADM dmaengine patches posted by Andy:

https://lkml.org/lkml/2015/3/17/19

v3:
- Various fixes and clean ups suggested by Stephen Boyd.

v2:
- Added a new BBT flag that allows us to read BBM in raw mode
- reduce memcpy-s in the driver
- some refactor and clean ups because of above changes

v1:
- original series:
https://lkml.org/lkml/2015/1/16/317


Archit Taneja (5):
mtd: nand: Create a BBT flag to access bad block markers in raw mode
mtd: nand: Qualcomm NAND controller driver
dt/bindings: qcom_nandc: Add DT bindings
arm: qcom: dts: Add NAND controller node for ipq806x
arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform

.../devicetree/bindings/mtd/qcom_nandc.txt | 49 +
arch/arm/boot/dts/qcom-ipq8064-ap148.dts | 36 +
arch/arm/boot/dts/qcom-ipq8064.dtsi | 15 +
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/nand_base.c | 6 +-
drivers/mtd/nand/nand_bbt.c | 6 +-
drivers/mtd/nand/qcom_nandc.c | 1913 ++++++++++++++++++++
include/linux/mtd/bbm.h | 7 +
9 files changed, 2038 insertions(+), 2 deletions(-)
create mode 100644 Documentation/devicetree/bindings/mtd/qcom_nandc.txt
create mode 100644 drivers/mtd/nand/qcom_nandc.c

--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation


2015-08-03 05:08:33

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v3 1/5] mtd: nand: Create a BBT flag to access bad block markers in raw mode

Some controllers can access the factory bad block marker from OOB only
when they read it in raw mode. When ECC is enabled, these controllers
discard reading/writing bad block markers, preventing access to them
altogether.

The bbt driver assumes MTD_OPS_PLACE_OOB when scanning for bad blocks.
This results in the nand driver's ecc->read_oob() op to be called, which
works with ECC enabled.

Create a new BBT option flag that tells nand_bbt to force the mode to
MTD_OPS_RAW. This would result in the correct op being called for the
underlying nand controller driver.

Reviewed-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
drivers/mtd/nand/nand_base.c | 6 +++++-
drivers/mtd/nand/nand_bbt.c | 6 +++++-
include/linux/mtd/bbm.h | 7 +++++++
3 files changed, 17 insertions(+), 2 deletions(-)

diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index ceb68ca..0a0c524 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -394,7 +394,11 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
} else {
ops.len = ops.ooblen = 1;
}
- ops.mode = MTD_OPS_PLACE_OOB;
+
+ if (unlikely(chip->bbt_options & NAND_BBT_ACCESS_BBM_RAW))
+ ops.mode = MTD_OPS_RAW;
+ else
+ ops.mode = MTD_OPS_PLACE_OOB;

/* Write to first/last page(s) if necessary */
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
index 63a1a36..f2d89c9 100644
--- a/drivers/mtd/nand/nand_bbt.c
+++ b/drivers/mtd/nand/nand_bbt.c
@@ -420,7 +420,11 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
ops.oobbuf = buf;
ops.ooboffs = 0;
ops.datbuf = NULL;
- ops.mode = MTD_OPS_PLACE_OOB;
+
+ if (unlikely(bd->options & NAND_BBT_ACCESS_BBM_RAW))
+ ops.mode = MTD_OPS_RAW;
+ else
+ ops.mode = MTD_OPS_PLACE_OOB;

for (j = 0; j < numpages; j++) {
/*
diff --git a/include/linux/mtd/bbm.h b/include/linux/mtd/bbm.h
index 36bb6a5..f67f84a 100644
--- a/include/linux/mtd/bbm.h
+++ b/include/linux/mtd/bbm.h
@@ -116,6 +116,13 @@ struct nand_bbt_descr {
#define NAND_BBT_NO_OOB_BBM 0x00080000

/*
+ * Force MTD_OPS_RAW mode when trying to access bad block markes from OOB. To
+ * be used by controllers which can access BBM only when ECC is disabled, i.e,
+ * when in RAW access mode
+ */
+#define NAND_BBT_ACCESS_BBM_RAW 0x00100000
+
+/*
* Flag set by nand_create_default_bbt_descr(), marking that the nand_bbt_descr
* was allocated dynamicaly and must be freed in nand_release(). Has no meaning
* in nand_chip.bbt_options.
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-03 05:08:43

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v3 2/5] mtd: nand: Qualcomm NAND controller driver

The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
MDM9x15 series.

It exists as a sub block inside the IPs EBI2 (External Bus Interface 2)
and QPIC (Qualcomm Parallel Interface Controller). These IPs provide a
broader interface for external slow peripheral devices such as LCD and
NAND/NOR flash memory or SRAM like interfaces.

We add support for the NAND controller found within EBI2. For the SoCs
of our interest, we only use the NAND controller within EBI2. Therefore,
it's safe for us to assume that the NAND controller is a standalone block
within the SoC.

The controller supports 512B, 2kB, 4kB and 8kB page 8-bit and 16-bit NAND
flash devices. It contains a HW ECC block that supports BCH ECC (4, 8 and
16 bit correction/step) and RS ECC(4 bit correction/step) that covers main
and spare data. The controller contains an internal 512 byte page buffer
to which we read/write via DMA. The EBI2 type NAND controller uses ADM DMA
for register read/write and data transfers. The controller performs page
reads and writes at a codeword/step level of 512 bytes. It can support up
to 2 external chips of different configurations.

The driver prepares register read and write configuration descriptors for
each codeword, followed by data descriptors to read or write data from the
controller's internal buffer. It uses a single ADM DMA channel that we get
via dmaengine API. The controller requires 2 ADM CRCIs for command and
data flow control. These are passed via DT.

The ecc layout used by the controller is syndrome like, but we can't use
the standard syndrome ecc ops because of several reasons. First, the amount
of data bytes covered by ecc isn't same in each step. Second, writing to
free oob space requires us writing to the entire step in which the oob
lies. This forces us to create our own ecc ops.

One more difference is how the controller accesses the bad block marker.
The controller ignores reading the marker when ECC is enabled. ECC needs
to be explicity disabled to read or write to the bad block marker. For
this reason, we use the newly created flag NAND_BBT_ACCESS_BBM_RAW to
read the factory provided bad block markers.

v3:
- Refactor dma functions for maximum reuse
- Use dma_slave_confing on stack
- optimize and clean upempty_page_fixup using memchr_inv
- ensure portability with dma register reads using le32_* funcs
- use NAND_USE_BOUNCE_BUFFER instead of doing it ourselves
- fix handling of return values of dmaengine funcs
- constify wherever possible
- Remove dependency on ADM DMA in Kconfig
- Misc fixes and clean ups

v2:
- Use new BBT flag that allows us to read BBM in raw mode
- reduce memcpy-s in the driver
- some refactor and clean ups because of above changes

Reviewed-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/qcom_nandc.c | 1913 +++++++++++++++++++++++++++++++++++++++++
3 files changed, 1921 insertions(+)
create mode 100644 drivers/mtd/nand/qcom_nandc.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5b2806a..6085b8a 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -538,4 +538,11 @@ config MTD_NAND_HISI504
help
Enables support for NAND controller on Hisilicon SoC Hip04.

+config MTD_NAND_QCOM
+ tristate "Support for NAND on QCOM SoCs"
+ depends on ARCH_QCOM
+ help
+ Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+ controller. This controller is found on IPQ806x SoC.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 1f897ec..87b6a1d 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -53,5 +53,6 @@ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o

nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
new file mode 100644
index 0000000..e1f1576
--- /dev/null
+++ b/drivers/mtd/nand/qcom_nandc.c
@@ -0,0 +1,1913 @@
+/*
+ * Copyright (c) 2015, The Linux Foundation. All rights reserved.
+ *
+ * This software is licensed under the terms of the GNU General Public
+ * License version 2, as published by the Free Software Foundation, and
+ * may be copied, distributed, and modified under those terms.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_mtd.h>
+#include <linux/delay.h>
+
+/* NANDc reg offsets */
+#define NAND_FLASH_CMD 0x00
+#define NAND_ADDR0 0x04
+#define NAND_ADDR1 0x08
+#define NAND_FLASH_CHIP_SELECT 0x0c
+#define NAND_EXEC_CMD 0x10
+#define NAND_FLASH_STATUS 0x14
+#define NAND_BUFFER_STATUS 0x18
+#define NAND_DEV0_CFG0 0x20
+#define NAND_DEV0_CFG1 0x24
+#define NAND_DEV0_ECC_CFG 0x28
+#define NAND_DEV1_ECC_CFG 0x2c
+#define NAND_DEV1_CFG0 0x30
+#define NAND_DEV1_CFG1 0x34
+#define NAND_READ_ID 0x40
+#define NAND_READ_STATUS 0x44
+#define NAND_DEV_CMD0 0xa0
+#define NAND_DEV_CMD1 0xa4
+#define NAND_DEV_CMD2 0xa8
+#define NAND_DEV_CMD_VLD 0xac
+#define SFLASHC_BURST_CFG 0xe0
+#define NAND_ERASED_CW_DETECT_CFG 0xe8
+#define NAND_ERASED_CW_DETECT_STATUS 0xec
+#define NAND_EBI2_ECC_BUF_CFG 0xf0
+#define FLASH_BUF_ACC 0x100
+
+#define NAND_CTRL 0xf00
+#define NAND_VERSION 0xf08
+#define NAND_READ_LOCATION_0 0xf20
+#define NAND_READ_LOCATION_1 0xf24
+
+/* dummy register offsets, used by write_reg_dma */
+#define NAND_DEV_CMD1_RESTORE 0xdead
+#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
+
+/* NAND_FLASH_CMD bits */
+#define PAGE_ACC BIT(4)
+#define LAST_PAGE BIT(5)
+
+/* NAND_FLASH_CHIP_SELECT bits */
+#define NAND_DEV_SEL 0
+#define DM_EN BIT(2)
+
+/* NAND_FLASH_STATUS bits */
+#define FS_OP_ERR BIT(4)
+#define FS_READY_BSY_N BIT(5)
+#define FS_MPU_ERR BIT(8)
+#define FS_DEVICE_STS_ERR BIT(16)
+#define FS_DEVICE_WP BIT(23)
+
+/* NAND_BUFFER_STATUS bits */
+#define BS_UNCORRECTABLE_BIT BIT(8)
+#define BS_CORRECTABLE_ERR_MSK 0x1f
+
+/* NAND_DEVn_CFG0 bits */
+#define DISABLE_STATUS_AFTER_WRITE 4
+#define CW_PER_PAGE 6
+#define UD_SIZE_BYTES 9
+#define ECC_PARITY_SIZE_BYTES_RS 19
+#define SPARE_SIZE_BYTES 23
+#define NUM_ADDR_CYCLES 27
+#define STATUS_BFR_READ 30
+#define SET_RD_MODE_AFTER_STATUS 31
+
+/* NAND_DEVn_CFG0 bits */
+#define DEV0_CFG1_ECC_DISABLE 0
+#define WIDE_FLASH 1
+#define NAND_RECOVERY_CYCLES 2
+#define CS_ACTIVE_BSY 5
+#define BAD_BLOCK_BYTE_NUM 6
+#define BAD_BLOCK_IN_SPARE_AREA 16
+#define WR_RD_BSY_GAP 17
+#define ENABLE_BCH_ECC 27
+
+/* NAND_DEV0_ECC_CFG bits */
+#define ECC_CFG_ECC_DISABLE 0
+#define ECC_SW_RESET 1
+#define ECC_MODE 4
+#define ECC_PARITY_SIZE_BYTES_BCH 8
+#define ECC_NUM_DATA_BYTES 16
+#define ECC_FORCE_CLK_OPEN 30
+
+/* NAND_DEV_CMD1 bits */
+#define READ_ADDR 0
+
+/* NAND_DEV_CMD_VLD bits */
+#define READ_START_VLD 0
+
+/* NAND_EBI2_ECC_BUF_CFG bits */
+#define NUM_STEPS 0
+
+/* NAND_ERASED_CW_DETECT_CFG bits */
+#define ERASED_CW_ECC_MASK 1
+#define AUTO_DETECT_RES 0
+#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
+#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
+#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
+#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
+#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
+
+/* NAND_ERASED_CW_DETECT_STATUS bits */
+#define PAGE_ALL_ERASED BIT(7)
+#define CODEWORD_ALL_ERASED BIT(6)
+#define PAGE_ERASED BIT(5)
+#define CODEWORD_ERASED BIT(4)
+#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
+#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
+
+/* Version Mask */
+#define NAND_VERSION_MAJOR_MASK 0xf0000000
+#define NAND_VERSION_MAJOR_SHIFT 28
+#define NAND_VERSION_MINOR_MASK 0x0fff0000
+#define NAND_VERSION_MINOR_SHIFT 16
+
+/* NAND OP_CMDs */
+#define PAGE_READ 0x2
+#define PAGE_READ_WITH_ECC 0x3
+#define PAGE_READ_WITH_ECC_SPARE 0x4
+#define PROGRAM_PAGE 0x6
+#define PAGE_PROGRAM_WITH_ECC 0x7
+#define PROGRAM_PAGE_SPARE 0x9
+#define BLOCK_ERASE 0xa
+#define FETCH_ID 0xb
+#define RESET_DEVICE 0xd
+
+/*
+ * the NAND controller performs reads/writes with ECC in 516 byte chunks.
+ * the driver calls the chunks 'step' or 'codeword' interchangeably
+ */
+#define NANDC_STEP_SIZE 512
+
+/*
+ * the largest page size we support is 8K, this will have 16 steps/codewords
+ * of 512 bytes each
+ */
+#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
+
+/* we read at most 3 registers per codeword scan */
+#define MAX_REG_RD (3 * MAX_NUM_STEPS)
+
+/* ECC modes */
+#define ECC_NONE BIT(0)
+#define ECC_RS_4BIT BIT(1)
+#define ECC_BCH_4BIT BIT(2)
+#define ECC_BCH_8BIT BIT(3)
+
+struct desc_info {
+ struct list_head list;
+
+ enum dma_transfer_direction dir;
+ struct scatterlist sgl;
+ struct dma_async_tx_descriptor *dma_desc;
+};
+
+/*
+ * holds the current register values that we want to write. acts as a contiguous
+ * chunk of memory which we use to write the controller registers through DMA.
+ */
+struct nandc_regs {
+ u32 cmd;
+ u32 addr0;
+ u32 addr1;
+ u32 chip_sel;
+ u32 exec;
+
+ u32 cfg0;
+ u32 cfg1;
+ u32 ecc_bch_cfg;
+
+ u32 clrflashstatus;
+ u32 clrreadstatus;
+
+ u32 cmd1;
+ u32 vld;
+
+ u32 orig_cmd1;
+ u32 orig_vld;
+
+ u32 ecc_buf_cfg;
+};
+
+/*
+ * @cmd_crci: ADM DMA CRCI for command flow control
+ * @data_crci: ADM DMA CRCI for data flow control
+ * @list: DMA descriptor list (list of desc_infos)
+ * @dma_done: completion param to denote end of last
+ * descriptor in the list
+ * @data_buffer: our local DMA buffer for page read/writes,
+ * used when we can't use the buffer provided
+ * by upper layers directly
+ * @buf_size/count/start: markers for chip->read_buf/write_buf functions
+ * @reg_read_buf: buffer for reading register data via DMA
+ * @reg_read_pos: marker for data read in reg_read_buf
+ * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
+ * ecc/non-ecc mode for the current nand flash
+ * device
+ * @regs: a contiguous chunk of memory for DMA register
+ * writes
+ * @ecc_strength: 4 bit or 8 bit ecc, received via DT
+ * @bus_width: 8 bit or 16 bit NAND bus width, received via DT
+ * @ecc_modes: supported ECC modes by the current controller,
+ * initialized via DT match data
+ * @cw_size: the number of bytes in a single step/codeword
+ * of a page, consisting of all data, ecc, spare
+ * and reserved bytes
+ * @cw_data: the number of bytes within a codeword protected
+ * by ECC
+ * @bch_enabled: flag to tell whether BCH or RS ECC mode is used
+ * @status: value to be returned if NAND_CMD_STATUS command
+ * is executed
+ */
+struct qcom_nandc_data {
+ struct platform_device *pdev;
+ struct device *dev;
+
+ void __iomem *base;
+ struct resource *res;
+
+ struct clk *core_clk;
+ struct clk *aon_clk;
+
+ /* DMA stuff */
+ struct dma_chan *chan;
+ struct dma_slave_config slave_conf;
+ unsigned int cmd_crci;
+ unsigned int data_crci;
+ struct list_head list;
+ struct completion dma_done;
+
+ /* MTD stuff */
+ struct nand_chip chip;
+ struct mtd_info mtd;
+
+ /* local data buffer and markers */
+ u8 *data_buffer;
+ int buf_size;
+ int buf_count;
+ int buf_start;
+
+ /* local buffer to read back registers */
+ u32 *reg_read_buf;
+ int reg_read_pos;
+
+ /* required configs */
+ u32 cfg0, cfg1;
+ u32 cfg0_raw, cfg1_raw;
+ u32 ecc_buf_cfg;
+ u32 ecc_bch_cfg;
+ u32 clrflashstatus;
+ u32 clrreadstatus;
+ u32 sflashc_burst_cfg;
+ u32 cmd1, vld;
+
+ /* register state */
+ struct nandc_regs *regs;
+
+ /* things we get from DT */
+ int ecc_strength;
+ int bus_width;
+
+ u32 ecc_modes;
+
+ /* misc params */
+ int cw_size;
+ int cw_data;
+ bool use_ecc;
+ bool bch_enabled;
+ u8 status;
+ int last_command;
+};
+
+static inline u32 nandc_read(struct qcom_nandc_data *this, int offset)
+{
+ return ioread32(this->base + offset);
+}
+
+static inline void nandc_write(struct qcom_nandc_data *this, int offset,
+ u32 val)
+{
+ iowrite32(val, this->base + offset);
+}
+
+/* helper to configure address register values */
+static void set_address(struct qcom_nandc_data *this, u16 column, int page)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nandc_regs *regs = this->regs;
+
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+
+ regs->addr0 = page << 16 | column;
+ regs->addr1 = page >> 16 & 0xff;
+}
+
+/*
+ * update_rw_regs: set up read/write register values, these will be
+ * written to the NAND controller registers via DMA
+ *
+ * @num_cw: number of steps for the read/write operation
+ * @read: read or write operation
+ */
+static void update_rw_regs(struct qcom_nandc_data *this, int num_cw, bool read)
+{
+ struct nandc_regs *regs = this->regs;
+
+ if (read) {
+ if (this->use_ecc)
+ regs->cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
+ else
+ regs->cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
+ } else {
+ regs->cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
+ }
+
+ if (this->use_ecc) {
+ regs->cfg0 = (this->cfg0 & ~(7U << CW_PER_PAGE)) |
+ (num_cw - 1) << CW_PER_PAGE;
+
+ regs->cfg1 = this->cfg1;
+ regs->ecc_bch_cfg = this->ecc_bch_cfg;
+ } else {
+ regs->cfg0 = (this->cfg0_raw & ~(7U << CW_PER_PAGE)) |
+ (num_cw - 1) << CW_PER_PAGE;
+
+ regs->cfg1 = this->cfg1_raw;
+ regs->ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
+ }
+
+ regs->ecc_buf_cfg = this->ecc_buf_cfg;
+ regs->clrflashstatus = this->clrflashstatus;
+ regs->clrreadstatus = this->clrreadstatus;
+ regs->exec = 1;
+}
+
+static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
+ const void *vaddr, int size, bool flow_control)
+{
+ struct desc_info *desc;
+ struct dma_async_tx_descriptor *dma_desc;
+ struct scatterlist *sgl;
+ struct dma_slave_config slave_conf;
+ int r;
+
+ desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+ if (!desc)
+ return -ENOMEM;
+
+ list_add_tail(&desc->list, &this->list);
+
+ sgl = &desc->sgl;
+
+ sg_init_one(sgl, vaddr, size);
+
+ desc->dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
+
+ r = dma_map_sg(this->dev, sgl, 1, desc->dir);
+ if (r == 0) {
+ r = -ENOMEM;
+ goto err;
+ }
+
+ memset(&slave_conf, 0x00, sizeof(slave_conf));
+
+ slave_conf.device_fc = flow_control;
+ if (read) {
+ slave_conf.src_maxburst = 16;
+ slave_conf.src_addr = this->res->start + reg_off;
+ slave_conf.slave_id = this->data_crci;
+ } else {
+ slave_conf.dst_maxburst = 16;
+ slave_conf.dst_addr = this->res->start + reg_off;
+ slave_conf.slave_id = this->cmd_crci;
+ }
+
+ r = dmaengine_slave_config(this->chan, &slave_conf);
+ if (r) {
+ dev_err(this->dev, "failed to configure dma channel\n");
+ goto err;
+ }
+
+ dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0);
+ if (!dma_desc) {
+ dev_err(this->dev, "failed to prepare desc\n");
+ r = -EINVAL;
+ goto err;
+ }
+
+ desc->dma_desc = dma_desc;
+
+ return 0;
+err:
+ kfree(desc);
+
+ return r;
+}
+
+/*
+ * read_reg_dma: prepares a descriptor to read a given number of
+ * contiguous registers to the reg_read_buf pointer
+ *
+ * @first: offset of the first register in the contiguous block
+ * @num_regs: number of registers to read
+ */
+static int read_reg_dma(struct qcom_nandc_data *this, int first, int num_regs)
+{
+ bool flow_control = false;
+ void *vaddr;
+ int size;
+
+ if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
+ flow_control = true;
+
+ size = num_regs * sizeof(u32);
+ vaddr = this->reg_read_buf + this->reg_read_pos;
+ this->reg_read_pos += num_regs;
+
+ return prep_dma_desc(this, true, first, vaddr, size, flow_control);
+}
+
+/*
+ * write_reg_dma: prepares a descriptor to write a given number of
+ * contiguous registers
+ *
+ * @first: offset of the first register in the contiguous block
+ * @num_regs: number of registers to write
+ */
+static int write_reg_dma(struct qcom_nandc_data *this, int first, int num_regs)
+{
+ bool flow_control = false;
+ struct nandc_regs *regs = this->regs;
+ void *vaddr;
+ int size;
+
+ switch (first) {
+ case NAND_FLASH_CMD:
+ vaddr = &regs->cmd;
+ flow_control = true;
+ break;
+ case NAND_EXEC_CMD:
+ vaddr = &regs->exec;
+ break;
+ case NAND_FLASH_STATUS:
+ vaddr = &regs->clrflashstatus;
+ break;
+ case NAND_DEV0_CFG0:
+ vaddr = &regs->cfg0;
+ break;
+ case NAND_READ_STATUS:
+ vaddr = &regs->clrreadstatus;
+ break;
+ case NAND_DEV_CMD1:
+ vaddr = &regs->cmd1;
+ break;
+ case NAND_DEV_CMD1_RESTORE:
+ first = NAND_DEV_CMD1;
+ vaddr = &regs->orig_cmd1;
+ break;
+ case NAND_DEV_CMD_VLD:
+ vaddr = &regs->vld;
+ break;
+ case NAND_DEV_CMD_VLD_RESTORE:
+ first = NAND_DEV_CMD_VLD;
+ vaddr = &regs->orig_vld;
+ break;
+ case NAND_EBI2_ECC_BUF_CFG:
+ vaddr = &regs->ecc_buf_cfg;
+ break;
+ default:
+ dev_err(this->dev, "invalid starting register\n");
+ return -EINVAL;
+ }
+
+ size = num_regs * sizeof(u32);
+
+ return prep_dma_desc(this, false, first, vaddr, size, flow_control);
+}
+
+/*
+ * read_data_dma: prepares a DMA descriptor to transfer data from the
+ * controller's internal buffer to the buffer 'vaddr'
+ *
+ * @reg_off: offset within the controller's data buffer
+ * @vaddr: virtual address of the buffer we want to write to
+ * @size: DMA transaction size in bytes
+ */
+static int read_data_dma(struct qcom_nandc_data *this, int reg_off,
+ const u8 *vaddr, int size)
+{
+ return prep_dma_desc(this, true, reg_off, vaddr, size, false);
+}
+
+/*
+ * write_data_dma: prepares a DMA descriptor to transfer data from
+ * 'vaddr' to the controller's internal buffer
+ *
+ * @reg_off: offset within the controller's data buffer
+ * @vaddr: virtual address of the buffer we want to read from
+ * @size: DMA transaction size in bytes
+ */
+static int write_data_dma(struct qcom_nandc_data *this, int reg_off,
+ const u8 *vaddr, int size)
+{
+ return prep_dma_desc(this, false, reg_off, vaddr, size, false);
+}
+
+/*
+ * helper to prepare dma descriptors to configure registers needed for reading a
+ * codeword/step in a page
+ */
+static void config_cw_read(struct qcom_nandc_data *this)
+{
+ write_reg_dma(this, NAND_FLASH_CMD, 3);
+ write_reg_dma(this, NAND_DEV0_CFG0, 3);
+ write_reg_dma(this, NAND_EBI2_ECC_BUF_CFG, 1);
+
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 2);
+ read_reg_dma(this, NAND_ERASED_CW_DETECT_STATUS, 1);
+}
+
+/*
+ * helpers to prepare dma descriptors used to configure registers needed for
+ * writing a codeword/step in a page
+ */
+static void config_cw_write_pre(struct qcom_nandc_data *this)
+{
+ write_reg_dma(this, NAND_FLASH_CMD, 3);
+ write_reg_dma(this, NAND_DEV0_CFG0, 3);
+ write_reg_dma(this, NAND_EBI2_ECC_BUF_CFG, 1);
+}
+
+static void config_cw_write_post(struct qcom_nandc_data *this)
+{
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 1);
+
+ write_reg_dma(this, NAND_FLASH_STATUS, 1);
+ write_reg_dma(this, NAND_READ_STATUS, 1);
+}
+
+/*
+ * the following functions are used within chip->cmdfunc() to perform different
+ * NAND_CMD_* commands
+ */
+
+/* sets up descriptors for NAND_CMD_PARAM */
+static int nandc_param(struct qcom_nandc_data *this)
+{
+ struct nandc_regs *regs = this->regs;
+
+ /*
+ * NAND_CMD_PARAM is called before we know much about the FLASH chip
+ * in use. we configure the controller to perform a raw read of 512
+ * bytes to read onfi params
+ */
+ regs->cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
+ regs->addr0 = 0;
+ regs->addr1 = 0;
+ regs->cfg0 = 0 << CW_PER_PAGE
+ | 512 << UD_SIZE_BYTES
+ | 5 << NUM_ADDR_CYCLES
+ | 0 << SPARE_SIZE_BYTES;
+
+ regs->cfg1 = 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | 17 << BAD_BLOCK_BYTE_NUM
+ | 1 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | 0 << WIDE_FLASH
+ | 1 << DEV0_CFG1_ECC_DISABLE;
+
+ regs->ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
+
+ /* configure CMD1 and VLD for ONFI param probing */
+ regs->vld = (this->vld & ~(1 << READ_START_VLD))
+ | 0 << READ_START_VLD;
+
+ regs->cmd1 = (this->cmd1 & ~(0xFF << READ_ADDR))
+ | NAND_CMD_PARAM << READ_ADDR;
+
+ regs->exec = 1;
+
+ regs->orig_cmd1 = this->cmd1;
+ regs->orig_vld = this->vld;
+
+ write_reg_dma(this, NAND_DEV_CMD_VLD, 1);
+ write_reg_dma(this, NAND_DEV_CMD1, 1);
+
+ this->buf_count = 512;
+ memset(this->data_buffer, 0xff, this->buf_count);
+
+ config_cw_read(this);
+
+ read_data_dma(this, FLASH_BUF_ACC, this->data_buffer, this->buf_count);
+
+ /* restore CMD1 and VLD regs */
+ write_reg_dma(this, NAND_DEV_CMD1_RESTORE, 1);
+ write_reg_dma(this, NAND_DEV_CMD_VLD_RESTORE, 1);
+
+ return 0;
+}
+
+/* sets up descriptors for NAND_CMD_ERASE1 */
+static int erase_block(struct qcom_nandc_data *this, int page_addr)
+{
+ struct nandc_regs *regs = this->regs;
+
+ regs->cmd = BLOCK_ERASE | PAGE_ACC | LAST_PAGE;
+ regs->addr0 = page_addr;
+ regs->addr1 = 0;
+ regs->cfg0 = this->cfg0_raw & ~(7 << CW_PER_PAGE);
+ regs->cfg1 = this->cfg1_raw;
+ regs->exec = 1;
+ regs->clrflashstatus = this->clrflashstatus;
+ regs->clrreadstatus = this->clrreadstatus;
+
+ write_reg_dma(this, NAND_FLASH_CMD, 3);
+ write_reg_dma(this, NAND_DEV0_CFG0, 2);
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 1);
+
+ write_reg_dma(this, NAND_FLASH_STATUS, 1);
+ write_reg_dma(this, NAND_READ_STATUS, 1);
+
+ return 0;
+}
+
+/* sets up descriptors for NAND_CMD_READID */
+static int read_id(struct qcom_nandc_data *this, int column)
+{
+ struct nandc_regs *regs = this->regs;
+
+ if (column == -1)
+ return 0;
+
+ regs->cmd = FETCH_ID;
+ regs->addr0 = column;
+ regs->addr1 = 0;
+ regs->chip_sel = DM_EN;
+ regs->exec = 1;
+
+ write_reg_dma(this, NAND_FLASH_CMD, 4);
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_READ_ID, 1);
+
+ return 0;
+}
+
+/* sets up descriptors for NAND_CMD_RESET */
+static int reset(struct qcom_nandc_data *this)
+{
+ struct nandc_regs *regs = this->regs;
+
+ regs->cmd = RESET_DEVICE;
+ regs->exec = 1;
+
+ write_reg_dma(this, NAND_FLASH_CMD, 1);
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 1);
+
+ return 0;
+}
+
+/* helpers to submit/free our list of dma descriptors */
+static void dma_callback(void *param)
+{
+ struct qcom_nandc_data *this = param;
+ struct completion *c = &this->dma_done;
+
+ complete(c);
+}
+
+static int submit_descs(struct qcom_nandc_data *this)
+{
+ struct completion *c = &this->dma_done;
+ struct desc_info *desc;
+ int r;
+
+ init_completion(c);
+
+ list_for_each_entry(desc, &this->list, list) {
+ /*
+ * we add a callback to the last descriptor in our list to
+ * notify completion of command
+ */
+ if (list_is_last(&desc->list, &this->list)) {
+ desc->dma_desc->callback = dma_callback;
+ desc->dma_desc->callback_param = this;
+ }
+
+ dmaengine_submit(desc->dma_desc);
+ }
+
+ dma_async_issue_pending(this->chan);
+
+ r = wait_for_completion_timeout(c, msecs_to_jiffies(500));
+ if (!r)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static void free_descs(struct qcom_nandc_data *this)
+{
+ struct desc_info *desc, *n;
+
+ list_for_each_entry_safe(desc, n, &this->list, list) {
+ list_del(&desc->list);
+ dma_unmap_sg(this->dev, &desc->sgl, 1, desc->dir);
+ kfree(desc);
+ }
+}
+
+/* reset the register read buffer for next NAND operation */
+static void clear_read_regs(struct qcom_nandc_data *this)
+{
+ this->reg_read_pos = 0;
+ memset(this->reg_read_buf, 0, MAX_REG_RD * sizeof(*this->reg_read_buf));
+}
+
+static void pre_command(struct qcom_nandc_data *this, int command)
+{
+ this->buf_count = 0;
+ this->buf_start = 0;
+ this->use_ecc = false;
+ this->last_command = command;
+
+ clear_read_regs(this);
+}
+
+/*
+ * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
+ * privately maintained status byte, this status byte can be read after
+ * NAND_CMD_STATUS is called
+ */
+static void parse_erase_write_errors(struct qcom_nandc_data *this, int command)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int num_cw;
+ int i;
+
+ num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
+
+ for (i = 0; i < num_cw; i++) {
+ __le32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
+
+ if (flash_status & FS_MPU_ERR)
+ this->status &= ~NAND_STATUS_WP;
+
+ if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
+ (flash_status & FS_DEVICE_STS_ERR)))
+ this->status |= NAND_STATUS_FAIL;
+ }
+}
+
+static void post_command(struct qcom_nandc_data *this, int command)
+{
+ switch (command) {
+ case NAND_CMD_READID:
+ memcpy(this->data_buffer, this->reg_read_buf, this->buf_count);
+ break;
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ parse_erase_write_errors(this, command);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Implements chip->cmdfunc. It's only used for a limited set of commands.
+ * The rest of the commands wouldn't be called by upper layers. For example,
+ * NAND_CMD_READOOB would never be called because we have our own versions
+ * of read_oob ops for nand_ecc_ctrl.
+ */
+static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ struct qcom_nandc_data *this = chip->priv;
+ bool wait = false;
+ int r = 0;
+
+ pre_command(this, command);
+
+ switch (command) {
+ case NAND_CMD_RESET:
+ r = reset(this);
+ wait = true;
+ break;
+
+ case NAND_CMD_READID:
+ this->buf_count = 4;
+ r = read_id(this, column);
+ wait = true;
+ break;
+
+ case NAND_CMD_PARAM:
+ r = nandc_param(this);
+ wait = true;
+ break;
+
+ case NAND_CMD_ERASE1:
+ r = erase_block(this, page_addr);
+ wait = true;
+ break;
+
+ case NAND_CMD_READ0:
+ /* we read the entire page for now */
+ WARN_ON(column != 0);
+
+ this->use_ecc = true;
+ set_address(this, 0, page_addr);
+ update_rw_regs(this, ecc->steps, true);
+ break;
+
+ case NAND_CMD_SEQIN:
+ WARN_ON(column != 0);
+ set_address(this, 0, page_addr);
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_STATUS:
+ case NAND_CMD_NONE:
+ default:
+ break;
+ }
+
+ if (r) {
+ dev_err(this->dev, "failure executing command %d\n",
+ command);
+ free_descs(this);
+ return;
+ }
+
+ if (wait) {
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev,
+ "failure submitting descs for command %d\n",
+ command);
+ }
+
+ free_descs(this);
+
+ post_command(this, command);
+}
+
+/*
+ * when using RS ECC, the NAND controller flags an error when reading an
+ * erased page. however, there are special characters at certain offsets when
+ * we read the erased page. we check here if the page is really empty. if so,
+ * we replace the magic characters with 0xffs
+ */
+static bool empty_page_fixup(struct qcom_nandc_data *this, u8 *data_buf)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage = ecc->steps;
+ u8 orig1[MAX_NUM_STEPS], orig2[MAX_NUM_STEPS];
+ int i, j;
+
+ /* if BCH is enabled, HW will take care of detecting erased pages */
+ if (this->bch_enabled || !this->use_ecc)
+ return false;
+
+ for (i = 0; i < cwperpage; i++) {
+ u8 *empty1, *empty2;
+ __le32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
+
+ /*
+ * an erased page flags an error in NAND_FLASH_STATUS, check if
+ * the page is erased by looking for 0x54s at offsets 3 and 175
+ * from the beginning of each codeword
+ */
+ if (!(flash_status & FS_OP_ERR))
+ break;
+
+ empty1 = &data_buf[3 + i * this->cw_data];
+ empty2 = &data_buf[175 + i * this->cw_data];
+
+ /*
+ * if the error wasn't because of an erased page, bail out and
+ * and let someone else do the error checking
+ */
+ if ((*empty1 == 0x54 && *empty2 == 0xff) ||
+ (*empty1 == 0xff && *empty2 == 0x54)) {
+ orig1[i] = *empty1;
+ orig2[i] = *empty2;
+
+ *empty1 = 0xff;
+ *empty2 = 0xff;
+ } else {
+ break;
+ }
+ }
+
+ if (i < cwperpage || memchr_inv(data_buf, 0xff, mtd->writesize))
+ goto not_empty;
+
+ /*
+ * tell the caller that the page was empty and is fixed up, so that
+ * parse_read_errors() doesn't think it's an error
+ */
+ return true;
+
+not_empty:
+ /* restore original values if not empty*/
+ for (j = 0; j < i; j++) {
+ data_buf[3 + j * this->cw_data] = orig1[j];
+ data_buf[175 + j * this->cw_data] = orig2[j];
+ }
+
+ return false;
+}
+
+struct read_stats {
+ __le32 flash;
+ __le32 buffer;
+ __le32 erased_cw;
+};
+
+/*
+ * reads back status registers set by the controller to notify page read
+ * errors. this is equivalent to what 'ecc->correct()' would do.
+ */
+static int parse_read_errors(struct qcom_nandc_data *this, bool erased_page)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage = ecc->steps;
+ unsigned int max_bitflips = 0;
+ int i;
+
+ for (i = 0; i < cwperpage; i++) {
+ int stat;
+ struct read_stats *buf;
+
+ buf = (struct read_stats *) (this->reg_read_buf + 3 * i);
+
+ buf->flash = le32_to_cpu(buf->flash);
+ buf->buffer = le32_to_cpu(buf->buffer);
+ buf->erased_cw = le32_to_cpu(buf->erased_cw);
+
+ if (buf->flash & (FS_OP_ERR | FS_MPU_ERR)) {
+
+ /* ignore erased codeword errors */
+ if (this->bch_enabled) {
+ if ((buf->erased_cw & ERASED_CW) == ERASED_CW)
+ continue;
+ } else if (erased_page) {
+ continue;
+ }
+
+ if (buf->buffer & BS_UNCORRECTABLE_BIT) {
+ mtd->ecc_stats.failed++;
+ continue;
+ }
+ }
+
+ stat = buf->buffer & BS_CORRECTABLE_ERR_MSK;
+ mtd->ecc_stats.corrected += stat;
+
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+
+ return max_bitflips;
+}
+
+/*
+ * helper to perform the actual page read operation, used by ecc->read_page()
+ * and ecc->read_oob()
+ */
+static int read_page_low(struct qcom_nandc_data *this, u8 *data_buf,
+ u8 *oob_buf)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int i, r;
+
+ /* queue cmd descs for each codeword */
+ for (i = 0; i < ecc->steps; i++) {
+ int data_size, oob_size;
+
+ if (i == (ecc->steps - 1)) {
+ data_size = ecc->size - ((ecc->steps - 1) << 2);
+ oob_size = (ecc->steps << 2) + ecc->bytes;
+ } else {
+ data_size = this->cw_data;
+ oob_size = ecc->bytes;
+ }
+
+ config_cw_read(this);
+
+ if (data_buf)
+ read_data_dma(this, FLASH_BUF_ACC, data_buf, data_size);
+
+ if (oob_buf)
+ read_data_dma(this, FLASH_BUF_ACC + data_size, oob_buf,
+ oob_size);
+
+ if (data_buf)
+ data_buf += data_size;
+ if (oob_buf)
+ oob_buf += oob_size;
+ }
+
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev, "failure to read page/oob\n");
+
+ free_descs(this);
+
+ return r;
+}
+
+/*
+ * a helper that copies the last step/codeword of a page (containing free oob)
+ * into our local buffer
+ */
+static int copy_last_cw(struct qcom_nandc_data *this, bool use_ecc, int page)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int size;
+ int r;
+
+ clear_read_regs(this);
+
+ size = use_ecc ? this->cw_data : this->cw_size;
+
+ /* prepare a clean read buffer */
+ memset(this->data_buffer, 0xff, size);
+
+ this->use_ecc = use_ecc;
+ set_address(this, this->cw_size * (ecc->steps - 1), page);
+ update_rw_regs(this, 1, true);
+
+ config_cw_read(this);
+
+ read_data_dma(this, FLASH_BUF_ACC, this->data_buffer, size);
+
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev, "failed to copy last codeword\n");
+
+ free_descs(this);
+
+ return r;
+}
+
+/* implements ecc->read_page() */
+static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ u8 *data_buf, *oob_buf = NULL;
+ bool erased_page;
+ int r;
+
+ data_buf = buf;
+ oob_buf = oob_required ? chip->oob_poi : NULL;
+
+ r = read_page_low(this, data_buf, oob_buf);
+ if (r) {
+ dev_err(this->dev, "failure to read page\n");
+ return r;
+ }
+
+ erased_page = empty_page_fixup(this, data_buf);
+
+ return parse_read_errors(this, erased_page);
+}
+
+/* implements ecc->read_oob() */
+static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int r;
+
+ clear_read_regs(this);
+
+ this->use_ecc = true;
+ set_address(this, 0, page);
+ update_rw_regs(this, ecc->steps, true);
+
+ r = read_page_low(this, NULL, chip->oob_poi);
+ if (r)
+ dev_err(this->dev, "failure to read oob\n");
+
+ return r;
+}
+
+/* implements ecc->read_oob_raw(), used to read the bad block marker flag */
+static int qcom_nandc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ uint8_t *oob = chip->oob_poi;
+ int start, length;
+ int r;
+
+ /*
+ * configure registers for a raw page read, the address is set to the
+ * beginning of the last codeword, we don't care about reading ecc
+ * portion of oob, just the free stuff
+ */
+ r = copy_last_cw(this, false, page);
+ if (r)
+ return r;
+
+ /*
+ * reading raw oob has 2 parts, first the bad block byte, then the
+ * actual free oob region. perform a memcpy in two steps
+ */
+ start = mtd->writesize - (this->cw_size * (ecc->steps - 1));
+ length = chip->options & NAND_BUSWIDTH_16 ? 2 : 1;
+
+ memcpy(oob, this->data_buffer + start, length);
+
+ oob += length;
+
+ start = this->cw_data - (ecc->steps << 2) + 1;
+ length = ecc->steps << 2;
+
+ memcpy(oob, this->data_buffer + start, length);
+
+ return 0;
+}
+
+/* implements ecc->write_page() */
+static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ u8 *data_buf, *oob_buf;
+ int i, r = 0;
+
+ clear_read_regs(this);
+
+ data_buf = (u8 *) buf;
+ oob_buf = chip->oob_poi;
+
+ this->use_ecc = true;
+ update_rw_regs(this, ecc->steps, false);
+
+ for (i = 0; i < ecc->steps; i++) {
+ int data_size, oob_size;
+
+ if (i == (ecc->steps - 1)) {
+ data_size = ecc->size - ((ecc->steps - 1) << 2);
+ oob_size = (ecc->steps << 2) + ecc->bytes;
+ } else {
+ data_size = this->cw_data;
+ oob_size = ecc->bytes;
+ }
+
+ config_cw_write_pre(this);
+ write_data_dma(this, FLASH_BUF_ACC, data_buf, data_size);
+
+ /*
+ * we don't really need to write anything to oob for the
+ * first n - 1 codewords since these oob regions just
+ * contain ecc that's written by the controller itself
+ */
+ if (i == (ecc->steps - 1))
+ write_data_dma(this, FLASH_BUF_ACC + data_size,
+ oob_buf, oob_size);
+ config_cw_write_post(this);
+
+ data_buf += data_size;
+ oob_buf += oob_size;
+ }
+
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev, "failure to write page\n");
+
+ free_descs(this);
+
+ return r;
+}
+
+/*
+ * implements ecc->write_oob()
+ *
+ * the NAND controller cannot write only data or only oob within a codeword,
+ * since ecc is calculated for the combined codeword. we first copy the
+ * entire contents for the last codeword(data + oob), replace the old oob
+ * with the new one in chip->oob_poi, and then write the entire codeword.
+ * this read-copy-write operation results in a slight perormance loss.
+ */
+static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ uint8_t *oob = chip->oob_poi;
+ int free_boff;
+ int data_size, oob_size;
+ int r, status = 0;
+
+ r = copy_last_cw(this, true, page);
+ if (r)
+ return r;
+
+ clear_read_regs(this);
+
+ /* calculate the data and oob size for the last codeword/step */
+ data_size = ecc->size - ((ecc->steps - 1) << 2);
+ oob_size = (ecc->steps << 2) + ecc->bytes;
+
+ /*
+ * the location of spare data in the oob buffer, we could also use
+ * ecc->layout.oobfree here
+ */
+ free_boff = ecc->bytes * (ecc->steps - 1);
+
+ /* override new oob content to last codeword */
+ memcpy(this->data_buffer + data_size, oob + free_boff, oob_size);
+
+ this->use_ecc = true;
+ set_address(this, this->cw_size * (ecc->steps - 1), page);
+ update_rw_regs(this, 1, false);
+
+ config_cw_write_pre(this);
+ write_data_dma(this, FLASH_BUF_ACC, this->data_buffer,
+ data_size + oob_size);
+ config_cw_write_post(this);
+
+ r = submit_descs(this);
+
+ free_descs(this);
+
+ if (r) {
+ dev_err(this->dev, "failure to write oob\n");
+ return -EIO;
+ }
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/* implements ecc->write_oob_raw(), used to write bad block marker flag */
+static int qcom_nandc_write_oob_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ uint8_t *oob = chip->oob_poi;
+ int start, length;
+ int r, status = 0;
+
+ r = copy_last_cw(this, false, page);
+ if (r)
+ return r;
+
+ clear_read_regs(this);
+
+ /*
+ * writing raw oob has 2 parts, first the bad block region, then the
+ * actual free region
+ */
+ start = mtd->writesize - (this->cw_size * (ecc->steps - 1));
+ length = chip->options & NAND_BUSWIDTH_16 ? 2 : 1;
+
+ memcpy(this->data_buffer + start, oob, length);
+
+ oob += length;
+
+ start = this->cw_data - (ecc->steps << 2) + 1;
+ length = ecc->steps << 2;
+
+ memcpy(this->data_buffer + start, oob, length);
+
+ /* prepare write */
+ this->use_ecc = false;
+ set_address(this, this->cw_size * (ecc->steps - 1), page);
+ update_rw_regs(this, 1, false);
+
+ config_cw_write_pre(this);
+ write_data_dma(this, FLASH_BUF_ACC, this->data_buffer, this->cw_size);
+ config_cw_write_post(this);
+
+ r = submit_descs(this);
+
+ free_descs(this);
+
+ if (r) {
+ dev_err(this->dev, "failure to write updated oob\n");
+ return -EIO;
+ }
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/*
+ * the three functions below implement chip->read_byte(), chip->read_buf()
+ * and chip->write_buf() respectively. these aren't used for
+ * reading/writing page data, they are used for smaller data like reading
+ * id, status etc
+ */
+static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+ uint8_t *buf = this->data_buffer;
+ uint8_t ret = 0x0;
+
+ if (this->last_command == NAND_CMD_STATUS) {
+ ret = this->status;
+
+ this->status = NAND_STATUS_READY | NAND_STATUS_WP;
+
+ return ret;
+ }
+
+ if (this->buf_start < this->buf_count)
+ ret = buf[this->buf_start++];
+
+ return ret;
+}
+
+static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+ int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
+
+ memcpy(buf, this->data_buffer + this->buf_start, real_len);
+ this->buf_start += real_len;
+}
+
+static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+ int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
+
+ memcpy(this->data_buffer + this->buf_start, buf, real_len);
+
+ this->buf_start += real_len;
+}
+
+/* we support only one external chip for now */
+static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+
+ if (chipnr <= 0)
+ return;
+
+ dev_warn(this->dev, "invalid chip select\n");
+}
+
+/*
+ * NAND controller page layout info
+ *
+ * |-----------------------| |---------------------------------|
+ * | xx.......xx| | *********xx.......xx|
+ * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx|
+ * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx|
+ * | xx.......xx| | *********xx.......xx|
+ * |-----------------------| |---------------------------------|
+ * codeword 1,2..n-1 codeword n
+ * <---(528/532 Bytes)----> <-------(528/532 Bytes)---------->
+ *
+ * n = number of codewords in the page
+ * . = ECC bytes
+ * * = spare bytes
+ * x = unused/reserved bytes
+ *
+ * 2K page: n = 4, spare = 16 bytes
+ * 4K page: n = 8, spare = 32 bytes
+ * 8K page: n = 16, spare = 64 bytes
+ *
+ * the qcom nand controller operates at a sub page/codeword level. each
+ * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
+ * the number of ECC bytes vary based on the ECC strength and the bus width.
+ *
+ * the first n - 1 codewords contains 516 bytes of user data, the remaining
+ * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
+ * both user data and spare(oobavail) bytes that sum up to 516 bytes.
+ *
+ * the layout described above is used by the controller when the ECC block is
+ * enabled. When we read a page with ECC enabled, the unused/reserved bytes are
+ * skipped and not copied to our internal buffer. therefore, the nand_ecclayout
+ * layouts defined below doesn't consider the positions occupied by the reserved
+ * bytes
+ *
+ * when the ECC block is disabled, one unused byte (or two for 16 bit bus width)
+ * in the last codeword is the position of bad block marker. the bad block
+ * marker cannot be accessed when ECC is enabled.
+ *
+ */
+
+/*
+ * Layouts for different page sizes and ecc modes. We skip the eccpos field
+ * since it isn't needed for this driver
+ */
+
+/* 2K page, 4 bit ECC */
+static struct nand_ecclayout layout_oob_64 = {
+ .eccbytes = 40,
+ .oobfree = {
+ { 30, 16 },
+ },
+};
+
+/* 4K page, 4 bit ECC, 8/16 bit bus width */
+static struct nand_ecclayout layout_oob_128 = {
+ .eccbytes = 80,
+ .oobfree = {
+ { 70, 32 },
+ },
+};
+
+/* 4K page, 8 bit ECC, 8 bit bus width */
+static struct nand_ecclayout layout_oob_224_x8 = {
+ .eccbytes = 104,
+ .oobfree = {
+ { 91, 32 },
+ },
+};
+
+/* 4K page, 8 bit ECC, 16 bit bus width */
+static struct nand_ecclayout layout_oob_224_x16 = {
+ .eccbytes = 112,
+ .oobfree = {
+ { 98, 32 },
+ },
+};
+
+/* 8K page, 4 bit ECC, 8/16 bit bus width */
+static struct nand_ecclayout layout_oob_256 = {
+ .eccbytes = 160,
+ .oobfree = {
+ { 151, 64 },
+ },
+};
+
+/*
+ * this is called before scan_ident, we do some minimal configurations so
+ * that reading ID and ONFI params work
+ */
+static void qcom_nandc_pre_init(struct qcom_nandc_data *this)
+{
+ /* kill onenand */
+ nandc_write(this, SFLASHC_BURST_CFG, 0);
+
+ /* enable ADM DMA */
+ nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN);
+
+ /* save the original values of these registers */
+ this->cmd1 = nandc_read(this, NAND_DEV_CMD1);
+ this->vld = nandc_read(this, NAND_DEV_CMD_VLD);
+
+ /* initial status value */
+ this->status = NAND_STATUS_READY | NAND_STATUS_WP;
+}
+
+static int qcom_nandc_ecc_init(struct qcom_nandc_data *this)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage;
+ bool wide_bus;
+
+ /* the nand controller fetches codewords/chunks of 512 bytes */
+ cwperpage = mtd->writesize >> 9;
+
+ ecc->strength = this->ecc_strength;
+
+ wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
+
+ if (ecc->strength >= 8) {
+ /* 8 bit ECC defaults to BCH ECC on all platforms */
+ ecc->bytes = wide_bus ? 14 : 13;
+ } else {
+ /*
+ * if the controller supports BCH for 4 bit ECC, the controller
+ * uses lesser bytes for ECC. If RS is used, the ECC bytes is
+ * always 10 bytes
+ */
+ if (this->ecc_modes & ECC_BCH_4BIT)
+ ecc->bytes = wide_bus ? 8 : 7;
+ else
+ ecc->bytes = 10;
+ }
+
+ /* each step consists of 512 bytes of data */
+ ecc->size = NANDC_STEP_SIZE;
+
+ ecc->read_page = qcom_nandc_read_page;
+ ecc->read_oob = qcom_nandc_read_oob;
+ ecc->write_page = qcom_nandc_write_page;
+ ecc->write_oob = qcom_nandc_write_oob;
+
+ /*
+ * the bad block marker is readable only when we read the page with ECC
+ * disabled. all the ops above run with ECC enabled. We need raw read
+ * and write function for oob in order to access bad block marker.
+ */
+ ecc->read_oob_raw = qcom_nandc_read_oob_raw;
+ ecc->write_oob_raw = qcom_nandc_write_oob_raw;
+
+ switch (mtd->oobsize) {
+ case 64:
+ ecc->layout = &layout_oob_64;
+ break;
+ case 128:
+ ecc->layout = &layout_oob_128;
+ break;
+ case 224:
+ if (wide_bus)
+ ecc->layout = &layout_oob_224_x16;
+ else
+ ecc->layout = &layout_oob_224_x8;
+ break;
+ case 256:
+ ecc->layout = &layout_oob_256;
+ break;
+ default:
+ dev_err(this->dev, "unsupported NAND device, oobsize %d\n",
+ mtd->oobsize);
+ return -ENODEV;
+ }
+
+ ecc->mode = NAND_ECC_HW;
+
+ /* enable ecc by default */
+ this->use_ecc = true;
+
+ return 0;
+}
+
+static void qcom_nandc_hw_post_init(struct qcom_nandc_data *this)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage = mtd->writesize / ecc->size;
+ int spare_bytes, bad_block_byte;
+ bool wide_bus;
+ int ecc_mode = 0;
+
+ wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
+
+ if (ecc->strength >= 8) {
+ this->cw_size = 532;
+
+ spare_bytes = wide_bus ? 0 : 2;
+
+ this->bch_enabled = true;
+ ecc_mode = 1;
+ } else {
+ this->cw_size = 528;
+
+ if (this->ecc_modes & ECC_BCH_4BIT) {
+ spare_bytes = wide_bus ? 2 : 4;
+
+ this->bch_enabled = true;
+ ecc_mode = 0;
+ } else {
+ spare_bytes = wide_bus ? 0 : 1;
+ }
+ }
+
+ /*
+ * DATA_UD_BYTES varies based on whether the read/write command protects
+ * spare data with ECC too. We protect spare data by default, so we set
+ * it to main + spare data, which are 512 and 4 bytes respectively.
+ */
+ this->cw_data = 516;
+
+ bad_block_byte = mtd->writesize - this->cw_size * (cwperpage - 1) + 1;
+
+ this->cfg0 = (cwperpage - 1) << CW_PER_PAGE
+ | this->cw_data << UD_SIZE_BYTES
+ | 0 << DISABLE_STATUS_AFTER_WRITE
+ | 5 << NUM_ADDR_CYCLES
+ | ecc->bytes << ECC_PARITY_SIZE_BYTES_RS
+ | 0 << STATUS_BFR_READ
+ | 1 << SET_RD_MODE_AFTER_STATUS
+ | spare_bytes << SPARE_SIZE_BYTES;
+
+ this->cfg1 = 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | bad_block_byte << BAD_BLOCK_BYTE_NUM
+ | 0 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | wide_bus << WIDE_FLASH
+ | this->bch_enabled << ENABLE_BCH_ECC;
+
+ this->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
+ | this->cw_size << UD_SIZE_BYTES
+ | 5 << NUM_ADDR_CYCLES
+ | 0 << SPARE_SIZE_BYTES;
+
+ this->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | 17 << BAD_BLOCK_BYTE_NUM
+ | 1 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | wide_bus << WIDE_FLASH
+ | 1 << DEV0_CFG1_ECC_DISABLE;
+
+ this->ecc_bch_cfg = this->bch_enabled << ECC_CFG_ECC_DISABLE
+ | 0 << ECC_SW_RESET
+ | this->cw_data << ECC_NUM_DATA_BYTES
+ | 1 << ECC_FORCE_CLK_OPEN
+ | ecc_mode << ECC_MODE
+ | ecc->bytes << ECC_PARITY_SIZE_BYTES_BCH;
+
+ this->ecc_buf_cfg = 0x203 << NUM_STEPS;
+
+ this->clrflashstatus = FS_READY_BSY_N;
+ this->clrreadstatus = 0xc0;
+
+ dev_dbg(this->dev,
+ "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
+ this->cfg0, this->cfg1, this->ecc_buf_cfg,
+ this->ecc_bch_cfg, this->cw_size, this->cw_data,
+ ecc->strength, ecc->bytes, cwperpage);
+}
+
+static int qcom_nandc_alloc(struct qcom_nandc_data *this)
+{
+ int r;
+
+ r = dma_set_coherent_mask(this->dev, DMA_BIT_MASK(32));
+ if (r) {
+ dev_err(this->dev, "failed to set DMA mask\n");
+ return r;
+ }
+
+ /*
+ * we use the internal buffer for reading ONFI params, reading small
+ * data like ID and status, and preforming read-copy-write operations
+ * when writing to a codeword partially. 532 is the maximum possible
+ * size of a codeword for our nand controller
+ */
+ this->buf_size = 532;
+
+ this->data_buffer = devm_kzalloc(this->dev, this->buf_size, GFP_KERNEL);
+ if (!this->data_buffer)
+ return -ENOMEM;
+
+ this->regs = devm_kzalloc(this->dev, sizeof(*this->regs), GFP_KERNEL);
+ if (!this->regs)
+ return -ENOMEM;
+
+ this->reg_read_buf = devm_kzalloc(this->dev,
+ MAX_REG_RD * sizeof(*this->reg_read_buf),
+ GFP_KERNEL);
+ if (!this->reg_read_buf)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&this->list);
+
+ this->chan = dma_request_slave_channel(this->dev, "rxtx");
+ if (!this->chan) {
+ dev_err(this->dev, "failed to request slave channel\n");
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+static void qcom_nandc_unalloc(struct qcom_nandc_data *this)
+{
+ dma_release_channel(this->chan);
+}
+
+static int qcom_nandc_init(struct qcom_nandc_data *this)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct device_node *np = this->dev->of_node;
+ struct mtd_part_parser_data ppdata = { .of_node = np };
+ int r;
+
+ mtd->priv = chip;
+ mtd->name = "qcom-nandc";
+ mtd->owner = THIS_MODULE;
+
+ chip->priv = this;
+
+ chip->cmdfunc = qcom_nandc_command;
+ chip->select_chip = qcom_nandc_select_chip;
+ chip->read_byte = qcom_nandc_read_byte;
+ chip->read_buf = qcom_nandc_read_buf;
+ chip->write_buf = qcom_nandc_write_buf;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
+ if (this->bus_width == 16)
+ chip->options |= NAND_BUSWIDTH_16;
+
+ chip->bbt_options = NAND_BBT_ACCESS_BBM_RAW;
+ if (of_get_nand_on_flash_bbt(np))
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+ qcom_nandc_pre_init(this);
+
+ r = nand_scan_ident(mtd, 1, NULL);
+ if (r)
+ return r;
+
+ r = qcom_nandc_ecc_init(this);
+ if (r)
+ return r;
+
+ qcom_nandc_hw_post_init(this);
+
+ r = nand_scan_tail(mtd);
+ if (r)
+ return r;
+
+ return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
+}
+
+static int qcom_nandc_parse_dt(struct platform_device *pdev)
+{
+ struct qcom_nandc_data *this = platform_get_drvdata(pdev);
+ struct device_node *np = this->dev->of_node;
+ int r;
+
+ this->ecc_strength = of_get_nand_ecc_strength(np);
+ if (this->ecc_strength < 0) {
+ dev_warn(this->dev,
+ "incorrect ecc strength, setting to 4 bits/step\n");
+ this->ecc_strength = 4;
+ }
+
+ this->bus_width = of_get_nand_bus_width(np);
+ if (this->bus_width < 0) {
+ dev_warn(this->dev, "incorrect bus width, setting to 8\n");
+ this->bus_width = 8;
+ }
+
+ r = of_property_read_u32(np, "qcom,cmd-crci", &this->cmd_crci);
+ if (r) {
+ dev_err(this->dev, "command CRCI unspecified\n");
+ return r;
+ }
+
+ r = of_property_read_u32(np, "qcom,data-crci", &this->data_crci);
+ if (r) {
+ dev_err(this->dev, "data CRCI unspecified\n");
+ return r;
+ }
+
+ return 0;
+}
+
+static int qcom_nandc_probe(struct platform_device *pdev)
+{
+ struct qcom_nandc_data *this;
+ const void *dev_data;
+ int r;
+
+ this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
+ if (!this)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, this);
+
+ this->pdev = pdev;
+ this->dev = &pdev->dev;
+
+ dev_data = of_device_get_match_data(&pdev->dev);
+ if (!dev_data) {
+ dev_err(&pdev->dev, "failed to get device data\n");
+ return -ENODEV;
+ }
+
+ this->ecc_modes = (u32) dev_data;
+
+ this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ this->base = devm_ioremap_resource(&pdev->dev, this->res);
+ if (IS_ERR(this->base))
+ return PTR_ERR(this->base);
+
+ this->core_clk = devm_clk_get(&pdev->dev, "core");
+ if (IS_ERR(this->core_clk))
+ return PTR_ERR(this->core_clk);
+
+ this->aon_clk = devm_clk_get(&pdev->dev, "aon");
+ if (IS_ERR(this->aon_clk))
+ return PTR_ERR(this->aon_clk);
+
+ r = qcom_nandc_parse_dt(pdev);
+ if (r)
+ return r;
+
+ r = qcom_nandc_alloc(this);
+ if (r)
+ return r;
+
+ r = clk_prepare_enable(this->core_clk);
+ if (r)
+ goto err_core_clk;
+
+ r = clk_prepare_enable(this->aon_clk);
+ if (r)
+ goto err_aon_clk;
+
+ r = qcom_nandc_init(this);
+ if (r)
+ goto err_init;
+
+ return 0;
+
+err_init:
+ clk_disable_unprepare(this->aon_clk);
+err_aon_clk:
+ clk_disable_unprepare(this->core_clk);
+err_core_clk:
+ qcom_nandc_unalloc(this);
+
+ return r;
+}
+
+static int qcom_nandc_remove(struct platform_device *pdev)
+{
+ struct qcom_nandc_data *this = platform_get_drvdata(pdev);
+
+ qcom_nandc_unalloc(this);
+
+ clk_disable_unprepare(this->aon_clk);
+ clk_disable_unprepare(this->core_clk);
+
+ return 0;
+}
+
+#define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT)
+
+/*
+ * data will hold a struct pointer containing more differences once we support
+ * more IPs
+ */
+static const struct of_device_id qcom_nandc_of_match[] = {
+ { .compatible = "qcom,ebi2-nandc",
+ .data = (void *) EBI2_NANDC_ECC_MODES,
+ },
+ {}
+};
+MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
+
+static struct platform_driver qcom_nandc_driver = {
+ .driver = {
+ .name = "qcom-nandc",
+ .of_match_table = qcom_nandc_of_match,
+ },
+ .probe = qcom_nandc_probe,
+ .remove = qcom_nandc_remove,
+};
+module_platform_driver(qcom_nandc_driver);
+
+MODULE_AUTHOR("Archit Taneja <[email protected]>");
+MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
+MODULE_LICENSE("GPL v2");
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-03 05:08:42

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v3 3/5] dt/bindings: qcom_nandc: Add DT bindings

Add DT bindings document for the Qualcomm NAND controller driver.

Cc: [email protected]

v3:
- Don't use '0x' when specifying nand controller address space
- Add optional property for on-flash bbt usage

Acked-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
.../devicetree/bindings/mtd/qcom_nandc.txt | 49 ++++++++++++++++++++++
1 file changed, 49 insertions(+)
create mode 100644 Documentation/devicetree/bindings/mtd/qcom_nandc.txt

diff --git a/Documentation/devicetree/bindings/mtd/qcom_nandc.txt b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
new file mode 100644
index 0000000..1de4643
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
@@ -0,0 +1,49 @@
+* Qualcomm NAND controller
+
+Required properties:
+- compatible: should be "qcom,ebi2-nand" for IPQ806x
+- reg: MMIO address range
+- clocks: must contain core clock and always on clock
+- clock-names: must contain "core" for the core clock and "aon" for the
+ always on clock
+- dmas: DMA specifier, consisting of a phandle to the ADM DMA
+ controller node and the channel number to be used for
+ NAND. Refer to dma.txt and qcom_adm.txt for more details
+- dma-names: must be "rxtx"
+- qcom,cmd-crci: must contain the ADM command type CRCI block instance
+ number specified for the NAND controller on the given
+ platform
+- qcom,data-crci: must contain the ADM data type CRCI block instance
+ number specified for the NAND controller on the given
+ platform
+
+Optional properties:
+- nand-bus-width: bus width. Must be 8 or 16. If not present, 8 is chosen
+ as default
+
+- nand-ecc-strength: number of bits to correct per ECC step. Must be 4 or 8
+ bits. If not present, 4 is chosen as default
+- nand-on-flash-bbt: Create/use on-flash bad block table
+
+The device tree may optionally contain sub-nodes describing partitions of the
+address space. See partition.txt for more detail.
+
+Example:
+
+nand@1ac00000 {
+ compatible = "qcom,ebi2-nandc";
+ reg = <0x1ac00000 0x800>;
+
+ clocks = <&gcc EBI2_CLK>,
+ <&gcc EBI2_AON_CLK>;
+ clock-names = "core", "aon";
+
+ dmas = <&adm_dma 3>;
+ dma-names = "rxtx";
+ qcom,cmd-crci = <15>;
+ qcom,data-crci = <3>;
+
+ partition@0 {
+ ...
+ };
+};
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-03 05:09:17

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v3 4/5] arm: qcom: dts: Add NAND controller node for ipq806x

The nand controller in IPQ806x is of the 'EBI2 type'. Use the corresponding
compatible string.

Cc: [email protected]

Reviewed-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
arch/arm/boot/dts/qcom-ipq8064.dtsi | 15 +++++++++++++++
1 file changed, 15 insertions(+)

diff --git a/arch/arm/boot/dts/qcom-ipq8064.dtsi b/arch/arm/boot/dts/qcom-ipq8064.dtsi
index 1e1b3f0..a7f0ee5 100644
--- a/arch/arm/boot/dts/qcom-ipq8064.dtsi
+++ b/arch/arm/boot/dts/qcom-ipq8064.dtsi
@@ -350,5 +350,20 @@
status = "disabled";
};

+ nand@1ac00000 {
+ compatible = "qcom,ebi2-nandc";
+ reg = <0x1ac00000 0x800>;
+
+ clocks = <&gcc EBI2_CLK>,
+ <&gcc EBI2_AON_CLK>;
+ clock-names = "core", "aon";
+
+ dmas = <&adm_dma 3>;
+ dma-names = "rxtx";
+ qcom,cmd-crci = <15>;
+ qcom,data-crci = <3>;
+
+ status = "disabled";
+ };
};
};
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-03 05:08:51

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v3 5/5] arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform

Enable the NAND controller node on the AP148 platform. Provide pinmux
information.

Cc: [email protected]

Signed-off-by: Archit Taneja <[email protected]>
---
arch/arm/boot/dts/qcom-ipq8064-ap148.dts | 36 ++++++++++++++++++++++++++++++++
1 file changed, 36 insertions(+)

diff --git a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
index 7f9ea50..2e88eff 100644
--- a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
+++ b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
@@ -30,6 +30,28 @@
bias-none;
};
};
+ nand_pins: nand_pins {
+ mux {
+ pins = "gpio34", "gpio35", "gpio36",
+ "gpio37", "gpio38", "gpio39",
+ "gpio40", "gpio41", "gpio42",
+ "gpio43", "gpio44", "gpio45",
+ "gpio46", "gpio47";
+ function = "nand";
+ drive-strength = <10>;
+ bias-disable;
+ };
+ pullups {
+ pins = "gpio39";
+ bias-pull-up;
+ };
+ hold {
+ pins = "gpio40", "gpio41", "gpio42",
+ "gpio43", "gpio44", "gpio45",
+ "gpio46", "gpio47";
+ bias-bus-hold;
+ };
+ };
};

gsbi@16300000 {
@@ -93,5 +115,19 @@
sata@29000000 {
status = "ok";
};
+
+ nand@1ac00000 {
+ status = "ok";
+
+ pinctrl-0 = <&nand_pins>;
+ pinctrl-names = "default";
+
+ nand-ecc-strength = <4>;
+ nand-bus-width = <8>;
+ };
};
};
+
+&adm_dma {
+ status = "ok";
+};
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-03 19:35:18

by Andy Gross

[permalink] [raw]
Subject: Re: [PATCH v3 5/5] arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform

On Mon, Aug 03, 2015 at 10:38:18AM +0530, Archit Taneja wrote:
> Enable the NAND controller node on the AP148 platform. Provide pinmux
> information.
>
> Cc: [email protected]
>
> Signed-off-by: Archit Taneja <[email protected]>
> ---
> arch/arm/boot/dts/qcom-ipq8064-ap148.dts | 36 ++++++++++++++++++++++++++++++++
> 1 file changed, 36 insertions(+)
>
> diff --git a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
> index 7f9ea50..2e88eff 100644
> --- a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
> +++ b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
> @@ -30,6 +30,28 @@
> bias-none;
> };
> };
> + nand_pins: nand_pins {
> + mux {
> + pins = "gpio34", "gpio35", "gpio36",
> + "gpio37", "gpio38", "gpio39",
> + "gpio40", "gpio41", "gpio42",
> + "gpio43", "gpio44", "gpio45",
> + "gpio46", "gpio47";
> + function = "nand";
> + drive-strength = <10>;
> + bias-disable;
> + };
> + pullups {
> + pins = "gpio39";
> + bias-pull-up;
> + };
> + hold {
> + pins = "gpio40", "gpio41", "gpio42",
> + "gpio43", "gpio44", "gpio45",
> + "gpio46", "gpio47";
> + bias-bus-hold;

Maybe split out the bias-disable into a separate set and remove that property
from the mux.

> + };
> + };
> };
>
> gsbi@16300000 {
> @@ -93,5 +115,19 @@
> sata@29000000 {
> status = "ok";
> };
> +
> + nand@1ac00000 {
> + status = "ok";
> +
> + pinctrl-0 = <&nand_pins>;
> + pinctrl-names = "default";
> +
> + nand-ecc-strength = <4>;
> + nand-bus-width = <8>;
> + };
> };
> };
> +
> +&adm_dma {
> + status = "ok";
> +};
> --
> The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
> hosted by The Linux Foundation
>

--
Qualcomm Innovation Center, Inc.
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-03 20:58:33

by Stephen Boyd

[permalink] [raw]
Subject: Re: [PATCH v3 5/5] arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform

On 08/03, Archit Taneja wrote:
> @@ -93,5 +115,19 @@
> sata@29000000 {
> status = "ok";
> };
> +
> + nand@1ac00000 {
> + status = "ok";
> +
> + pinctrl-0 = <&nand_pins>;
> + pinctrl-names = "default";
> +
> + nand-ecc-strength = <4>;
> + nand-bus-width = <8>;
> + };
> };
> };
> +
> +&adm_dma {
> + status = "ok";
> +};

I think the preference is to put the full path to the device in
the dts file and then have status = "ok". So please move this
into the soc node and give the correct offset, etc. like we've
done for other nodes.

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-03 23:38:56

by Stephen Boyd

[permalink] [raw]
Subject: Re: [PATCH v3 2/5] mtd: nand: Qualcomm NAND controller driver

On 08/03, Archit Taneja wrote:
> The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
> MDM9x15 series.

There are some checker errors and le32 usage is not correct:

drivers/mtd/nand/qcom_nandc.c:383:13: warning: mixing different enum types
drivers/mtd/nand/qcom_nandc.c:383:13: int enum dma_transfer_direction versus
drivers/mtd/nand/qcom_nandc.c:383:13: int enum dma_data_direction
drivers/mtd/nand/qcom_nandc.c:741:17: warning: mixing different enum types
drivers/mtd/nand/qcom_nandc.c:741:17: int enum dma_transfer_direction versus
drivers/mtd/nand/qcom_nandc.c:741:17: int enum dma_data_direction
/
drivers/mtd/nand/qcom_nandc.c:1828:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]

You can find the le32 problems with

make C=2 CF="-D__CHECK_ENDIAN__" drivers/mtd/nand/qcom_nandc.o

Feel free to squash the following in:

Signed-off-by: Stephen Boyd <[email protected]>
---8<----

diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
index e1f15766e63d..6cc1df1a6df0 100644
--- a/drivers/mtd/nand/qcom_nandc.c
+++ b/drivers/mtd/nand/qcom_nandc.c
@@ -173,7 +173,7 @@
struct desc_info {
struct list_head list;

- enum dma_transfer_direction dir;
+ enum dma_data_direction dir;
struct scatterlist sgl;
struct dma_async_tx_descriptor *dma_desc;
};
@@ -264,7 +264,7 @@ struct qcom_nandc_data {
int buf_start;

/* local buffer to read back registers */
- u32 *reg_read_buf;
+ __le32 *reg_read_buf;
int reg_read_pos;

/* required configs */
@@ -366,6 +366,7 @@ static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
struct dma_async_tx_descriptor *dma_desc;
struct scatterlist *sgl;
struct dma_slave_config slave_conf;
+ enum dma_transfer_direction dir_eng;
int r;

desc = kzalloc(sizeof(*desc), GFP_KERNEL);
@@ -378,7 +379,13 @@ static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,

sg_init_one(sgl, vaddr, size);

- desc->dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
+ if (read) {
+ dir_eng = DMA_DEV_TO_MEM;
+ desc->dir = DMA_FROM_DEVICE;
+ } else {
+ dir_eng = DMA_MEM_TO_DEV;
+ desc->dir = DMA_TO_DEVICE;
+ }

r = dma_map_sg(this->dev, sgl, 1, desc->dir);
if (r == 0) {
@@ -405,7 +412,7 @@ static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
goto err;
}

- dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0);
+ dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, dir_eng, 0);
if (!dma_desc) {
dev_err(this->dev, "failed to prepare desc\n");
r = -EINVAL;
@@ -775,7 +782,7 @@ static void parse_erase_write_errors(struct qcom_nandc_data *this, int command)
num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;

for (i = 0; i < num_cw; i++) {
- __le32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
+ u32 flash_status = le32_to_cpu(this->reg_read_buf[i]);

if (flash_status & FS_MPU_ERR)
this->status &= ~NAND_STATUS_WP;
@@ -902,7 +909,7 @@ static bool empty_page_fixup(struct qcom_nandc_data *this, u8 *data_buf)

for (i = 0; i < cwperpage; i++) {
u8 *empty1, *empty2;
- __le32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
+ u32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);

/*
* an erased page flags an error in NAND_FLASH_STATUS, check if
@@ -968,37 +975,37 @@ static int parse_read_errors(struct qcom_nandc_data *this, bool erased_page)
int cwperpage = ecc->steps;
unsigned int max_bitflips = 0;
int i;
+ struct read_stats *buf;

- for (i = 0; i < cwperpage; i++) {
- int stat;
- struct read_stats *buf;
-
- buf = (struct read_stats *) (this->reg_read_buf + 3 * i);
+ buf = (struct read_stats *)this->reg_read_buf;
+ for (i = 0; i < cwperpage; i++, buf++) {
+ unsigned int stat;
+ u32 flash, buffer, erased_cw;

- buf->flash = le32_to_cpu(buf->flash);
- buf->buffer = le32_to_cpu(buf->buffer);
- buf->erased_cw = le32_to_cpu(buf->erased_cw);
+ flash = le32_to_cpu(buf->flash);
+ buffer = le32_to_cpu(buf->buffer);
+ erased_cw = le32_to_cpu(buf->erased_cw);

- if (buf->flash & (FS_OP_ERR | FS_MPU_ERR)) {
+ if (flash & (FS_OP_ERR | FS_MPU_ERR)) {

/* ignore erased codeword errors */
if (this->bch_enabled) {
- if ((buf->erased_cw & ERASED_CW) == ERASED_CW)
+ if ((erased_cw & ERASED_CW) == ERASED_CW)
continue;
} else if (erased_page) {
continue;
}

- if (buf->buffer & BS_UNCORRECTABLE_BIT) {
+ if (buffer & BS_UNCORRECTABLE_BIT) {
mtd->ecc_stats.failed++;
continue;
}
}

- stat = buf->buffer & BS_CORRECTABLE_ERR_MSK;
+ stat = buffer & BS_CORRECTABLE_ERR_MSK;
mtd->ecc_stats.corrected += stat;

- max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ max_bitflips = max(max_bitflips, stat);
}

return max_bitflips;
@@ -1825,7 +1832,7 @@ static int qcom_nandc_probe(struct platform_device *pdev)
return -ENODEV;
}

- this->ecc_modes = (u32) dev_data;
+ this->ecc_modes = (unsigned long)dev_data;

this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
this->base = devm_ioremap_resource(&pdev->dev, this->res);

> diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
> new file mode 100644
> index 0000000..e1f1576
> --- /dev/null
> +++ b/drivers/mtd/nand/qcom_nandc.c
> @@ -0,0 +1,1913 @@
> +struct qcom_nandc_data {
> + struct platform_device *pdev;
> + struct device *dev;
> +
> + void __iomem *base;
> + struct resource *res;
> +
> + struct clk *core_clk;
> + struct clk *aon_clk;
> +
> + /* DMA stuff */
> + struct dma_chan *chan;
> + struct dma_slave_config slave_conf;
> + unsigned int cmd_crci;
> + unsigned int data_crci;
> + struct list_head list;
> + struct completion dma_done;
> +
> + /* MTD stuff */
> + struct nand_chip chip;
> + struct mtd_info mtd;
> +
> + /* local data buffer and markers */
> + u8 *data_buffer;
> + int buf_size;
> + int buf_count;
> + int buf_start;
> +
> + /* local buffer to read back registers */
> + u32 *reg_read_buf;
> + int reg_read_pos;
> +
> + /* required configs */
> + u32 cfg0, cfg1;
> + u32 cfg0_raw, cfg1_raw;
> + u32 ecc_buf_cfg;
> + u32 ecc_bch_cfg;
> + u32 clrflashstatus;
> + u32 clrreadstatus;
> + u32 sflashc_burst_cfg;
> + u32 cmd1, vld;
> +
> + /* register state */
> + struct nandc_regs *regs;

I also wonder if this is little endian? It looks like some sort
of in memory register map that we point DMA to so that it can
write the values to the actual hardware registers?

> +
> + /* things we get from DT */
> + int ecc_strength;
> + int bus_width;
> +
> + u32 ecc_modes;
> +
> + /* misc params */
> + int cw_size;
> + int cw_data;
> + bool use_ecc;
> + bool bch_enabled;
> + u8 status;
> + int last_command;
> +};
[...]
> +
> +static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
> + const void *vaddr, int size, bool flow_control)
> +{
> + struct desc_info *desc;
> + struct dma_async_tx_descriptor *dma_desc;
> + struct scatterlist *sgl;
> + struct dma_slave_config slave_conf;
> + int r;
> +
> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> + if (!desc)
> + return -ENOMEM;
> +
> + list_add_tail(&desc->list, &this->list);

Should we move this list add to at least after the dma_map_sg()?
It looks like on the error path (which is only checked sometimes)
we always call dma_unmap_sg() and so this may have not been
mapped in the first place.

> +
> + sgl = &desc->sgl;
> +
> + sg_init_one(sgl, vaddr, size);
> +
> + desc->dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
> +
> + r = dma_map_sg(this->dev, sgl, 1, desc->dir);
> + if (r == 0) {
> + r = -ENOMEM;
> + goto err;
> + }
> +
> + memset(&slave_conf, 0x00, sizeof(slave_conf));
> +
> + slave_conf.device_fc = flow_control;
> + if (read) {
> + slave_conf.src_maxburst = 16;
> + slave_conf.src_addr = this->res->start + reg_off;
> + slave_conf.slave_id = this->data_crci;
> + } else {
> + slave_conf.dst_maxburst = 16;
> + slave_conf.dst_addr = this->res->start + reg_off;
> + slave_conf.slave_id = this->cmd_crci;
> + }
> +
> + r = dmaengine_slave_config(this->chan, &slave_conf);
> + if (r) {
> + dev_err(this->dev, "failed to configure dma channel\n");
> + goto err;
> + }
> +
> + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0);
> + if (!dma_desc) {
> + dev_err(this->dev, "failed to prepare desc\n");
> + r = -EINVAL;
> + goto err;
> + }
> +
> + desc->dma_desc = dma_desc;
> +
> + return 0;
> +err:
> + kfree(desc);
> +
> + return r;
> +}
[...]
> +
> +static int submit_descs(struct qcom_nandc_data *this)
> +{
> + struct completion *c = &this->dma_done;
> + struct desc_info *desc;
> + int r;
> +
> + init_completion(c);
> +
> + list_for_each_entry(desc, &this->list, list) {
> + /*
> + * we add a callback to the last descriptor in our list to
> + * notify completion of command
> + */
> + if (list_is_last(&desc->list, &this->list)) {
> + desc->dma_desc->callback = dma_callback;
> + desc->dma_desc->callback_param = this;
> + }
> +
> + dmaengine_submit(desc->dma_desc);
> + }
> +
> + dma_async_issue_pending(this->chan);
> +
> + r = wait_for_completion_timeout(c, msecs_to_jiffies(500));
> + if (!r)
> + return -ETIMEDOUT;

Any reason this can't all be done with dma_sync_wait()? The
timeout is a little different (5 seconds instead of .5 seconds)
but otherwise it looks like we could keep track of the last
cookie we got from dmaengine_submit() and then call
dma_sync_wait() with that:

list_for_each_entry(desc, &this->list, list)
cookie = dmaengine_submit(desc->dma_desc);

if (dma_sync_wait(this->chan, cookie) != DMA_COMPLETE)
return -ETIMEDOUT;

> +
> + return 0;
> +}
> +
[...]
> +
> +/*
> + * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
> + * privately maintained status byte, this status byte can be read after
> + * NAND_CMD_STATUS is called
> + */
> +static void parse_erase_write_errors(struct qcom_nandc_data *this, int command)
> +{
> + struct nand_chip *chip = &this->chip;
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int num_cw;
> + int i;
> +
> + num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
> +
> + for (i = 0; i < num_cw; i++) {
> + __le32 flash_status = le32_to_cpu(this->reg_read_buf[i]);

So this doesn't need the i * 3 thing? If it does, perhaps
reg_read_buf needs to be of type struct read_stats instead.

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-04 15:04:52

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v3 2/5] mtd: nand: Qualcomm NAND controller driver


On 8/4/2015 5:08 AM, Stephen Boyd wrote:
> On 08/03, Archit Taneja wrote:
>> The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
>> MDM9x15 series.
>
> There are some checker errors and le32 usage is not correct:
>
> drivers/mtd/nand/qcom_nandc.c:383:13: warning: mixing different enum types
> drivers/mtd/nand/qcom_nandc.c:383:13: int enum dma_transfer_direction versus
> drivers/mtd/nand/qcom_nandc.c:383:13: int enum dma_data_direction
> drivers/mtd/nand/qcom_nandc.c:741:17: warning: mixing different enum types
> drivers/mtd/nand/qcom_nandc.c:741:17: int enum dma_transfer_direction versus
> drivers/mtd/nand/qcom_nandc.c:741:17: int enum dma_data_direction
> /
> drivers/mtd/nand/qcom_nandc.c:1828:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
>
> You can find the le32 problems with
>
> make C=2 CF="-D__CHECK_ENDIAN__" drivers/mtd/nand/qcom_nandc.o
>
> Feel free to squash the following in:

Thanks for fixing these issues. I'll squash them in.

>
> Signed-off-by: Stephen Boyd <[email protected]>
> ---8<----
>
> diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
> index e1f15766e63d..6cc1df1a6df0 100644
> --- a/drivers/mtd/nand/qcom_nandc.c
> +++ b/drivers/mtd/nand/qcom_nandc.c
> @@ -173,7 +173,7 @@
> struct desc_info {
> struct list_head list;
>
> - enum dma_transfer_direction dir;
> + enum dma_data_direction dir;
> struct scatterlist sgl;
> struct dma_async_tx_descriptor *dma_desc;
> };
> @@ -264,7 +264,7 @@ struct qcom_nandc_data {
> int buf_start;
>
> /* local buffer to read back registers */
> - u32 *reg_read_buf;
> + __le32 *reg_read_buf;
> int reg_read_pos;
>
> /* required configs */
> @@ -366,6 +366,7 @@ static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
> struct dma_async_tx_descriptor *dma_desc;
> struct scatterlist *sgl;
> struct dma_slave_config slave_conf;
> + enum dma_transfer_direction dir_eng;
> int r;
>
> desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> @@ -378,7 +379,13 @@ static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
>
> sg_init_one(sgl, vaddr, size);
>
> - desc->dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
> + if (read) {
> + dir_eng = DMA_DEV_TO_MEM;
> + desc->dir = DMA_FROM_DEVICE;
> + } else {
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + }
>
> r = dma_map_sg(this->dev, sgl, 1, desc->dir);
> if (r == 0) {
> @@ -405,7 +412,7 @@ static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
> goto err;
> }
>
> - dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0);
> + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, dir_eng, 0);
> if (!dma_desc) {
> dev_err(this->dev, "failed to prepare desc\n");
> r = -EINVAL;
> @@ -775,7 +782,7 @@ static void parse_erase_write_errors(struct qcom_nandc_data *this, int command)
> num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
>
> for (i = 0; i < num_cw; i++) {
> - __le32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
> + u32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
>
> if (flash_status & FS_MPU_ERR)
> this->status &= ~NAND_STATUS_WP;
> @@ -902,7 +909,7 @@ static bool empty_page_fixup(struct qcom_nandc_data *this, u8 *data_buf)
>
> for (i = 0; i < cwperpage; i++) {
> u8 *empty1, *empty2;
> - __le32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
> + u32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
>
> /*
> * an erased page flags an error in NAND_FLASH_STATUS, check if
> @@ -968,37 +975,37 @@ static int parse_read_errors(struct qcom_nandc_data *this, bool erased_page)
> int cwperpage = ecc->steps;
> unsigned int max_bitflips = 0;
> int i;
> + struct read_stats *buf;
>
> - for (i = 0; i < cwperpage; i++) {
> - int stat;
> - struct read_stats *buf;
> -
> - buf = (struct read_stats *) (this->reg_read_buf + 3 * i);
> + buf = (struct read_stats *)this->reg_read_buf;
> + for (i = 0; i < cwperpage; i++, buf++) {
> + unsigned int stat;
> + u32 flash, buffer, erased_cw;
>
> - buf->flash = le32_to_cpu(buf->flash);
> - buf->buffer = le32_to_cpu(buf->buffer);
> - buf->erased_cw = le32_to_cpu(buf->erased_cw);
> + flash = le32_to_cpu(buf->flash);
> + buffer = le32_to_cpu(buf->buffer);
> + erased_cw = le32_to_cpu(buf->erased_cw);
>
> - if (buf->flash & (FS_OP_ERR | FS_MPU_ERR)) {
> + if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
>
> /* ignore erased codeword errors */
> if (this->bch_enabled) {
> - if ((buf->erased_cw & ERASED_CW) == ERASED_CW)
> + if ((erased_cw & ERASED_CW) == ERASED_CW)
> continue;
> } else if (erased_page) {
> continue;
> }
>
> - if (buf->buffer & BS_UNCORRECTABLE_BIT) {
> + if (buffer & BS_UNCORRECTABLE_BIT) {
> mtd->ecc_stats.failed++;
> continue;
> }
> }
>
> - stat = buf->buffer & BS_CORRECTABLE_ERR_MSK;
> + stat = buffer & BS_CORRECTABLE_ERR_MSK;
> mtd->ecc_stats.corrected += stat;
>
> - max_bitflips = max_t(unsigned int, max_bitflips, stat);
> + max_bitflips = max(max_bitflips, stat);
> }
>
> return max_bitflips;
> @@ -1825,7 +1832,7 @@ static int qcom_nandc_probe(struct platform_device *pdev)
> return -ENODEV;
> }
>
> - this->ecc_modes = (u32) dev_data;
> + this->ecc_modes = (unsigned long)dev_data;
>
> this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> this->base = devm_ioremap_resource(&pdev->dev, this->res);
>
>> diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
>> new file mode 100644
>> index 0000000..e1f1576
>> --- /dev/null
>> +++ b/drivers/mtd/nand/qcom_nandc.c
>> @@ -0,0 +1,1913 @@
>> +struct qcom_nandc_data {
>> + struct platform_device *pdev;
>> + struct device *dev;
>> +
>> + void __iomem *base;
>> + struct resource *res;
>> +
>> + struct clk *core_clk;
>> + struct clk *aon_clk;
>> +
>> + /* DMA stuff */
>> + struct dma_chan *chan;
>> + struct dma_slave_config slave_conf;
>> + unsigned int cmd_crci;
>> + unsigned int data_crci;
>> + struct list_head list;
>> + struct completion dma_done;
>> +
>> + /* MTD stuff */
>> + struct nand_chip chip;
>> + struct mtd_info mtd;
>> +
>> + /* local data buffer and markers */
>> + u8 *data_buffer;
>> + int buf_size;
>> + int buf_count;
>> + int buf_start;
>> +
>> + /* local buffer to read back registers */
>> + u32 *reg_read_buf;
>> + int reg_read_pos;
>> +
>> + /* required configs */
>> + u32 cfg0, cfg1;
>> + u32 cfg0_raw, cfg1_raw;
>> + u32 ecc_buf_cfg;
>> + u32 ecc_bch_cfg;
>> + u32 clrflashstatus;
>> + u32 clrreadstatus;
>> + u32 sflashc_burst_cfg;
>> + u32 cmd1, vld;
>> +
>> + /* register state */
>> + struct nandc_regs *regs;
>
> I also wonder if this is little endian? It looks like some sort
> of in memory register map that we point DMA to so that it can
> write the values to the actual hardware registers?

Yes, that's what it's supposed to do. I kept it in the form above
so that updating the register map is as easy as assigning a new
value to the member.

I've tried to fix it for endianness in the diff below. I created
some funcs to not flood the driver with cpu_to_le32() calls. Does
it look okay?

--- a/drivers/mtd/nand/qcom_nandc.c
+++ b/drivers/mtd/nand/qcom_nandc.c
@@ -183,26 +183,26 @@ struct desc_info {
* chunk of memory which we use to write the controller registers
through DMA.
*/
struct nandc_regs {
- u32 cmd;
- u32 addr0;
- u32 addr1;
- u32 chip_sel;
- u32 exec;
-
- u32 cfg0;
- u32 cfg1;
- u32 ecc_bch_cfg;
+ __le32 cmd;
+ __le32 addr0;
+ __le32 addr1;
+ __le32 chip_sel;
+ __le32 exec;

- u32 clrflashstatus;
- u32 clrreadstatus;
+ __le32 cfg0;
+ __le32 cfg1;
+ __le32 ecc_bch_cfg;

- u32 cmd1;
- u32 vld;
+ __le32 clrflashstatus;
+ __le32 clrreadstatus;

- u32 orig_cmd1;
- u32 orig_vld;
+ __le32 cmd1;
+ __le32 vld;

- u32 ecc_buf_cfg;
+ __le32 orig_cmd1;
+ __le32 orig_vld;
+
+ __le32 ecc_buf_cfg;
};

/*
@@ -306,17 +306,65 @@ static inline void nandc_write(struct
qcom_nandc_data *this, int offset,
iowrite32(val, this->base + offset);
}

+static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
+{
+ switch (offset) {
+ case NAND_FLASH_CMD:
+ return &regs->cmd;
+ case NAND_ADDR0:
+ return &regs->addr0;
+ case NAND_ADDR1:
+ return &regs->addr1;
+ case NAND_FLASH_CHIP_SELECT:
+ return &regs->chip_sel;
+ case NAND_EXEC_CMD:
+ return &regs->exec;
+ case NAND_FLASH_STATUS:
+ return &regs->clrflashstatus;
+ case NAND_DEV0_CFG0:
+ return &regs->cfg0;
+ case NAND_DEV0_CFG1:
+ return &regs->cfg1;
+ case NAND_DEV0_ECC_CFG:
+ return &regs->ecc_bch_cfg;
+ case NAND_READ_STATUS:
+ return &regs->clrreadstatus;
+ case NAND_DEV_CMD1:
+ return &regs->cmd1;
+ case NAND_DEV_CMD1_RESTORE:
+ return &regs->orig_cmd1;
+ case NAND_DEV_CMD_VLD:
+ return &regs->vld;
+ case NAND_DEV_CMD_VLD_RESTORE:
+ return &regs->orig_vld;
+ case NAND_EBI2_ECC_BUF_CFG:
+ return &regs->ecc_buf_cfg;
+ default:
+ return NULL;
+ }
+}
+
+static void set_nandc_reg(struct qcom_nandc_data *this, int offset, u32
val)
+{
+ struct nandc_regs *regs = this->regs;
+ __le32 *reg;
+
+ reg = offset_to_nandc_reg(regs, offset);
+
+ if (reg)
+ *reg = cpu_to_le32(val);
+}
+
/* helper to configure address register values */
static void set_address(struct qcom_nandc_data *this, u16 column, int
page)
{
struct nand_chip *chip = &this->chip;
- struct nandc_regs *regs = this->regs;

if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;

- regs->addr0 = page << 16 | column;
- regs->addr1 = page >> 16 & 0xff;
+ set_nandc_reg(this, NAND_ADDR0, page << 16 | column);
+ set_nandc_reg(this, NAND_ADDR1, page >> 16 & 0xff);
}

/*
@@ -328,35 +376,39 @@ static void set_address(struct qcom_nandc_data
*this, u16 column, int page)
*/
static void update_rw_regs(struct qcom_nandc_data *this, int num_cw,
bool read)
{
- struct nandc_regs *regs = this->regs;
+ u32 cmd, cfg0, cfg1, ecc_bch_cfg;

if (read) {
if (this->use_ecc)
- regs->cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
+ cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
else
- regs->cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
+ cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
} else {
- regs->cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
+ cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
}

if (this->use_ecc) {
- regs->cfg0 = (this->cfg0 & ~(7U << CW_PER_PAGE)) |
+ cfg0 = (this->cfg0 & ~(7U << CW_PER_PAGE)) |
(num_cw - 1) << CW_PER_PAGE;

- regs->cfg1 = this->cfg1;
- regs->ecc_bch_cfg = this->ecc_bch_cfg;
+ cfg1 = this->cfg1;
+ ecc_bch_cfg = this->ecc_bch_cfg;
} else {
- regs->cfg0 = (this->cfg0_raw & ~(7U << CW_PER_PAGE)) |
+ cfg0 = (this->cfg0_raw & ~(7U << CW_PER_PAGE)) |
(num_cw - 1) << CW_PER_PAGE;

- regs->cfg1 = this->cfg1_raw;
- regs->ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
+ cfg1 = this->cfg1_raw;
+ ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
}

- regs->ecc_buf_cfg = this->ecc_buf_cfg;
- regs->clrflashstatus = this->clrflashstatus;
- regs->clrreadstatus = this->clrreadstatus;
- regs->exec = 1;
+ set_nandc_reg(this, NAND_FLASH_CMD, cmd);
+ set_nandc_reg(this, NAND_DEV0_CFG0, cfg0);
+ set_nandc_reg(this, NAND_DEV0_CFG1, cfg1);
+ set_nandc_reg(this, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
+ set_nandc_reg(this, NAND_EBI2_ECC_BUF_CFG, this->ecc_buf_cfg);
+ set_nandc_reg(this, NAND_FLASH_STATUS, this->clrflashstatus);
+ set_nandc_reg(this, NAND_READ_STATUS, this->clrreadstatus);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
}

static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int
reg_off,
@@ -465,44 +517,16 @@ static int write_reg_dma(struct qcom_nandc_data
*this, int first, int num_regs)
void *vaddr;
int size;

- switch (first) {
- case NAND_FLASH_CMD:
- vaddr = &regs->cmd;
+ vaddr = offset_to_nandc_reg(regs, first);
+
+ if (first == NAND_FLASH_CMD)
flow_control = true;
- break;
- case NAND_EXEC_CMD:
- vaddr = &regs->exec;
- break;
- case NAND_FLASH_STATUS:
- vaddr = &regs->clrflashstatus;
- break;
- case NAND_DEV0_CFG0:
- vaddr = &regs->cfg0;
- break;
- case NAND_READ_STATUS:
- vaddr = &regs->clrreadstatus;
- break;
- case NAND_DEV_CMD1:
- vaddr = &regs->cmd1;
- break;
- case NAND_DEV_CMD1_RESTORE:
+
+ if (first == NAND_DEV_CMD1_RESTORE)
first = NAND_DEV_CMD1;
- vaddr = &regs->orig_cmd1;
- break;
- case NAND_DEV_CMD_VLD:
- vaddr = &regs->vld;
- break;
- case NAND_DEV_CMD_VLD_RESTORE:
+
+ if (first == NAND_DEV_CMD_VLD_RESTORE)
first = NAND_DEV_CMD_VLD;
- vaddr = &regs->orig_vld;
- break;
- case NAND_EBI2_ECC_BUF_CFG:
- vaddr = &regs->ecc_buf_cfg;
- break;
- default:
- dev_err(this->dev, "invalid starting register\n");
- return -EINVAL;
- }

size = num_regs * sizeof(u32);

@@ -582,42 +606,40 @@ static void config_cw_write_post(struct
qcom_nandc_data *this)
/* sets up descriptors for NAND_CMD_PARAM */
static int nandc_param(struct qcom_nandc_data *this)
{
- struct nandc_regs *regs = this->regs;
-
/*
* NAND_CMD_PARAM is called before we know much about the FLASH chip
* in use. we configure the controller to perform a raw read of 512
* bytes to read onfi params
*/
- regs->cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
- regs->addr0 = 0;
- regs->addr1 = 0;
- regs->cfg0 = 0 << CW_PER_PAGE
- | 512 << UD_SIZE_BYTES
- | 5 << NUM_ADDR_CYCLES
- | 0 << SPARE_SIZE_BYTES;
-
- regs->cfg1 = 7 << NAND_RECOVERY_CYCLES
- | 0 << CS_ACTIVE_BSY
- | 17 << BAD_BLOCK_BYTE_NUM
- | 1 << BAD_BLOCK_IN_SPARE_AREA
- | 2 << WR_RD_BSY_GAP
- | 0 << WIDE_FLASH
- | 1 << DEV0_CFG1_ECC_DISABLE;
-
- regs->ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
+ set_nandc_reg(this, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
+ set_nandc_reg(this, NAND_ADDR0, 0);
+ set_nandc_reg(this, NAND_ADDR1, 0);
+ set_nandc_reg(this, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
+ | 512 << UD_SIZE_BYTES
+ | 5 << NUM_ADDR_CYCLES
+ | 0 << SPARE_SIZE_BYTES);
+ set_nandc_reg(this, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | 17 << BAD_BLOCK_BYTE_NUM
+ | 1 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | 0 << WIDE_FLASH
+ | 1 << DEV0_CFG1_ECC_DISABLE);
+ set_nandc_reg(this, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);

- /* configure CMD1 and VLD for ONFI param probing */
- regs->vld = (this->vld & ~(1 << READ_START_VLD))
- | 0 << READ_START_VLD;

- regs->cmd1 = (this->cmd1 & ~(0xFF << READ_ADDR))
- | NAND_CMD_PARAM << READ_ADDR;
+ /* configure CMD1 and VLD for ONFI param probing */
+ set_nandc_reg(this, NAND_DEV_CMD_VLD,
+ (this->vld & ~(1 << READ_START_VLD))
+ | 0 << READ_START_VLD);
+ set_nandc_reg(this, NAND_DEV_CMD1,
+ (this->cmd1 & ~(0xFF << READ_ADDR))
+ | NAND_CMD_PARAM << READ_ADDR);

- regs->exec = 1;
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);

- regs->orig_cmd1 = this->cmd1;
- regs->orig_vld = this->vld;
+ set_nandc_reg(this, NAND_DEV_CMD1_RESTORE, this->cmd1);
+ set_nandc_reg(this, NAND_DEV_CMD_VLD_RESTORE, this->vld);

write_reg_dma(this, NAND_DEV_CMD_VLD, 1);
write_reg_dma(this, NAND_DEV_CMD1, 1);
@@ -639,16 +661,15 @@ static int nandc_param(struct qcom_nandc_data *this)
/* sets up descriptors for NAND_CMD_ERASE1 */
static int erase_block(struct qcom_nandc_data *this, int page_addr)
{
- struct nandc_regs *regs = this->regs;
-
- regs->cmd = BLOCK_ERASE | PAGE_ACC | LAST_PAGE;
- regs->addr0 = page_addr;
- regs->addr1 = 0;
- regs->cfg0 = this->cfg0_raw & ~(7 << CW_PER_PAGE);
- regs->cfg1 = this->cfg1_raw;
- regs->exec = 1;
- regs->clrflashstatus = this->clrflashstatus;
- regs->clrreadstatus = this->clrreadstatus;
+ set_nandc_reg(this, NAND_FLASH_CMD, BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
+ set_nandc_reg(this, NAND_ADDR0, page_addr);
+ set_nandc_reg(this, NAND_ADDR1, 0);
+ set_nandc_reg(this, NAND_DEV0_CFG0,
+ this->cfg0_raw & ~(7 << CW_PER_PAGE));
+ set_nandc_reg(this, NAND_DEV0_CFG1, this->cfg1_raw);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
+ set_nandc_reg(this, NAND_FLASH_STATUS, this->clrflashstatus);
+ set_nandc_reg(this, NAND_READ_STATUS, this->clrreadstatus);

write_reg_dma(this, NAND_FLASH_CMD, 3);
write_reg_dma(this, NAND_DEV0_CFG0, 2);
@@ -665,16 +686,14 @@ static int erase_block(struct qcom_nandc_data
*this, int page_addr)
/* sets up descriptors for NAND_CMD_READID */
static int read_id(struct qcom_nandc_data *this, int column)
{
- struct nandc_regs *regs = this->regs;
-
if (column == -1)
return 0;

- regs->cmd = FETCH_ID;
- regs->addr0 = column;
- regs->addr1 = 0;
- regs->chip_sel = DM_EN;
- regs->exec = 1;
+ set_nandc_reg(this, NAND_FLASH_CMD, FETCH_ID);
+ set_nandc_reg(this, NAND_ADDR0, column);
+ set_nandc_reg(this, NAND_ADDR1, 0);
+ set_nandc_reg(this, NAND_FLASH_CHIP_SELECT, DM_EN);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);

write_reg_dma(this, NAND_FLASH_CMD, 4);
write_reg_dma(this, NAND_EXEC_CMD, 1);
@@ -687,10 +706,8 @@ static int read_id(struct qcom_nandc_data *this,
int column)
/* sets up descriptors for NAND_CMD_RESET */
static int reset(struct qcom_nandc_data *this)
{
- struct nandc_regs *regs = this->regs;
-
- regs->cmd = RESET_DEVICE;
- regs->exec = 1;
+ set_nandc_reg(this, NAND_FLASH_CMD, RESET_DEVICE);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);

write_reg_dma(this, NAND_FLASH_CMD, 1);
write_reg_dma(this, NAND_EXEC_CMD, 1);

>
>> +
>> + /* things we get from DT */
>> + int ecc_strength;
>> + int bus_width;
>> +
>> + u32 ecc_modes;
>> +
>> + /* misc params */
>> + int cw_size;
>> + int cw_data;
>> + bool use_ecc;
>> + bool bch_enabled;
>> + u8 status;
>> + int last_command;
>> +};
> [...]
>> +
>> +static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
>> + const void *vaddr, int size, bool flow_control)
>> +{
>> + struct desc_info *desc;
>> + struct dma_async_tx_descriptor *dma_desc;
>> + struct scatterlist *sgl;
>> + struct dma_slave_config slave_conf;
>> + int r;
>> +
>> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
>> + if (!desc)
>> + return -ENOMEM;
>> +
>> + list_add_tail(&desc->list, &this->list);
>
> Should we move this list add to at least after the dma_map_sg()?
> It looks like on the error path (which is only checked sometimes)
> we always call dma_unmap_sg() and so this may have not been
> mapped in the first place.

The error path isn't checked by the callers of this func, so, it's
best to keep it later as you suggested.

>
>> +
>> + sgl = &desc->sgl;
>> +
>> + sg_init_one(sgl, vaddr, size);
>> +
>> + desc->dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
>> +
>> + r = dma_map_sg(this->dev, sgl, 1, desc->dir);
>> + if (r == 0) {
>> + r = -ENOMEM;
>> + goto err;
>> + }
>> +
>> + memset(&slave_conf, 0x00, sizeof(slave_conf));
>> +
>> + slave_conf.device_fc = flow_control;
>> + if (read) {
>> + slave_conf.src_maxburst = 16;
>> + slave_conf.src_addr = this->res->start + reg_off;
>> + slave_conf.slave_id = this->data_crci;
>> + } else {
>> + slave_conf.dst_maxburst = 16;
>> + slave_conf.dst_addr = this->res->start + reg_off;
>> + slave_conf.slave_id = this->cmd_crci;
>> + }
>> +
>> + r = dmaengine_slave_config(this->chan, &slave_conf);
>> + if (r) {
>> + dev_err(this->dev, "failed to configure dma channel\n");
>> + goto err;
>> + }
>> +
>> + dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, desc->dir, 0);
>> + if (!dma_desc) {
>> + dev_err(this->dev, "failed to prepare desc\n");
>> + r = -EINVAL;
>> + goto err;
>> + }
>> +
>> + desc->dma_desc = dma_desc;
>> +
>> + return 0;
>> +err:
>> + kfree(desc);
>> +
>> + return r;
>> +}
> [...]
>> +
>> +static int submit_descs(struct qcom_nandc_data *this)
>> +{
>> + struct completion *c = &this->dma_done;
>> + struct desc_info *desc;
>> + int r;
>> +
>> + init_completion(c);
>> +
>> + list_for_each_entry(desc, &this->list, list) {
>> + /*
>> + * we add a callback to the last descriptor in our list to
>> + * notify completion of command
>> + */
>> + if (list_is_last(&desc->list, &this->list)) {
>> + desc->dma_desc->callback = dma_callback;
>> + desc->dma_desc->callback_param = this;
>> + }
>> +
>> + dmaengine_submit(desc->dma_desc);
>> + }
>> +
>> + dma_async_issue_pending(this->chan);
>> +
>> + r = wait_for_completion_timeout(c, msecs_to_jiffies(500));
>> + if (!r)
>> + return -ETIMEDOUT;
>
> Any reason this can't all be done with dma_sync_wait()? The
> timeout is a little different (5 seconds instead of .5 seconds)
> but otherwise it looks like we could keep track of the last
> cookie we got from dmaengine_submit() and then call
> dma_sync_wait() with that:
>
> list_for_each_entry(desc, &this->list, list)
> cookie = dmaengine_submit(desc->dma_desc);
>
> if (dma_sync_wait(this->chan, cookie) != DMA_COMPLETE)
> return -ETIMEDOUT;

I didn't know about this function, will give it a try.

>
>> +
>> + return 0;
>> +}
>> +
> [...]
>> +
>> +/*
>> + * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
>> + * privately maintained status byte, this status byte can be read after
>> + * NAND_CMD_STATUS is called
>> + */
>> +static void parse_erase_write_errors(struct qcom_nandc_data *this, int command)
>> +{
>> + struct nand_chip *chip = &this->chip;
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int num_cw;
>> + int i;
>> +
>> + num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
>> +
>> + for (i = 0; i < num_cw; i++) {
>> + __le32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
>
> So this doesn't need the i * 3 thing? If it does, perhaps
> reg_read_buf needs to be of type struct read_stats instead.

We just read back one register per codeword here, so we can't do
the read_stats thing as before. I could read back the extra registers
and discrading them, but I'd I'll leave that for later.

Archit

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-04 15:05:20

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v3 5/5] arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform



On 8/4/2015 1:05 AM, Andy Gross wrote:
> On Mon, Aug 03, 2015 at 10:38:18AM +0530, Archit Taneja wrote:
>> Enable the NAND controller node on the AP148 platform. Provide pinmux
>> information.
>>
>> Cc: [email protected]
>>
>> Signed-off-by: Archit Taneja <[email protected]>
>> ---
>> arch/arm/boot/dts/qcom-ipq8064-ap148.dts | 36 ++++++++++++++++++++++++++++++++
>> 1 file changed, 36 insertions(+)
>>
>> diff --git a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
>> index 7f9ea50..2e88eff 100644
>> --- a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
>> +++ b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
>> @@ -30,6 +30,28 @@
>> bias-none;
>> };
>> };
>> + nand_pins: nand_pins {
>> + mux {
>> + pins = "gpio34", "gpio35", "gpio36",
>> + "gpio37", "gpio38", "gpio39",
>> + "gpio40", "gpio41", "gpio42",
>> + "gpio43", "gpio44", "gpio45",
>> + "gpio46", "gpio47";
>> + function = "nand";
>> + drive-strength = <10>;
>> + bias-disable;
>> + };
>> + pullups {
>> + pins = "gpio39";
>> + bias-pull-up;
>> + };
>> + hold {
>> + pins = "gpio40", "gpio41", "gpio42",
>> + "gpio43", "gpio44", "gpio45",
>> + "gpio46", "gpio47";
>> + bias-bus-hold;
>
> Maybe split out the bias-disable into a separate set and remove that property
> from the mux.

I'll fix this.

Thanks,
Archit

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-04 15:06:45

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v3 5/5] arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform



On 8/4/2015 2:28 AM, Stephen Boyd wrote:
> On 08/03, Archit Taneja wrote:
>> @@ -93,5 +115,19 @@
>> sata@29000000 {
>> status = "ok";
>> };
>> +
>> + nand@1ac00000 {
>> + status = "ok";
>> +
>> + pinctrl-0 = <&nand_pins>;
>> + pinctrl-names = "default";
>> +
>> + nand-ecc-strength = <4>;
>> + nand-bus-width = <8>;
>> + };
>> };
>> };
>> +
>> +&adm_dma {
>> + status = "ok";
>> +};
>
> I think the preference is to put the full path to the device in
> the dts file and then have status = "ok". So please move this
> into the soc node and give the correct offset, etc. like we've
> done for other nodes.

I'll do that.

Archit

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-04 17:53:39

by Stephen Boyd

[permalink] [raw]
Subject: Re: [PATCH v3 2/5] mtd: nand: Qualcomm NAND controller driver

On 08/04/2015 08:04 AM, Archit Taneja wrote:
>
> On 8/4/2015 5:08 AM, Stephen Boyd wrote:
>> I also wonder if this is little endian? It looks like some sort
>> of in memory register map that we point DMA to so that it can
>> write the values to the actual hardware registers?
>
> Yes, that's what it's supposed to do. I kept it in the form above
> so that updating the register map is as easy as assigning a new
> value to the member.
>
> I've tried to fix it for endianness in the diff below. I created
> some funcs to not flood the driver with cpu_to_le32() calls. Does
> it look okay?
>

Looks good.

>>
>>> +
>>> + return 0;
>>> +}
>>> +
>> [...]
>>> +
>>> +/*
>>> + * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to
>>> set our
>>> + * privately maintained status byte, this status byte can be read
>>> after
>>> + * NAND_CMD_STATUS is called
>>> + */
>>> +static void parse_erase_write_errors(struct qcom_nandc_data *this,
>>> int command)
>>> +{
>>> + struct nand_chip *chip = &this->chip;
>>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>>> + int num_cw;
>>> + int i;
>>> +
>>> + num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
>>> +
>>> + for (i = 0; i < num_cw; i++) {
>>> + __le32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
>>
>> So this doesn't need the i * 3 thing? If it does, perhaps
>> reg_read_buf needs to be of type struct read_stats instead.
>
> We just read back one register per codeword here, so we can't do
> the read_stats thing as before. I could read back the extra registers
> and discrading them, but I'd I'll leave that for later.

Ah right. Sounds like nothing to change then.

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-08-19 04:49:16

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v4 0/5] mtd: Qualcomm NAND controller driver

Add support for the NAND controller driver for SoC's that contain EBI2.
For now, the only SoC upstream that has EBI2 is IPQ806x.

The original version was posted a while back. The main comments were
about the driver not being able to use nand_bbt. This was because the
controller could read factory bad block markers only in RAW mode. This
forced us to implement our own versions of chip->block_bad and
chip->blobk_markbad, and also we had to skip creating a BBT.

Discussions with Kevin Cernekee concluded that having a new BBT flag
that incorporates this controller's special requirement is a possible
option.

The new version makes use of this flag and now uses nand_bbt, at the
cost of implement read_oob_raw and write_oob_raw ops.

The patchset requires the v6 ADM dmaengine patches posted by Andy:

https://lkml.org/lkml/2015/3/17/19

v4:
- Some more fixes. Mentioned in patch's changelog.

v3:
- Various fixes and clean ups suggested by Stephen Boyd.

v2:
- Added a new BBT flag that allows us to read BBM in raw mode
- reduce memcpy-s in the driver
- some refactor and clean ups because of above changes

v1:
- original series:
https://lkml.org/lkml/2015/1/16/317

Archit Taneja (5):
mtd: nand: Create a BBT flag to access bad block markers in raw mode
mtd: nand: Qualcomm NAND controller driver
dt/bindings: qcom_nandc: Add DT bindings
arm: qcom: dts: Add NAND controller node for ipq806x
arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform

.../devicetree/bindings/mtd/qcom_nandc.txt | 49 +
arch/arm/boot/dts/qcom-ipq8064-ap148.dts | 40 +
arch/arm/boot/dts/qcom-ipq8064.dtsi | 15 +
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/nand_base.c | 6 +-
drivers/mtd/nand/nand_bbt.c | 6 +-
drivers/mtd/nand/qcom_nandc.c | 1910 ++++++++++++++++++++
include/linux/mtd/bbm.h | 7 +
9 files changed, 2039 insertions(+), 2 deletions(-)
create mode 100644 Documentation/devicetree/bindings/mtd/qcom_nandc.txt
create mode 100644 drivers/mtd/nand/qcom_nandc.c

--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-19 04:49:30

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v4 1/5] mtd: nand: Create a BBT flag to access bad block markers in raw mode

Some controllers can access the factory bad block marker from OOB only
when they read it in raw mode. When ECC is enabled, these controllers
discard reading/writing bad block markers, preventing access to them
altogether.

The bbt driver assumes MTD_OPS_PLACE_OOB when scanning for bad blocks.
This results in the nand driver's ecc->read_oob() op to be called, which
works with ECC enabled.

Create a new BBT option flag that tells nand_bbt to force the mode to
MTD_OPS_RAW. This would result in the correct op being called for the
underlying nand controller driver.

Reviewed-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
drivers/mtd/nand/nand_base.c | 6 +++++-
drivers/mtd/nand/nand_bbt.c | 6 +++++-
include/linux/mtd/bbm.h | 7 +++++++
3 files changed, 17 insertions(+), 2 deletions(-)

diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index ceb68ca..0a0c524 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -394,7 +394,11 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
} else {
ops.len = ops.ooblen = 1;
}
- ops.mode = MTD_OPS_PLACE_OOB;
+
+ if (unlikely(chip->bbt_options & NAND_BBT_ACCESS_BBM_RAW))
+ ops.mode = MTD_OPS_RAW;
+ else
+ ops.mode = MTD_OPS_PLACE_OOB;

/* Write to first/last page(s) if necessary */
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
index 63a1a36..f2d89c9 100644
--- a/drivers/mtd/nand/nand_bbt.c
+++ b/drivers/mtd/nand/nand_bbt.c
@@ -420,7 +420,11 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
ops.oobbuf = buf;
ops.ooboffs = 0;
ops.datbuf = NULL;
- ops.mode = MTD_OPS_PLACE_OOB;
+
+ if (unlikely(bd->options & NAND_BBT_ACCESS_BBM_RAW))
+ ops.mode = MTD_OPS_RAW;
+ else
+ ops.mode = MTD_OPS_PLACE_OOB;

for (j = 0; j < numpages; j++) {
/*
diff --git a/include/linux/mtd/bbm.h b/include/linux/mtd/bbm.h
index 36bb6a5..f67f84a 100644
--- a/include/linux/mtd/bbm.h
+++ b/include/linux/mtd/bbm.h
@@ -116,6 +116,13 @@ struct nand_bbt_descr {
#define NAND_BBT_NO_OOB_BBM 0x00080000

/*
+ * Force MTD_OPS_RAW mode when trying to access bad block markes from OOB. To
+ * be used by controllers which can access BBM only when ECC is disabled, i.e,
+ * when in RAW access mode
+ */
+#define NAND_BBT_ACCESS_BBM_RAW 0x00100000
+
+/*
* Flag set by nand_create_default_bbt_descr(), marking that the nand_bbt_descr
* was allocated dynamicaly and must be freed in nand_release(). Has no meaning
* in nand_chip.bbt_options.
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-19 04:50:33

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
MDM9x15 series.

It exists as a sub block inside the IPs EBI2 (External Bus Interface 2)
and QPIC (Qualcomm Parallel Interface Controller). These IPs provide a
broader interface for external slow peripheral devices such as LCD and
NAND/NOR flash memory or SRAM like interfaces.

We add support for the NAND controller found within EBI2. For the SoCs
of our interest, we only use the NAND controller within EBI2. Therefore,
it's safe for us to assume that the NAND controller is a standalone block
within the SoC.

The controller supports 512B, 2kB, 4kB and 8kB page 8-bit and 16-bit NAND
flash devices. It contains a HW ECC block that supports BCH ECC (4, 8 and
16 bit correction/step) and RS ECC(4 bit correction/step) that covers main
and spare data. The controller contains an internal 512 byte page buffer
to which we read/write via DMA. The EBI2 type NAND controller uses ADM DMA
for register read/write and data transfers. The controller performs page
reads and writes at a codeword/step level of 512 bytes. It can support up
to 2 external chips of different configurations.

The driver prepares register read and write configuration descriptors for
each codeword, followed by data descriptors to read or write data from the
controller's internal buffer. It uses a single ADM DMA channel that we get
via dmaengine API. The controller requires 2 ADM CRCIs for command and
data flow control. These are passed via DT.

The ecc layout used by the controller is syndrome like, but we can't use
the standard syndrome ecc ops because of several reasons. First, the amount
of data bytes covered by ecc isn't same in each step. Second, writing to
free oob space requires us writing to the entire step in which the oob
lies. This forces us to create our own ecc ops.

One more difference is how the controller accesses the bad block marker.
The controller ignores reading the marker when ECC is enabled. ECC needs
to be explicity disabled to read or write to the bad block marker. For
this reason, we use the newly created flag NAND_BBT_ACCESS_BBM_RAW to
read the factory provided bad block markers.

v4:
- Shrink submit_descs
- add desc list node at the end of dma_prep_desc
- Endianness and warning fixes

Signed-off-by: Stephen Boyd <[email protected]>

v3:
- Refactor dma functions for maximum reuse
- Use dma_slave_confing on stack
- optimize and clean upempty_page_fixup using memchr_inv
- ensure portability with dma register reads using le32_* funcs
- use NAND_USE_BOUNCE_BUFFER instead of doing it ourselves
- fix handling of return values of dmaengine funcs
- constify wherever possible
- Remove dependency on ADM DMA in Kconfig
- Misc fixes and clean ups

v2:
- Use new BBT flag that allows us to read BBM in raw mode
- reduce memcpy-s in the driver
- some refactor and clean ups because of above changes

Reviewed-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/qcom_nandc.c | 1910 +++++++++++++++++++++++++++++++++++++++++
3 files changed, 1918 insertions(+)
create mode 100644 drivers/mtd/nand/qcom_nandc.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5b2806a..6085b8a 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -538,4 +538,11 @@ config MTD_NAND_HISI504
help
Enables support for NAND controller on Hisilicon SoC Hip04.

+config MTD_NAND_QCOM
+ tristate "Support for NAND on QCOM SoCs"
+ depends on ARCH_QCOM
+ help
+ Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+ controller. This controller is found on IPQ806x SoC.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 1f897ec..87b6a1d 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -53,5 +53,6 @@ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o

nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
new file mode 100644
index 0000000..2337731
--- /dev/null
+++ b/drivers/mtd/nand/qcom_nandc.c
@@ -0,0 +1,1910 @@
+/*
+ * Copyright (c) 2015, The Linux Foundation. All rights reserved.
+ *
+ * This software is licensed under the terms of the GNU General Public
+ * License version 2, as published by the Free Software Foundation, and
+ * may be copied, distributed, and modified under those terms.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_mtd.h>
+#include <linux/delay.h>
+
+/* NANDc reg offsets */
+#define NAND_FLASH_CMD 0x00
+#define NAND_ADDR0 0x04
+#define NAND_ADDR1 0x08
+#define NAND_FLASH_CHIP_SELECT 0x0c
+#define NAND_EXEC_CMD 0x10
+#define NAND_FLASH_STATUS 0x14
+#define NAND_BUFFER_STATUS 0x18
+#define NAND_DEV0_CFG0 0x20
+#define NAND_DEV0_CFG1 0x24
+#define NAND_DEV0_ECC_CFG 0x28
+#define NAND_DEV1_ECC_CFG 0x2c
+#define NAND_DEV1_CFG0 0x30
+#define NAND_DEV1_CFG1 0x34
+#define NAND_READ_ID 0x40
+#define NAND_READ_STATUS 0x44
+#define NAND_DEV_CMD0 0xa0
+#define NAND_DEV_CMD1 0xa4
+#define NAND_DEV_CMD2 0xa8
+#define NAND_DEV_CMD_VLD 0xac
+#define SFLASHC_BURST_CFG 0xe0
+#define NAND_ERASED_CW_DETECT_CFG 0xe8
+#define NAND_ERASED_CW_DETECT_STATUS 0xec
+#define NAND_EBI2_ECC_BUF_CFG 0xf0
+#define FLASH_BUF_ACC 0x100
+
+#define NAND_CTRL 0xf00
+#define NAND_VERSION 0xf08
+#define NAND_READ_LOCATION_0 0xf20
+#define NAND_READ_LOCATION_1 0xf24
+
+/* dummy register offsets, used by write_reg_dma */
+#define NAND_DEV_CMD1_RESTORE 0xdead
+#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
+
+/* NAND_FLASH_CMD bits */
+#define PAGE_ACC BIT(4)
+#define LAST_PAGE BIT(5)
+
+/* NAND_FLASH_CHIP_SELECT bits */
+#define NAND_DEV_SEL 0
+#define DM_EN BIT(2)
+
+/* NAND_FLASH_STATUS bits */
+#define FS_OP_ERR BIT(4)
+#define FS_READY_BSY_N BIT(5)
+#define FS_MPU_ERR BIT(8)
+#define FS_DEVICE_STS_ERR BIT(16)
+#define FS_DEVICE_WP BIT(23)
+
+/* NAND_BUFFER_STATUS bits */
+#define BS_UNCORRECTABLE_BIT BIT(8)
+#define BS_CORRECTABLE_ERR_MSK 0x1f
+
+/* NAND_DEVn_CFG0 bits */
+#define DISABLE_STATUS_AFTER_WRITE 4
+#define CW_PER_PAGE 6
+#define UD_SIZE_BYTES 9
+#define ECC_PARITY_SIZE_BYTES_RS 19
+#define SPARE_SIZE_BYTES 23
+#define NUM_ADDR_CYCLES 27
+#define STATUS_BFR_READ 30
+#define SET_RD_MODE_AFTER_STATUS 31
+
+/* NAND_DEVn_CFG0 bits */
+#define DEV0_CFG1_ECC_DISABLE 0
+#define WIDE_FLASH 1
+#define NAND_RECOVERY_CYCLES 2
+#define CS_ACTIVE_BSY 5
+#define BAD_BLOCK_BYTE_NUM 6
+#define BAD_BLOCK_IN_SPARE_AREA 16
+#define WR_RD_BSY_GAP 17
+#define ENABLE_BCH_ECC 27
+
+/* NAND_DEV0_ECC_CFG bits */
+#define ECC_CFG_ECC_DISABLE 0
+#define ECC_SW_RESET 1
+#define ECC_MODE 4
+#define ECC_PARITY_SIZE_BYTES_BCH 8
+#define ECC_NUM_DATA_BYTES 16
+#define ECC_FORCE_CLK_OPEN 30
+
+/* NAND_DEV_CMD1 bits */
+#define READ_ADDR 0
+
+/* NAND_DEV_CMD_VLD bits */
+#define READ_START_VLD 0
+
+/* NAND_EBI2_ECC_BUF_CFG bits */
+#define NUM_STEPS 0
+
+/* NAND_ERASED_CW_DETECT_CFG bits */
+#define ERASED_CW_ECC_MASK 1
+#define AUTO_DETECT_RES 0
+#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
+#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
+#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
+#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
+#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
+
+/* NAND_ERASED_CW_DETECT_STATUS bits */
+#define PAGE_ALL_ERASED BIT(7)
+#define CODEWORD_ALL_ERASED BIT(6)
+#define PAGE_ERASED BIT(5)
+#define CODEWORD_ERASED BIT(4)
+#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
+#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
+
+/* Version Mask */
+#define NAND_VERSION_MAJOR_MASK 0xf0000000
+#define NAND_VERSION_MAJOR_SHIFT 28
+#define NAND_VERSION_MINOR_MASK 0x0fff0000
+#define NAND_VERSION_MINOR_SHIFT 16
+
+/* NAND OP_CMDs */
+#define PAGE_READ 0x2
+#define PAGE_READ_WITH_ECC 0x3
+#define PAGE_READ_WITH_ECC_SPARE 0x4
+#define PROGRAM_PAGE 0x6
+#define PAGE_PROGRAM_WITH_ECC 0x7
+#define PROGRAM_PAGE_SPARE 0x9
+#define BLOCK_ERASE 0xa
+#define FETCH_ID 0xb
+#define RESET_DEVICE 0xd
+
+/*
+ * the NAND controller performs reads/writes with ECC in 516 byte chunks.
+ * the driver calls the chunks 'step' or 'codeword' interchangeably
+ */
+#define NANDC_STEP_SIZE 512
+
+/*
+ * the largest page size we support is 8K, this will have 16 steps/codewords
+ * of 512 bytes each
+ */
+#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
+
+/* we read at most 3 registers per codeword scan */
+#define MAX_REG_RD (3 * MAX_NUM_STEPS)
+
+/* ECC modes */
+#define ECC_NONE BIT(0)
+#define ECC_RS_4BIT BIT(1)
+#define ECC_BCH_4BIT BIT(2)
+#define ECC_BCH_8BIT BIT(3)
+
+struct desc_info {
+ struct list_head list;
+
+ enum dma_data_direction dir;
+ struct scatterlist sgl;
+ struct dma_async_tx_descriptor *dma_desc;
+};
+
+/*
+ * holds the current register values that we want to write. acts as a contiguous
+ * chunk of memory which we use to write the controller registers through DMA.
+ */
+struct nandc_regs {
+ __le32 cmd;
+ __le32 addr0;
+ __le32 addr1;
+ __le32 chip_sel;
+ __le32 exec;
+
+ __le32 cfg0;
+ __le32 cfg1;
+ __le32 ecc_bch_cfg;
+
+ __le32 clrflashstatus;
+ __le32 clrreadstatus;
+
+ __le32 cmd1;
+ __le32 vld;
+
+ __le32 orig_cmd1;
+ __le32 orig_vld;
+
+ __le32 ecc_buf_cfg;
+};
+
+/*
+ * @cmd_crci: ADM DMA CRCI for command flow control
+ * @data_crci: ADM DMA CRCI for data flow control
+ * @list: DMA descriptor list (list of desc_infos)
+ * @data_buffer: our local DMA buffer for page read/writes,
+ * used when we can't use the buffer provided
+ * by upper layers directly
+ * @buf_size/count/start: markers for chip->read_buf/write_buf functions
+ * @reg_read_buf: buffer for reading register data via DMA
+ * @reg_read_pos: marker for data read in reg_read_buf
+ * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
+ * ecc/non-ecc mode for the current nand flash
+ * device
+ * @regs: a contiguous chunk of memory for DMA register
+ * writes
+ * @ecc_strength: 4 bit or 8 bit ecc, received via DT
+ * @bus_width: 8 bit or 16 bit NAND bus width, received via DT
+ * @ecc_modes: supported ECC modes by the current controller,
+ * initialized via DT match data
+ * @cw_size: the number of bytes in a single step/codeword
+ * of a page, consisting of all data, ecc, spare
+ * and reserved bytes
+ * @cw_data: the number of bytes within a codeword protected
+ * by ECC
+ * @bch_enabled: flag to tell whether BCH or RS ECC mode is used
+ * @status: value to be returned if NAND_CMD_STATUS command
+ * is executed
+ */
+struct qcom_nandc_data {
+ struct platform_device *pdev;
+ struct device *dev;
+
+ void __iomem *base;
+ struct resource *res;
+
+ struct clk *core_clk;
+ struct clk *aon_clk;
+
+ /* DMA stuff */
+ struct dma_chan *chan;
+ struct dma_slave_config slave_conf;
+ unsigned int cmd_crci;
+ unsigned int data_crci;
+ struct list_head list;
+
+ /* MTD stuff */
+ struct nand_chip chip;
+ struct mtd_info mtd;
+
+ /* local data buffer and markers */
+ u8 *data_buffer;
+ int buf_size;
+ int buf_count;
+ int buf_start;
+
+ /* local buffer to read back registers */
+ __le32 *reg_read_buf;
+ int reg_read_pos;
+
+ /* required configs */
+ u32 cfg0, cfg1;
+ u32 cfg0_raw, cfg1_raw;
+ u32 ecc_buf_cfg;
+ u32 ecc_bch_cfg;
+ u32 clrflashstatus;
+ u32 clrreadstatus;
+ u32 sflashc_burst_cfg;
+ u32 cmd1, vld;
+
+ /* register state */
+ struct nandc_regs *regs;
+
+ /* things we get from DT */
+ int ecc_strength;
+ int bus_width;
+
+ u32 ecc_modes;
+
+ /* misc params */
+ int cw_size;
+ int cw_data;
+ bool use_ecc;
+ bool bch_enabled;
+ u8 status;
+ int last_command;
+};
+
+static inline u32 nandc_read(struct qcom_nandc_data *this, int offset)
+{
+ return ioread32(this->base + offset);
+}
+
+static inline void nandc_write(struct qcom_nandc_data *this, int offset,
+ u32 val)
+{
+ iowrite32(val, this->base + offset);
+}
+
+static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
+{
+ switch (offset) {
+ case NAND_FLASH_CMD:
+ return &regs->cmd;
+ case NAND_ADDR0:
+ return &regs->addr0;
+ case NAND_ADDR1:
+ return &regs->addr1;
+ case NAND_FLASH_CHIP_SELECT:
+ return &regs->chip_sel;
+ case NAND_EXEC_CMD:
+ return &regs->exec;
+ case NAND_FLASH_STATUS:
+ return &regs->clrflashstatus;
+ case NAND_DEV0_CFG0:
+ return &regs->cfg0;
+ case NAND_DEV0_CFG1:
+ return &regs->cfg1;
+ case NAND_DEV0_ECC_CFG:
+ return &regs->ecc_bch_cfg;
+ case NAND_READ_STATUS:
+ return &regs->clrreadstatus;
+ case NAND_DEV_CMD1:
+ return &regs->cmd1;
+ case NAND_DEV_CMD1_RESTORE:
+ return &regs->orig_cmd1;
+ case NAND_DEV_CMD_VLD:
+ return &regs->vld;
+ case NAND_DEV_CMD_VLD_RESTORE:
+ return &regs->orig_vld;
+ case NAND_EBI2_ECC_BUF_CFG:
+ return &regs->ecc_buf_cfg;
+ default:
+ return NULL;
+ }
+}
+
+static void set_nandc_reg(struct qcom_nandc_data *this, int offset, u32 val)
+{
+ struct nandc_regs *regs = this->regs;
+ __le32 *reg;
+
+ reg = offset_to_nandc_reg(regs, offset);
+
+ if (reg)
+ *reg = cpu_to_le32(val);
+}
+
+/* helper to configure address register values */
+static void set_address(struct qcom_nandc_data *this, u16 column, int page)
+{
+ struct nand_chip *chip = &this->chip;
+
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+
+ set_nandc_reg(this, NAND_ADDR0, page << 16 | column);
+ set_nandc_reg(this, NAND_ADDR1, page >> 16 & 0xff);
+}
+
+/*
+ * update_rw_regs: set up read/write register values, these will be
+ * written to the NAND controller registers via DMA
+ *
+ * @num_cw: number of steps for the read/write operation
+ * @read: read or write operation
+ */
+static void update_rw_regs(struct qcom_nandc_data *this, int num_cw, bool read)
+{
+ u32 cmd, cfg0, cfg1, ecc_bch_cfg;
+
+ if (read) {
+ if (this->use_ecc)
+ cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
+ else
+ cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
+ } else {
+ cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
+ }
+
+ if (this->use_ecc) {
+ cfg0 = (this->cfg0 & ~(7U << CW_PER_PAGE)) |
+ (num_cw - 1) << CW_PER_PAGE;
+
+ cfg1 = this->cfg1;
+ ecc_bch_cfg = this->ecc_bch_cfg;
+ } else {
+ cfg0 = (this->cfg0_raw & ~(7U << CW_PER_PAGE)) |
+ (num_cw - 1) << CW_PER_PAGE;
+
+ cfg1 = this->cfg1_raw;
+ ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
+ }
+
+ set_nandc_reg(this, NAND_FLASH_CMD, cmd);
+ set_nandc_reg(this, NAND_DEV0_CFG0, cfg0);
+ set_nandc_reg(this, NAND_DEV0_CFG1, cfg1);
+ set_nandc_reg(this, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
+ set_nandc_reg(this, NAND_EBI2_ECC_BUF_CFG, this->ecc_buf_cfg);
+ set_nandc_reg(this, NAND_FLASH_STATUS, this->clrflashstatus);
+ set_nandc_reg(this, NAND_READ_STATUS, this->clrreadstatus);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
+}
+
+static int prep_dma_desc(struct qcom_nandc_data *this, bool read, int reg_off,
+ const void *vaddr, int size, bool flow_control)
+{
+ struct desc_info *desc;
+ struct dma_async_tx_descriptor *dma_desc;
+ struct scatterlist *sgl;
+ struct dma_slave_config slave_conf;
+ enum dma_transfer_direction dir_eng;
+ int r;
+
+ desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+ if (!desc)
+ return -ENOMEM;
+
+ sgl = &desc->sgl;
+
+ sg_init_one(sgl, vaddr, size);
+
+ if (read) {
+ dir_eng = DMA_DEV_TO_MEM;
+ desc->dir = DMA_FROM_DEVICE;
+ } else {
+ dir_eng = DMA_MEM_TO_DEV;
+ desc->dir = DMA_TO_DEVICE;
+ }
+
+ r = dma_map_sg(this->dev, sgl, 1, desc->dir);
+ if (r == 0) {
+ r = -ENOMEM;
+ goto err;
+ }
+
+ memset(&slave_conf, 0x00, sizeof(slave_conf));
+
+ slave_conf.device_fc = flow_control;
+ if (read) {
+ slave_conf.src_maxburst = 16;
+ slave_conf.src_addr = this->res->start + reg_off;
+ slave_conf.slave_id = this->data_crci;
+ } else {
+ slave_conf.dst_maxburst = 16;
+ slave_conf.dst_addr = this->res->start + reg_off;
+ slave_conf.slave_id = this->cmd_crci;
+ }
+
+ r = dmaengine_slave_config(this->chan, &slave_conf);
+ if (r) {
+ dev_err(this->dev, "failed to configure dma channel\n");
+ goto err;
+ }
+
+ dma_desc = dmaengine_prep_slave_sg(this->chan, sgl, 1, dir_eng, 0);
+ if (!dma_desc) {
+ dev_err(this->dev, "failed to prepare desc\n");
+ r = -EINVAL;
+ goto err;
+ }
+
+ desc->dma_desc = dma_desc;
+
+ list_add_tail(&desc->list, &this->list);
+
+ return 0;
+err:
+ kfree(desc);
+
+ return r;
+}
+
+/*
+ * read_reg_dma: prepares a descriptor to read a given number of
+ * contiguous registers to the reg_read_buf pointer
+ *
+ * @first: offset of the first register in the contiguous block
+ * @num_regs: number of registers to read
+ */
+static int read_reg_dma(struct qcom_nandc_data *this, int first, int num_regs)
+{
+ bool flow_control = false;
+ void *vaddr;
+ int size;
+
+ if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
+ flow_control = true;
+
+ size = num_regs * sizeof(u32);
+ vaddr = this->reg_read_buf + this->reg_read_pos;
+ this->reg_read_pos += num_regs;
+
+ return prep_dma_desc(this, true, first, vaddr, size, flow_control);
+}
+
+/*
+ * write_reg_dma: prepares a descriptor to write a given number of
+ * contiguous registers
+ *
+ * @first: offset of the first register in the contiguous block
+ * @num_regs: number of registers to write
+ */
+static int write_reg_dma(struct qcom_nandc_data *this, int first, int num_regs)
+{
+ bool flow_control = false;
+ struct nandc_regs *regs = this->regs;
+ void *vaddr;
+ int size;
+
+ vaddr = offset_to_nandc_reg(regs, first);
+
+ if (first == NAND_FLASH_CMD)
+ flow_control = true;
+
+ if (first == NAND_DEV_CMD1_RESTORE)
+ first = NAND_DEV_CMD1;
+
+ if (first == NAND_DEV_CMD_VLD_RESTORE)
+ first = NAND_DEV_CMD_VLD;
+
+ size = num_regs * sizeof(u32);
+
+ return prep_dma_desc(this, false, first, vaddr, size, flow_control);
+}
+
+/*
+ * read_data_dma: prepares a DMA descriptor to transfer data from the
+ * controller's internal buffer to the buffer 'vaddr'
+ *
+ * @reg_off: offset within the controller's data buffer
+ * @vaddr: virtual address of the buffer we want to write to
+ * @size: DMA transaction size in bytes
+ */
+static int read_data_dma(struct qcom_nandc_data *this, int reg_off,
+ const u8 *vaddr, int size)
+{
+ return prep_dma_desc(this, true, reg_off, vaddr, size, false);
+}
+
+/*
+ * write_data_dma: prepares a DMA descriptor to transfer data from
+ * 'vaddr' to the controller's internal buffer
+ *
+ * @reg_off: offset within the controller's data buffer
+ * @vaddr: virtual address of the buffer we want to read from
+ * @size: DMA transaction size in bytes
+ */
+static int write_data_dma(struct qcom_nandc_data *this, int reg_off,
+ const u8 *vaddr, int size)
+{
+ return prep_dma_desc(this, false, reg_off, vaddr, size, false);
+}
+
+/*
+ * helper to prepare dma descriptors to configure registers needed for reading a
+ * codeword/step in a page
+ */
+static void config_cw_read(struct qcom_nandc_data *this)
+{
+ write_reg_dma(this, NAND_FLASH_CMD, 3);
+ write_reg_dma(this, NAND_DEV0_CFG0, 3);
+ write_reg_dma(this, NAND_EBI2_ECC_BUF_CFG, 1);
+
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 2);
+ read_reg_dma(this, NAND_ERASED_CW_DETECT_STATUS, 1);
+}
+
+/*
+ * helpers to prepare dma descriptors used to configure registers needed for
+ * writing a codeword/step in a page
+ */
+static void config_cw_write_pre(struct qcom_nandc_data *this)
+{
+ write_reg_dma(this, NAND_FLASH_CMD, 3);
+ write_reg_dma(this, NAND_DEV0_CFG0, 3);
+ write_reg_dma(this, NAND_EBI2_ECC_BUF_CFG, 1);
+}
+
+static void config_cw_write_post(struct qcom_nandc_data *this)
+{
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 1);
+
+ write_reg_dma(this, NAND_FLASH_STATUS, 1);
+ write_reg_dma(this, NAND_READ_STATUS, 1);
+}
+
+/*
+ * the following functions are used within chip->cmdfunc() to perform different
+ * NAND_CMD_* commands
+ */
+
+/* sets up descriptors for NAND_CMD_PARAM */
+static int nandc_param(struct qcom_nandc_data *this)
+{
+ /*
+ * NAND_CMD_PARAM is called before we know much about the FLASH chip
+ * in use. we configure the controller to perform a raw read of 512
+ * bytes to read onfi params
+ */
+ set_nandc_reg(this, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
+ set_nandc_reg(this, NAND_ADDR0, 0);
+ set_nandc_reg(this, NAND_ADDR1, 0);
+ set_nandc_reg(this, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
+ | 512 << UD_SIZE_BYTES
+ | 5 << NUM_ADDR_CYCLES
+ | 0 << SPARE_SIZE_BYTES);
+ set_nandc_reg(this, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | 17 << BAD_BLOCK_BYTE_NUM
+ | 1 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | 0 << WIDE_FLASH
+ | 1 << DEV0_CFG1_ECC_DISABLE);
+ set_nandc_reg(this, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
+
+
+ /* configure CMD1 and VLD for ONFI param probing */
+ set_nandc_reg(this, NAND_DEV_CMD_VLD,
+ (this->vld & ~(1 << READ_START_VLD))
+ | 0 << READ_START_VLD);
+ set_nandc_reg(this, NAND_DEV_CMD1,
+ (this->cmd1 & ~(0xFF << READ_ADDR))
+ | NAND_CMD_PARAM << READ_ADDR);
+
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
+
+ set_nandc_reg(this, NAND_DEV_CMD1_RESTORE, this->cmd1);
+ set_nandc_reg(this, NAND_DEV_CMD_VLD_RESTORE, this->vld);
+
+ write_reg_dma(this, NAND_DEV_CMD_VLD, 1);
+ write_reg_dma(this, NAND_DEV_CMD1, 1);
+
+ this->buf_count = 512;
+ memset(this->data_buffer, 0xff, this->buf_count);
+
+ config_cw_read(this);
+
+ read_data_dma(this, FLASH_BUF_ACC, this->data_buffer, this->buf_count);
+
+ /* restore CMD1 and VLD regs */
+ write_reg_dma(this, NAND_DEV_CMD1_RESTORE, 1);
+ write_reg_dma(this, NAND_DEV_CMD_VLD_RESTORE, 1);
+
+ return 0;
+}
+
+/* sets up descriptors for NAND_CMD_ERASE1 */
+static int erase_block(struct qcom_nandc_data *this, int page_addr)
+{
+ set_nandc_reg(this, NAND_FLASH_CMD, BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
+ set_nandc_reg(this, NAND_ADDR0, page_addr);
+ set_nandc_reg(this, NAND_ADDR1, 0);
+ set_nandc_reg(this, NAND_DEV0_CFG0,
+ this->cfg0_raw & ~(7 << CW_PER_PAGE));
+ set_nandc_reg(this, NAND_DEV0_CFG1, this->cfg1_raw);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
+ set_nandc_reg(this, NAND_FLASH_STATUS, this->clrflashstatus);
+ set_nandc_reg(this, NAND_READ_STATUS, this->clrreadstatus);
+
+ write_reg_dma(this, NAND_FLASH_CMD, 3);
+ write_reg_dma(this, NAND_DEV0_CFG0, 2);
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 1);
+
+ write_reg_dma(this, NAND_FLASH_STATUS, 1);
+ write_reg_dma(this, NAND_READ_STATUS, 1);
+
+ return 0;
+}
+
+/* sets up descriptors for NAND_CMD_READID */
+static int read_id(struct qcom_nandc_data *this, int column)
+{
+ if (column == -1)
+ return 0;
+
+ set_nandc_reg(this, NAND_FLASH_CMD, FETCH_ID);
+ set_nandc_reg(this, NAND_ADDR0, column);
+ set_nandc_reg(this, NAND_ADDR1, 0);
+ set_nandc_reg(this, NAND_FLASH_CHIP_SELECT, DM_EN);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
+
+ write_reg_dma(this, NAND_FLASH_CMD, 4);
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_READ_ID, 1);
+
+ return 0;
+}
+
+/* sets up descriptors for NAND_CMD_RESET */
+static int reset(struct qcom_nandc_data *this)
+{
+ set_nandc_reg(this, NAND_FLASH_CMD, RESET_DEVICE);
+ set_nandc_reg(this, NAND_EXEC_CMD, 1);
+
+ write_reg_dma(this, NAND_FLASH_CMD, 1);
+ write_reg_dma(this, NAND_EXEC_CMD, 1);
+
+ read_reg_dma(this, NAND_FLASH_STATUS, 1);
+
+ return 0;
+}
+
+/* helpers to submit/free our list of dma descriptors */
+static int submit_descs(struct qcom_nandc_data *this)
+{
+ struct desc_info *desc;
+ dma_cookie_t cookie = 0;
+
+ list_for_each_entry(desc, &this->list, list)
+ cookie = dmaengine_submit(desc->dma_desc);
+
+ if (dma_sync_wait(this->chan, cookie) != DMA_COMPLETE)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static void free_descs(struct qcom_nandc_data *this)
+{
+ struct desc_info *desc, *n;
+
+ list_for_each_entry_safe(desc, n, &this->list, list) {
+ list_del(&desc->list);
+ dma_unmap_sg(this->dev, &desc->sgl, 1, desc->dir);
+ kfree(desc);
+ }
+}
+
+/* reset the register read buffer for next NAND operation */
+static void clear_read_regs(struct qcom_nandc_data *this)
+{
+ this->reg_read_pos = 0;
+ memset(this->reg_read_buf, 0, MAX_REG_RD * sizeof(*this->reg_read_buf));
+}
+
+static void pre_command(struct qcom_nandc_data *this, int command)
+{
+ this->buf_count = 0;
+ this->buf_start = 0;
+ this->use_ecc = false;
+ this->last_command = command;
+
+ clear_read_regs(this);
+}
+
+/*
+ * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
+ * privately maintained status byte, this status byte can be read after
+ * NAND_CMD_STATUS is called
+ */
+static void parse_erase_write_errors(struct qcom_nandc_data *this, int command)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int num_cw;
+ int i;
+
+ num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
+
+ for (i = 0; i < num_cw; i++) {
+ u32 flash_status = le32_to_cpu(this->reg_read_buf[i]);
+
+ if (flash_status & FS_MPU_ERR)
+ this->status &= ~NAND_STATUS_WP;
+
+ if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
+ (flash_status & FS_DEVICE_STS_ERR)))
+ this->status |= NAND_STATUS_FAIL;
+ }
+}
+
+static void post_command(struct qcom_nandc_data *this, int command)
+{
+ switch (command) {
+ case NAND_CMD_READID:
+ memcpy(this->data_buffer, this->reg_read_buf, this->buf_count);
+ break;
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ parse_erase_write_errors(this, command);
+ break;
+ default:
+ break;
+ }
+}
+
+/*
+ * Implements chip->cmdfunc. It's only used for a limited set of commands.
+ * The rest of the commands wouldn't be called by upper layers. For example,
+ * NAND_CMD_READOOB would never be called because we have our own versions
+ * of read_oob ops for nand_ecc_ctrl.
+ */
+static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ struct qcom_nandc_data *this = chip->priv;
+ bool wait = false;
+ int r = 0;
+
+ pre_command(this, command);
+
+ switch (command) {
+ case NAND_CMD_RESET:
+ r = reset(this);
+ wait = true;
+ break;
+
+ case NAND_CMD_READID:
+ this->buf_count = 4;
+ r = read_id(this, column);
+ wait = true;
+ break;
+
+ case NAND_CMD_PARAM:
+ r = nandc_param(this);
+ wait = true;
+ break;
+
+ case NAND_CMD_ERASE1:
+ r = erase_block(this, page_addr);
+ wait = true;
+ break;
+
+ case NAND_CMD_READ0:
+ /* we read the entire page for now */
+ WARN_ON(column != 0);
+
+ this->use_ecc = true;
+ set_address(this, 0, page_addr);
+ update_rw_regs(this, ecc->steps, true);
+ break;
+
+ case NAND_CMD_SEQIN:
+ WARN_ON(column != 0);
+ set_address(this, 0, page_addr);
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_STATUS:
+ case NAND_CMD_NONE:
+ default:
+ break;
+ }
+
+ if (r) {
+ dev_err(this->dev, "failure executing command %d\n",
+ command);
+ free_descs(this);
+ return;
+ }
+
+ if (wait) {
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev,
+ "failure submitting descs for command %d\n",
+ command);
+ }
+
+ free_descs(this);
+
+ post_command(this, command);
+}
+
+/*
+ * when using RS ECC, the NAND controller flags an error when reading an
+ * erased page. however, there are special characters at certain offsets when
+ * we read the erased page. we check here if the page is really empty. if so,
+ * we replace the magic characters with 0xffs
+ */
+static bool empty_page_fixup(struct qcom_nandc_data *this, u8 *data_buf)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage = ecc->steps;
+ u8 orig1[MAX_NUM_STEPS], orig2[MAX_NUM_STEPS];
+ int i, j;
+
+ /* if BCH is enabled, HW will take care of detecting erased pages */
+ if (this->bch_enabled || !this->use_ecc)
+ return false;
+
+ for (i = 0; i < cwperpage; i++) {
+ u8 *empty1, *empty2;
+ u32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
+
+ /*
+ * an erased page flags an error in NAND_FLASH_STATUS, check if
+ * the page is erased by looking for 0x54s at offsets 3 and 175
+ * from the beginning of each codeword
+ */
+ if (!(flash_status & FS_OP_ERR))
+ break;
+
+ empty1 = &data_buf[3 + i * this->cw_data];
+ empty2 = &data_buf[175 + i * this->cw_data];
+
+ /*
+ * if the error wasn't because of an erased page, bail out and
+ * and let someone else do the error checking
+ */
+ if ((*empty1 == 0x54 && *empty2 == 0xff) ||
+ (*empty1 == 0xff && *empty2 == 0x54)) {
+ orig1[i] = *empty1;
+ orig2[i] = *empty2;
+
+ *empty1 = 0xff;
+ *empty2 = 0xff;
+ } else {
+ break;
+ }
+ }
+
+ if (i < cwperpage || memchr_inv(data_buf, 0xff, mtd->writesize))
+ goto not_empty;
+
+ /*
+ * tell the caller that the page was empty and is fixed up, so that
+ * parse_read_errors() doesn't think it's an error
+ */
+ return true;
+
+not_empty:
+ /* restore original values if not empty*/
+ for (j = 0; j < i; j++) {
+ data_buf[3 + j * this->cw_data] = orig1[j];
+ data_buf[175 + j * this->cw_data] = orig2[j];
+ }
+
+ return false;
+}
+
+struct read_stats {
+ __le32 flash;
+ __le32 buffer;
+ __le32 erased_cw;
+};
+
+/*
+ * reads back status registers set by the controller to notify page read
+ * errors. this is equivalent to what 'ecc->correct()' would do.
+ */
+static int parse_read_errors(struct qcom_nandc_data *this, bool erased_page)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage = ecc->steps;
+ unsigned int max_bitflips = 0;
+ int i;
+ struct read_stats *buf;
+
+ buf = (struct read_stats *)this->reg_read_buf;
+ for (i = 0; i < cwperpage; i++, buf++) {
+ unsigned int stat;
+ u32 flash, buffer, erased_cw;
+
+ flash = le32_to_cpu(buf->flash);
+ buffer = le32_to_cpu(buf->buffer);
+ erased_cw = le32_to_cpu(buf->erased_cw);
+
+ if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
+
+ /* ignore erased codeword errors */
+ if (this->bch_enabled) {
+ if ((erased_cw & ERASED_CW) == ERASED_CW)
+ continue;
+ } else if (erased_page) {
+ continue;
+ }
+
+ if (buffer & BS_UNCORRECTABLE_BIT) {
+ mtd->ecc_stats.failed++;
+ continue;
+ }
+ }
+
+ stat = buffer & BS_CORRECTABLE_ERR_MSK;
+ mtd->ecc_stats.corrected += stat;
+
+ max_bitflips = max(max_bitflips, stat);
+ }
+
+ return max_bitflips;
+}
+
+/*
+ * helper to perform the actual page read operation, used by ecc->read_page()
+ * and ecc->read_oob()
+ */
+static int read_page_low(struct qcom_nandc_data *this, u8 *data_buf,
+ u8 *oob_buf)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int i, r;
+
+ /* queue cmd descs for each codeword */
+ for (i = 0; i < ecc->steps; i++) {
+ int data_size, oob_size;
+
+ if (i == (ecc->steps - 1)) {
+ data_size = ecc->size - ((ecc->steps - 1) << 2);
+ oob_size = (ecc->steps << 2) + ecc->bytes;
+ } else {
+ data_size = this->cw_data;
+ oob_size = ecc->bytes;
+ }
+
+ config_cw_read(this);
+
+ if (data_buf)
+ read_data_dma(this, FLASH_BUF_ACC, data_buf, data_size);
+
+ if (oob_buf)
+ read_data_dma(this, FLASH_BUF_ACC + data_size, oob_buf,
+ oob_size);
+
+ if (data_buf)
+ data_buf += data_size;
+ if (oob_buf)
+ oob_buf += oob_size;
+ }
+
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev, "failure to read page/oob\n");
+
+ free_descs(this);
+
+ return r;
+}
+
+/*
+ * a helper that copies the last step/codeword of a page (containing free oob)
+ * into our local buffer
+ */
+static int copy_last_cw(struct qcom_nandc_data *this, bool use_ecc, int page)
+{
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int size;
+ int r;
+
+ clear_read_regs(this);
+
+ size = use_ecc ? this->cw_data : this->cw_size;
+
+ /* prepare a clean read buffer */
+ memset(this->data_buffer, 0xff, size);
+
+ this->use_ecc = use_ecc;
+ set_address(this, this->cw_size * (ecc->steps - 1), page);
+ update_rw_regs(this, 1, true);
+
+ config_cw_read(this);
+
+ read_data_dma(this, FLASH_BUF_ACC, this->data_buffer, size);
+
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev, "failed to copy last codeword\n");
+
+ free_descs(this);
+
+ return r;
+}
+
+/* implements ecc->read_page() */
+static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ u8 *data_buf, *oob_buf = NULL;
+ bool erased_page;
+ int r;
+
+ data_buf = buf;
+ oob_buf = oob_required ? chip->oob_poi : NULL;
+
+ r = read_page_low(this, data_buf, oob_buf);
+ if (r) {
+ dev_err(this->dev, "failure to read page\n");
+ return r;
+ }
+
+ erased_page = empty_page_fixup(this, data_buf);
+
+ return parse_read_errors(this, erased_page);
+}
+
+/* implements ecc->read_oob() */
+static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int r;
+
+ clear_read_regs(this);
+
+ this->use_ecc = true;
+ set_address(this, 0, page);
+ update_rw_regs(this, ecc->steps, true);
+
+ r = read_page_low(this, NULL, chip->oob_poi);
+ if (r)
+ dev_err(this->dev, "failure to read oob\n");
+
+ return r;
+}
+
+/* implements ecc->read_oob_raw(), used to read the bad block marker flag */
+static int qcom_nandc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ uint8_t *oob = chip->oob_poi;
+ int start, length;
+ int r;
+
+ /*
+ * configure registers for a raw page read, the address is set to the
+ * beginning of the last codeword, we don't care about reading ecc
+ * portion of oob, just the free stuff
+ */
+ r = copy_last_cw(this, false, page);
+ if (r)
+ return r;
+
+ /*
+ * reading raw oob has 2 parts, first the bad block byte, then the
+ * actual free oob region. perform a memcpy in two steps
+ */
+ start = mtd->writesize - (this->cw_size * (ecc->steps - 1));
+ length = chip->options & NAND_BUSWIDTH_16 ? 2 : 1;
+
+ memcpy(oob, this->data_buffer + start, length);
+
+ oob += length;
+
+ start = this->cw_data - (ecc->steps << 2) + 1;
+ length = ecc->steps << 2;
+
+ memcpy(oob, this->data_buffer + start, length);
+
+ return 0;
+}
+
+/* implements ecc->write_page() */
+static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ u8 *data_buf, *oob_buf;
+ int i, r = 0;
+
+ clear_read_regs(this);
+
+ data_buf = (u8 *) buf;
+ oob_buf = chip->oob_poi;
+
+ this->use_ecc = true;
+ update_rw_regs(this, ecc->steps, false);
+
+ for (i = 0; i < ecc->steps; i++) {
+ int data_size, oob_size;
+
+ if (i == (ecc->steps - 1)) {
+ data_size = ecc->size - ((ecc->steps - 1) << 2);
+ oob_size = (ecc->steps << 2) + ecc->bytes;
+ } else {
+ data_size = this->cw_data;
+ oob_size = ecc->bytes;
+ }
+
+ config_cw_write_pre(this);
+ write_data_dma(this, FLASH_BUF_ACC, data_buf, data_size);
+
+ /*
+ * we don't really need to write anything to oob for the
+ * first n - 1 codewords since these oob regions just
+ * contain ecc that's written by the controller itself
+ */
+ if (i == (ecc->steps - 1))
+ write_data_dma(this, FLASH_BUF_ACC + data_size,
+ oob_buf, oob_size);
+ config_cw_write_post(this);
+
+ data_buf += data_size;
+ oob_buf += oob_size;
+ }
+
+ r = submit_descs(this);
+ if (r)
+ dev_err(this->dev, "failure to write page\n");
+
+ free_descs(this);
+
+ return r;
+}
+
+/*
+ * implements ecc->write_oob()
+ *
+ * the NAND controller cannot write only data or only oob within a codeword,
+ * since ecc is calculated for the combined codeword. we first copy the
+ * entire contents for the last codeword(data + oob), replace the old oob
+ * with the new one in chip->oob_poi, and then write the entire codeword.
+ * this read-copy-write operation results in a slight perormance loss.
+ */
+static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ uint8_t *oob = chip->oob_poi;
+ int free_boff;
+ int data_size, oob_size;
+ int r, status = 0;
+
+ r = copy_last_cw(this, true, page);
+ if (r)
+ return r;
+
+ clear_read_regs(this);
+
+ /* calculate the data and oob size for the last codeword/step */
+ data_size = ecc->size - ((ecc->steps - 1) << 2);
+ oob_size = (ecc->steps << 2) + ecc->bytes;
+
+ /*
+ * the location of spare data in the oob buffer, we could also use
+ * ecc->layout.oobfree here
+ */
+ free_boff = ecc->bytes * (ecc->steps - 1);
+
+ /* override new oob content to last codeword */
+ memcpy(this->data_buffer + data_size, oob + free_boff, oob_size);
+
+ this->use_ecc = true;
+ set_address(this, this->cw_size * (ecc->steps - 1), page);
+ update_rw_regs(this, 1, false);
+
+ config_cw_write_pre(this);
+ write_data_dma(this, FLASH_BUF_ACC, this->data_buffer,
+ data_size + oob_size);
+ config_cw_write_post(this);
+
+ r = submit_descs(this);
+
+ free_descs(this);
+
+ if (r) {
+ dev_err(this->dev, "failure to write oob\n");
+ return -EIO;
+ }
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/* implements ecc->write_oob_raw(), used to write bad block marker flag */
+static int qcom_nandc_write_oob_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ struct qcom_nandc_data *this = chip->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ uint8_t *oob = chip->oob_poi;
+ int start, length;
+ int r, status = 0;
+
+ r = copy_last_cw(this, false, page);
+ if (r)
+ return r;
+
+ clear_read_regs(this);
+
+ /*
+ * writing raw oob has 2 parts, first the bad block region, then the
+ * actual free region
+ */
+ start = mtd->writesize - (this->cw_size * (ecc->steps - 1));
+ length = chip->options & NAND_BUSWIDTH_16 ? 2 : 1;
+
+ memcpy(this->data_buffer + start, oob, length);
+
+ oob += length;
+
+ start = this->cw_data - (ecc->steps << 2) + 1;
+ length = ecc->steps << 2;
+
+ memcpy(this->data_buffer + start, oob, length);
+
+ /* prepare write */
+ this->use_ecc = false;
+ set_address(this, this->cw_size * (ecc->steps - 1), page);
+ update_rw_regs(this, 1, false);
+
+ config_cw_write_pre(this);
+ write_data_dma(this, FLASH_BUF_ACC, this->data_buffer, this->cw_size);
+ config_cw_write_post(this);
+
+ r = submit_descs(this);
+
+ free_descs(this);
+
+ if (r) {
+ dev_err(this->dev, "failure to write updated oob\n");
+ return -EIO;
+ }
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/*
+ * the three functions below implement chip->read_byte(), chip->read_buf()
+ * and chip->write_buf() respectively. these aren't used for
+ * reading/writing page data, they are used for smaller data like reading
+ * id, status etc
+ */
+static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+ uint8_t *buf = this->data_buffer;
+ uint8_t ret = 0x0;
+
+ if (this->last_command == NAND_CMD_STATUS) {
+ ret = this->status;
+
+ this->status = NAND_STATUS_READY | NAND_STATUS_WP;
+
+ return ret;
+ }
+
+ if (this->buf_start < this->buf_count)
+ ret = buf[this->buf_start++];
+
+ return ret;
+}
+
+static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+ int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
+
+ memcpy(buf, this->data_buffer + this->buf_start, real_len);
+ this->buf_start += real_len;
+}
+
+static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+ int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
+
+ memcpy(this->data_buffer + this->buf_start, buf, real_len);
+
+ this->buf_start += real_len;
+}
+
+/* we support only one external chip for now */
+static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct qcom_nandc_data *this = chip->priv;
+
+ if (chipnr <= 0)
+ return;
+
+ dev_warn(this->dev, "invalid chip select\n");
+}
+
+/*
+ * NAND controller page layout info
+ *
+ * |-----------------------| |---------------------------------|
+ * | xx.......xx| | *********xx.......xx|
+ * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx|
+ * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx|
+ * | xx.......xx| | *********xx.......xx|
+ * |-----------------------| |---------------------------------|
+ * codeword 1,2..n-1 codeword n
+ * <---(528/532 Bytes)----> <-------(528/532 Bytes)---------->
+ *
+ * n = number of codewords in the page
+ * . = ECC bytes
+ * * = spare bytes
+ * x = unused/reserved bytes
+ *
+ * 2K page: n = 4, spare = 16 bytes
+ * 4K page: n = 8, spare = 32 bytes
+ * 8K page: n = 16, spare = 64 bytes
+ *
+ * the qcom nand controller operates at a sub page/codeword level. each
+ * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
+ * the number of ECC bytes vary based on the ECC strength and the bus width.
+ *
+ * the first n - 1 codewords contains 516 bytes of user data, the remaining
+ * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
+ * both user data and spare(oobavail) bytes that sum up to 516 bytes.
+ *
+ * the layout described above is used by the controller when the ECC block is
+ * enabled. When we read a page with ECC enabled, the unused/reserved bytes are
+ * skipped and not copied to our internal buffer. therefore, the nand_ecclayout
+ * layouts defined below doesn't consider the positions occupied by the reserved
+ * bytes
+ *
+ * when the ECC block is disabled, one unused byte (or two for 16 bit bus width)
+ * in the last codeword is the position of bad block marker. the bad block
+ * marker cannot be accessed when ECC is enabled.
+ *
+ */
+
+/*
+ * Layouts for different page sizes and ecc modes. We skip the eccpos field
+ * since it isn't needed for this driver
+ */
+
+/* 2K page, 4 bit ECC */
+static struct nand_ecclayout layout_oob_64 = {
+ .eccbytes = 40,
+ .oobfree = {
+ { 30, 16 },
+ },
+};
+
+/* 4K page, 4 bit ECC, 8/16 bit bus width */
+static struct nand_ecclayout layout_oob_128 = {
+ .eccbytes = 80,
+ .oobfree = {
+ { 70, 32 },
+ },
+};
+
+/* 4K page, 8 bit ECC, 8 bit bus width */
+static struct nand_ecclayout layout_oob_224_x8 = {
+ .eccbytes = 104,
+ .oobfree = {
+ { 91, 32 },
+ },
+};
+
+/* 4K page, 8 bit ECC, 16 bit bus width */
+static struct nand_ecclayout layout_oob_224_x16 = {
+ .eccbytes = 112,
+ .oobfree = {
+ { 98, 32 },
+ },
+};
+
+/* 8K page, 4 bit ECC, 8/16 bit bus width */
+static struct nand_ecclayout layout_oob_256 = {
+ .eccbytes = 160,
+ .oobfree = {
+ { 151, 64 },
+ },
+};
+
+/*
+ * this is called before scan_ident, we do some minimal configurations so
+ * that reading ID and ONFI params work
+ */
+static void qcom_nandc_pre_init(struct qcom_nandc_data *this)
+{
+ /* kill onenand */
+ nandc_write(this, SFLASHC_BURST_CFG, 0);
+
+ /* enable ADM DMA */
+ nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN);
+
+ /* save the original values of these registers */
+ this->cmd1 = nandc_read(this, NAND_DEV_CMD1);
+ this->vld = nandc_read(this, NAND_DEV_CMD_VLD);
+
+ /* initial status value */
+ this->status = NAND_STATUS_READY | NAND_STATUS_WP;
+}
+
+static int qcom_nandc_ecc_init(struct qcom_nandc_data *this)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage;
+ bool wide_bus;
+
+ /* the nand controller fetches codewords/chunks of 512 bytes */
+ cwperpage = mtd->writesize >> 9;
+
+ ecc->strength = this->ecc_strength;
+
+ wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
+
+ if (ecc->strength >= 8) {
+ /* 8 bit ECC defaults to BCH ECC on all platforms */
+ ecc->bytes = wide_bus ? 14 : 13;
+ } else {
+ /*
+ * if the controller supports BCH for 4 bit ECC, the controller
+ * uses lesser bytes for ECC. If RS is used, the ECC bytes is
+ * always 10 bytes
+ */
+ if (this->ecc_modes & ECC_BCH_4BIT)
+ ecc->bytes = wide_bus ? 8 : 7;
+ else
+ ecc->bytes = 10;
+ }
+
+ /* each step consists of 512 bytes of data */
+ ecc->size = NANDC_STEP_SIZE;
+
+ ecc->read_page = qcom_nandc_read_page;
+ ecc->read_oob = qcom_nandc_read_oob;
+ ecc->write_page = qcom_nandc_write_page;
+ ecc->write_oob = qcom_nandc_write_oob;
+
+ /*
+ * the bad block marker is readable only when we read the page with ECC
+ * disabled. all the ops above run with ECC enabled. We need raw read
+ * and write function for oob in order to access bad block marker.
+ */
+ ecc->read_oob_raw = qcom_nandc_read_oob_raw;
+ ecc->write_oob_raw = qcom_nandc_write_oob_raw;
+
+ switch (mtd->oobsize) {
+ case 64:
+ ecc->layout = &layout_oob_64;
+ break;
+ case 128:
+ ecc->layout = &layout_oob_128;
+ break;
+ case 224:
+ if (wide_bus)
+ ecc->layout = &layout_oob_224_x16;
+ else
+ ecc->layout = &layout_oob_224_x8;
+ break;
+ case 256:
+ ecc->layout = &layout_oob_256;
+ break;
+ default:
+ dev_err(this->dev, "unsupported NAND device, oobsize %d\n",
+ mtd->oobsize);
+ return -ENODEV;
+ }
+
+ ecc->mode = NAND_ECC_HW;
+
+ /* enable ecc by default */
+ this->use_ecc = true;
+
+ return 0;
+}
+
+static void qcom_nandc_hw_post_init(struct qcom_nandc_data *this)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int cwperpage = mtd->writesize / ecc->size;
+ int spare_bytes, bad_block_byte;
+ bool wide_bus;
+ int ecc_mode = 0;
+
+ wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
+
+ if (ecc->strength >= 8) {
+ this->cw_size = 532;
+
+ spare_bytes = wide_bus ? 0 : 2;
+
+ this->bch_enabled = true;
+ ecc_mode = 1;
+ } else {
+ this->cw_size = 528;
+
+ if (this->ecc_modes & ECC_BCH_4BIT) {
+ spare_bytes = wide_bus ? 2 : 4;
+
+ this->bch_enabled = true;
+ ecc_mode = 0;
+ } else {
+ spare_bytes = wide_bus ? 0 : 1;
+ }
+ }
+
+ /*
+ * DATA_UD_BYTES varies based on whether the read/write command protects
+ * spare data with ECC too. We protect spare data by default, so we set
+ * it to main + spare data, which are 512 and 4 bytes respectively.
+ */
+ this->cw_data = 516;
+
+ bad_block_byte = mtd->writesize - this->cw_size * (cwperpage - 1) + 1;
+
+ this->cfg0 = (cwperpage - 1) << CW_PER_PAGE
+ | this->cw_data << UD_SIZE_BYTES
+ | 0 << DISABLE_STATUS_AFTER_WRITE
+ | 5 << NUM_ADDR_CYCLES
+ | ecc->bytes << ECC_PARITY_SIZE_BYTES_RS
+ | 0 << STATUS_BFR_READ
+ | 1 << SET_RD_MODE_AFTER_STATUS
+ | spare_bytes << SPARE_SIZE_BYTES;
+
+ this->cfg1 = 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | bad_block_byte << BAD_BLOCK_BYTE_NUM
+ | 0 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | wide_bus << WIDE_FLASH
+ | this->bch_enabled << ENABLE_BCH_ECC;
+
+ this->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
+ | this->cw_size << UD_SIZE_BYTES
+ | 5 << NUM_ADDR_CYCLES
+ | 0 << SPARE_SIZE_BYTES;
+
+ this->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
+ | 0 << CS_ACTIVE_BSY
+ | 17 << BAD_BLOCK_BYTE_NUM
+ | 1 << BAD_BLOCK_IN_SPARE_AREA
+ | 2 << WR_RD_BSY_GAP
+ | wide_bus << WIDE_FLASH
+ | 1 << DEV0_CFG1_ECC_DISABLE;
+
+ this->ecc_bch_cfg = this->bch_enabled << ECC_CFG_ECC_DISABLE
+ | 0 << ECC_SW_RESET
+ | this->cw_data << ECC_NUM_DATA_BYTES
+ | 1 << ECC_FORCE_CLK_OPEN
+ | ecc_mode << ECC_MODE
+ | ecc->bytes << ECC_PARITY_SIZE_BYTES_BCH;
+
+ this->ecc_buf_cfg = 0x203 << NUM_STEPS;
+
+ this->clrflashstatus = FS_READY_BSY_N;
+ this->clrreadstatus = 0xc0;
+
+ dev_dbg(this->dev,
+ "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
+ this->cfg0, this->cfg1, this->ecc_buf_cfg,
+ this->ecc_bch_cfg, this->cw_size, this->cw_data,
+ ecc->strength, ecc->bytes, cwperpage);
+}
+
+static int qcom_nandc_alloc(struct qcom_nandc_data *this)
+{
+ int r;
+
+ r = dma_set_coherent_mask(this->dev, DMA_BIT_MASK(32));
+ if (r) {
+ dev_err(this->dev, "failed to set DMA mask\n");
+ return r;
+ }
+
+ /*
+ * we use the internal buffer for reading ONFI params, reading small
+ * data like ID and status, and preforming read-copy-write operations
+ * when writing to a codeword partially. 532 is the maximum possible
+ * size of a codeword for our nand controller
+ */
+ this->buf_size = 532;
+
+ this->data_buffer = devm_kzalloc(this->dev, this->buf_size, GFP_KERNEL);
+ if (!this->data_buffer)
+ return -ENOMEM;
+
+ this->regs = devm_kzalloc(this->dev, sizeof(*this->regs), GFP_KERNEL);
+ if (!this->regs)
+ return -ENOMEM;
+
+ this->reg_read_buf = devm_kzalloc(this->dev,
+ MAX_REG_RD * sizeof(*this->reg_read_buf),
+ GFP_KERNEL);
+ if (!this->reg_read_buf)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&this->list);
+
+ this->chan = dma_request_slave_channel(this->dev, "rxtx");
+ if (!this->chan) {
+ dev_err(this->dev, "failed to request slave channel\n");
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+static void qcom_nandc_unalloc(struct qcom_nandc_data *this)
+{
+ dma_release_channel(this->chan);
+}
+
+static int qcom_nandc_init(struct qcom_nandc_data *this)
+{
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->chip;
+ struct device_node *np = this->dev->of_node;
+ struct mtd_part_parser_data ppdata = { .of_node = np };
+ int r;
+
+ mtd->priv = chip;
+ mtd->name = "qcom-nandc";
+ mtd->owner = THIS_MODULE;
+
+ chip->priv = this;
+
+ chip->cmdfunc = qcom_nandc_command;
+ chip->select_chip = qcom_nandc_select_chip;
+ chip->read_byte = qcom_nandc_read_byte;
+ chip->read_buf = qcom_nandc_read_buf;
+ chip->write_buf = qcom_nandc_write_buf;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
+ if (this->bus_width == 16)
+ chip->options |= NAND_BUSWIDTH_16;
+
+ chip->bbt_options = NAND_BBT_ACCESS_BBM_RAW;
+ if (of_get_nand_on_flash_bbt(np))
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+ qcom_nandc_pre_init(this);
+
+ r = nand_scan_ident(mtd, 1, NULL);
+ if (r)
+ return r;
+
+ r = qcom_nandc_ecc_init(this);
+ if (r)
+ return r;
+
+ qcom_nandc_hw_post_init(this);
+
+ r = nand_scan_tail(mtd);
+ if (r)
+ return r;
+
+ return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
+}
+
+static int qcom_nandc_parse_dt(struct platform_device *pdev)
+{
+ struct qcom_nandc_data *this = platform_get_drvdata(pdev);
+ struct device_node *np = this->dev->of_node;
+ int r;
+
+ this->ecc_strength = of_get_nand_ecc_strength(np);
+ if (this->ecc_strength < 0) {
+ dev_warn(this->dev,
+ "incorrect ecc strength, setting to 4 bits/step\n");
+ this->ecc_strength = 4;
+ }
+
+ this->bus_width = of_get_nand_bus_width(np);
+ if (this->bus_width < 0) {
+ dev_warn(this->dev, "incorrect bus width, setting to 8\n");
+ this->bus_width = 8;
+ }
+
+ r = of_property_read_u32(np, "qcom,cmd-crci", &this->cmd_crci);
+ if (r) {
+ dev_err(this->dev, "command CRCI unspecified\n");
+ return r;
+ }
+
+ r = of_property_read_u32(np, "qcom,data-crci", &this->data_crci);
+ if (r) {
+ dev_err(this->dev, "data CRCI unspecified\n");
+ return r;
+ }
+
+ return 0;
+}
+
+static int qcom_nandc_probe(struct platform_device *pdev)
+{
+ struct qcom_nandc_data *this;
+ const void *dev_data;
+ int r;
+
+ this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
+ if (!this)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, this);
+
+ this->pdev = pdev;
+ this->dev = &pdev->dev;
+
+ dev_data = of_device_get_match_data(&pdev->dev);
+ if (!dev_data) {
+ dev_err(&pdev->dev, "failed to get device data\n");
+ return -ENODEV;
+ }
+
+ this->ecc_modes = (unsigned long)dev_data;
+
+ this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ this->base = devm_ioremap_resource(&pdev->dev, this->res);
+ if (IS_ERR(this->base))
+ return PTR_ERR(this->base);
+
+ this->core_clk = devm_clk_get(&pdev->dev, "core");
+ if (IS_ERR(this->core_clk))
+ return PTR_ERR(this->core_clk);
+
+ this->aon_clk = devm_clk_get(&pdev->dev, "aon");
+ if (IS_ERR(this->aon_clk))
+ return PTR_ERR(this->aon_clk);
+
+ r = qcom_nandc_parse_dt(pdev);
+ if (r)
+ return r;
+
+ r = qcom_nandc_alloc(this);
+ if (r)
+ return r;
+
+ r = clk_prepare_enable(this->core_clk);
+ if (r)
+ goto err_core_clk;
+
+ r = clk_prepare_enable(this->aon_clk);
+ if (r)
+ goto err_aon_clk;
+
+ r = qcom_nandc_init(this);
+ if (r)
+ goto err_init;
+
+ return 0;
+
+err_init:
+ clk_disable_unprepare(this->aon_clk);
+err_aon_clk:
+ clk_disable_unprepare(this->core_clk);
+err_core_clk:
+ qcom_nandc_unalloc(this);
+
+ return r;
+}
+
+static int qcom_nandc_remove(struct platform_device *pdev)
+{
+ struct qcom_nandc_data *this = platform_get_drvdata(pdev);
+
+ qcom_nandc_unalloc(this);
+
+ clk_disable_unprepare(this->aon_clk);
+ clk_disable_unprepare(this->core_clk);
+
+ return 0;
+}
+
+#define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT)
+
+/*
+ * data will hold a struct pointer containing more differences once we support
+ * more IPs
+ */
+static const struct of_device_id qcom_nandc_of_match[] = {
+ { .compatible = "qcom,ebi2-nandc",
+ .data = (void *) EBI2_NANDC_ECC_MODES,
+ },
+ {}
+};
+MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
+
+static struct platform_driver qcom_nandc_driver = {
+ .driver = {
+ .name = "qcom-nandc",
+ .of_match_table = qcom_nandc_of_match,
+ },
+ .probe = qcom_nandc_probe,
+ .remove = qcom_nandc_remove,
+};
+module_platform_driver(qcom_nandc_driver);
+
+MODULE_AUTHOR("Archit Taneja <[email protected]>");
+MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
+MODULE_LICENSE("GPL v2");
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-19 04:50:40

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v4 3/5] dt/bindings: qcom_nandc: Add DT bindings

Add DT bindings document for the Qualcomm NAND controller driver.

Cc: [email protected]

v4:
- No changes

v3:
- Don't use '0x' when specifying nand controller address space
- Add optional property for on-flash bbt usage

Acked-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
.../devicetree/bindings/mtd/qcom_nandc.txt | 49 ++++++++++++++++++++++
1 file changed, 49 insertions(+)
create mode 100644 Documentation/devicetree/bindings/mtd/qcom_nandc.txt

diff --git a/Documentation/devicetree/bindings/mtd/qcom_nandc.txt b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
new file mode 100644
index 0000000..1de4643
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
@@ -0,0 +1,49 @@
+* Qualcomm NAND controller
+
+Required properties:
+- compatible: should be "qcom,ebi2-nand" for IPQ806x
+- reg: MMIO address range
+- clocks: must contain core clock and always on clock
+- clock-names: must contain "core" for the core clock and "aon" for the
+ always on clock
+- dmas: DMA specifier, consisting of a phandle to the ADM DMA
+ controller node and the channel number to be used for
+ NAND. Refer to dma.txt and qcom_adm.txt for more details
+- dma-names: must be "rxtx"
+- qcom,cmd-crci: must contain the ADM command type CRCI block instance
+ number specified for the NAND controller on the given
+ platform
+- qcom,data-crci: must contain the ADM data type CRCI block instance
+ number specified for the NAND controller on the given
+ platform
+
+Optional properties:
+- nand-bus-width: bus width. Must be 8 or 16. If not present, 8 is chosen
+ as default
+
+- nand-ecc-strength: number of bits to correct per ECC step. Must be 4 or 8
+ bits. If not present, 4 is chosen as default
+- nand-on-flash-bbt: Create/use on-flash bad block table
+
+The device tree may optionally contain sub-nodes describing partitions of the
+address space. See partition.txt for more detail.
+
+Example:
+
+nand@1ac00000 {
+ compatible = "qcom,ebi2-nandc";
+ reg = <0x1ac00000 0x800>;
+
+ clocks = <&gcc EBI2_CLK>,
+ <&gcc EBI2_AON_CLK>;
+ clock-names = "core", "aon";
+
+ dmas = <&adm_dma 3>;
+ dma-names = "rxtx";
+ qcom,cmd-crci = <15>;
+ qcom,data-crci = <3>;
+
+ partition@0 {
+ ...
+ };
+};
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-19 04:49:38

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v4 4/5] arm: qcom: dts: Add NAND controller node for ipq806x

The nand controller in IPQ806x is of the 'EBI2 type'. Use the corresponding
compatible string.

Cc: [email protected]

Reviewed-by: Andy Gross <[email protected]>
Signed-off-by: Archit Taneja <[email protected]>
---
arch/arm/boot/dts/qcom-ipq8064.dtsi | 15 +++++++++++++++
1 file changed, 15 insertions(+)

diff --git a/arch/arm/boot/dts/qcom-ipq8064.dtsi b/arch/arm/boot/dts/qcom-ipq8064.dtsi
index 1e1b3f0..a7f0ee5 100644
--- a/arch/arm/boot/dts/qcom-ipq8064.dtsi
+++ b/arch/arm/boot/dts/qcom-ipq8064.dtsi
@@ -350,5 +350,20 @@
status = "disabled";
};

+ nand@1ac00000 {
+ compatible = "qcom,ebi2-nandc";
+ reg = <0x1ac00000 0x800>;
+
+ clocks = <&gcc EBI2_CLK>,
+ <&gcc EBI2_AON_CLK>;
+ clock-names = "core", "aon";
+
+ dmas = <&adm_dma 3>;
+ dma-names = "rxtx";
+ qcom,cmd-crci = <15>;
+ qcom,data-crci = <3>;
+
+ status = "disabled";
+ };
};
};
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-19 04:50:01

by Archit Taneja

[permalink] [raw]
Subject: [PATCH v4 5/5] arm: qcom: dts: Enable NAND node on IPQ8064 AP148 platform

Enable the NAND controller node on the AP148 platform. Provide pinmux
information.

v4:
- Move bias-disable out of mux and create a separate group for it.
- Place the dma node inside soc node and give the full path with address.

v3, v2, v1:
- No changes

Cc: [email protected]

Signed-off-by: Archit Taneja <[email protected]>
---
arch/arm/boot/dts/qcom-ipq8064-ap148.dts | 40 ++++++++++++++++++++++++++++++++
1 file changed, 40 insertions(+)

diff --git a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
index 7f9ea50..648994c 100644
--- a/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
+++ b/arch/arm/boot/dts/qcom-ipq8064-ap148.dts
@@ -30,6 +30,32 @@
bias-none;
};
};
+ nand_pins: nand_pins {
+ mux {
+ pins = "gpio34", "gpio35", "gpio36",
+ "gpio37", "gpio38", "gpio39",
+ "gpio40", "gpio41", "gpio42",
+ "gpio43", "gpio44", "gpio45",
+ "gpio46", "gpio47";
+ function = "nand";
+ drive-strength = <10>;
+ };
+ disable {
+ pins = "gpio34", "gpio35", "gpio36",
+ "gpio37", "gpio38";
+ bias-disable;
+ };
+ pullups {
+ pins = "gpio39";
+ bias-pull-up;
+ };
+ hold {
+ pins = "gpio40", "gpio41", "gpio42",
+ "gpio43", "gpio44", "gpio45",
+ "gpio46", "gpio47";
+ bias-bus-hold;
+ };
+ };
};

gsbi@16300000 {
@@ -93,5 +119,19 @@
sata@29000000 {
status = "ok";
};
+
+ dma@18300000 {
+ status = "ok";
+ };
+
+ nand@1ac00000 {
+ status = "ok";
+
+ pinctrl-0 = <&nand_pins>;
+ pinctrl-names = "default";
+
+ nand-ecc-strength = <4>;
+ nand-bus-width = <8>;
+ };
};
};
--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum,
hosted by The Linux Foundation

2015-08-26 23:37:57

by Stephen Boyd

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

On 08/19, Archit Taneja wrote:
> The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
> MDM9x15 series.
>
> It exists as a sub block inside the IPs EBI2 (External Bus Interface 2)
> and QPIC (Qualcomm Parallel Interface Controller). These IPs provide a
> broader interface for external slow peripheral devices such as LCD and
> NAND/NOR flash memory or SRAM like interfaces.
>
> We add support for the NAND controller found within EBI2. For the SoCs
> of our interest, we only use the NAND controller within EBI2. Therefore,
> it's safe for us to assume that the NAND controller is a standalone block
> within the SoC.
>
> The controller supports 512B, 2kB, 4kB and 8kB page 8-bit and 16-bit NAND
> flash devices. It contains a HW ECC block that supports BCH ECC (4, 8 and
> 16 bit correction/step) and RS ECC(4 bit correction/step) that covers main
> and spare data. The controller contains an internal 512 byte page buffer
> to which we read/write via DMA. The EBI2 type NAND controller uses ADM DMA
> for register read/write and data transfers. The controller performs page
> reads and writes at a codeword/step level of 512 bytes. It can support up
> to 2 external chips of different configurations.
>
> The driver prepares register read and write configuration descriptors for
> each codeword, followed by data descriptors to read or write data from the
> controller's internal buffer. It uses a single ADM DMA channel that we get
> via dmaengine API. The controller requires 2 ADM CRCIs for command and
> data flow control. These are passed via DT.
>
> The ecc layout used by the controller is syndrome like, but we can't use
> the standard syndrome ecc ops because of several reasons. First, the amount
> of data bytes covered by ecc isn't same in each step. Second, writing to
> free oob space requires us writing to the entire step in which the oob
> lies. This forces us to create our own ecc ops.
>
> One more difference is how the controller accesses the bad block marker.
> The controller ignores reading the marker when ECC is enabled. ECC needs
> to be explicity disabled to read or write to the bad block marker. For
> this reason, we use the newly created flag NAND_BBT_ACCESS_BBM_RAW to
> read the factory provided bad block markers.
>
> v4:
> - Shrink submit_descs
> - add desc list node at the end of dma_prep_desc
> - Endianness and warning fixes
>
> Signed-off-by: Stephen Boyd <[email protected]>
>
> v3:
> - Refactor dma functions for maximum reuse
> - Use dma_slave_confing on stack
> - optimize and clean upempty_page_fixup using memchr_inv
> - ensure portability with dma register reads using le32_* funcs
> - use NAND_USE_BOUNCE_BUFFER instead of doing it ourselves
> - fix handling of return values of dmaengine funcs
> - constify wherever possible
> - Remove dependency on ADM DMA in Kconfig
> - Misc fixes and clean ups
>
> v2:
> - Use new BBT flag that allows us to read BBM in raw mode
> - reduce memcpy-s in the driver
> - some refactor and clean ups because of above changes
>
> Reviewed-by: Andy Gross <[email protected]>
> Signed-off-by: Archit Taneja <[email protected]>
> ---

Reviewed-by: Stephen Boyd <[email protected]>

--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
a Linux Foundation Collaborative Project

2015-11-10 05:13:17

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v4 1/5] mtd: nand: Create a BBT flag to access bad block markers in raw mode

Hi,

On 10/12/2015 01:33 AM, Brian Norris wrote:
> Hi Boris,
>
> On Fri, Oct 02, 2015 at 08:27:38AM +0200, Boris Brezillon wrote:
>> Brian, Archit,
>>
>> On Thu, 1 Oct 2015 19:44:34 -0700
>> Brian Norris <[email protected]> wrote:
>>
>>> On Wed, Aug 19, 2015 at 10:19:02AM +0530, Archit Taneja wrote:
>>>> Some controllers can access the factory bad block marker from OOB only
>>>> when they read it in raw mode. When ECC is enabled, these controllers
>>>> discard reading/writing bad block markers, preventing access to them
>>>> altogether.
>>>>
>>>> The bbt driver assumes MTD_OPS_PLACE_OOB when scanning for bad blocks.
>>>> This results in the nand driver's ecc->read_oob() op to be called, which
>>>> works with ECC enabled.
>>>>
>>>> Create a new BBT option flag that tells nand_bbt to force the mode to
>>>> MTD_OPS_RAW. This would result in the correct op being called for the
>>>> underlying nand controller driver.
>>
>> Actually I have the same kind of patch in my local tree (for a
>> different reason though: the HW randomizer can mess up with the BBM
>> byte if it's not disabled, and the only way to disable it in my current
>> implementation is to switch to raw mode).
>>
>>>
>>> MTD_OPS_RAW is probably the best way to do this, and we should switch
>>> back to it for all users (rather than a new flag).
>>
>> I'm fine with this solution, but will that be acceptable for everybody?
>> I mean, some NAND controllers are able to protect some OOB bytes, and
>> the BBM might fall in those OOB bytes. In this case, shouldn't we rely
>> on the ECC protection instead of reading the OOB in raw mode?
>
> I think ECC is kind of misused a bit here. It's not really meant for
> protecting BBMs, and it's also really not sufficient, esp. given
> bitflips in erased areas.
>
>>> But to do this, we
>>> need to fix up some things. Particularly, we need to extend
>>> 'badblockbits' support so that it is applied consistently in all places
>>> (I recall there is one code path in which bad block scanning does take
>>> this into account, and one that doesn't.)
>>
>> Yes, IIRC Andrea has posted a patch addressing that problem [1].
>> Another problem I see is that badblockbits is currently assigned a
>> fixed value by the NAND controller driver (or a default value of 8).
>> There's no specific logic to correlate it to the required ECC strength.
>> IMO, we should not let each NAND controller driver decide what is the
>> appropriate value for each chip but rather implement the logic in
>> nand_base.c based on ecc->strength and ecc->size, and IIRC this was
>> the question Andrea asked when he posted his proposal.
>>
>>>
>>> About badblockbits: it allows us to do a relaxed heuristic on matching
>>> bad block markers, where we say the BBM is "bad" if more than fewer than
>>> N bits are '1'. Right now, we just say that if there are any 0 bits in
>>> the Bad Block Marker (BBM) region, then the block is bad. But this is
>>> problematic for pages that have been worn down and might have bitflips.
>>> So right now, part of a (bad) solution is to read with ECC, so worn
>>> blocks that have data won't be later interpreted as bad blocks if we
>>> rescan the BBMs (ECC will correct the bitflips, if the OOB is
>>> protected).
>>>
>>> But that solution is not really good, since ECC is not really a panacea
>>> for misinterpreted BBMs. And HW like yours apparently won't work like
>>> this.
>>
>> Okay, I see you gave pretty much the same explanation, which makes mine
>> useless :-).
>>
>>>
>>> So in summary: if we can consistently make BBM checks look for 6 or 7
>>> "one" bits (rather than a full 8 bits, i.e. BBM == 0xff), then we can
>>> just unconditionally switch to RAW rather than PLACE_OOB. And we don't
>>> need a flag like this pach introduces.
>>
>> I guess it all depends whether we want to let NAND controllers that can
>> protect their BBM keep doing it (which IMO is not such a bad idea).
>
> I think I was the only one consciously trying to do this. (Though I
> guess it's possible some people discreetly hacked it in by not
> supporting raw mode properly.) And for my cases, I'm pretty sure a
> properly-improved raw mode BBM scan would be just as good, or actually
> better. So I'm not sure anyone would really notice if we switched back
> and properly accounted for flips.

Was there any progress on the badblockbits work? I'd seen a thread on
linux-mtd but that had sort of died too.

Brian,

Could we get this driver merged for now without BBT support? In my next
revision, I could populate chip->block_bad and chip->block_markbad
and add NAND_SKIP_BBTSCAN to chip->options. I can remove this once
we have badblockbits support.

Thanks,
Archit

>
> Brian
>
> ______________________________________________________
> Linux MTD discussion mailing list
> http://lists.infradead.org/mailman/listinfo/linux-mtd/
>

--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora
Forum, hosted by The Linux Foundation

2015-12-16 06:33:15

by Boris Brezillon

[permalink] [raw]
Subject: Re: [PATCH v4 3/5] dt/bindings: qcom_nandc: Add DT bindings

Hi Archit,

Sorry for the late review, but there are a few things I think should be
addressed.

On Wed, 19 Aug 2015 10:19:04 +0530
Archit Taneja <[email protected]> wrote:

> Add DT bindings document for the Qualcomm NAND controller driver.
>
> Cc: [email protected]
>
> v4:
> - No changes
>
> v3:
> - Don't use '0x' when specifying nand controller address space
> - Add optional property for on-flash bbt usage
>
> Acked-by: Andy Gross <[email protected]>
> Signed-off-by: Archit Taneja <[email protected]>
> ---
> .../devicetree/bindings/mtd/qcom_nandc.txt | 49 ++++++++++++++++++++++
> 1 file changed, 49 insertions(+)
> create mode 100644 Documentation/devicetree/bindings/mtd/qcom_nandc.txt
>
> diff --git a/Documentation/devicetree/bindings/mtd/qcom_nandc.txt b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
> new file mode 100644
> index 0000000..1de4643
> --- /dev/null
> +++ b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
> @@ -0,0 +1,49 @@
> +* Qualcomm NAND controller
> +
> +Required properties:
> +- compatible: should be "qcom,ebi2-nand" for IPQ806x
> +- reg: MMIO address range
> +- clocks: must contain core clock and always on clock
> +- clock-names: must contain "core" for the core clock and "aon" for the
> + always on clock
> +- dmas: DMA specifier, consisting of a phandle to the ADM DMA
> + controller node and the channel number to be used for
> + NAND. Refer to dma.txt and qcom_adm.txt for more details
> +- dma-names: must be "rxtx"
> +- qcom,cmd-crci: must contain the ADM command type CRCI block instance
> + number specified for the NAND controller on the given
> + platform
> +- qcom,data-crci: must contain the ADM data type CRCI block instance
> + number specified for the NAND controller on the given
> + platform
> +
> +Optional properties:
> +- nand-bus-width: bus width. Must be 8 or 16. If not present, 8 is chosen
> + as default
> +
> +- nand-ecc-strength: number of bits to correct per ECC step. Must be 4 or 8
> + bits. If not present, 4 is chosen as default
> +- nand-on-flash-bbt: Create/use on-flash bad block table
> +
> +The device tree may optionally contain sub-nodes describing partitions of the
> +address space. See partition.txt for more detail.
> +
> +Example:
> +
> +nand@1ac00000 {
> + compatible = "qcom,ebi2-nandc";
> + reg = <0x1ac00000 0x800>;
> +
> + clocks = <&gcc EBI2_CLK>,
> + <&gcc EBI2_AON_CLK>;
> + clock-names = "core", "aon";
> +
> + dmas = <&adm_dma 3>;
> + dma-names = "rxtx";
> + qcom,cmd-crci = <15>;
> + qcom,data-crci = <3>;
> +
> + partition@0 {
> + ...
> + };
> +};


According to the registers layout defined in your driver, your NAND
controller can address multiple chips (NAND_DEV_SEL register). Since DT
bindings are supposed to be as stable as possible, I would recommend
separating the NAND controller and NAND chip declaration (as done here
[1] and here [2]).

Best Regards,

Boris

[1]http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt
[2]http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/mtd/sunxi-nand.txt


--
Boris Brezillon, Free Electrons
Embedded Linux and Kernel engineering
http://free-electrons.com

2015-12-16 08:11:27

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v4 3/5] dt/bindings: qcom_nandc: Add DT bindings

Hi Boris,

On 12/16/2015 12:03 PM, Boris Brezillon wrote:
> Hi Archit,
>
> Sorry for the late review, but there are a few things I think should be
> addressed.
>
> On Wed, 19 Aug 2015 10:19:04 +0530
> Archit Taneja <[email protected]> wrote:
>
>> Add DT bindings document for the Qualcomm NAND controller driver.
>>
>> Cc: [email protected]
>>
>> v4:
>> - No changes
>>
>> v3:
>> - Don't use '0x' when specifying nand controller address space
>> - Add optional property for on-flash bbt usage
>>
>> Acked-by: Andy Gross <[email protected]>
>> Signed-off-by: Archit Taneja <[email protected]>
>> ---
>> .../devicetree/bindings/mtd/qcom_nandc.txt | 49 ++++++++++++++++++++++
>> 1 file changed, 49 insertions(+)
>> create mode 100644 Documentation/devicetree/bindings/mtd/qcom_nandc.txt
>>
>> diff --git a/Documentation/devicetree/bindings/mtd/qcom_nandc.txt b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
>> new file mode 100644
>> index 0000000..1de4643
>> --- /dev/null
>> +++ b/Documentation/devicetree/bindings/mtd/qcom_nandc.txt
>> @@ -0,0 +1,49 @@
>> +* Qualcomm NAND controller
>> +
>> +Required properties:
>> +- compatible: should be "qcom,ebi2-nand" for IPQ806x
>> +- reg: MMIO address range
>> +- clocks: must contain core clock and always on clock
>> +- clock-names: must contain "core" for the core clock and "aon" for the
>> + always on clock
>> +- dmas: DMA specifier, consisting of a phandle to the ADM DMA
>> + controller node and the channel number to be used for
>> + NAND. Refer to dma.txt and qcom_adm.txt for more details
>> +- dma-names: must be "rxtx"
>> +- qcom,cmd-crci: must contain the ADM command type CRCI block instance
>> + number specified for the NAND controller on the given
>> + platform
>> +- qcom,data-crci: must contain the ADM data type CRCI block instance
>> + number specified for the NAND controller on the given
>> + platform
>> +
>> +Optional properties:
>> +- nand-bus-width: bus width. Must be 8 or 16. If not present, 8 is chosen
>> + as default
>> +
>> +- nand-ecc-strength: number of bits to correct per ECC step. Must be 4 or 8
>> + bits. If not present, 4 is chosen as default
>> +- nand-on-flash-bbt: Create/use on-flash bad block table
>> +
>> +The device tree may optionally contain sub-nodes describing partitions of the
>> +address space. See partition.txt for more detail.
>> +
>> +Example:
>> +
>> +nand@1ac00000 {
>> + compatible = "qcom,ebi2-nandc";
>> + reg = <0x1ac00000 0x800>;
>> +
>> + clocks = <&gcc EBI2_CLK>,
>> + <&gcc EBI2_AON_CLK>;
>> + clock-names = "core", "aon";
>> +
>> + dmas = <&adm_dma 3>;
>> + dma-names = "rxtx";
>> + qcom,cmd-crci = <15>;
>> + qcom,data-crci = <3>;
>> +
>> + partition@0 {
>> + ...
>> + };
>> +};
>
>
> According to the registers layout defined in your driver, your NAND
> controller can address multiple chips (NAND_DEV_SEL register). Since DT
> bindings are supposed to be as stable as possible, I would recommend
> separating the NAND controller and NAND chip declaration (as done here
> [1] and here [2]).

Yes, the controller does support multiple chips, but the driver only
supports one chip for now.

I'll make changes such that the driver works in accordance to the DT
bindings format you shared.

Thanks for the review.

Archit


>
> Best Regards,
>
> Boris
>
> [1]http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt
> [2]http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
>
>

--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora
Forum, hosted by The Linux Foundation

2015-12-16 09:16:00

by Boris Brezillon

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

Hi Archit,

Again, sorry for the late review. It's probably not exhaustive but
points a few things that should be fixed.


On Wed, 19 Aug 2015 10:19:03 +0530
Archit Taneja <[email protected]> wrote:

> The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
> MDM9x15 series.
>
> It exists as a sub block inside the IPs EBI2 (External Bus Interface 2)
> and QPIC (Qualcomm Parallel Interface Controller). These IPs provide a
> broader interface for external slow peripheral devices such as LCD and
> NAND/NOR flash memory or SRAM like interfaces.
>
> We add support for the NAND controller found within EBI2. For the SoCs
> of our interest, we only use the NAND controller within EBI2. Therefore,
> it's safe for us to assume that the NAND controller is a standalone block
> within the SoC.
>
> The controller supports 512B, 2kB, 4kB and 8kB page 8-bit and 16-bit NAND
> flash devices. It contains a HW ECC block that supports BCH ECC (4, 8 and
> 16 bit correction/step) and RS ECC(4 bit correction/step) that covers main
> and spare data. The controller contains an internal 512 byte page buffer
> to which we read/write via DMA. The EBI2 type NAND controller uses ADM DMA
> for register read/write and data transfers. The controller performs page
> reads and writes at a codeword/step level of 512 bytes. It can support up
> to 2 external chips of different configurations.
>
> The driver prepares register read and write configuration descriptors for
> each codeword, followed by data descriptors to read or write data from the
> controller's internal buffer. It uses a single ADM DMA channel that we get
> via dmaengine API. The controller requires 2 ADM CRCIs for command and
> data flow control. These are passed via DT.
>
> The ecc layout used by the controller is syndrome like, but we can't use
> the standard syndrome ecc ops because of several reasons. First, the amount
> of data bytes covered by ecc isn't same in each step. Second, writing to
> free oob space requires us writing to the entire step in which the oob
> lies. This forces us to create our own ecc ops.
>
> One more difference is how the controller accesses the bad block marker.
> The controller ignores reading the marker when ECC is enabled. ECC needs
> to be explicity disabled to read or write to the bad block marker. For
> this reason, we use the newly created flag NAND_BBT_ACCESS_BBM_RAW to
> read the factory provided bad block markers.
>
> v4:
> - Shrink submit_descs
> - add desc list node at the end of dma_prep_desc
> - Endianness and warning fixes
>
> Signed-off-by: Stephen Boyd <[email protected]>
>
> v3:
> - Refactor dma functions for maximum reuse
> - Use dma_slave_confing on stack
> - optimize and clean upempty_page_fixup using memchr_inv
> - ensure portability with dma register reads using le32_* funcs
> - use NAND_USE_BOUNCE_BUFFER instead of doing it ourselves
> - fix handling of return values of dmaengine funcs
> - constify wherever possible
> - Remove dependency on ADM DMA in Kconfig
> - Misc fixes and clean ups
>
> v2:
> - Use new BBT flag that allows us to read BBM in raw mode
> - reduce memcpy-s in the driver
> - some refactor and clean ups because of above changes
>
> Reviewed-by: Andy Gross <[email protected]>
> Signed-off-by: Archit Taneja <[email protected]>
> ---
> drivers/mtd/nand/Kconfig | 7 +
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/qcom_nandc.c | 1910 +++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 1918 insertions(+)
> create mode 100644 drivers/mtd/nand/qcom_nandc.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 5b2806a..6085b8a 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -538,4 +538,11 @@ config MTD_NAND_HISI504
> help
> Enables support for NAND controller on Hisilicon SoC Hip04.
>
> +config MTD_NAND_QCOM
> + tristate "Support for NAND on QCOM SoCs"
> + depends on ARCH_QCOM
> + help
> + Enables support for NAND flash chips on SoCs containing the EBI2 NAND
> + controller. This controller is found on IPQ806x SoC.
> +
> endif # MTD_NAND
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 1f897ec..87b6a1d 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -53,5 +53,6 @@ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
> obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
> obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
> +obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
>
> nand-objs := nand_base.o nand_bbt.o nand_timings.o
> diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
> new file mode 100644
> index 0000000..2337731
> --- /dev/null
> +++ b/drivers/mtd/nand/qcom_nandc.c
> @@ -0,0 +1,1910 @@
> +/*
> + * Copyright (c) 2015, The Linux Foundation. All rights reserved.
> + *
> + * This software is licensed under the terms of the GNU General Public
> + * License version 2, as published by the Free Software Foundation, and
> + * may be copied, distributed, and modified under those terms.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/slab.h>
> +#include <linux/bitops.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/module.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/of_mtd.h>
> +#include <linux/delay.h>
> +
> +/* NANDc reg offsets */
> +#define NAND_FLASH_CMD 0x00
> +#define NAND_ADDR0 0x04
> +#define NAND_ADDR1 0x08
> +#define NAND_FLASH_CHIP_SELECT 0x0c
> +#define NAND_EXEC_CMD 0x10
> +#define NAND_FLASH_STATUS 0x14
> +#define NAND_BUFFER_STATUS 0x18
> +#define NAND_DEV0_CFG0 0x20
> +#define NAND_DEV0_CFG1 0x24
> +#define NAND_DEV0_ECC_CFG 0x28
> +#define NAND_DEV1_ECC_CFG 0x2c
> +#define NAND_DEV1_CFG0 0x30
> +#define NAND_DEV1_CFG1 0x34
> +#define NAND_READ_ID 0x40
> +#define NAND_READ_STATUS 0x44
> +#define NAND_DEV_CMD0 0xa0
> +#define NAND_DEV_CMD1 0xa4
> +#define NAND_DEV_CMD2 0xa8
> +#define NAND_DEV_CMD_VLD 0xac
> +#define SFLASHC_BURST_CFG 0xe0
> +#define NAND_ERASED_CW_DETECT_CFG 0xe8
> +#define NAND_ERASED_CW_DETECT_STATUS 0xec
> +#define NAND_EBI2_ECC_BUF_CFG 0xf0
> +#define FLASH_BUF_ACC 0x100
> +
> +#define NAND_CTRL 0xf00
> +#define NAND_VERSION 0xf08
> +#define NAND_READ_LOCATION_0 0xf20
> +#define NAND_READ_LOCATION_1 0xf24
> +
> +/* dummy register offsets, used by write_reg_dma */
> +#define NAND_DEV_CMD1_RESTORE 0xdead
> +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
> +
> +/* NAND_FLASH_CMD bits */
> +#define PAGE_ACC BIT(4)
> +#define LAST_PAGE BIT(5)
> +
> +/* NAND_FLASH_CHIP_SELECT bits */
> +#define NAND_DEV_SEL 0
> +#define DM_EN BIT(2)
> +
> +/* NAND_FLASH_STATUS bits */
> +#define FS_OP_ERR BIT(4)
> +#define FS_READY_BSY_N BIT(5)
> +#define FS_MPU_ERR BIT(8)
> +#define FS_DEVICE_STS_ERR BIT(16)
> +#define FS_DEVICE_WP BIT(23)
> +
> +/* NAND_BUFFER_STATUS bits */
> +#define BS_UNCORRECTABLE_BIT BIT(8)
> +#define BS_CORRECTABLE_ERR_MSK 0x1f
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define DISABLE_STATUS_AFTER_WRITE 4
> +#define CW_PER_PAGE 6
> +#define UD_SIZE_BYTES 9
> +#define ECC_PARITY_SIZE_BYTES_RS 19
> +#define SPARE_SIZE_BYTES 23
> +#define NUM_ADDR_CYCLES 27
> +#define STATUS_BFR_READ 30
> +#define SET_RD_MODE_AFTER_STATUS 31
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define DEV0_CFG1_ECC_DISABLE 0
> +#define WIDE_FLASH 1
> +#define NAND_RECOVERY_CYCLES 2
> +#define CS_ACTIVE_BSY 5
> +#define BAD_BLOCK_BYTE_NUM 6
> +#define BAD_BLOCK_IN_SPARE_AREA 16
> +#define WR_RD_BSY_GAP 17
> +#define ENABLE_BCH_ECC 27
> +
> +/* NAND_DEV0_ECC_CFG bits */
> +#define ECC_CFG_ECC_DISABLE 0
> +#define ECC_SW_RESET 1
> +#define ECC_MODE 4
> +#define ECC_PARITY_SIZE_BYTES_BCH 8
> +#define ECC_NUM_DATA_BYTES 16
> +#define ECC_FORCE_CLK_OPEN 30
> +
> +/* NAND_DEV_CMD1 bits */
> +#define READ_ADDR 0
> +
> +/* NAND_DEV_CMD_VLD bits */
> +#define READ_START_VLD 0
> +
> +/* NAND_EBI2_ECC_BUF_CFG bits */
> +#define NUM_STEPS 0
> +
> +/* NAND_ERASED_CW_DETECT_CFG bits */
> +#define ERASED_CW_ECC_MASK 1
> +#define AUTO_DETECT_RES 0
> +#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
> +#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
> +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
> +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
> +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
> +
> +/* NAND_ERASED_CW_DETECT_STATUS bits */
> +#define PAGE_ALL_ERASED BIT(7)
> +#define CODEWORD_ALL_ERASED BIT(6)
> +#define PAGE_ERASED BIT(5)
> +#define CODEWORD_ERASED BIT(4)
> +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
> +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> +
> +/* Version Mask */
> +#define NAND_VERSION_MAJOR_MASK 0xf0000000
> +#define NAND_VERSION_MAJOR_SHIFT 28
> +#define NAND_VERSION_MINOR_MASK 0x0fff0000
> +#define NAND_VERSION_MINOR_SHIFT 16
> +
> +/* NAND OP_CMDs */
> +#define PAGE_READ 0x2
> +#define PAGE_READ_WITH_ECC 0x3
> +#define PAGE_READ_WITH_ECC_SPARE 0x4
> +#define PROGRAM_PAGE 0x6
> +#define PAGE_PROGRAM_WITH_ECC 0x7
> +#define PROGRAM_PAGE_SPARE 0x9
> +#define BLOCK_ERASE 0xa
> +#define FETCH_ID 0xb
> +#define RESET_DEVICE 0xd
> +
> +/*
> + * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> + * the driver calls the chunks 'step' or 'codeword' interchangeably
> + */
> +#define NANDC_STEP_SIZE 512
> +
> +/*
> + * the largest page size we support is 8K, this will have 16 steps/codewords
> + * of 512 bytes each
> + */
> +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
> +
> +/* we read at most 3 registers per codeword scan */
> +#define MAX_REG_RD (3 * MAX_NUM_STEPS)
> +
> +/* ECC modes */
> +#define ECC_NONE BIT(0)
> +#define ECC_RS_4BIT BIT(1)
> +#define ECC_BCH_4BIT BIT(2)
> +#define ECC_BCH_8BIT BIT(3)
> +
> +struct desc_info {
> + struct list_head list;
> +
> + enum dma_data_direction dir;
> + struct scatterlist sgl;
> + struct dma_async_tx_descriptor *dma_desc;
> +};
> +
> +/*
> + * holds the current register values that we want to write. acts as a contiguous
> + * chunk of memory which we use to write the controller registers through DMA.
> + */
> +struct nandc_regs {
> + __le32 cmd;
> + __le32 addr0;
> + __le32 addr1;
> + __le32 chip_sel;
> + __le32 exec;
> +
> + __le32 cfg0;
> + __le32 cfg1;
> + __le32 ecc_bch_cfg;
> +
> + __le32 clrflashstatus;
> + __le32 clrreadstatus;
> +
> + __le32 cmd1;
> + __le32 vld;
> +
> + __le32 orig_cmd1;
> + __le32 orig_vld;
> +
> + __le32 ecc_buf_cfg;
> +};
> +
> +/*
> + * @cmd_crci: ADM DMA CRCI for command flow control
> + * @data_crci: ADM DMA CRCI for data flow control
> + * @list: DMA descriptor list (list of desc_infos)
> + * @data_buffer: our local DMA buffer for page read/writes,
> + * used when we can't use the buffer provided
> + * by upper layers directly
> + * @buf_size/count/start: markers for chip->read_buf/write_buf functions
> + * @reg_read_buf: buffer for reading register data via DMA
> + * @reg_read_pos: marker for data read in reg_read_buf
> + * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
> + * ecc/non-ecc mode for the current nand flash
> + * device
> + * @regs: a contiguous chunk of memory for DMA register
> + * writes
> + * @ecc_strength: 4 bit or 8 bit ecc, received via DT
> + * @bus_width: 8 bit or 16 bit NAND bus width, received via DT
> + * @ecc_modes: supported ECC modes by the current controller,
> + * initialized via DT match data
> + * @cw_size: the number of bytes in a single step/codeword
> + * of a page, consisting of all data, ecc, spare
> + * and reserved bytes
> + * @cw_data: the number of bytes within a codeword protected
> + * by ECC
> + * @bch_enabled: flag to tell whether BCH or RS ECC mode is used
> + * @status: value to be returned if NAND_CMD_STATUS command
> + * is executed
> + */
> +struct qcom_nandc_data {
> + struct platform_device *pdev;
> + struct device *dev;
> +
> + void __iomem *base;
> + struct resource *res;
> +
> + struct clk *core_clk;
> + struct clk *aon_clk;
> +
> + /* DMA stuff */
> + struct dma_chan *chan;
> + struct dma_slave_config slave_conf;
> + unsigned int cmd_crci;
> + unsigned int data_crci;
> + struct list_head list;
> +
> + /* MTD stuff */
> + struct nand_chip chip;
> + struct mtd_info mtd;

You can drop this field, since nand_chip now embeds its own mtd_info
instance (accessible through the nand_to_mtd() helper).

> +
> + /* local data buffer and markers */
> + u8 *data_buffer;
> + int buf_size;
> + int buf_count;
> + int buf_start;
> +
> + /* local buffer to read back registers */
> + __le32 *reg_read_buf;
> + int reg_read_pos;
> +
> + /* required configs */
> + u32 cfg0, cfg1;
> + u32 cfg0_raw, cfg1_raw;
> + u32 ecc_buf_cfg;
> + u32 ecc_bch_cfg;
> + u32 clrflashstatus;
> + u32 clrreadstatus;
> + u32 sflashc_burst_cfg;
> + u32 cmd1, vld;
> +
> + /* register state */
> + struct nandc_regs *regs;
> +
> + /* things we get from DT */
> + int ecc_strength;
> + int bus_width;

Do you really need these fields? You can directly change the
->chip.ecc.strength and ->chip.options field instead.

> +
> + u32 ecc_modes;
> +
> + /* misc params */
> + int cw_size;
> + int cw_data;
> + bool use_ecc;
> + bool bch_enabled;
> + u8 status;
> + int last_command;
> +};

You're mixing controller and chip stuff in this structure. As said in
my answer to your DT bindings proposal, I think it would be clearer to
separate the controller and chip specific fields.

Note that a NAND chip can be attached to a NAND controller through its
->controller field.

So here is how it would look like:

struct qcom_nandc_data {
struct nand_hw_control controller;

struct list_head chips;
/* controller specific fields */
};

struct qcom_nand_data {
struct list_head node;
struct nand_chip chip;

/* chip specific fields */
}


[...]

> +
> +/*
> + * Implements chip->cmdfunc. It's only used for a limited set of commands.
> + * The rest of the commands wouldn't be called by upper layers. For example,
> + * NAND_CMD_READOOB would never be called because we have our own versions
> + * of read_oob ops for nand_ecc_ctrl.
> + */
> +static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
> + int column, int page_addr)
> +{
> + struct nand_chip *chip = mtd->priv;

struct nand_chip *chip = mtd_to_nand(mtd);

> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + struct qcom_nandc_data *this = chip->priv;
> + bool wait = false;
> + int r = 0;
> +
> + pre_command(this, command);
> +
> + switch (command) {
> + case NAND_CMD_RESET:
> + r = reset(this);
> + wait = true;
> + break;
> +
> + case NAND_CMD_READID:
> + this->buf_count = 4;
> + r = read_id(this, column);
> + wait = true;
> + break;
> +
> + case NAND_CMD_PARAM:
> + r = nandc_param(this);
> + wait = true;
> + break;
> +
> + case NAND_CMD_ERASE1:
> + r = erase_block(this, page_addr);
> + wait = true;
> + break;
> +
> + case NAND_CMD_READ0:
> + /* we read the entire page for now */
> + WARN_ON(column != 0);
> +
> + this->use_ecc = true;
> + set_address(this, 0, page_addr);
> + update_rw_regs(this, ecc->steps, true);
> + break;
> +
> + case NAND_CMD_SEQIN:
> + WARN_ON(column != 0);
> + set_address(this, 0, page_addr);
> + break;
> +
> + case NAND_CMD_PAGEPROG:
> + case NAND_CMD_STATUS:
> + case NAND_CMD_NONE:
> + default:
> + break;
> + }
> +
> + if (r) {
> + dev_err(this->dev, "failure executing command %d\n",
> + command);
> + free_descs(this);
> + return;
> + }
> +
> + if (wait) {
> + r = submit_descs(this);
> + if (r)
> + dev_err(this->dev,
> + "failure submitting descs for command %d\n",
> + command);
> + }
> +
> + free_descs(this);
> +
> + post_command(this, command);
> +}
> +
> +/*
> + * when using RS ECC, the NAND controller flags an error when reading an
> + * erased page. however, there are special characters at certain offsets when
> + * we read the erased page. we check here if the page is really empty. if so,
> + * we replace the magic characters with 0xffs
> + */
> +static bool empty_page_fixup(struct qcom_nandc_data *this, u8 *data_buf)
> +{
> + struct mtd_info *mtd = &this->mtd;
> + struct nand_chip *chip = &this->chip;

struct nand_chip *chip = &this->chip;
struct mtd_info *mtd = nand_to_mtd(chip);

> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int cwperpage = ecc->steps;
> + u8 orig1[MAX_NUM_STEPS], orig2[MAX_NUM_STEPS];
> + int i, j;
> +
> + /* if BCH is enabled, HW will take care of detecting erased pages */
> + if (this->bch_enabled || !this->use_ecc)
> + return false;
> +
> + for (i = 0; i < cwperpage; i++) {
> + u8 *empty1, *empty2;
> + u32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
> +
> + /*
> + * an erased page flags an error in NAND_FLASH_STATUS, check if
> + * the page is erased by looking for 0x54s at offsets 3 and 175
> + * from the beginning of each codeword
> + */
> + if (!(flash_status & FS_OP_ERR))
> + break;
> +
> + empty1 = &data_buf[3 + i * this->cw_data];
> + empty2 = &data_buf[175 + i * this->cw_data];
> +
> + /*
> + * if the error wasn't because of an erased page, bail out and
> + * and let someone else do the error checking
> + */
> + if ((*empty1 == 0x54 && *empty2 == 0xff) ||
> + (*empty1 == 0xff && *empty2 == 0x54)) {
> + orig1[i] = *empty1;
> + orig2[i] = *empty2;
> +
> + *empty1 = 0xff;
> + *empty2 = 0xff;
> + } else {
> + break;
> + }
> + }
> +
> + if (i < cwperpage || memchr_inv(data_buf, 0xff, mtd->writesize))
> + goto not_empty;
> +
> + /*
> + * tell the caller that the page was empty and is fixed up, so that
> + * parse_read_errors() doesn't think it's an error
> + */
> + return true;
> +
> +not_empty:
> + /* restore original values if not empty*/
> + for (j = 0; j < i; j++) {
> + data_buf[3 + j * this->cw_data] = orig1[j];
> + data_buf[175 + j * this->cw_data] = orig2[j];
> + }
> +
> + return false;
> +}
> +
> +struct read_stats {
> + __le32 flash;
> + __le32 buffer;
> + __le32 erased_cw;
> +};
> +
> +/*
> + * reads back status registers set by the controller to notify page read
> + * errors. this is equivalent to what 'ecc->correct()' would do.
> + */
> +static int parse_read_errors(struct qcom_nandc_data *this, bool erased_page)
> +{
> + struct mtd_info *mtd = &this->mtd;
> + struct nand_chip *chip = &this->chip;

struct nand_chip *chip = &this->chip;
struct mtd_info *mtd = nand_to_mtd(chip);

> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int cwperpage = ecc->steps;
> + unsigned int max_bitflips = 0;
> + int i;
> + struct read_stats *buf;
> +
> + buf = (struct read_stats *)this->reg_read_buf;
> + for (i = 0; i < cwperpage; i++, buf++) {
> + unsigned int stat;
> + u32 flash, buffer, erased_cw;
> +
> + flash = le32_to_cpu(buf->flash);
> + buffer = le32_to_cpu(buf->buffer);
> + erased_cw = le32_to_cpu(buf->erased_cw);
> +
> + if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
> +
> + /* ignore erased codeword errors */
> + if (this->bch_enabled) {
> + if ((erased_cw & ERASED_CW) == ERASED_CW)
> + continue;
> + } else if (erased_page) {
> + continue;
> + }
> +
> + if (buffer & BS_UNCORRECTABLE_BIT) {
> + mtd->ecc_stats.failed++;
> + continue;
> + }
> + }
> +
> + stat = buffer & BS_CORRECTABLE_ERR_MSK;
> + mtd->ecc_stats.corrected += stat;
> +
> + max_bitflips = max(max_bitflips, stat);
> + }
> +
> + return max_bitflips;
> +}
> +

[...]

> +
> +/*
> + * the three functions below implement chip->read_byte(), chip->read_buf()
> + * and chip->write_buf() respectively. these aren't used for
> + * reading/writing page data, they are used for smaller data like reading
> + * id, status etc
> + */
> +static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd->priv;

struct nand_chip *chip = mtd_to_nand(mtd);

> + struct qcom_nandc_data *this = chip->priv;
> + uint8_t *buf = this->data_buffer;
> + uint8_t ret = 0x0;
> +
> + if (this->last_command == NAND_CMD_STATUS) {
> + ret = this->status;
> +
> + this->status = NAND_STATUS_READY | NAND_STATUS_WP;
> +
> + return ret;
> + }
> +
> + if (this->buf_start < this->buf_count)
> + ret = buf[this->buf_start++];
> +
> + return ret;
> +}
> +
> +static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> + struct nand_chip *chip = mtd->priv;

struct nand_chip *chip = mtd_to_nand(mtd);

> + struct qcom_nandc_data *this = chip->priv;
> + int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
> +
> + memcpy(buf, this->data_buffer + this->buf_start, real_len);
> + this->buf_start += real_len;
> +}
> +
> +static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
> + int len)
> +{
> + struct nand_chip *chip = mtd->priv;

struct nand_chip *chip = mtd_to_nand(mtd);

> + struct qcom_nandc_data *this = chip->priv;
> + int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
> +
> + memcpy(this->data_buffer + this->buf_start, buf, real_len);
> +
> + this->buf_start += real_len;
> +}
> +
> +/* we support only one external chip for now */
> +static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
> +{
> + struct nand_chip *chip = mtd->priv;

struct nand_chip *chip = mtd_to_nand(mtd);

> + struct qcom_nandc_data *this = chip->priv;
> +
> + if (chipnr <= 0)
> + return;
> +
> + dev_warn(this->dev, "invalid chip select\n");
> +}
> +
> +/*
> + * NAND controller page layout info
> + *
> + * |-----------------------| |---------------------------------|
> + * | xx.......xx| | *********xx.......xx|
> + * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx|
> + * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx|
> + * | xx.......xx| | *********xx.......xx|
> + * |-----------------------| |---------------------------------|
> + * codeword 1,2..n-1 codeword n
> + * <---(528/532 Bytes)----> <-------(528/532 Bytes)---------->
> + *
> + * n = number of codewords in the page
> + * . = ECC bytes
> + * * = spare bytes
> + * x = unused/reserved bytes
> + *
> + * 2K page: n = 4, spare = 16 bytes
> + * 4K page: n = 8, spare = 32 bytes
> + * 8K page: n = 16, spare = 64 bytes

Is there a reason not to use the following layout?

(
n x (
data = 512 bytes
protected OOB data = 4 bytes
ECC bytes = 12 or 16
)

+

remaining unprotected OOB bytes
)

This way the ECC layout definition would be easier to define, and
you'll have something that is closer to what a NAND chip expect (ECC
block/step size of 512 or 1024).

I know this is also dependent on the bootloader, hence my question.

> + *
> + * the qcom nand controller operates at a sub page/codeword level. each
> + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
> + * the number of ECC bytes vary based on the ECC strength and the bus width.
> + *
> + * the first n - 1 codewords contains 516 bytes of user data, the remaining
> + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
> + * both user data and spare(oobavail) bytes that sum up to 516 bytes.
> + *
> + * the layout described above is used by the controller when the ECC block is
> + * enabled. When we read a page with ECC enabled, the unused/reserved bytes are
> + * skipped and not copied to our internal buffer. therefore, the nand_ecclayout
> + * layouts defined below doesn't consider the positions occupied by the reserved
> + * bytes

You could just read this portion with the ECC engine disabled when
you're asked for OOB data.

> + *
> + * when the ECC block is disabled, one unused byte (or two for 16 bit bus width)
> + * in the last codeword is the position of bad block marker. the bad block
> + * marker cannot be accessed when ECC is enabled.

So, you're switching the BBM with the data at the BBM position
(possibly some in-band data), right?

> + *
> + */
> +
> +/*
> + * Layouts for different page sizes and ecc modes. We skip the eccpos field
> + * since it isn't needed for this driver
> + */

If you know where they are stored, please specify them, even if they
are not used by the upper layers (this helps analyzing raw nand dumps).

> +
> +/* 2K page, 4 bit ECC */
> +static struct nand_ecclayout layout_oob_64 = {
> + .eccbytes = 40,
> + .oobfree = {
> + { 30, 16 },
> + },
> +};

According to your description it should either be eccbytes = 48 (if
you're considering reserved bytes as ECC bytes) or 32 (if you're not
counting reserved bytes).

BTW, is the oobfree portion really starting at offset 30? I'd say that
in the 2K page, 4 bit ECC you don't have any oobfree bytes
(528 * 4 == 2048 + 64).

> +
> +/* 4K page, 4 bit ECC, 8/16 bit bus width */
> +static struct nand_ecclayout layout_oob_128 = {
> + .eccbytes = 80,
> + .oobfree = {
> + { 70, 32 },
> + },
> +};
> +
> +/* 4K page, 8 bit ECC, 8 bit bus width */
> +static struct nand_ecclayout layout_oob_224_x8 = {
> + .eccbytes = 104,
> + .oobfree = {
> + { 91, 32 },
> + },
> +};
> +
> +/* 4K page, 8 bit ECC, 16 bit bus width */
> +static struct nand_ecclayout layout_oob_224_x16 = {
> + .eccbytes = 112,
> + .oobfree = {
> + { 98, 32 },
> + },
> +};
> +
> +/* 8K page, 4 bit ECC, 8/16 bit bus width */
> +static struct nand_ecclayout layout_oob_256 = {
> + .eccbytes = 160,
> + .oobfree = {
> + { 151, 64 },
> + },
> +};

Those ECC layout definitions could probably be dynamically created
based on the detected ECC strength, bus-width and page size, instead of
defining a new one for each new combination.

> +
> +/*
> + * this is called before scan_ident, we do some minimal configurations so
> + * that reading ID and ONFI params work
> + */
> +static void qcom_nandc_pre_init(struct qcom_nandc_data *this)
> +{
> + /* kill onenand */
> + nandc_write(this, SFLASHC_BURST_CFG, 0);
> +
> + /* enable ADM DMA */
> + nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN);
> +
> + /* save the original values of these registers */
> + this->cmd1 = nandc_read(this, NAND_DEV_CMD1);
> + this->vld = nandc_read(this, NAND_DEV_CMD_VLD);
> +
> + /* initial status value */
> + this->status = NAND_STATUS_READY | NAND_STATUS_WP;
> +}
> +
> +static int qcom_nandc_ecc_init(struct qcom_nandc_data *this)
> +{
> + struct mtd_info *mtd = &this->mtd;
> + struct nand_chip *chip = &this->chip;

struct nand_chip *chip = &this->chip;
struct mtd_info *mtd = nand_to_mtd(chip);

> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int cwperpage;
> + bool wide_bus;
> +
> + /* the nand controller fetches codewords/chunks of 512 bytes */
> + cwperpage = mtd->writesize >> 9;
> +
> + ecc->strength = this->ecc_strength;
> +
> + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
> +
> + if (ecc->strength >= 8) {
> + /* 8 bit ECC defaults to BCH ECC on all platforms */
> + ecc->bytes = wide_bus ? 14 : 13;

Maybe you'd better consider that reserved bytes (after the ECC bytes)
are actually ECC bytes. So, according to your description you would
always have 16 here.

> + } else {
> + /*
> + * if the controller supports BCH for 4 bit ECC, the controller
> + * uses lesser bytes for ECC. If RS is used, the ECC bytes is
> + * always 10 bytes
> + */
> + if (this->ecc_modes & ECC_BCH_4BIT)
> + ecc->bytes = wide_bus ? 8 : 7;

Ditto, except it's 12 here.

> + else
> + ecc->bytes = 10;
> + }
> +
> + /* each step consists of 512 bytes of data */
> + ecc->size = NANDC_STEP_SIZE;
> +
> + ecc->read_page = qcom_nandc_read_page;
> + ecc->read_oob = qcom_nandc_read_oob;
> + ecc->write_page = qcom_nandc_write_page;
> + ecc->write_oob = qcom_nandc_write_oob;
> +
> + /*
> + * the bad block marker is readable only when we read the page with ECC
> + * disabled. all the ops above run with ECC enabled. We need raw read
> + * and write function for oob in order to access bad block marker.
> + */
> + ecc->read_oob_raw = qcom_nandc_read_oob_raw;
> + ecc->write_oob_raw = qcom_nandc_write_oob_raw;
> +
> + switch (mtd->oobsize) {
> + case 64:
> + ecc->layout = &layout_oob_64;
> + break;
> + case 128:
> + ecc->layout = &layout_oob_128;
> + break;
> + case 224:
> + if (wide_bus)
> + ecc->layout = &layout_oob_224_x16;
> + else
> + ecc->layout = &layout_oob_224_x8;
> + break;
> + case 256:
> + ecc->layout = &layout_oob_256;
> + break;
> + default:
> + dev_err(this->dev, "unsupported NAND device, oobsize %d\n",
> + mtd->oobsize);
> + return -ENODEV;
> + }
> +
> + ecc->mode = NAND_ECC_HW;
> +
> + /* enable ecc by default */
> + this->use_ecc = true;
> +
> + return 0;
> +}
> +
> +static void qcom_nandc_hw_post_init(struct qcom_nandc_data *this)
> +{
> + struct mtd_info *mtd = &this->mtd;
> + struct nand_chip *chip = &this->chip;

struct nand_chip *chip = &this->chip;
struct mtd_info *mtd = nand_to_mtd(chip);

> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int cwperpage = mtd->writesize / ecc->size;
> + int spare_bytes, bad_block_byte;
> + bool wide_bus;
> + int ecc_mode = 0;
> +
> + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
> +
> + if (ecc->strength >= 8) {
> + this->cw_size = 532;
> +
> + spare_bytes = wide_bus ? 0 : 2;
> +
> + this->bch_enabled = true;
> + ecc_mode = 1;
> + } else {
> + this->cw_size = 528;
> +
> + if (this->ecc_modes & ECC_BCH_4BIT) {
> + spare_bytes = wide_bus ? 2 : 4;
> +
> + this->bch_enabled = true;
> + ecc_mode = 0;
> + } else {
> + spare_bytes = wide_bus ? 0 : 1;
> + }
> + }
> +
> + /*
> + * DATA_UD_BYTES varies based on whether the read/write command protects
> + * spare data with ECC too. We protect spare data by default, so we set
> + * it to main + spare data, which are 512 and 4 bytes respectively.
> + */
> + this->cw_data = 516;
> +
> + bad_block_byte = mtd->writesize - this->cw_size * (cwperpage - 1) + 1;
> +
> + this->cfg0 = (cwperpage - 1) << CW_PER_PAGE
> + | this->cw_data << UD_SIZE_BYTES
> + | 0 << DISABLE_STATUS_AFTER_WRITE
> + | 5 << NUM_ADDR_CYCLES
> + | ecc->bytes << ECC_PARITY_SIZE_BYTES_RS
> + | 0 << STATUS_BFR_READ
> + | 1 << SET_RD_MODE_AFTER_STATUS
> + | spare_bytes << SPARE_SIZE_BYTES;
> +
> + this->cfg1 = 7 << NAND_RECOVERY_CYCLES
> + | 0 << CS_ACTIVE_BSY
> + | bad_block_byte << BAD_BLOCK_BYTE_NUM
> + | 0 << BAD_BLOCK_IN_SPARE_AREA
> + | 2 << WR_RD_BSY_GAP
> + | wide_bus << WIDE_FLASH
> + | this->bch_enabled << ENABLE_BCH_ECC;
> +
> + this->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
> + | this->cw_size << UD_SIZE_BYTES
> + | 5 << NUM_ADDR_CYCLES
> + | 0 << SPARE_SIZE_BYTES;
> +
> + this->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
> + | 0 << CS_ACTIVE_BSY
> + | 17 << BAD_BLOCK_BYTE_NUM
> + | 1 << BAD_BLOCK_IN_SPARE_AREA
> + | 2 << WR_RD_BSY_GAP
> + | wide_bus << WIDE_FLASH
> + | 1 << DEV0_CFG1_ECC_DISABLE;
> +
> + this->ecc_bch_cfg = this->bch_enabled << ECC_CFG_ECC_DISABLE
> + | 0 << ECC_SW_RESET
> + | this->cw_data << ECC_NUM_DATA_BYTES
> + | 1 << ECC_FORCE_CLK_OPEN
> + | ecc_mode << ECC_MODE
> + | ecc->bytes << ECC_PARITY_SIZE_BYTES_BCH;
> +
> + this->ecc_buf_cfg = 0x203 << NUM_STEPS;
> +
> + this->clrflashstatus = FS_READY_BSY_N;
> + this->clrreadstatus = 0xc0;
> +
> + dev_dbg(this->dev,
> + "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
> + this->cfg0, this->cfg1, this->ecc_buf_cfg,
> + this->ecc_bch_cfg, this->cw_size, this->cw_data,
> + ecc->strength, ecc->bytes, cwperpage);
> +}
> +
> +static int qcom_nandc_alloc(struct qcom_nandc_data *this)
> +{
> + int r;
> +
> + r = dma_set_coherent_mask(this->dev, DMA_BIT_MASK(32));
> + if (r) {
> + dev_err(this->dev, "failed to set DMA mask\n");
> + return r;
> + }
> +
> + /*
> + * we use the internal buffer for reading ONFI params, reading small
> + * data like ID and status, and preforming read-copy-write operations
> + * when writing to a codeword partially. 532 is the maximum possible
> + * size of a codeword for our nand controller
> + */
> + this->buf_size = 532;
> +
> + this->data_buffer = devm_kzalloc(this->dev, this->buf_size, GFP_KERNEL);
> + if (!this->data_buffer)
> + return -ENOMEM;
> +
> + this->regs = devm_kzalloc(this->dev, sizeof(*this->regs), GFP_KERNEL);
> + if (!this->regs)
> + return -ENOMEM;
> +
> + this->reg_read_buf = devm_kzalloc(this->dev,
> + MAX_REG_RD * sizeof(*this->reg_read_buf),
> + GFP_KERNEL);
> + if (!this->reg_read_buf)
> + return -ENOMEM;
> +
> + INIT_LIST_HEAD(&this->list);
> +
> + this->chan = dma_request_slave_channel(this->dev, "rxtx");
> + if (!this->chan) {
> + dev_err(this->dev, "failed to request slave channel\n");
> + return -ENODEV;
> + }
> +
> + return 0;
> +}
> +
> +static void qcom_nandc_unalloc(struct qcom_nandc_data *this)
> +{
> + dma_release_channel(this->chan);
> +}
> +
> +static int qcom_nandc_init(struct qcom_nandc_data *this)
> +{
> + struct mtd_info *mtd = &this->mtd;
> + struct nand_chip *chip = &this->chip;

struct nand_chip *chip = &this->chip;
struct mtd_info *mtd = nand_to_mtd(chip);

> + struct device_node *np = this->dev->of_node;
> + struct mtd_part_parser_data ppdata = { .of_node = np };

You don't need it anymore, because it's automatically extracted from
the ->flash_node field.
Just call, nand_set_flash_node() before calling nand_scan_ident().

> + int r;
> +
> + mtd->priv = chip;
> + mtd->name = "qcom-nandc";
> + mtd->owner = THIS_MODULE;
> +
> + chip->priv = this;
> +
> + chip->cmdfunc = qcom_nandc_command;
> + chip->select_chip = qcom_nandc_select_chip;
> + chip->read_byte = qcom_nandc_read_byte;
> + chip->read_buf = qcom_nandc_read_buf;
> + chip->write_buf = qcom_nandc_write_buf;
> +
> + chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
> + if (this->bus_width == 16)
> + chip->options |= NAND_BUSWIDTH_16;
> +
> + chip->bbt_options = NAND_BBT_ACCESS_BBM_RAW;
> + if (of_get_nand_on_flash_bbt(np))
> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;

Ditto: rely on the work done by nand_dt_init() which is
called by nand_scan_ident().

> +
> + qcom_nandc_pre_init(this);
> +
> + r = nand_scan_ident(mtd, 1, NULL);
> + if (r)
> + return r;
> +
> + r = qcom_nandc_ecc_init(this);
> + if (r)
> + return r;
> +
> + qcom_nandc_hw_post_init(this);
> +
> + r = nand_scan_tail(mtd);
> + if (r)
> + return r;
> +
> + return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);

return mtd_device_parse_register(mtd, NULL, NULL, NULL 0);

> +}
> +
> +static int qcom_nandc_parse_dt(struct platform_device *pdev)
> +{
> + struct qcom_nandc_data *this = platform_get_drvdata(pdev);
> + struct device_node *np = this->dev->of_node;
> + int r;
> +
> + this->ecc_strength = of_get_nand_ecc_strength(np);
> + if (this->ecc_strength < 0) {
> + dev_warn(this->dev,
> + "incorrect ecc strength, setting to 4 bits/step\n");
> + this->ecc_strength = 4;
> + }
> +
> + this->bus_width = of_get_nand_bus_width(np);
> + if (this->bus_width < 0) {
> + dev_warn(this->dev, "incorrect bus width, setting to 8\n");
> + this->bus_width = 8;
> + }

Those two properties are extracted when calling nand_scan_ident() if
you've called nand_set_flash_node() before that.

> +
> + r = of_property_read_u32(np, "qcom,cmd-crci", &this->cmd_crci);
> + if (r) {
> + dev_err(this->dev, "command CRCI unspecified\n");
> + return r;
> + }
> +
> + r = of_property_read_u32(np, "qcom,data-crci", &this->data_crci);
> + if (r) {
> + dev_err(this->dev, "data CRCI unspecified\n");
> + return r;
> + }
> +
> + return 0;
> +}
> +
> +static int qcom_nandc_probe(struct platform_device *pdev)
> +{
> + struct qcom_nandc_data *this;
> + const void *dev_data;
> + int r;
> +
> + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
> + if (!this)
> + return -ENOMEM;
> +
> + platform_set_drvdata(pdev, this);
> +
> + this->pdev = pdev;
> + this->dev = &pdev->dev;
> +
> + dev_data = of_device_get_match_data(&pdev->dev);
> + if (!dev_data) {
> + dev_err(&pdev->dev, "failed to get device data\n");
> + return -ENODEV;
> + }
> +
> + this->ecc_modes = (unsigned long)dev_data;
> +
> + this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + this->base = devm_ioremap_resource(&pdev->dev, this->res);
> + if (IS_ERR(this->base))
> + return PTR_ERR(this->base);
> +
> + this->core_clk = devm_clk_get(&pdev->dev, "core");
> + if (IS_ERR(this->core_clk))
> + return PTR_ERR(this->core_clk);
> +
> + this->aon_clk = devm_clk_get(&pdev->dev, "aon");
> + if (IS_ERR(this->aon_clk))
> + return PTR_ERR(this->aon_clk);
> +
> + r = qcom_nandc_parse_dt(pdev);
> + if (r)
> + return r;
> +
> + r = qcom_nandc_alloc(this);
> + if (r)
> + return r;
> +
> + r = clk_prepare_enable(this->core_clk);
> + if (r)
> + goto err_core_clk;
> +
> + r = clk_prepare_enable(this->aon_clk);
> + if (r)
> + goto err_aon_clk;
> +
> + r = qcom_nandc_init(this);
> + if (r)
> + goto err_init;
> +
> + return 0;
> +
> +err_init:
> + clk_disable_unprepare(this->aon_clk);
> +err_aon_clk:
> + clk_disable_unprepare(this->core_clk);
> +err_core_clk:
> + qcom_nandc_unalloc(this);
> +
> + return r;
> +}
> +
> +static int qcom_nandc_remove(struct platform_device *pdev)
> +{
> + struct qcom_nandc_data *this = platform_get_drvdata(pdev);
> +

You miss a call to nand_release() here, otherwise your device is still
registered to the MTD/NAND layer, even though you've released all the
resources attached to it.

That's all I got for now.

Best Regards,

Boris


--
Boris Brezillon, Free Electrons
Embedded Linux and Kernel engineering
http://free-electrons.com

2015-12-16 11:58:03

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

Hi Boris,

On 12/16/2015 02:45 PM, Boris Brezillon wrote:
> Hi Archit,
>
> Again, sorry for the late review. It's probably not exhaustive but
> points a few things that should be fixed.

Thanks for the thorough review! Some comments below.

>
>
> On Wed, 19 Aug 2015 10:19:03 +0530
> Archit Taneja <[email protected]> wrote:
>
>> The Qualcomm NAND controller is found in SoCs like IPQ806x, MSM7xx,
>> MDM9x15 series.
>>
>> It exists as a sub block inside the IPs EBI2 (External Bus Interface 2)
>> and QPIC (Qualcomm Parallel Interface Controller). These IPs provide a
>> broader interface for external slow peripheral devices such as LCD and
>> NAND/NOR flash memory or SRAM like interfaces.
>>
>> We add support for the NAND controller found within EBI2. For the SoCs
>> of our interest, we only use the NAND controller within EBI2. Therefore,
>> it's safe for us to assume that the NAND controller is a standalone block
>> within the SoC.
>>
>> The controller supports 512B, 2kB, 4kB and 8kB page 8-bit and 16-bit NAND
>> flash devices. It contains a HW ECC block that supports BCH ECC (4, 8 and
>> 16 bit correction/step) and RS ECC(4 bit correction/step) that covers main
>> and spare data. The controller contains an internal 512 byte page buffer
>> to which we read/write via DMA. The EBI2 type NAND controller uses ADM DMA
>> for register read/write and data transfers. The controller performs page
>> reads and writes at a codeword/step level of 512 bytes. It can support up
>> to 2 external chips of different configurations.
>>
>> The driver prepares register read and write configuration descriptors for
>> each codeword, followed by data descriptors to read or write data from the
>> controller's internal buffer. It uses a single ADM DMA channel that we get
>> via dmaengine API. The controller requires 2 ADM CRCIs for command and
>> data flow control. These are passed via DT.
>>
>> The ecc layout used by the controller is syndrome like, but we can't use
>> the standard syndrome ecc ops because of several reasons. First, the amount
>> of data bytes covered by ecc isn't same in each step. Second, writing to
>> free oob space requires us writing to the entire step in which the oob
>> lies. This forces us to create our own ecc ops.
>>
>> One more difference is how the controller accesses the bad block marker.
>> The controller ignores reading the marker when ECC is enabled. ECC needs
>> to be explicity disabled to read or write to the bad block marker. For
>> this reason, we use the newly created flag NAND_BBT_ACCESS_BBM_RAW to
>> read the factory provided bad block markers.
>>
>> v4:
>> - Shrink submit_descs
>> - add desc list node at the end of dma_prep_desc
>> - Endianness and warning fixes
>>
>> Signed-off-by: Stephen Boyd <[email protected]>
>>
>> v3:
>> - Refactor dma functions for maximum reuse
>> - Use dma_slave_confing on stack
>> - optimize and clean upempty_page_fixup using memchr_inv
>> - ensure portability with dma register reads using le32_* funcs
>> - use NAND_USE_BOUNCE_BUFFER instead of doing it ourselves
>> - fix handling of return values of dmaengine funcs
>> - constify wherever possible
>> - Remove dependency on ADM DMA in Kconfig
>> - Misc fixes and clean ups
>>
>> v2:
>> - Use new BBT flag that allows us to read BBM in raw mode
>> - reduce memcpy-s in the driver
>> - some refactor and clean ups because of above changes
>>
>> Reviewed-by: Andy Gross <[email protected]>
>> Signed-off-by: Archit Taneja <[email protected]>
>> ---
>> drivers/mtd/nand/Kconfig | 7 +
>> drivers/mtd/nand/Makefile | 1 +
>> drivers/mtd/nand/qcom_nandc.c | 1910 +++++++++++++++++++++++++++++++++++++++++
>> 3 files changed, 1918 insertions(+)
>> create mode 100644 drivers/mtd/nand/qcom_nandc.c
>>
>> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
>> index 5b2806a..6085b8a 100644
>> --- a/drivers/mtd/nand/Kconfig
>> +++ b/drivers/mtd/nand/Kconfig
>> @@ -538,4 +538,11 @@ config MTD_NAND_HISI504
>> help
>> Enables support for NAND controller on Hisilicon SoC Hip04.
>>
>> +config MTD_NAND_QCOM
>> + tristate "Support for NAND on QCOM SoCs"
>> + depends on ARCH_QCOM
>> + help
>> + Enables support for NAND flash chips on SoCs containing the EBI2 NAND
>> + controller. This controller is found on IPQ806x SoC.
>> +
>> endif # MTD_NAND
>> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
>> index 1f897ec..87b6a1d 100644
>> --- a/drivers/mtd/nand/Makefile
>> +++ b/drivers/mtd/nand/Makefile
>> @@ -53,5 +53,6 @@ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
>> obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
>> obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
>> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
>> +obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
>>
>> nand-objs := nand_base.o nand_bbt.o nand_timings.o
>> diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c
>> new file mode 100644
>> index 0000000..2337731
>> --- /dev/null
>> +++ b/drivers/mtd/nand/qcom_nandc.c
>> @@ -0,0 +1,1910 @@
>> +/*
>> + * Copyright (c) 2015, The Linux Foundation. All rights reserved.
>> + *
>> + * This software is licensed under the terms of the GNU General Public
>> + * License version 2, as published by the Free Software Foundation, and
>> + * may be copied, distributed, and modified under those terms.
>> + *
>> + * This program is distributed in the hope that it will be useful,
>> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
>> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
>> + * GNU General Public License for more details.
>> + */
>> +
>> +#include <linux/clk.h>
>> +#include <linux/slab.h>
>> +#include <linux/bitops.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/dmaengine.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/nand.h>
>> +#include <linux/mtd/partitions.h>
>> +#include <linux/of.h>
>> +#include <linux/of_device.h>
>> +#include <linux/of_mtd.h>
>> +#include <linux/delay.h>
>> +
>> +/* NANDc reg offsets */
>> +#define NAND_FLASH_CMD 0x00
>> +#define NAND_ADDR0 0x04
>> +#define NAND_ADDR1 0x08
>> +#define NAND_FLASH_CHIP_SELECT 0x0c
>> +#define NAND_EXEC_CMD 0x10
>> +#define NAND_FLASH_STATUS 0x14
>> +#define NAND_BUFFER_STATUS 0x18
>> +#define NAND_DEV0_CFG0 0x20
>> +#define NAND_DEV0_CFG1 0x24
>> +#define NAND_DEV0_ECC_CFG 0x28
>> +#define NAND_DEV1_ECC_CFG 0x2c
>> +#define NAND_DEV1_CFG0 0x30
>> +#define NAND_DEV1_CFG1 0x34
>> +#define NAND_READ_ID 0x40
>> +#define NAND_READ_STATUS 0x44
>> +#define NAND_DEV_CMD0 0xa0
>> +#define NAND_DEV_CMD1 0xa4
>> +#define NAND_DEV_CMD2 0xa8
>> +#define NAND_DEV_CMD_VLD 0xac
>> +#define SFLASHC_BURST_CFG 0xe0
>> +#define NAND_ERASED_CW_DETECT_CFG 0xe8
>> +#define NAND_ERASED_CW_DETECT_STATUS 0xec
>> +#define NAND_EBI2_ECC_BUF_CFG 0xf0
>> +#define FLASH_BUF_ACC 0x100
>> +
>> +#define NAND_CTRL 0xf00
>> +#define NAND_VERSION 0xf08
>> +#define NAND_READ_LOCATION_0 0xf20
>> +#define NAND_READ_LOCATION_1 0xf24
>> +
>> +/* dummy register offsets, used by write_reg_dma */
>> +#define NAND_DEV_CMD1_RESTORE 0xdead
>> +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
>> +
>> +/* NAND_FLASH_CMD bits */
>> +#define PAGE_ACC BIT(4)
>> +#define LAST_PAGE BIT(5)
>> +
>> +/* NAND_FLASH_CHIP_SELECT bits */
>> +#define NAND_DEV_SEL 0
>> +#define DM_EN BIT(2)
>> +
>> +/* NAND_FLASH_STATUS bits */
>> +#define FS_OP_ERR BIT(4)
>> +#define FS_READY_BSY_N BIT(5)
>> +#define FS_MPU_ERR BIT(8)
>> +#define FS_DEVICE_STS_ERR BIT(16)
>> +#define FS_DEVICE_WP BIT(23)
>> +
>> +/* NAND_BUFFER_STATUS bits */
>> +#define BS_UNCORRECTABLE_BIT BIT(8)
>> +#define BS_CORRECTABLE_ERR_MSK 0x1f
>> +
>> +/* NAND_DEVn_CFG0 bits */
>> +#define DISABLE_STATUS_AFTER_WRITE 4
>> +#define CW_PER_PAGE 6
>> +#define UD_SIZE_BYTES 9
>> +#define ECC_PARITY_SIZE_BYTES_RS 19
>> +#define SPARE_SIZE_BYTES 23
>> +#define NUM_ADDR_CYCLES 27
>> +#define STATUS_BFR_READ 30
>> +#define SET_RD_MODE_AFTER_STATUS 31
>> +
>> +/* NAND_DEVn_CFG0 bits */
>> +#define DEV0_CFG1_ECC_DISABLE 0
>> +#define WIDE_FLASH 1
>> +#define NAND_RECOVERY_CYCLES 2
>> +#define CS_ACTIVE_BSY 5
>> +#define BAD_BLOCK_BYTE_NUM 6
>> +#define BAD_BLOCK_IN_SPARE_AREA 16
>> +#define WR_RD_BSY_GAP 17
>> +#define ENABLE_BCH_ECC 27
>> +
>> +/* NAND_DEV0_ECC_CFG bits */
>> +#define ECC_CFG_ECC_DISABLE 0
>> +#define ECC_SW_RESET 1
>> +#define ECC_MODE 4
>> +#define ECC_PARITY_SIZE_BYTES_BCH 8
>> +#define ECC_NUM_DATA_BYTES 16
>> +#define ECC_FORCE_CLK_OPEN 30
>> +
>> +/* NAND_DEV_CMD1 bits */
>> +#define READ_ADDR 0
>> +
>> +/* NAND_DEV_CMD_VLD bits */
>> +#define READ_START_VLD 0
>> +
>> +/* NAND_EBI2_ECC_BUF_CFG bits */
>> +#define NUM_STEPS 0
>> +
>> +/* NAND_ERASED_CW_DETECT_CFG bits */
>> +#define ERASED_CW_ECC_MASK 1
>> +#define AUTO_DETECT_RES 0
>> +#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
>> +#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
>> +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
>> +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
>> +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
>> +
>> +/* NAND_ERASED_CW_DETECT_STATUS bits */
>> +#define PAGE_ALL_ERASED BIT(7)
>> +#define CODEWORD_ALL_ERASED BIT(6)
>> +#define PAGE_ERASED BIT(5)
>> +#define CODEWORD_ERASED BIT(4)
>> +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
>> +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
>> +
>> +/* Version Mask */
>> +#define NAND_VERSION_MAJOR_MASK 0xf0000000
>> +#define NAND_VERSION_MAJOR_SHIFT 28
>> +#define NAND_VERSION_MINOR_MASK 0x0fff0000
>> +#define NAND_VERSION_MINOR_SHIFT 16
>> +
>> +/* NAND OP_CMDs */
>> +#define PAGE_READ 0x2
>> +#define PAGE_READ_WITH_ECC 0x3
>> +#define PAGE_READ_WITH_ECC_SPARE 0x4
>> +#define PROGRAM_PAGE 0x6
>> +#define PAGE_PROGRAM_WITH_ECC 0x7
>> +#define PROGRAM_PAGE_SPARE 0x9
>> +#define BLOCK_ERASE 0xa
>> +#define FETCH_ID 0xb
>> +#define RESET_DEVICE 0xd
>> +
>> +/*
>> + * the NAND controller performs reads/writes with ECC in 516 byte chunks.
>> + * the driver calls the chunks 'step' or 'codeword' interchangeably
>> + */
>> +#define NANDC_STEP_SIZE 512
>> +
>> +/*
>> + * the largest page size we support is 8K, this will have 16 steps/codewords
>> + * of 512 bytes each
>> + */
>> +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
>> +
>> +/* we read at most 3 registers per codeword scan */
>> +#define MAX_REG_RD (3 * MAX_NUM_STEPS)
>> +
>> +/* ECC modes */
>> +#define ECC_NONE BIT(0)
>> +#define ECC_RS_4BIT BIT(1)
>> +#define ECC_BCH_4BIT BIT(2)
>> +#define ECC_BCH_8BIT BIT(3)
>> +
>> +struct desc_info {
>> + struct list_head list;
>> +
>> + enum dma_data_direction dir;
>> + struct scatterlist sgl;
>> + struct dma_async_tx_descriptor *dma_desc;
>> +};
>> +
>> +/*
>> + * holds the current register values that we want to write. acts as a contiguous
>> + * chunk of memory which we use to write the controller registers through DMA.
>> + */
>> +struct nandc_regs {
>> + __le32 cmd;
>> + __le32 addr0;
>> + __le32 addr1;
>> + __le32 chip_sel;
>> + __le32 exec;
>> +
>> + __le32 cfg0;
>> + __le32 cfg1;
>> + __le32 ecc_bch_cfg;
>> +
>> + __le32 clrflashstatus;
>> + __le32 clrreadstatus;
>> +
>> + __le32 cmd1;
>> + __le32 vld;
>> +
>> + __le32 orig_cmd1;
>> + __le32 orig_vld;
>> +
>> + __le32 ecc_buf_cfg;
>> +};
>> +
>> +/*
>> + * @cmd_crci: ADM DMA CRCI for command flow control
>> + * @data_crci: ADM DMA CRCI for data flow control
>> + * @list: DMA descriptor list (list of desc_infos)
>> + * @data_buffer: our local DMA buffer for page read/writes,
>> + * used when we can't use the buffer provided
>> + * by upper layers directly
>> + * @buf_size/count/start: markers for chip->read_buf/write_buf functions
>> + * @reg_read_buf: buffer for reading register data via DMA
>> + * @reg_read_pos: marker for data read in reg_read_buf
>> + * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
>> + * ecc/non-ecc mode for the current nand flash
>> + * device
>> + * @regs: a contiguous chunk of memory for DMA register
>> + * writes
>> + * @ecc_strength: 4 bit or 8 bit ecc, received via DT
>> + * @bus_width: 8 bit or 16 bit NAND bus width, received via DT
>> + * @ecc_modes: supported ECC modes by the current controller,
>> + * initialized via DT match data
>> + * @cw_size: the number of bytes in a single step/codeword
>> + * of a page, consisting of all data, ecc, spare
>> + * and reserved bytes
>> + * @cw_data: the number of bytes within a codeword protected
>> + * by ECC
>> + * @bch_enabled: flag to tell whether BCH or RS ECC mode is used
>> + * @status: value to be returned if NAND_CMD_STATUS command
>> + * is executed
>> + */
>> +struct qcom_nandc_data {
>> + struct platform_device *pdev;
>> + struct device *dev;
>> +
>> + void __iomem *base;
>> + struct resource *res;
>> +
>> + struct clk *core_clk;
>> + struct clk *aon_clk;
>> +
>> + /* DMA stuff */
>> + struct dma_chan *chan;
>> + struct dma_slave_config slave_conf;
>> + unsigned int cmd_crci;
>> + unsigned int data_crci;
>> + struct list_head list;
>> +
>> + /* MTD stuff */
>> + struct nand_chip chip;
>> + struct mtd_info mtd;
>
> You can drop this field, since nand_chip now embeds its own mtd_info
> instance (accessible through the nand_to_mtd() helper).

Ah, alright. I'd posted this patchset during the 4.3-rc cycle, this must
have been in discussion then. I'll update accordingly.

>
>> +
>> + /* local data buffer and markers */
>> + u8 *data_buffer;
>> + int buf_size;
>> + int buf_count;
>> + int buf_start;
>> +
>> + /* local buffer to read back registers */
>> + __le32 *reg_read_buf;
>> + int reg_read_pos;
>> +
>> + /* required configs */
>> + u32 cfg0, cfg1;
>> + u32 cfg0_raw, cfg1_raw;
>> + u32 ecc_buf_cfg;
>> + u32 ecc_bch_cfg;
>> + u32 clrflashstatus;
>> + u32 clrreadstatus;
>> + u32 sflashc_burst_cfg;
>> + u32 cmd1, vld;
>> +
>> + /* register state */
>> + struct nandc_regs *regs;
>> +
>> + /* things we get from DT */
>> + int ecc_strength;
>> + int bus_width;
>
> Do you really need these fields? You can directly change the
> ->chip.ecc.strength and ->chip.options field instead.

Yes, these aren't required. I was forcibly reading these via
custom DT properties. I will replace this such that these are
populated via nand_dt_init().

>
>> +
>> + u32 ecc_modes;
>> +
>> + /* misc params */
>> + int cw_size;
>> + int cw_data;
>> + bool use_ecc;
>> + bool bch_enabled;
>> + u8 status;
>> + int last_command;
>> +};
>
> You're mixing controller and chip stuff in this structure. As said in
> my answer to your DT bindings proposal, I think it would be clearer to
> separate the controller and chip specific fields.
>
> Note that a NAND chip can be attached to a NAND controller through its
> ->controller field.
>
> So here is how it would look like:
>
> struct qcom_nandc_data {
> struct nand_hw_control controller;
>
> struct list_head chips;
> /* controller specific fields */
> };
>
> struct qcom_nand_data {
> struct list_head node;
> struct nand_chip chip;
>
> /* chip specific fields */
> }

Thanks for the explanation. I wasn't aware of this sort of
structure split. I was probably referring to the sinlge chip
nand controller drivers when I wrote it.

>
>
> [...]
>
>> +
>> +/*
>> + * Implements chip->cmdfunc. It's only used for a limited set of commands.
>> + * The rest of the commands wouldn't be called by upper layers. For example,
>> + * NAND_CMD_READOOB would never be called because we have our own versions
>> + * of read_oob ops for nand_ecc_ctrl.
>> + */
>> +static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
>> + int column, int page_addr)
>> +{
>> + struct nand_chip *chip = mtd->priv;
>
> struct nand_chip *chip = mtd_to_nand(mtd);
>
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + struct qcom_nandc_data *this = chip->priv;
>> + bool wait = false;
>> + int r = 0;
>> +
>> + pre_command(this, command);
>> +
>> + switch (command) {
>> + case NAND_CMD_RESET:
>> + r = reset(this);
>> + wait = true;
>> + break;
>> +
>> + case NAND_CMD_READID:
>> + this->buf_count = 4;
>> + r = read_id(this, column);
>> + wait = true;
>> + break;
>> +
>> + case NAND_CMD_PARAM:
>> + r = nandc_param(this);
>> + wait = true;
>> + break;
>> +
>> + case NAND_CMD_ERASE1:
>> + r = erase_block(this, page_addr);
>> + wait = true;
>> + break;
>> +
>> + case NAND_CMD_READ0:
>> + /* we read the entire page for now */
>> + WARN_ON(column != 0);
>> +
>> + this->use_ecc = true;
>> + set_address(this, 0, page_addr);
>> + update_rw_regs(this, ecc->steps, true);
>> + break;
>> +
>> + case NAND_CMD_SEQIN:
>> + WARN_ON(column != 0);
>> + set_address(this, 0, page_addr);
>> + break;
>> +
>> + case NAND_CMD_PAGEPROG:
>> + case NAND_CMD_STATUS:
>> + case NAND_CMD_NONE:
>> + default:
>> + break;
>> + }
>> +
>> + if (r) {
>> + dev_err(this->dev, "failure executing command %d\n",
>> + command);
>> + free_descs(this);
>> + return;
>> + }
>> +
>> + if (wait) {
>> + r = submit_descs(this);
>> + if (r)
>> + dev_err(this->dev,
>> + "failure submitting descs for command %d\n",
>> + command);
>> + }
>> +
>> + free_descs(this);
>> +
>> + post_command(this, command);
>> +}
>> +
>> +/*
>> + * when using RS ECC, the NAND controller flags an error when reading an
>> + * erased page. however, there are special characters at certain offsets when
>> + * we read the erased page. we check here if the page is really empty. if so,
>> + * we replace the magic characters with 0xffs
>> + */
>> +static bool empty_page_fixup(struct qcom_nandc_data *this, u8 *data_buf)
>> +{
>> + struct mtd_info *mtd = &this->mtd;
>> + struct nand_chip *chip = &this->chip;
>
> struct nand_chip *chip = &this->chip;
> struct mtd_info *mtd = nand_to_mtd(chip);
>
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int cwperpage = ecc->steps;
>> + u8 orig1[MAX_NUM_STEPS], orig2[MAX_NUM_STEPS];
>> + int i, j;
>> +
>> + /* if BCH is enabled, HW will take care of detecting erased pages */
>> + if (this->bch_enabled || !this->use_ecc)
>> + return false;
>> +
>> + for (i = 0; i < cwperpage; i++) {
>> + u8 *empty1, *empty2;
>> + u32 flash_status = le32_to_cpu(this->reg_read_buf[3 * i]);
>> +
>> + /*
>> + * an erased page flags an error in NAND_FLASH_STATUS, check if
>> + * the page is erased by looking for 0x54s at offsets 3 and 175
>> + * from the beginning of each codeword
>> + */
>> + if (!(flash_status & FS_OP_ERR))
>> + break;
>> +
>> + empty1 = &data_buf[3 + i * this->cw_data];
>> + empty2 = &data_buf[175 + i * this->cw_data];
>> +
>> + /*
>> + * if the error wasn't because of an erased page, bail out and
>> + * and let someone else do the error checking
>> + */
>> + if ((*empty1 == 0x54 && *empty2 == 0xff) ||
>> + (*empty1 == 0xff && *empty2 == 0x54)) {
>> + orig1[i] = *empty1;
>> + orig2[i] = *empty2;
>> +
>> + *empty1 = 0xff;
>> + *empty2 = 0xff;
>> + } else {
>> + break;
>> + }
>> + }
>> +
>> + if (i < cwperpage || memchr_inv(data_buf, 0xff, mtd->writesize))
>> + goto not_empty;
>> +
>> + /*
>> + * tell the caller that the page was empty and is fixed up, so that
>> + * parse_read_errors() doesn't think it's an error
>> + */
>> + return true;
>> +
>> +not_empty:
>> + /* restore original values if not empty*/
>> + for (j = 0; j < i; j++) {
>> + data_buf[3 + j * this->cw_data] = orig1[j];
>> + data_buf[175 + j * this->cw_data] = orig2[j];
>> + }
>> +
>> + return false;
>> +}
>> +
>> +struct read_stats {
>> + __le32 flash;
>> + __le32 buffer;
>> + __le32 erased_cw;
>> +};
>> +
>> +/*
>> + * reads back status registers set by the controller to notify page read
>> + * errors. this is equivalent to what 'ecc->correct()' would do.
>> + */
>> +static int parse_read_errors(struct qcom_nandc_data *this, bool erased_page)
>> +{
>> + struct mtd_info *mtd = &this->mtd;
>> + struct nand_chip *chip = &this->chip;
>
> struct nand_chip *chip = &this->chip;
> struct mtd_info *mtd = nand_to_mtd(chip);
>
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int cwperpage = ecc->steps;
>> + unsigned int max_bitflips = 0;
>> + int i;
>> + struct read_stats *buf;
>> +
>> + buf = (struct read_stats *)this->reg_read_buf;
>> + for (i = 0; i < cwperpage; i++, buf++) {
>> + unsigned int stat;
>> + u32 flash, buffer, erased_cw;
>> +
>> + flash = le32_to_cpu(buf->flash);
>> + buffer = le32_to_cpu(buf->buffer);
>> + erased_cw = le32_to_cpu(buf->erased_cw);
>> +
>> + if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
>> +
>> + /* ignore erased codeword errors */
>> + if (this->bch_enabled) {
>> + if ((erased_cw & ERASED_CW) == ERASED_CW)
>> + continue;
>> + } else if (erased_page) {
>> + continue;
>> + }
>> +
>> + if (buffer & BS_UNCORRECTABLE_BIT) {
>> + mtd->ecc_stats.failed++;
>> + continue;
>> + }
>> + }
>> +
>> + stat = buffer & BS_CORRECTABLE_ERR_MSK;
>> + mtd->ecc_stats.corrected += stat;
>> +
>> + max_bitflips = max(max_bitflips, stat);
>> + }
>> +
>> + return max_bitflips;
>> +}
>> +
>
> [...]
>
>> +
>> +/*
>> + * the three functions below implement chip->read_byte(), chip->read_buf()
>> + * and chip->write_buf() respectively. these aren't used for
>> + * reading/writing page data, they are used for smaller data like reading
>> + * id, status etc
>> + */
>> +static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
>> +{
>> + struct nand_chip *chip = mtd->priv;
>
> struct nand_chip *chip = mtd_to_nand(mtd);
>
>> + struct qcom_nandc_data *this = chip->priv;
>> + uint8_t *buf = this->data_buffer;
>> + uint8_t ret = 0x0;
>> +
>> + if (this->last_command == NAND_CMD_STATUS) {
>> + ret = this->status;
>> +
>> + this->status = NAND_STATUS_READY | NAND_STATUS_WP;
>> +
>> + return ret;
>> + }
>> +
>> + if (this->buf_start < this->buf_count)
>> + ret = buf[this->buf_start++];
>> +
>> + return ret;
>> +}
>> +
>> +static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
>> +{
>> + struct nand_chip *chip = mtd->priv;
>
> struct nand_chip *chip = mtd_to_nand(mtd);
>
>> + struct qcom_nandc_data *this = chip->priv;
>> + int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
>> +
>> + memcpy(buf, this->data_buffer + this->buf_start, real_len);
>> + this->buf_start += real_len;
>> +}
>> +
>> +static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
>> + int len)
>> +{
>> + struct nand_chip *chip = mtd->priv;
>
> struct nand_chip *chip = mtd_to_nand(mtd);
>
>> + struct qcom_nandc_data *this = chip->priv;
>> + int real_len = min_t(size_t, len, this->buf_count - this->buf_start);
>> +
>> + memcpy(this->data_buffer + this->buf_start, buf, real_len);
>> +
>> + this->buf_start += real_len;
>> +}
>> +
>> +/* we support only one external chip for now */
>> +static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
>> +{
>> + struct nand_chip *chip = mtd->priv;
>
> struct nand_chip *chip = mtd_to_nand(mtd);
>
>> + struct qcom_nandc_data *this = chip->priv;
>> +
>> + if (chipnr <= 0)
>> + return;
>> +
>> + dev_warn(this->dev, "invalid chip select\n");
>> +}
>> +
>> +/*
>> + * NAND controller page layout info
>> + *
>> + * |-----------------------| |---------------------------------|
>> + * | xx.......xx| | *********xx.......xx|
>> + * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx|
>> + * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx|
>> + * | xx.......xx| | *********xx.......xx|
>> + * |-----------------------| |---------------------------------|
>> + * codeword 1,2..n-1 codeword n
>> + * <---(528/532 Bytes)----> <-------(528/532 Bytes)---------->
>> + *
>> + * n = number of codewords in the page
>> + * . = ECC bytes
>> + * * = spare bytes
>> + * x = unused/reserved bytes
>> + *
>> + * 2K page: n = 4, spare = 16 bytes
>> + * 4K page: n = 8, spare = 32 bytes
>> + * 8K page: n = 16, spare = 64 bytes
>
> Is there a reason not to use the following layout?
>
> (
> n x (
> data = 512 bytes
> protected OOB data = 4 bytes
> ECC bytes = 12 or 16
> )
>
> +
>
> remaining unprotected OOB bytes
> )
>
> This way the ECC layout definition would be easier to define, and
> you'll have something that is closer to what a NAND chip expect (ECC
> block/step size of 512 or 1024).
>
> I know this is also dependent on the bootloader, hence my question.

I tried to figure this out looking at documentation and the downstream
drivers. What I understood was that all the OOB was intentionally kept
in the last step, so that things are faster when we only want to access
OOB. In that case, the controller will need to write to only one
step/codeword.

The bootloaders also use the same layout.

>
>> + *
>> + * the qcom nand controller operates at a sub page/codeword level. each
>> + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
>> + * the number of ECC bytes vary based on the ECC strength and the bus width.
>> + *
>> + * the first n - 1 codewords contains 516 bytes of user data, the remaining
>> + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
>> + * both user data and spare(oobavail) bytes that sum up to 516 bytes.
>> + *
>> + * the layout described above is used by the controller when the ECC block is
>> + * enabled. When we read a page with ECC enabled, the unused/reserved bytes are
>> + * skipped and not copied to our internal buffer. therefore, the nand_ecclayout
>> + * layouts defined below doesn't consider the positions occupied by the reserved
>> + * bytes
>
> You could just read this portion with the ECC engine disabled when
> you're asked for OOB data.

Yes, but there are ecc ops (like ecc->read_page/ecc->write_page) that
have an argument called 'oob_required'. We need to have ECC enabled when
running these ops.

In order to read this additional portion, I'll need to read/write each
step again with ECC disabled, which would really slow things down.

>
>> + *
>> + * when the ECC block is disabled, one unused byte (or two for 16 bit bus width)
>> + * in the last codeword is the position of bad block marker. the bad block
>> + * marker cannot be accessed when ECC is enabled.
>
> So, you're switching the BBM with the data at the BBM position
> (possibly some in-band data), right?

Yes. When ECC isn't enabled, the BBM byte lies within the in-band data
of the last step. In fact, there are dummy BBM bytes in the previous
steps at the same offset.

With ECC enabled, the controller just skips that position (and the
dummy BBM bytes in previous steps) altogether.

>
>> + *
>> + */
>> +
>> +/*
>> + * Layouts for different page sizes and ecc modes. We skip the eccpos field
>> + * since it isn't needed for this driver
>> + */
>
> If you know where they are stored, please specify them, even if they
> are not used by the upper layers (this helps analyzing raw nand dumps).
>
>> +
>> +/* 2K page, 4 bit ECC */
>> +static struct nand_ecclayout layout_oob_64 = {
>> + .eccbytes = 40,
>> + .oobfree = {
>> + { 30, 16 },
>> + },
>> +};
>
> According to your description it should either be eccbytes = 48 (if
> you're considering reserved bytes as ECC bytes) or 32 (if you're not
> counting reserved bytes).

Each step is 528 bytes in total. The first 3 steps contain 516 bytes
of data, 10 bytes of ECC and 2 bytes of resrved data. The last step
contains 500 bytes of data, 16 bytes of OOB, 10 bytes of ECC and 2
reserved bytes.

If I don't count the reserved bytes as part of ECC, I get 40. If I
do count it as part of ECC, I get 48. In the way I described
layouts, I ignored the ECC parts. How did you get 32?

>
> BTW, is the oobfree portion really starting at offset 30?

I thought the offsets mentioned here also had to incorporate positions
taken by ECC bytes? If I strip all the the in-band data (real data)
from each step, we get:

ECC(10 bytes).ECC(10 bytes).ECC(10 bytes).OOB(16 bytes).ECC(10 bytes)

Wouldn't this result in the offset as 30?

We are still only taking into account 56 bytes out of the 64 bytes
in the chip's OOB. This is because I'm discaring the 2 bytes from
each step (summing up to 8) which aren't accessible when ECC is
enabled.


>I'd say that in the 2K page, 4 bit ECC you don't have any oobfree bytes
> (528 * 4 == 2048 + 64).

528 contains both oob and in-band data. If you ignore the weird layout
and assume we have at an average 512 bytes for each step, we get:

512 * 4 == 2048 bytes of data, and 64 bytes of OOB (16 bytes free, 40
ECC, and 8 reserved/unused).

>
>> +
>> +/* 4K page, 4 bit ECC, 8/16 bit bus width */
>> +static struct nand_ecclayout layout_oob_128 = {
>> + .eccbytes = 80,
>> + .oobfree = {
>> + { 70, 32 },
>> + },
>> +};
>> +
>> +/* 4K page, 8 bit ECC, 8 bit bus width */
>> +static struct nand_ecclayout layout_oob_224_x8 = {
>> + .eccbytes = 104,
>> + .oobfree = {
>> + { 91, 32 },
>> + },
>> +};
>> +
>> +/* 4K page, 8 bit ECC, 16 bit bus width */
>> +static struct nand_ecclayout layout_oob_224_x16 = {
>> + .eccbytes = 112,
>> + .oobfree = {
>> + { 98, 32 },
>> + },
>> +};
>> +
>> +/* 8K page, 4 bit ECC, 8/16 bit bus width */
>> +static struct nand_ecclayout layout_oob_256 = {
>> + .eccbytes = 160,
>> + .oobfree = {
>> + { 151, 64 },
>> + },
>> +};
>
> Those ECC layout definitions could probably be dynamically created
> based on the detected ECC strength, bus-width and page size, instead of
> defining a new one for each new combination.

That's true. I can try that out.

>
>> +
>> +/*
>> + * this is called before scan_ident, we do some minimal configurations so
>> + * that reading ID and ONFI params work
>> + */
>> +static void qcom_nandc_pre_init(struct qcom_nandc_data *this)
>> +{
>> + /* kill onenand */
>> + nandc_write(this, SFLASHC_BURST_CFG, 0);
>> +
>> + /* enable ADM DMA */
>> + nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN);
>> +
>> + /* save the original values of these registers */
>> + this->cmd1 = nandc_read(this, NAND_DEV_CMD1);
>> + this->vld = nandc_read(this, NAND_DEV_CMD_VLD);
>> +
>> + /* initial status value */
>> + this->status = NAND_STATUS_READY | NAND_STATUS_WP;
>> +}
>> +
>> +static int qcom_nandc_ecc_init(struct qcom_nandc_data *this)
>> +{
>> + struct mtd_info *mtd = &this->mtd;
>> + struct nand_chip *chip = &this->chip;
>
> struct nand_chip *chip = &this->chip;
> struct mtd_info *mtd = nand_to_mtd(chip);
>
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int cwperpage;
>> + bool wide_bus;
>> +
>> + /* the nand controller fetches codewords/chunks of 512 bytes */
>> + cwperpage = mtd->writesize >> 9;
>> +
>> + ecc->strength = this->ecc_strength;
>> +
>> + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
>> +
>> + if (ecc->strength >= 8) {
>> + /* 8 bit ECC defaults to BCH ECC on all platforms */
>> + ecc->bytes = wide_bus ? 14 : 13;
>
> Maybe you'd better consider that reserved bytes (after the ECC bytes)
> are actually ECC bytes. So, according to your description you would
> always have 16 here.

The thing is that if I consider the reserved bytes as a part of the ECC
bytes, and if I use this bigger value when configuring the controller
and dma, I will get bad results; becase the hardware doesn't touch these
when ECC is enabled.

I could set the ecc->bytes to '16' and still use the actual values when
configuring the controller. Do you think that will help in any way?

>
>> + } else {
>> + /*
>> + * if the controller supports BCH for 4 bit ECC, the controller
>> + * uses lesser bytes for ECC. If RS is used, the ECC bytes is
>> + * always 10 bytes
>> + */
>> + if (this->ecc_modes & ECC_BCH_4BIT)
>> + ecc->bytes = wide_bus ? 8 : 7;
>
> Ditto, except it's 12 here.
>
>> + else
>> + ecc->bytes = 10;
>> + }
>> +
>> + /* each step consists of 512 bytes of data */
>> + ecc->size = NANDC_STEP_SIZE;
>> +
>> + ecc->read_page = qcom_nandc_read_page;
>> + ecc->read_oob = qcom_nandc_read_oob;
>> + ecc->write_page = qcom_nandc_write_page;
>> + ecc->write_oob = qcom_nandc_write_oob;
>> +
>> + /*
>> + * the bad block marker is readable only when we read the page with ECC
>> + * disabled. all the ops above run with ECC enabled. We need raw read
>> + * and write function for oob in order to access bad block marker.
>> + */
>> + ecc->read_oob_raw = qcom_nandc_read_oob_raw;
>> + ecc->write_oob_raw = qcom_nandc_write_oob_raw;
>> +
>> + switch (mtd->oobsize) {
>> + case 64:
>> + ecc->layout = &layout_oob_64;
>> + break;
>> + case 128:
>> + ecc->layout = &layout_oob_128;
>> + break;
>> + case 224:
>> + if (wide_bus)
>> + ecc->layout = &layout_oob_224_x16;
>> + else
>> + ecc->layout = &layout_oob_224_x8;
>> + break;
>> + case 256:
>> + ecc->layout = &layout_oob_256;
>> + break;
>> + default:
>> + dev_err(this->dev, "unsupported NAND device, oobsize %d\n",
>> + mtd->oobsize);
>> + return -ENODEV;
>> + }
>> +
>> + ecc->mode = NAND_ECC_HW;
>> +
>> + /* enable ecc by default */
>> + this->use_ecc = true;
>> +
>> + return 0;
>> +}
>> +
>> +static void qcom_nandc_hw_post_init(struct qcom_nandc_data *this)
>> +{
>> + struct mtd_info *mtd = &this->mtd;
>> + struct nand_chip *chip = &this->chip;
>
> struct nand_chip *chip = &this->chip;
> struct mtd_info *mtd = nand_to_mtd(chip);
>
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int cwperpage = mtd->writesize / ecc->size;
>> + int spare_bytes, bad_block_byte;
>> + bool wide_bus;
>> + int ecc_mode = 0;
>> +
>> + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
>> +
>> + if (ecc->strength >= 8) {
>> + this->cw_size = 532;
>> +
>> + spare_bytes = wide_bus ? 0 : 2;
>> +
>> + this->bch_enabled = true;
>> + ecc_mode = 1;
>> + } else {
>> + this->cw_size = 528;
>> +
>> + if (this->ecc_modes & ECC_BCH_4BIT) {
>> + spare_bytes = wide_bus ? 2 : 4;
>> +
>> + this->bch_enabled = true;
>> + ecc_mode = 0;
>> + } else {
>> + spare_bytes = wide_bus ? 0 : 1;
>> + }
>> + }
>> +
>> + /*
>> + * DATA_UD_BYTES varies based on whether the read/write command protects
>> + * spare data with ECC too. We protect spare data by default, so we set
>> + * it to main + spare data, which are 512 and 4 bytes respectively.
>> + */
>> + this->cw_data = 516;
>> +
>> + bad_block_byte = mtd->writesize - this->cw_size * (cwperpage - 1) + 1;
>> +
>> + this->cfg0 = (cwperpage - 1) << CW_PER_PAGE
>> + | this->cw_data << UD_SIZE_BYTES
>> + | 0 << DISABLE_STATUS_AFTER_WRITE
>> + | 5 << NUM_ADDR_CYCLES
>> + | ecc->bytes << ECC_PARITY_SIZE_BYTES_RS
>> + | 0 << STATUS_BFR_READ
>> + | 1 << SET_RD_MODE_AFTER_STATUS
>> + | spare_bytes << SPARE_SIZE_BYTES;
>> +
>> + this->cfg1 = 7 << NAND_RECOVERY_CYCLES
>> + | 0 << CS_ACTIVE_BSY
>> + | bad_block_byte << BAD_BLOCK_BYTE_NUM
>> + | 0 << BAD_BLOCK_IN_SPARE_AREA
>> + | 2 << WR_RD_BSY_GAP
>> + | wide_bus << WIDE_FLASH
>> + | this->bch_enabled << ENABLE_BCH_ECC;
>> +
>> + this->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
>> + | this->cw_size << UD_SIZE_BYTES
>> + | 5 << NUM_ADDR_CYCLES
>> + | 0 << SPARE_SIZE_BYTES;
>> +
>> + this->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
>> + | 0 << CS_ACTIVE_BSY
>> + | 17 << BAD_BLOCK_BYTE_NUM
>> + | 1 << BAD_BLOCK_IN_SPARE_AREA
>> + | 2 << WR_RD_BSY_GAP
>> + | wide_bus << WIDE_FLASH
>> + | 1 << DEV0_CFG1_ECC_DISABLE;
>> +
>> + this->ecc_bch_cfg = this->bch_enabled << ECC_CFG_ECC_DISABLE
>> + | 0 << ECC_SW_RESET
>> + | this->cw_data << ECC_NUM_DATA_BYTES
>> + | 1 << ECC_FORCE_CLK_OPEN
>> + | ecc_mode << ECC_MODE
>> + | ecc->bytes << ECC_PARITY_SIZE_BYTES_BCH;
>> +
>> + this->ecc_buf_cfg = 0x203 << NUM_STEPS;
>> +
>> + this->clrflashstatus = FS_READY_BSY_N;
>> + this->clrreadstatus = 0xc0;
>> +
>> + dev_dbg(this->dev,
>> + "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
>> + this->cfg0, this->cfg1, this->ecc_buf_cfg,
>> + this->ecc_bch_cfg, this->cw_size, this->cw_data,
>> + ecc->strength, ecc->bytes, cwperpage);
>> +}
>> +
>> +static int qcom_nandc_alloc(struct qcom_nandc_data *this)
>> +{
>> + int r;
>> +
>> + r = dma_set_coherent_mask(this->dev, DMA_BIT_MASK(32));
>> + if (r) {
>> + dev_err(this->dev, "failed to set DMA mask\n");
>> + return r;
>> + }
>> +
>> + /*
>> + * we use the internal buffer for reading ONFI params, reading small
>> + * data like ID and status, and preforming read-copy-write operations
>> + * when writing to a codeword partially. 532 is the maximum possible
>> + * size of a codeword for our nand controller
>> + */
>> + this->buf_size = 532;
>> +
>> + this->data_buffer = devm_kzalloc(this->dev, this->buf_size, GFP_KERNEL);
>> + if (!this->data_buffer)
>> + return -ENOMEM;
>> +
>> + this->regs = devm_kzalloc(this->dev, sizeof(*this->regs), GFP_KERNEL);
>> + if (!this->regs)
>> + return -ENOMEM;
>> +
>> + this->reg_read_buf = devm_kzalloc(this->dev,
>> + MAX_REG_RD * sizeof(*this->reg_read_buf),
>> + GFP_KERNEL);
>> + if (!this->reg_read_buf)
>> + return -ENOMEM;
>> +
>> + INIT_LIST_HEAD(&this->list);
>> +
>> + this->chan = dma_request_slave_channel(this->dev, "rxtx");
>> + if (!this->chan) {
>> + dev_err(this->dev, "failed to request slave channel\n");
>> + return -ENODEV;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static void qcom_nandc_unalloc(struct qcom_nandc_data *this)
>> +{
>> + dma_release_channel(this->chan);
>> +}
>> +
>> +static int qcom_nandc_init(struct qcom_nandc_data *this)
>> +{
>> + struct mtd_info *mtd = &this->mtd;
>> + struct nand_chip *chip = &this->chip;
>
> struct nand_chip *chip = &this->chip;
> struct mtd_info *mtd = nand_to_mtd(chip);
>
>> + struct device_node *np = this->dev->of_node;
>> + struct mtd_part_parser_data ppdata = { .of_node = np };
>
> You don't need it anymore, because it's automatically extracted from
> the ->flash_node field.
> Just call, nand_set_flash_node() before calling nand_scan_ident().

That's convinient. I'll remove this.

>
>> + int r;
>> +
>> + mtd->priv = chip;
>> + mtd->name = "qcom-nandc";
>> + mtd->owner = THIS_MODULE;
>> +
>> + chip->priv = this;
>> +
>> + chip->cmdfunc = qcom_nandc_command;
>> + chip->select_chip = qcom_nandc_select_chip;
>> + chip->read_byte = qcom_nandc_read_byte;
>> + chip->read_buf = qcom_nandc_read_buf;
>> + chip->write_buf = qcom_nandc_write_buf;
>> +
>> + chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
>> + if (this->bus_width == 16)
>> + chip->options |= NAND_BUSWIDTH_16;
>> +
>> + chip->bbt_options = NAND_BBT_ACCESS_BBM_RAW;
>> + if (of_get_nand_on_flash_bbt(np))
>> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
>
> Ditto: rely on the work done by nand_dt_init() which is
> called by nand_scan_ident().

Yes, I'll remove this.

>
>> +
>> + qcom_nandc_pre_init(this);
>> +
>> + r = nand_scan_ident(mtd, 1, NULL);
>> + if (r)
>> + return r;
>> +
>> + r = qcom_nandc_ecc_init(this);
>> + if (r)
>> + return r;
>> +
>> + qcom_nandc_hw_post_init(this);
>> +
>> + r = nand_scan_tail(mtd);
>> + if (r)
>> + return r;
>> +
>> + return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
>
> return mtd_device_parse_register(mtd, NULL, NULL, NULL 0);

Will fix.

>
>> +}
>> +
>> +static int qcom_nandc_parse_dt(struct platform_device *pdev)
>> +{
>> + struct qcom_nandc_data *this = platform_get_drvdata(pdev);
>> + struct device_node *np = this->dev->of_node;
>> + int r;
>> +
>> + this->ecc_strength = of_get_nand_ecc_strength(np);
>> + if (this->ecc_strength < 0) {
>> + dev_warn(this->dev,
>> + "incorrect ecc strength, setting to 4 bits/step\n");
>> + this->ecc_strength = 4;
>> + }
>> +
>> + this->bus_width = of_get_nand_bus_width(np);
>> + if (this->bus_width < 0) {
>> + dev_warn(this->dev, "incorrect bus width, setting to 8\n");
>> + this->bus_width = 8;
>> + }
>
> Those two properties are extracted when calling nand_scan_ident() if
> you've called nand_set_flash_node() before that.

Yeah, I'll remove these.

>
>> +
>> + r = of_property_read_u32(np, "qcom,cmd-crci", &this->cmd_crci);
>> + if (r) {
>> + dev_err(this->dev, "command CRCI unspecified\n");
>> + return r;
>> + }
>> +
>> + r = of_property_read_u32(np, "qcom,data-crci", &this->data_crci);
>> + if (r) {
>> + dev_err(this->dev, "data CRCI unspecified\n");
>> + return r;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static int qcom_nandc_probe(struct platform_device *pdev)
>> +{
>> + struct qcom_nandc_data *this;
>> + const void *dev_data;
>> + int r;
>> +
>> + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
>> + if (!this)
>> + return -ENOMEM;
>> +
>> + platform_set_drvdata(pdev, this);
>> +
>> + this->pdev = pdev;
>> + this->dev = &pdev->dev;
>> +
>> + dev_data = of_device_get_match_data(&pdev->dev);
>> + if (!dev_data) {
>> + dev_err(&pdev->dev, "failed to get device data\n");
>> + return -ENODEV;
>> + }
>> +
>> + this->ecc_modes = (unsigned long)dev_data;
>> +
>> + this->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
>> + this->base = devm_ioremap_resource(&pdev->dev, this->res);
>> + if (IS_ERR(this->base))
>> + return PTR_ERR(this->base);
>> +
>> + this->core_clk = devm_clk_get(&pdev->dev, "core");
>> + if (IS_ERR(this->core_clk))
>> + return PTR_ERR(this->core_clk);
>> +
>> + this->aon_clk = devm_clk_get(&pdev->dev, "aon");
>> + if (IS_ERR(this->aon_clk))
>> + return PTR_ERR(this->aon_clk);
>> +
>> + r = qcom_nandc_parse_dt(pdev);
>> + if (r)
>> + return r;
>> +
>> + r = qcom_nandc_alloc(this);
>> + if (r)
>> + return r;
>> +
>> + r = clk_prepare_enable(this->core_clk);
>> + if (r)
>> + goto err_core_clk;
>> +
>> + r = clk_prepare_enable(this->aon_clk);
>> + if (r)
>> + goto err_aon_clk;
>> +
>> + r = qcom_nandc_init(this);
>> + if (r)
>> + goto err_init;
>> +
>> + return 0;
>> +
>> +err_init:
>> + clk_disable_unprepare(this->aon_clk);
>> +err_aon_clk:
>> + clk_disable_unprepare(this->core_clk);
>> +err_core_clk:
>> + qcom_nandc_unalloc(this);
>> +
>> + return r;
>> +}
>> +
>> +static int qcom_nandc_remove(struct platform_device *pdev)
>> +{
>> + struct qcom_nandc_data *this = platform_get_drvdata(pdev);
>> +
>
> You miss a call to nand_release() here, otherwise your device is still
> registered to the MTD/NAND layer, even though you've released all the
> resources attached to it.

I'll fix this.

>
> That's all I got for now.

Thanks again for taking the time for the review. Really appreciate it.

Archit

--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora
Forum, hosted by The Linux Foundation

2015-12-16 14:19:06

by Boris Brezillon

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

On Wed, 16 Dec 2015 17:27:48 +0530
Archit Taneja <[email protected]> wrote:

> >> +/*
> >> + * NAND controller page layout info
> >> + *
> >> + * |-----------------------| |---------------------------------|
> >> + * | xx.......xx| | *********xx.......xx|
> >> + * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx|
> >> + * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx|
> >> + * | xx.......xx| | *********xx.......xx|
> >> + * |-----------------------| |---------------------------------|
> >> + * codeword 1,2..n-1 codeword n
> >> + * <---(528/532 Bytes)----> <-------(528/532 Bytes)---------->
> >> + *
> >> + * n = number of codewords in the page
> >> + * . = ECC bytes
> >> + * * = spare bytes
> >> + * x = unused/reserved bytes
> >> + *
> >> + * 2K page: n = 4, spare = 16 bytes
> >> + * 4K page: n = 8, spare = 32 bytes
> >> + * 8K page: n = 16, spare = 64 bytes
> >
> > Is there a reason not to use the following layout?
> >
> > (
> > n x (
> > data = 512 bytes
> > protected OOB data = 4 bytes
> > ECC bytes = 12 or 16
> > )
> >
> > +
> >
> > remaining unprotected OOB bytes
> > )
> >
> > This way the ECC layout definition would be easier to define, and
> > you'll have something that is closer to what a NAND chip expect (ECC
> > block/step size of 512 or 1024).
> >
> > I know this is also dependent on the bootloader, hence my question.
>
> I tried to figure this out looking at documentation and the downstream
> drivers. What I understood was that all the OOB was intentionally kept
> in the last step, so that things are faster when we only want to access
> OOB. In that case, the controller will need to write to only one
> step/codeword.

Well, I don't think sending a column change command is that costly
compared to a page retrieval command or ECC calculation.

>
> The bootloaders also use the same layout.

Ok, then I guess we'll have to live with that (but it complicates a lot
the driver logic :-/)

>
> >
> >> + *
> >> + * the qcom nand controller operates at a sub page/codeword level. each
> >> + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
> >> + * the number of ECC bytes vary based on the ECC strength and the bus width.
> >> + *
> >> + * the first n - 1 codewords contains 516 bytes of user data, the remaining
> >> + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
> >> + * both user data and spare(oobavail) bytes that sum up to 516 bytes.
> >> + *
> >> + * the layout described above is used by the controller when the ECC block is
> >> + * enabled. When we read a page with ECC enabled, the unused/reserved bytes are
> >> + * skipped and not copied to our internal buffer. therefore, the nand_ecclayout
> >> + * layouts defined below doesn't consider the positions occupied by the reserved
> >> + * bytes
> >
> > You could just read this portion with the ECC engine disabled when
> > you're asked for OOB data.
>
> Yes, but there are ecc ops (like ecc->read_page/ecc->write_page) that
> have an argument called 'oob_required'. We need to have ECC enabled when
> running these ops.
>
> In order to read this additional portion, I'll need to read/write each
> step again with ECC disabled, which would really slow things down.

Nowadays, MTD FS are not using the OOB area, and oob_required is only
passed if the MTD user asked for OOB data, so that can be an acceptable
penalty. Anyway, that's not really important if we loose a few OOB
bytes.

>
> >
> >> + *
> >> + * when the ECC block is disabled, one unused byte (or two for 16 bit bus width)
> >> + * in the last codeword is the position of bad block marker. the bad block
> >> + * marker cannot be accessed when ECC is enabled.
> >
> > So, you're switching the BBM with the data at the BBM position
> > (possibly some in-band data), right?
>
> Yes. When ECC isn't enabled, the BBM byte lies within the in-band data
> of the last step. In fact, there are dummy BBM bytes in the previous
> steps at the same offset.
>
> With ECC enabled, the controller just skips that position (and the
> dummy BBM bytes in previous steps) altogether.

Okay.

>
> >
> >> + *
> >> + */
> >> +
> >> +/*
> >> + * Layouts for different page sizes and ecc modes. We skip the eccpos field
> >> + * since it isn't needed for this driver
> >> + */
> >
> > If you know where they are stored, please specify them, even if they
> > are not used by the upper layers (this helps analyzing raw nand dumps).
> >
> >> +
> >> +/* 2K page, 4 bit ECC */
> >> +static struct nand_ecclayout layout_oob_64 = {
> >> + .eccbytes = 40,
> >> + .oobfree = {
> >> + { 30, 16 },
> >> + },
> >> +};
> >
> > According to your description it should either be eccbytes = 48 (if
> > you're considering reserved bytes as ECC bytes) or 32 (if you're not
> > counting reserved bytes).
>
> Each step is 528 bytes in total. The first 3 steps contain 516 bytes
> of data, 10 bytes of ECC and 2 bytes of resrved data. The last step
> contains 500 bytes of data, 16 bytes of OOB, 10 bytes of ECC and 2
> reserved bytes.
>
> If I don't count the reserved bytes as part of ECC, I get 40. If I
> do count it as part of ECC, I get 48. In the way I described
> layouts, I ignored the ECC parts. How did you get 32?

>From the ecc.bytes value you're filling in qcom_nandc_pre_init(). Just
multiplied it by 4 (the number of ECC steps).

And here is where weird things happen: you're setting ecc.size to 512
and ecc.strength to 4. But in reality, what you have is 4bits/516bytes
for the first 3 blocks, and 4bits/500bytes for the last one.
You're not only fooling the MTD user when faking a 4bits/512byte
strength, you're also sightly modifying the logic supposed to detect
the maximum number of bitflips found in a page.

This being said, I understand your constraints, just trying to explain
why we're trying to use the symmetric ECC block size.

>
> >
> > BTW, is the oobfree portion really starting at offset 30?
>
> I thought the offsets mentioned here also had to incorporate positions
> taken by ECC bytes? If I strip all the the in-band data (real data)
> from each step, we get:
>
> ECC(10 bytes).ECC(10 bytes).ECC(10 bytes).OOB(16 bytes).ECC(10 bytes)
>
> Wouldn't this result in the offset as 30?

Yep, as I said I thought it was 32 because of what you put in ecc.size.
And, you're putting OOB bytes before the last chunk of ECC bytes,
because they are protected, right?

Note that you could put the oobfree area at the end of the OOB area,
since this 10-10-10-16-10 representation is already a virtual
representation of the OOB area (ECC bytes are actually interleaved with
in-band data on the flash).

>
> We are still only taking into account 56 bytes out of the 64 bytes
> in the chip's OOB. This is because I'm discaring the 2 bytes from
> each step (summing up to 8) which aren't accessible when ECC is
> enabled.

Okay. As said above, those two bytes could be exposed without two much
overhead for most operations, but that's your call to make.

>
>
> >I'd say that in the 2K page, 4 bit ECC you don't have any oobfree bytes
> > (528 * 4 == 2048 + 64).
>
> 528 contains both oob and in-band data. If you ignore the weird layout
> and assume we have at an average 512 bytes for each step, we get:
>
> 512 * 4 == 2048 bytes of data, and 64 bytes of OOB (16 bytes free, 40
> ECC, and 8 reserved/unused).

Okay. Still think the ECC block asymmetry is not a good idea, but I get
your point ;-).

>
> >
> >> +
> >> +/* 4K page, 4 bit ECC, 8/16 bit bus width */
> >> +static struct nand_ecclayout layout_oob_128 = {
> >> + .eccbytes = 80,
> >> + .oobfree = {
> >> + { 70, 32 },
> >> + },
> >> +};
> >> +
> >> +/* 4K page, 8 bit ECC, 8 bit bus width */
> >> +static struct nand_ecclayout layout_oob_224_x8 = {
> >> + .eccbytes = 104,
> >> + .oobfree = {
> >> + { 91, 32 },
> >> + },
> >> +};
> >> +
> >> +/* 4K page, 8 bit ECC, 16 bit bus width */
> >> +static struct nand_ecclayout layout_oob_224_x16 = {
> >> + .eccbytes = 112,
> >> + .oobfree = {
> >> + { 98, 32 },
> >> + },
> >> +};
> >> +
> >> +/* 8K page, 4 bit ECC, 8/16 bit bus width */
> >> +static struct nand_ecclayout layout_oob_256 = {
> >> + .eccbytes = 160,
> >> + .oobfree = {
> >> + { 151, 64 },
> >> + },
> >> +};
> >
> > Those ECC layout definitions could probably be dynamically created
> > based on the detected ECC strength, bus-width and page size, instead of
> > defining a new one for each new combination.
>
> That's true. I can try that out.

Cool.

>
> >
> >> +
> >> +/*
> >> + * this is called before scan_ident, we do some minimal configurations so
> >> + * that reading ID and ONFI params work
> >> + */
> >> +static void qcom_nandc_pre_init(struct qcom_nandc_data *this)
> >> +{
> >> + /* kill onenand */
> >> + nandc_write(this, SFLASHC_BURST_CFG, 0);
> >> +
> >> + /* enable ADM DMA */
> >> + nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN);
> >> +
> >> + /* save the original values of these registers */
> >> + this->cmd1 = nandc_read(this, NAND_DEV_CMD1);
> >> + this->vld = nandc_read(this, NAND_DEV_CMD_VLD);
> >> +
> >> + /* initial status value */
> >> + this->status = NAND_STATUS_READY | NAND_STATUS_WP;
> >> +}
> >> +
> >> +static int qcom_nandc_ecc_init(struct qcom_nandc_data *this)
> >> +{
> >> + struct mtd_info *mtd = &this->mtd;
> >> + struct nand_chip *chip = &this->chip;
> >
> > struct nand_chip *chip = &this->chip;
> > struct mtd_info *mtd = nand_to_mtd(chip);
> >
> >> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> >> + int cwperpage;
> >> + bool wide_bus;
> >> +
> >> + /* the nand controller fetches codewords/chunks of 512 bytes */
> >> + cwperpage = mtd->writesize >> 9;
> >> +
> >> + ecc->strength = this->ecc_strength;
> >> +
> >> + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
> >> +
> >> + if (ecc->strength >= 8) {
> >> + /* 8 bit ECC defaults to BCH ECC on all platforms */
> >> + ecc->bytes = wide_bus ? 14 : 13;
> >
> > Maybe you'd better consider that reserved bytes (after the ECC bytes)
> > are actually ECC bytes. So, according to your description you would
> > always have 16 here.
>
> The thing is that if I consider the reserved bytes as a part of the ECC
> bytes, and if I use this bigger value when configuring the controller
> and dma, I will get bad results; becase the hardware doesn't touch these
> when ECC is enabled.

You should at least be consistent with what you put in your ECC layout.
Choose one solution and stick to it. Since reserved bytes are not
accessible I would suggest to count them in the number of ECC bytes.

>
> I could set the ecc->bytes to '16' and still use the actual values when
> configuring the controller. Do you think that will help in any way?

You can have you own private field(s) to store you controller config,
if that helps, or create a function which would convert ecc.bytes into
something appropriate.

>
> >
> > That's all I got for now.
>
> Thanks again for taking the time for the review. Really appreciate it.

No problem.

Best Regards,

Boris

--
Boris Brezillon, Free Electrons
Embedded Linux and Kernel engineering
http://free-electrons.com

2015-12-16 19:16:53

by Brian Norris

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

On Wed, Dec 16, 2015 at 05:27:48PM +0530, Archit Taneja wrote:
> On 12/16/2015 02:45 PM, Boris Brezillon wrote:
> >On Wed, 19 Aug 2015 10:19:03 +0530
> >Archit Taneja <[email protected]> wrote:

> >>+ return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
> >
> > return mtd_device_parse_register(mtd, NULL, NULL, NULL 0);
>
> Will fix.

Or just:

return mtd_device_register(mtd, NULL, 0);

2015-12-17 09:49:05

by Archit Taneja

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver



On 12/16/2015 07:48 PM, Boris Brezillon wrote:
> On Wed, 16 Dec 2015 17:27:48 +0530
> Archit Taneja <[email protected]> wrote:
>
>>>> +/*
>>>> + * NAND controller page layout info
>>>> + *
>>>> + * |-----------------------| |---------------------------------|
>>>> + * | xx.......xx| | *********xx.......xx|
>>>> + * | DATA xx..ECC..xx| | DATA **SPARE**xx..ECC..xx|
>>>> + * | (516) xx.......xx| | (516-n*4) **(n*4)**xx.......xx|
>>>> + * | xx.......xx| | *********xx.......xx|
>>>> + * |-----------------------| |---------------------------------|
>>>> + * codeword 1,2..n-1 codeword n
>>>> + * <---(528/532 Bytes)----> <-------(528/532 Bytes)---------->
>>>> + *
>>>> + * n = number of codewords in the page
>>>> + * . = ECC bytes
>>>> + * * = spare bytes
>>>> + * x = unused/reserved bytes
>>>> + *
>>>> + * 2K page: n = 4, spare = 16 bytes
>>>> + * 4K page: n = 8, spare = 32 bytes
>>>> + * 8K page: n = 16, spare = 64 bytes
>>>
>>> Is there a reason not to use the following layout?
>>>
>>> (
>>> n x (
>>> data = 512 bytes
>>> protected OOB data = 4 bytes
>>> ECC bytes = 12 or 16
>>> )
>>>
>>> +
>>>
>>> remaining unprotected OOB bytes
>>> )
>>>
>>> This way the ECC layout definition would be easier to define, and
>>> you'll have something that is closer to what a NAND chip expect (ECC
>>> block/step size of 512 or 1024).
>>>
>>> I know this is also dependent on the bootloader, hence my question.
>>
>> I tried to figure this out looking at documentation and the downstream
>> drivers. What I understood was that all the OOB was intentionally kept
>> in the last step, so that things are faster when we only want to access
>> OOB. In that case, the controller will need to write to only one
>> step/codeword.
>
> Well, I don't think sending a column change command is that costly
> compared to a page retrieval command or ECC calculation.

Yeah, that's probably true. Although, for this controller, we have
a fixed behavior: if you read a step within a page, the controller
reads the entire 516 bytes into its internal buffer. In other words, the
controller would need to read the entire page for just 16 bytes
of free OOB if we have the standard ECC layout.



>
>>
>> The bootloaders also use the same layout.
>
> Ok, then I guess we'll have to live with that (but it complicates a lot
> the driver logic :-/)

Yeah, it does :/

The controller does support a mode (where free OOB isn't protected by
ECC). In that case, the flash layout is similar to the one you
mentioned. But again, if the bootloaders use the weird layout, then
we don't have much choice.

>
>>
>>>
>>>> + *
>>>> + * the qcom nand controller operates at a sub page/codeword level. each
>>>> + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
>>>> + * the number of ECC bytes vary based on the ECC strength and the bus width.
>>>> + *
>>>> + * the first n - 1 codewords contains 516 bytes of user data, the remaining
>>>> + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
>>>> + * both user data and spare(oobavail) bytes that sum up to 516 bytes.
>>>> + *
>>>> + * the layout described above is used by the controller when the ECC block is
>>>> + * enabled. When we read a page with ECC enabled, the unused/reserved bytes are
>>>> + * skipped and not copied to our internal buffer. therefore, the nand_ecclayout
>>>> + * layouts defined below doesn't consider the positions occupied by the reserved
>>>> + * bytes
>>>
>>> You could just read this portion with the ECC engine disabled when
>>> you're asked for OOB data.
>>
>> Yes, but there are ecc ops (like ecc->read_page/ecc->write_page) that
>> have an argument called 'oob_required'. We need to have ECC enabled when
>> running these ops.
>>
>> In order to read this additional portion, I'll need to read/write each
>> step again with ECC disabled, which would really slow things down.
>
> Nowadays, MTD FS are not using the OOB area, and oob_required is only
> passed if the MTD user asked for OOB data, so that can be an acceptable
> penalty. Anyway, that's not really important if we loose a few OOB
> bytes.

Ah, okay.

>
>>
>>>
>>>> + *
>>>> + * when the ECC block is disabled, one unused byte (or two for 16 bit bus width)
>>>> + * in the last codeword is the position of bad block marker. the bad block
>>>> + * marker cannot be accessed when ECC is enabled.
>>>
>>> So, you're switching the BBM with the data at the BBM position
>>> (possibly some in-band data), right?
>>
>> Yes. When ECC isn't enabled, the BBM byte lies within the in-band data
>> of the last step. In fact, there are dummy BBM bytes in the previous
>> steps at the same offset.
>>
>> With ECC enabled, the controller just skips that position (and the
>> dummy BBM bytes in previous steps) altogether.
>
> Okay.
>
>>
>>>
>>>> + *
>>>> + */
>>>> +
>>>> +/*
>>>> + * Layouts for different page sizes and ecc modes. We skip the eccpos field
>>>> + * since it isn't needed for this driver
>>>> + */
>>>
>>> If you know where they are stored, please specify them, even if they
>>> are not used by the upper layers (this helps analyzing raw nand dumps).
>>>
>>>> +
>>>> +/* 2K page, 4 bit ECC */
>>>> +static struct nand_ecclayout layout_oob_64 = {
>>>> + .eccbytes = 40,
>>>> + .oobfree = {
>>>> + { 30, 16 },
>>>> + },
>>>> +};
>>>
>>> According to your description it should either be eccbytes = 48 (if
>>> you're considering reserved bytes as ECC bytes) or 32 (if you're not
>>> counting reserved bytes).
>>
>> Each step is 528 bytes in total. The first 3 steps contain 516 bytes
>> of data, 10 bytes of ECC and 2 bytes of resrved data. The last step
>> contains 500 bytes of data, 16 bytes of OOB, 10 bytes of ECC and 2
>> reserved bytes.
>>
>> If I don't count the reserved bytes as part of ECC, I get 40. If I
>> do count it as part of ECC, I get 48. In the way I described
>> layouts, I ignored the ECC parts. How did you get 32?
>
> From the ecc.bytes value you're filling in qcom_nandc_pre_init(). Just
> multiplied it by 4 (the number of ECC steps).

Oh, sorry, I didn't point that earlier, but this controller only
supports Reed Solomon for 4 bit ECC. That requires 10 bytes per step.

>
> And here is where weird things happen: you're setting ecc.size to 512
> and ecc.strength to 4. But in reality, what you have is 4bits/516bytes
> for the first 3 blocks, and 4bits/500bytes for the last one.
> You're not only fooling the MTD user when faking a 4bits/512byte
> strength, you're also sightly modifying the logic supposed to detect
> the maximum number of bitflips found in a page.
>
> This being said, I understand your constraints, just trying to explain
> why we're trying to use the symmetric ECC block size.

You're right. The lack of symmetry does cause complications. I can try
to report this for the future, so that the people deciding the layouts
keep this in mind.

>
>>
>>>
>>> BTW, is the oobfree portion really starting at offset 30?
>>
>> I thought the offsets mentioned here also had to incorporate positions
>> taken by ECC bytes? If I strip all the the in-band data (real data)
>> from each step, we get:
>>
>> ECC(10 bytes).ECC(10 bytes).ECC(10 bytes).OOB(16 bytes).ECC(10 bytes)
>>
>> Wouldn't this result in the offset as 30?
>
> Yep, as I said I thought it was 32 because of what you put in ecc.size.
> And, you're putting OOB bytes before the last chunk of ECC bytes,
> because they are protected, right?

Yes.

>
> Note that you could put the oobfree area at the end of the OOB area,
> since this 10-10-10-16-10 representation is already a virtual
> representation of the OOB area (ECC bytes are actually interleaved with
> in-band data on the flash).

But, when I read from the controller's internal buffer via DMA, I first
get the oobfree area, and only then the last step's ECC bytes. So, the
content in chip->oob_poi is in the same order as mentioned
above (10-10-10-16-10).

If the upper layers uses MTD_OPS_AUTO_OOB, and if I have a different
layout as what it is in the oob_poi buffer, then it'll end up
reading/writing the wrong bytes in nand_transfer_oob/nand_fill_oob.

Are you suggesting that I modify the contents of oob_poi by hand such
that it has a cleaner 10-10-10-10-16 representation?

>
>>
>> We are still only taking into account 56 bytes out of the 64 bytes
>> in the chip's OOB. This is because I'm discaring the 2 bytes from
>> each step (summing up to 8) which aren't accessible when ECC is
>> enabled.
>
> Okay. As said above, those two bytes could be exposed without two much
> overhead for most operations, but that's your call to make.

When I read the oob regions into a buffer via DMA, I get a total of 56
bytes. For the extra 8 bytes, I will have to insert 2 dummy bytes
manually for each step by hand. If I don't, then I'll end up messing
what I read/write to oob.

Are you suggesting I do that? It will make the code slightly more messy,
but as you said, at least give a more clearer description of the layout.

>
>>
>>
>>> I'd say that in the 2K page, 4 bit ECC you don't have any oobfree bytes
>>> (528 * 4 == 2048 + 64).
>>
>> 528 contains both oob and in-band data. If you ignore the weird layout
>> and assume we have at an average 512 bytes for each step, we get:
>>
>> 512 * 4 == 2048 bytes of data, and 64 bytes of OOB (16 bytes free, 40
>> ECC, and 8 reserved/unused).
>
> Okay. Still think the ECC block asymmetry is not a good idea, but I get
> your point ;-).

haha yeah, I don't think it's a good idea either :p. Sadly, we're stuck
with it.

>
>>
>>>
>>>> +
>>>> +/* 4K page, 4 bit ECC, 8/16 bit bus width */
>>>> +static struct nand_ecclayout layout_oob_128 = {
>>>> + .eccbytes = 80,
>>>> + .oobfree = {
>>>> + { 70, 32 },
>>>> + },
>>>> +};
>>>> +
>>>> +/* 4K page, 8 bit ECC, 8 bit bus width */
>>>> +static struct nand_ecclayout layout_oob_224_x8 = {
>>>> + .eccbytes = 104,
>>>> + .oobfree = {
>>>> + { 91, 32 },
>>>> + },
>>>> +};
>>>> +
>>>> +/* 4K page, 8 bit ECC, 16 bit bus width */
>>>> +static struct nand_ecclayout layout_oob_224_x16 = {
>>>> + .eccbytes = 112,
>>>> + .oobfree = {
>>>> + { 98, 32 },
>>>> + },
>>>> +};
>>>> +
>>>> +/* 8K page, 4 bit ECC, 8/16 bit bus width */
>>>> +static struct nand_ecclayout layout_oob_256 = {
>>>> + .eccbytes = 160,
>>>> + .oobfree = {
>>>> + { 151, 64 },
>>>> + },
>>>> +};
>>>
>>> Those ECC layout definitions could probably be dynamically created
>>> based on the detected ECC strength, bus-width and page size, instead of
>>> defining a new one for each new combination.
>>
>> That's true. I can try that out.
>
> Cool.
>
>>
>>>
>>>> +
>>>> +/*
>>>> + * this is called before scan_ident, we do some minimal configurations so
>>>> + * that reading ID and ONFI params work
>>>> + */
>>>> +static void qcom_nandc_pre_init(struct qcom_nandc_data *this)
>>>> +{
>>>> + /* kill onenand */
>>>> + nandc_write(this, SFLASHC_BURST_CFG, 0);
>>>> +
>>>> + /* enable ADM DMA */
>>>> + nandc_write(this, NAND_FLASH_CHIP_SELECT, DM_EN);
>>>> +
>>>> + /* save the original values of these registers */
>>>> + this->cmd1 = nandc_read(this, NAND_DEV_CMD1);
>>>> + this->vld = nandc_read(this, NAND_DEV_CMD_VLD);
>>>> +
>>>> + /* initial status value */
>>>> + this->status = NAND_STATUS_READY | NAND_STATUS_WP;
>>>> +}
>>>> +
>>>> +static int qcom_nandc_ecc_init(struct qcom_nandc_data *this)
>>>> +{
>>>> + struct mtd_info *mtd = &this->mtd;
>>>> + struct nand_chip *chip = &this->chip;
>>>
>>> struct nand_chip *chip = &this->chip;
>>> struct mtd_info *mtd = nand_to_mtd(chip);
>>>
>>>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>>>> + int cwperpage;
>>>> + bool wide_bus;
>>>> +
>>>> + /* the nand controller fetches codewords/chunks of 512 bytes */
>>>> + cwperpage = mtd->writesize >> 9;
>>>> +
>>>> + ecc->strength = this->ecc_strength;
>>>> +
>>>> + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
>>>> +
>>>> + if (ecc->strength >= 8) {
>>>> + /* 8 bit ECC defaults to BCH ECC on all platforms */
>>>> + ecc->bytes = wide_bus ? 14 : 13;
>>>
>>> Maybe you'd better consider that reserved bytes (after the ECC bytes)
>>> are actually ECC bytes. So, according to your description you would
>>> always have 16 here.
>>
>> The thing is that if I consider the reserved bytes as a part of the ECC
>> bytes, and if I use this bigger value when configuring the controller
>> and dma, I will get bad results; becase the hardware doesn't touch these
>> when ECC is enabled.
>
> You should at least be consistent with what you put in your ECC layout.
> Choose one solution and stick to it. Since reserved bytes are not
> accessible I would suggest to count them in the number of ECC bytes.
>
>>
>> I could set the ecc->bytes to '16' and still use the actual values when
>> configuring the controller. Do you think that will help in any way?
>
> You can have you own private field(s) to store you controller config,
> if that helps, or create a function which would convert ecc.bytes into
> something appropriate.

Right. Got it.

Thanks,
Archit

--
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora
Forum, hosted by The Linux Foundation

2015-12-18 18:48:51

by Boris Brezillon

[permalink] [raw]
Subject: Re: [PATCH v4 2/5] mtd: nand: Qualcomm NAND controller driver

Hi Archit,

On Thu, 17 Dec 2015 15:18:46 +0530
Archit Taneja <[email protected]> wrote:

>
> >
> > Note that you could put the oobfree area at the end of the OOB area,
> > since this 10-10-10-16-10 representation is already a virtual
> > representation of the OOB area (ECC bytes are actually interleaved with
> > in-band data on the flash).
>
> But, when I read from the controller's internal buffer via DMA, I first
> get the oobfree area, and only then the last step's ECC bytes. So, the
> content in chip->oob_poi is in the same order as mentioned
> above (10-10-10-16-10).
>
> If the upper layers uses MTD_OPS_AUTO_OOB, and if I have a different
> layout as what it is in the oob_poi buffer, then it'll end up
> reading/writing the wrong bytes in nand_transfer_oob/nand_fill_oob.
>
> Are you suggesting that I modify the contents of oob_poi by hand such
> that it has a cleaner 10-10-10-10-16 representation?

Hm, I thought you could just place the free oob bytes wherever you want
since there's only one oobfree region. AFAICS, it's just a matter of
passing ->oob_poi + 40 instead of passing ->oob_poi + 30 when preparing
the DMA descriptor (30 and 40 are just numbers for this specific use
case).
Anyway, I won't complain if you address all comments but this one.

Best Regards,

Boris


--
Boris Brezillon, Free Electrons
Embedded Linux and Kernel engineering
http://free-electrons.com