2020-04-27 12:08:24

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

From: SeongJae Park <[email protected]>

Introduction
============

Memory management decisions can be improved if finer data access information is
available. However, because such finer information usually comes with higher
overhead, most systems including Linux forgives the potential benefit and rely
on only coarse information or some light-weight heuristics. The pseudo-LRU and
the aggressive THP promotions are such examples.

A number of data access pattern awared memory management optimizations (refer
to 'Appendix A' for more details) consistently say the potential benefit is not
small. However, none of those has successfully merged to the mainline Linux
kernel mainly due to the absence of a scalable and efficient data access
monitoring mechanism. Refer to 'Appendix B' to see the limitations of existing
memory monitoring mechanisms.

DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
enough to be used for the DRAM level memory management (a straightforward
DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough
to be applied online (compared to a straightforward access monitoring scheme,
DAMON is up to 94,242.42x lighter) and 3) keeps predefined upper-bound overhead
regardless of the size of target workloads (thus scalable). Refer to 'Appendix
C' if you interested in how it is possible, and 'Appendix F' to know how the
numbers collected.

DAMON has mainly designed for the kernel's memory management mechanisms.
However, because it is implemented as a standalone kernel module and provides
several interfaces, it can be used by a wide range of users including kernel
space programs, user space programs, programmers, and administrators. DAMON
is now supporting the monitoring only, but it will also provide simple and
convenient data access pattern awared memory managements by itself. Refer to
'Appendix D' for more detailed expected usages of DAMON.


Boring? Here Are Something Colorful
===================================

For intuitive understanding of DAMON, I made web pages[1-8] showing the
visualized dynamic data access pattern of various realistic workloads in
PARSEC3 and SPLASH-2X bechmark suites. The figures are generated using the
user space tool in 10th patch of this patchset.

There are pages showing the heatmap format dynamic access pattern of each
workload for heap area[1], mmap()-ed area[2], and stack[3] area. I splitted
the entire address space to the three area because there are huge unmapped
regions between the areas.

You can also show how the dynamic working set size of each workload is
distributed[4], and how it is chronologically changing[5].

The most important characteristic of DAMON is its promise of the upperbound of
the monitoring overhead. To show whether DAMON keeps the promise well, I
visualized the number of monitoring operations required for each 5
milliseconds, which is configured to not exceed 1000. You can show the
distribution of the numbers[6] and how it changes chronologically[7].

[1] https://damonitor.github.io/reports/latest/by_image/heatmap.0.png.html
[2] https://damonitor.github.io/reports/latest/by_image/heatmap.1.png.html
[3] https://damonitor.github.io/reports/latest/by_image/heatmap.2.png.html
[4] https://damonitor.github.io/reports/latest/by_image/wss_sz.png.html
[5] https://damonitor.github.io/reports/latest/by_image/wss_time.png.html
[6] https://damonitor.github.io/reports/latest/by_image/nr_regions_sz.png.html
[7] https://damonitor.github.io/reports/latest/by_image/nr_regions_time.png.html


Future Plans
============

This patchset is only for the first stage of DAMON. As soon as this patchset
is merged, official patchsets for below future plans will be posted.


Automate Data Access Pattern-aware Memory Management
----------------------------------------------------

Though DAMON provides the monitoring feature, implementing data access pattern
aware memory management schemes could be difficult to beginners. DAMON will be
able to do most of the work by itself in near future. Users will be required
to only describe what kind of data access monitoring-based operation schemes
they want.

By applying a very simple scheme for THP promotion/demotion with a latest
version of the patchset (not posted yet), DAMON achieved 18x lower memory space
overhead compared to THP while preserving about 50% of the THP performance
benefit with SPLASH-2X benchmark suite.

An RFC patchset for this plan is already available
(https://lore.kernel.org/linux-mm/[email protected]/).


Support Various Address Spaces
------------------------------

Currently, DAMON supports virtual memory address spaces using PTE Accessed bits
as its access checking primitive. However, the core design of DAMON is not
dependent to such implementation details. In a future, DAMON will decouple
those and support various address spaces including physical memory. It will
further allow users to configure and even implement the primitives by
themselves for their special usecase. Monitoring of page cache, NUMA nodes,
specific files, or block devices would be examples of such usecases.

An RFC patchset for this plan is already available
(https://lore.kernel.org/linux-mm/[email protected]/).


Frequently Asked Questions
==========================

Q: Why a new module, instead of extending perf or other tools?
A: First, DAMON aims to be used by other programs including the kernel.
Therefore, having dependency to specific tools like perf is not desirable.
Second, because it need to be lightweight as much as possible so that it can be
used online, any unnecessary overhead such as kernel - user space context
switching cost should be avoided. These are the two most biggest reasons why
DAMON is implemented in the kernel space. The idle page tracking subsystem
would be the kernel module that most seems similar to DAMON. However, its own
interface is not compatible with DAMON. Also, the internal implementation of
it has no common part to be reused by DAMON.

Q: Can 'perf mem' or PMUs used instead of DAMON?
A: No. Roughly speaking, DAMON has two seperate layers. The low layer is
access check of pages, and the higher layer is its core mechanisms for overhead
controlling. For the low layer, DAMON is now using the PTE Accessed bits.
Other H/W or S/W features that can be used for the access check of pages, such
as 'perf mem', PMU, or even page idle, could be used instead in the layer.
However, those could not alternate the high layer of DAMON.


Evaluations
===========

We evaluated DAMON's overhead, monitoring quality and usefulness using 25
realistic workloads on my QEMU/KVM based virtual machine.

DAMON is lightweight. It consumes only -0.18% more system memory and up to 1%
CPU time. It makes target worloads only 0.55% slower.

DAMON is accurate and useful for memory management optimizations. An
experimental DAMON-based operation scheme for THP removes 66.2% of THP memory
overheads while preserving 54.78% of THP speedup. Another experimental
DAMON-based 'proactive reclamation' implementation reduced 88.15% of
residentail sets and 22.30% of system memory footprint while incurring only
2.91% runtime overhead in best case (parsec3/freqmine).

NOTE that the experimentail THP optimization and proactive reclamation are not
for production, just only for proof of concepts.

Please refer to 'Appendix E' for detailed evaluation setup and results.


References
==========

Prototypes of DAMON have introduced by an LPC kernel summit track talk[1] and
two academic papers[2,3]. Please refer to those for more detailed information,
especially the evaluations. The latest version of the patchsets has also
introduced by an LWN artice[4].

[1] SeongJae Park, Tracing Data Access Pattern with Bounded Overhead and
Best-effort Accuracy. In The Linux Kernel Summit, September 2019.
https://linuxplumbersconf.org/event/4/contributions/548/
[2] SeongJae Park, Yunjae Lee, Heon Y. Yeom, Profiling Dynamic Data Access
Patterns with Controlled Overhead and Quality. In 20th ACM/IFIP
International Middleware Conference Industry, December 2019.
https://dl.acm.org/doi/10.1145/3366626.3368125
[3] SeongJae Park, Yunjae Lee, Yunhee Kim, Heon Y. Yeom, Profiling Dynamic Data
Access Patterns with Bounded Overhead and Accuracy. In IEEE International
Workshop on Foundations and Applications of Self- Systems (FAS 2019), June
2019.
[4] Jonathan Corbet, Memory-management optimization with DAMON. In Linux Weekly
News (LWN), Feb 2020. https://lwn.net/Articles/812707/


Baseline and Complete Git Trees
===============================

The patches are based on the v5.6. You can also clone the complete git
tree:

$ git clone git://github.com/sjp38/linux -b damon/patches/v9

The web is also available:
https://github.com/sjp38/linux/releases/tag/damon/patches/v9

This patchset contains patches for the stabled main logic of DAMON only. The
latest DAMON development tree is also available at:
https://github.com/sjp38/linux/tree/damon/master


Sequence Of Patches
===================

The patches are organized in the following sequence. The first two patches are
preparation of DAMON patchset. The 1st patch adds typos found in previous
versions of DAMON patchset to 'scripts/spelling.txt' so that the typos can be
caught by 'checkpatch.pl'. The 2nd patch exports 'lookup_page_ext()' to GPL
modules so that it can be used by DAMON even though it is built as a loadable
module.

Next four patches implement the core of DAMON and it's programming interface.
The 3rd patch introduces DAMON module, it's data structures, and data structure
related common functions. Each of following three patches (4nd to 6th)
implements the core mechanisms of DAMON, namely regions based sampling,
adaptive regions adjustment, and dynamic memory mapping chage adoption,
respectively, with programming interface supports of those.

Following four patches are for low level users of DAMON. The 7th patch
implements callbacks for each of monitoring steps so that users can do whatever
they want with the access patterns. The 8th one implements recording of access
patterns in DAMON for better convenience and efficiency. Each of next two
patches (9th and 10th) respectively adds a debugfs interface for privileged
people and/or programs in user space, and a tracepoint for other tracepoints
supporting tracers such as perf.

Two patches for high level users of DAMON follows. To provide a minimal
reference to the debugfs interface and for high level use/tests of the DAMON,
the next patch (11th) implements an user space tool. The 12th patch adds a
document for administrators of DAMON.

Next two patches are for tests. The 13th and 14th patches provide unit tests
(based on kunit) and user space tests (based on kselftest), respectively.

Finally, the last patch (15th) updates the MAINTAINERS file.


Patch History
=============

The most biggest change in this version is support of minimal region size,
which defaults to 'PAGE_SIZE'. This change will reduce unnecessary region
splits and thus improve the quality of the output. In a future, we will be
able to make this configurable for support of various access check primitives
such as PMUs.

Changes from v8
(https://lore.kernel.org/linux-mm/[email protected]/)
- Make regions always aligned by minimal region size that can be changed
(Stefan Nuernberger)
- Store binary format version in the recording file (Stefan Nuernberger)
- Use 'int' for pid instead of 'unsigned long' (Stefan Nuernberger)
- Fix a race condition in damon thread termination (Stefan Nuernberger)
- Optimize random value generation and recording (Stefan Nuernberger)
- Clean up commit messages and comments (Stefan Nuernberger)
- Clean up code (Stefan Nuernberger)
- Use explicit signalling and 'do_exit()' for damon thread termination
- Add more typos to spelling.txt
- Update the performance evaluation results
- Describe future plans in the cover letter

Changes from v7
(https://lore.kernel.org/linux-mm/[email protected]/)
- Cleanup variable names (Jonathan Cameron)
- Split sampling address setup from access_check() (Jonathan Cameron)
- Make sampling address to always locate in the region (Jonathan Cameron)
- Make initial region's sampling addr to be old (Jonathan Cameron)
- Split kdamond on/off function to seperate functions (Jonathan Cameron)
- Fix wrong kernel doc comments (Jonathan Cameron)
- Reset 'last_accessed' to false in kdamond_check_access() if necessary
- Rebase on v5.6

Changes from v6
(https://lore.kernel.org/linux-mm/[email protected]/)
- Wordsmith cover letter (Shakeel Butt)
- Cleanup code and commit messages (Jonathan Cameron)
- Avoid kthread_run() under spinlock critical section (Jonathan Cameron)
- Use kthread_stop() (Jonathan Cameron)
- Change tracepoint to trace regions (Jonathan Cameron)
- Implement API from the beginning (Jonathan Cameron)
- Fix typos (Jonathan Cameron)
- Fix access checking to properly handle regions smaller than single page
(Jonathan Cameron)
- Add found typos to 'scripts/spelling.txt'
- Add recent evaluation results including DAMON-based Operation Schemes

Changes from v5
(https://lore.kernel.org/linux-mm/[email protected]/)
- Fix minor bugs (sampling, record attributes, debugfs and user space tool)
- selftests: Add debugfs interface tests for the bugs
- Modify the user space tool to use its self default values for parameters
- Fix pmg huge page access check

Changes from v4
(https://lore.kernel.org/linux-mm/[email protected]/)
- Add 'Reviewed-by' for the kunit tests patch (Brendan Higgins)
- Make the unit test to depedns on 'DAMON=y' (Randy Dunlap and kbuild bot)
Reported-by: kbuild test robot <[email protected]>
- Fix m68k module build issue
Reported-by: kbuild test robot <[email protected]>
- Add selftests
- Seperate patches for low level users from core logics for better reading
- Clean up debugfs interface
- Trivial nitpicks

Changes from v3
(https://lore.kernel.org/linux-mm/[email protected]/)
- Fix i386 build issue
Reported-by: kbuild test robot <[email protected]>
- Increase the default size of the monitoring result buffer to 1 MiB
- Fix misc bugs in debugfs interface

Changes from v2
(https://lore.kernel.org/linux-mm/[email protected]/)
- Move MAINTAINERS changes to last commit (Brendan Higgins)
- Add descriptions for kunittest: why not only entire mappings and what the 4
input sets are trying to test (Brendan Higgins)
- Remove 'kdamond_need_stop()' test (Brendan Higgins)
- Discuss about the 'perf mem' and DAMON (Peter Zijlstra)
- Make CV clearly say what it actually does (Peter Zijlstra)
- Answer why new module (Qian Cai)
- Diable DAMON by default (Randy Dunlap)
- Change the interface: Seperate recording attributes
(attrs, record, rules) and allow multiple kdamond instances
- Implement kernel API interface

Changes from v1
(https://lore.kernel.org/linux-mm/[email protected]/)
- Rebase on v5.5
- Add a tracepoint for integration with other tracers (Kirill A. Shutemov)
- document: Add more description for the user space tool (Brendan Higgins)
- unittest: Improve readability (Brendan Higgins)
- unittest: Use consistent name and helpers function (Brendan Higgins)
- Update PG_Young to avoid reclaim logic interference (Yunjae Lee)

Changes from RFC
(https://lore.kernel.org/linux-mm/[email protected]/)
- Specify an ambiguous plan of access pattern based mm optimizations
- Support loadable module build
- Cleanup code

SeongJae Park (15):
scripts/spelling: Add a few more typos
mm/page_ext: Export lookup_page_ext() to GPL modules
mm: Introduce Data Access MONitor (DAMON)
mm/damon: Implement region based sampling
mm/damon: Adaptively adjust regions
mm/damon: Apply dynamic memory mapping changes
mm/damon: Implement callbacks
mm/damon: Implement access pattern recording
mm/damon: Add debugfs interface
mm/damon: Add tracepoints
tools: Add a minimal user-space tool for DAMON
Documentation/admin-guide/mm: Add a document for DAMON
mm/damon: Add kunit tests
mm/damon: Add user space selftests
MAINTAINERS: Update for DAMON

.../admin-guide/mm/data_access_monitor.rst | 428 +++++
Documentation/admin-guide/mm/index.rst | 1 +
MAINTAINERS | 12 +
include/linux/damon.h | 78 +
include/trace/events/damon.h | 43 +
mm/Kconfig | 23 +
mm/Makefile | 1 +
mm/damon-test.h | 615 +++++++
mm/damon.c | 1494 +++++++++++++++++
mm/page_ext.c | 1 +
scripts/spelling.txt | 8 +
tools/damon/.gitignore | 1 +
tools/damon/_dist.py | 36 +
tools/damon/_recfile.py | 23 +
tools/damon/bin2txt.py | 67 +
tools/damon/damo | 37 +
tools/damon/heats.py | 362 ++++
tools/damon/nr_regions.py | 91 +
tools/damon/record.py | 212 +++
tools/damon/report.py | 45 +
tools/damon/wss.py | 97 ++
tools/testing/selftests/damon/Makefile | 7 +
.../selftests/damon/_chk_dependency.sh | 28 +
tools/testing/selftests/damon/_chk_record.py | 108 ++
.../testing/selftests/damon/debugfs_attrs.sh | 139 ++
.../testing/selftests/damon/debugfs_record.sh | 50 +
26 files changed, 4007 insertions(+)
create mode 100644 Documentation/admin-guide/mm/data_access_monitor.rst
create mode 100644 include/linux/damon.h
create mode 100644 include/trace/events/damon.h
create mode 100644 mm/damon-test.h
create mode 100644 mm/damon.c
create mode 100644 tools/damon/.gitignore
create mode 100644 tools/damon/_dist.py
create mode 100644 tools/damon/_recfile.py
create mode 100644 tools/damon/bin2txt.py
create mode 100755 tools/damon/damo
create mode 100644 tools/damon/heats.py
create mode 100644 tools/damon/nr_regions.py
create mode 100644 tools/damon/record.py
create mode 100644 tools/damon/report.py
create mode 100644 tools/damon/wss.py
create mode 100644 tools/testing/selftests/damon/Makefile
create mode 100644 tools/testing/selftests/damon/_chk_dependency.sh
create mode 100644 tools/testing/selftests/damon/_chk_record.py
create mode 100755 tools/testing/selftests/damon/debugfs_attrs.sh
create mode 100755 tools/testing/selftests/damon/debugfs_record.sh

--
2.17.1

================================== >8 =========================================
Appendix A: Related Works
=========================

There are a number of researches[1,2,3,4,5,6] optimizing memory management
mechanisms based on the actual memory access patterns that shows impressive
results. However, most of those has no deep consideration about the monitoring
of the accesses itself. Some of those focused on the overhead of the
monitoring, but does not consider the accuracy scalability[6] or has additional
dependencies[7]. Indeed, one recent research[5] about the proactive
reclamation has also proposed[8] to the kernel community but the monitoring
overhead was considered a main problem.

[1] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016.
Data tiering in heterogeneous memory systems. In Proceedings of the 11th
European Conference on Computer Systems (EuroSys). ACM, 15.
[2] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Emmett
Witchel. 2016. Coordinated and efficient huge page management with ingens.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 705–721.
[3] Harald Servat, Antonio J Peña, Germán Llort, Estanislao Mercadal,
HansChristian Hoppe, and Jesús Labarta. 2017. Automating the application
data placement in hybrid memory systems. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 126–136.
[4] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagimont.
2018. Welcome to zombieland: practical and energy-efficient memory
disaggregation in a datacenter. In Proceedings of the 13th European
Conference on Computer Systems (EuroSys). ACM, 16.
[5] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid
Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy
Ranganathan. 2019. Software-Defined Far Memory in Warehouse-Scale
Computers. In Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, New York, NY, USA, 317–330.
DOI:https://doi.org/10.1145/3297858.3304053
[6] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park.
2017. Cache Modeling and Optimization using Miniature Simulations. In 2017
USENIX Annual Technical Conference (ATC). USENIX Association, Santa
Clara, CA, 487–498.
https://www.usenix.org/conference/atc17/technical-sessions/
[7] Haojie Wang, Jidong Zhai, Xiongchao Tang, Bowen Yu, Xiaosong Ma, and
Wenguang Chen. 2018. Spindle: Informed Memory Access Monitoring. In 2018
USENIX Annual Technical Conference (ATC). USENIX Association, Boston, MA,
561–574. https://www.usenix.org/conference/atc18/presentation/wang-haojie
[8] Jonathan Corbet. 2019. Proactively reclaiming idle memory. (2019).
https://lwn.net/Articles/787611/.


Appendix B: Limitations of Other Access Monitoring Techniques
=============================================================

The memory access instrumentation techniques which are applied to
many tools such as Intel PIN is essential for correctness required cases such
as memory access bug detections or cache level optimizations. However, those
usually incur exceptionally high overhead which is unacceptable.

Periodic access checks based on access counting features (e.g., PTE Accessed
bits or PG_Idle flags) can reduce the overhead. It sacrifies some of the
quality but it's still ok to many of this domain. However, the overhead
arbitrarily increase as the size of the target workload grows. Miniature-like
static region based sampling can set the upperbound of the overhead, but it
will now decrease the quality of the output as the size of the workload grows.

DAMON is another solution that overcomes the limitations. It is 1) accurate
enough for this domain, 2) light-weight so that it can be applied online, and
3) allow users to set the upper-bound of the overhead, regardless of the size
of target workloads. It is implemented as a simple and small kernel module to
support various users in both of the user space and the kernel space. Refer to
'Evaluations' section below for detailed performance of DAMON.

For the goals, DAMON utilizes its two core mechanisms, which allows lightweight
overhead and high quality of output, repectively. To show how DAMON promises
those, refer to 'Mechanisms of DAMON' section below.


Appendix C: Mechanisms of DAMON
===============================


Basic Access Check
------------------

DAMON basically reports what pages are how frequently accessed. The report is
passed to users in binary format via a ``result file`` which users can set it's
path. Note that the frequency is not an absolute number of accesses, but a
relative frequency among the pages of the target workloads.

Users can also control the resolution of the reports by setting two time
intervals, ``sampling interval`` and ``aggregation interval``. In detail,
DAMON checks access to each page per ``sampling interval``, aggregates the
results (counts the number of the accesses to each page), and reports the
aggregated results per ``aggregation interval``. For the access check of each
page, DAMON uses the Accessed bits of PTEs.

This is thus similar to the previously mentioned periodic access checks based
mechanisms, which overhead is increasing as the size of the target process
grows.


Region Based Sampling
---------------------

To avoid the unbounded increase of the overhead, DAMON groups a number of
adjacent pages that assumed to have same access frequencies into a region. As
long as the assumption (pages in a region have same access frequencies) is
kept, only one page in the region is required to be checked. Thus, for each
``sampling interval``, DAMON randomly picks one page in each region and clears
its Accessed bit. After one more ``sampling interval``, DAMON reads the
Accessed bit of the page and increases the access frequency of the region if
the bit has set meanwhile. Therefore, the monitoring overhead is controllable
by setting the number of regions. DAMON allows users to set the minimal and
maximum number of regions for the trade-off.

Except the assumption, this is almost same with the above-mentioned
miniature-like static region based sampling. In other words, this scheme
cannot preserve the quality of the output if the assumption is not guaranteed.


Adaptive Regions Adjustment
---------------------------

At the beginning of the monitoring, DAMON constructs the initial regions by
evenly splitting the memory mapped address space of the process into the
user-specified minimal number of regions. In this initial state, the
assumption is normally not kept and thus the quality could be low. To keep the
assumption as much as possible, DAMON adaptively merges and splits each region.
For each ``aggregation interval``, it compares the access frequencies of
adjacent regions and merges those if the frequency difference is small. Then,
after it reports and clears the aggregated access frequency of each region, it
splits each region into two regions if the total number of regions is smaller
than the half of the user-specified maximum number of regions.

In this way, DAMON provides its best-effort quality and minimal overhead while
keeping the bounds users set for their trade-off.


Applying Dynamic Memory Mappings
--------------------------------

Only a number of small parts in the super-huge virtual address space of the
processes is mapped to physical memory and accessed. Thus, tracking the
unmapped address regions is just wasteful. However, tracking every memory
mapping change might incur an overhead. For the reason, DAMON applies the
dynamic memory mapping changes to the tracking regions only for each of an
user-specified time interval (``regions update interval``).


Appendix D: Expected Use-cases
==============================

A straightforward usecase of DAMON would be the program behavior analysis.
With the DAMON output, users can confirm whether the program is running as
intended or not. This will be useful for debuggings and tests of design
points.

The monitored results can also be useful for counting the dynamic working set
size of workloads. For the administration of memory overcommitted systems or
selection of the environments (e.g., containers providing different amount of
memory) for your workloads, this will be useful.

If you are a programmer, you can optimize your program by managing the memory
based on the actual data access pattern. For example, you can identify the
dynamic hotness of your data using DAMON and call ``mlock()`` to keep your hot
data in DRAM, or call ``madvise()`` with ``MADV_PAGEOUT`` to proactively
reclaim cold data. Even though your program is guaranteed to not encounter
memory pressure, you can still improve the performance by applying the DAMON
outputs for call of ``MADV_HUGEPAGE`` and ``MADV_NOHUGEPAGE``. More creative
optimizations would be possible. Our evaluations of DAMON includes a
straightforward optimization using the ``mlock()``. Please refer to the below
Evaluation section for more detail.

As DAMON incurs very low overhead, such optimizations can be applied not only
offline, but also online. Also, there is no reason to limit such optimizations
to the user space. Several parts of the kernel's memory management mechanisms
could be also optimized using DAMON. The reclamation, the THP (de)promotion
decisions, and the compaction would be such a candidates. DAMON will continue
its development to be highly optimized for the online/in-kernel uses. We will
further automate the optimization for many usecases.


Appendix E: Evaluations
=======================

Setup
-----

On my personal QEMU/KVM based virtual machine on an Intel i7 host machine
running Ubuntu 18.04, I measure runtime and consumed system memory while
running various realistic workloads with several configurations. I use 13 and
12 workloads in PARSEC3[3] and SPLASH-2X[4] benchmark suites, respectively. I
personally use another wrapper scripts[5] for setup and run of the workloads.
On top of this patchset, we also applied the DAMON-based operation schemes
patchset[6] for this evaluation.

Measurement
~~~~~~~~~~~

For the measurement of the amount of consumed memory in system global scope, I
drop caches before starting each of the workloads and monitor 'MemFree' in the
'/proc/meminfo' file. To make results more stable, I repeat the runs 5 times
and average results. You can get stdev, min, and max of the numbers among the
repeated runs in appendix below.

Configurations
~~~~~~~~~~~~~~

The configurations I use are as below.

orig: Linux v5.5 with 'madvise' THP policy
rec: 'orig' plus DAMON running with record feature
thp: same with 'orig', but use 'always' THP policy
ethp: 'orig' plus a DAMON operation scheme[6], 'efficient THP'
prcl: 'orig' plus a DAMON operation scheme, 'proactive reclaim[7]'

I use 'rec' for measurement of DAMON overheads to target workloads and system
memory. The remaining configs including 'thp', 'ethp', and 'prcl' are for
measurement of DAMON monitoring accuracy.

'ethp' and 'prcl' is simple DAMON-based operation schemes developed for
proof of concepts of DAMON. 'ethp' reduces memory space waste of THP by using
DAMON for decision of promotions and demotion for huge pages, while 'prcl' is
as similar as the original work. Those are implemented as below:

# format: <min/max size> <min/max frequency (0-100)> <min/max age> <action>
# ethp: Use huge pages if a region >2MB shows >5% access rate, use regular
# pages if a region >2MB shows <5% access rate for >1 second
2M null 5 null null null hugepage
2M null null 5 1s null nohugepage

# prcl: If a region >4KB shows <5% access rate for >5 seconds, page out.
4K null null 5 500ms null pageout

Note that both 'ethp' and 'prcl' are designed with my only straightforward
intuition, because those are for only proof of concepts and monitoring accuracy
of DAMON. In other words, those are not for production. For production use,
those should be tuned more.


[1] "Redis latency problems troubleshooting", https://redis.io/topics/latency
[2] "Disable Transparent Huge Pages (THP)",
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
[3] "The PARSEC Becnhmark Suite", https://parsec.cs.princeton.edu/index.htm
[4] "SPLASH-2x", https://parsec.cs.princeton.edu/parsec3-doc.htm#splash2x
[5] "parsec3_on_ubuntu", https://github.com/sjp38/parsec3_on_ubuntu
[6] "[RFC v4 0/7] Implement Data Access Monitoring-based Memory Operation
Schemes",
https://lore.kernel.org/linux-mm/[email protected]/
[7] "Proactively reclaiming idle memory", https://lwn.net/Articles/787611/


Results
-------

Below two tables show the measurement results. The runtimes are in seconds
while the memory usages are in KiB. Each configurations except 'orig' shows
its overhead relative to 'orig' in percent within parenthesises.

runtime orig rec (overhead) thp (overhead) ethp (overhead) prcl (overhead)
parsec3/blackscholes 107.755 106.693 (-0.99) 106.408 (-1.25) 107.848 (0.09) 112.142 (4.07)
parsec3/bodytrack 79.603 79.110 (-0.62) 78.862 (-0.93) 79.577 (-0.03) 80.579 (1.23)
parsec3/canneal 139.588 139.148 (-0.31) 125.747 (-9.92) 130.833 (-6.27) 157.601 (12.90)
parsec3/dedup 11.923 11.860 (-0.53) 11.739 (-1.55) 11.931 (0.06) 13.090 (9.78)
parsec3/facesim 208.270 208.401 (0.06) 205.557 (-1.30) 206.114 (-1.04) 216.352 (3.88)
parsec3/ferret 190.247 190.540 (0.15) 191.056 (0.43) 190.492 (0.13) 193.026 (1.46)
parsec3/fluidanimate 210.495 212.142 (0.78) 210.075 (-0.20) 211.365 (0.41) 220.724 (4.86)
parsec3/freqmine 287.887 292.770 (1.70) 287.576 (-0.11) 289.190 (0.45) 296.266 (2.91)
parsec3/raytrace 117.887 119.385 (1.27) 118.781 (0.76) 118.572 (0.58) 129.831 (10.13)
parsec3/streamcluster 321.637 327.692 (1.88) 283.875 (-11.74) 291.699 (-9.31) 329.212 (2.36)
parsec3/swaptions 154.148 155.623 (0.96) 155.070 (0.60) 154.952 (0.52) 155.241 (0.71)
parsec3/vips 58.851 58.527 (-0.55) 58.396 (-0.77) 58.979 (0.22) 59.970 (1.90)
parsec3/x264 70.559 68.624 (-2.74) 66.662 (-5.52) 67.817 (-3.89) 71.065 (0.72)
splash2x/barnes 80.678 80.491 (-0.23) 74.135 (-8.11) 79.493 (-1.47) 98.688 (22.32)
splash2x/fft 33.565 33.434 (-0.39) 23.153 (-31.02) 31.181 (-7.10) 45.662 (36.04)
splash2x/lu_cb 85.536 85.391 (-0.17) 84.396 (-1.33) 86.323 (0.92) 89.000 (4.05)
splash2x/lu_ncb 92.899 92.830 (-0.07) 90.075 (-3.04) 93.566 (0.72) 95.603 (2.91)
splash2x/ocean_cp 44.529 44.741 (0.47) 43.049 (-3.32) 44.117 (-0.93) 57.652 (29.47)
splash2x/ocean_ncp 81.271 81.538 (0.33) 51.337 (-36.83) 62.990 (-22.49) 137.621 (69.34)
splash2x/radiosity 91.411 91.329 (-0.09) 90.889 (-0.57) 91.944 (0.58) 102.682 (12.33)
splash2x/radix 31.194 31.202 (0.03) 25.258 (-19.03) 28.667 (-8.10) 43.684 (40.04)
splash2x/raytrace 83.930 84.754 (0.98) 83.734 (-0.23) 83.394 (-0.64) 84.932 (1.19)
splash2x/volrend 86.163 87.052 (1.03) 86.918 (0.88) 86.621 (0.53) 87.520 (1.57)
splash2x/water_nsquared 231.335 234.050 (1.17) 222.722 (-3.72) 224.502 (-2.95) 236.589 (2.27)
splash2x/water_spatial 88.753 89.167 (0.47) 89.542 (0.89) 89.510 (0.85) 97.960 (10.37)
total 2990.130 3006.480 (0.55) 2865.010 (-4.18) 2921.670 (-2.29) 3212.680 (7.44)


memused.avg orig rec (overhead) thp (overhead) ethp (overhead) prcl (overhead)
parsec3/blackscholes 1816303.000 1835404.800 (1.05) 1825285.800 (0.49) 1827203.000 (0.60) 1641411.600 (-9.63)
parsec3/bodytrack 1413888.000 1435353.800 (1.52) 1418535.200 (0.33) 1423560.600 (0.68) 1449993.600 (2.55)
parsec3/canneal 1042149.000 1053590.600 (1.10) 1038469.400 (-0.35) 1051556.600 (0.90) 1044271.200 (0.20)
parsec3/dedup 2364713.400 2448044.200 (3.52) 2397824.600 (1.40) 2427849.200 (2.67) 2402863.000 (1.61)
parsec3/facesim 540004.800 554035.000 (2.60) 543449.800 (0.64) 553955.400 (2.58) 483559.400 (-10.45)
parsec3/ferret 319349.600 331756.400 (3.89) 319751.600 (0.13) 333884.000 (4.55) 329600.400 (3.21)
parsec3/fluidanimate 576741.400 587662.400 (1.89) 576208.000 (-0.09) 586089.800 (1.62) 489655.000 (-15.10)
parsec3/freqmine 986222.400 999265.800 (1.32) 987716.200 (0.15) 1001756.400 (1.58) 766269.800 (-22.30)
parsec3/raytrace 1748338.200 1750036.000 (0.10) 1742218.400 (-0.35) 1755005.000 (0.38) 1584009.400 (-9.40)
parsec3/streamcluster 134980.800 136257.600 (0.95) 119580.000 (-11.41) 135188.600 (0.15) 132589.600 (-1.77)
parsec3/swaptions 13893.800 28265.000 (103.44) 16206.000 (16.64) 27826.800 (100.28) 26332.800 (89.53)
parsec3/vips 2954105.600 2972710.000 (0.63) 2955940.200 (0.06) 2971989.600 (0.61) 2968768.600 (0.50)
parsec3/x264 3169214.400 3206571.400 (1.18) 3185179.200 (0.50) 3170560.000 (0.04) 3209772.400 (1.28)
splash2x/barnes 1213585.000 1211837.400 (-0.14) 1220890.600 (0.60) 1215453.600 (0.15) 974635.600 (-19.69)
splash2x/fft 9371991.000 9201587.200 (-1.82) 9292089.200 (-0.85) 9108707.400 (-2.81) 9625476.600 (2.70)
splash2x/lu_cb 515113.800 523791.000 (1.68) 520880.200 (1.12) 523066.800 (1.54) 362113.400 (-29.70)
splash2x/lu_ncb 514847.800 524934.000 (1.96) 521362.400 (1.27) 521515.600 (1.30) 445374.200 (-13.49)
splash2x/ocean_cp 3341933.600 3322040.400 (-0.60) 3381251.000 (1.18) 3292229.400 (-1.49) 3181383.000 (-4.80)
splash2x/ocean_ncp 3899426.800 3870830.800 (-0.73) 7065641.200 (81.20) 5099403.200 (30.77) 3557460.000 (-8.77)
splash2x/radiosity 1465960.800 1470778.600 (0.33) 1482777.600 (1.15) 1500133.400 (2.33) 498807.200 (-65.97)
splash2x/radix 1711100.800 1672141.400 (-2.28) 1387826.200 (-18.89) 1516728.600 (-11.36) 2043053.600 (19.40)
splash2x/raytrace 47586.400 58698.000 (23.35) 51308.400 (7.82) 61274.800 (28.77) 54446.200 (14.42)
splash2x/volrend 150480.400 164633.800 (9.41) 150819.600 (0.23) 163517.400 (8.66) 161828.200 (7.54)
splash2x/water_nsquared 47147.600 62403.400 (32.36) 47689.600 (1.15) 60030.800 (27.33) 59736.600 (26.70)
splash2x/water_spatial 666544.600 674447.800 (1.19) 665904.600 (-0.10) 673677.600 (1.07) 559765.200 (-16.02)
total 40025500.000 40096900.000 (0.18) 42914900.000 (7.22) 41002100.000 (2.44) 38053200.000 (-4.93)


DAMON Overheads
~~~~~~~~~~~~~~~

In total, DAMON recording feature incurs 0.55% runtime overhead (up to 1.88% in
worst case with 'parsec3/streamcluster') and 0.18% memory space overhead.

For convenience test run of 'rec', I use a Python wrapper. The wrapper
constantly consumes about 10-15MB of memory. This becomes high memory overhead
if the target workload has small memory footprint. In detail, 103%, 23%, 9%,
and 32% overheads shown for parsec3/swaptions (15 MiB), splash2x/raytrace (45
MiB), splash2x/volrend (151 MiB), and splash2x/water_nsquared (46 MiB)).
Nonetheless, the overheads are not from DAMON, but from the wrapper, and thus
should be ignored. This fake memory overhead continues in 'ethp' and 'prcl',
as those configurations are also using the Python wrapper.


Efficient THP
~~~~~~~~~~~~~

THP 'always' enabled policy achieves 4.18% speedup but incurs 7.22% memory
overhead. It achieves 36.83% speedup in best case, but 81.20% memory overhead
in worst case. Interestingly, both the best and worst case are with
'splash2x/ocean_ncp').

The 2-lines implementation of data access monitoring based THP version ('ethp')
shows 2.29% speedup and 2.44% memory overhead. In other words, 'ethp' removes
66.2% of THP memory waste while preserving 54.78% of THP speedup in total. In
case of the 'splash2x/ocean_ncp', 'ethp' removes 62.10% of THP memory waste
while preserving 61% of THP speedup.


Proactive Reclamation
~~~~~~~~~~~~~~~~~~~~

As same to the original work, I use 'zram' swap device for this configuration.

In total, our 1 line implementation of Proactive Reclamation, 'prcl', incurred
7.44% runtime overhead in total while achieving 4.93% system memory usage
reduction.

Nonetheless, as the memory usage is calculated with 'MemFree' in
'/proc/meminfo', it contains the SwapCached pages. As the swapcached pages can
be easily evicted, I also measured the residential set size of the workloads:

rss.avg orig rec (overhead) thp (overhead) ethp (overhead) prcl (overhead)
parsec3/blackscholes 591461.000 590761.000 (-0.12) 592669.200 (0.20) 592442.600 (0.17) 308627.200 (-47.82)
parsec3/bodytrack 32201.400 32242.800 (0.13) 32299.000 (0.30) 32327.600 (0.39) 27411.000 (-14.88)
parsec3/canneal 841593.600 839721.400 (-0.22) 837427.600 (-0.50) 838363.400 (-0.38) 822220.600 (-2.30)
parsec3/dedup 1210000.600 1235153.600 (2.08) 1205207.200 (-0.40) 1229808.800 (1.64) 827881.400 (-31.58)
parsec3/facesim 311630.400 311273.200 (-0.11) 314747.400 (1.00) 312449.400 (0.26) 184104.600 (-40.92)
parsec3/ferret 99714.800 99558.400 (-0.16) 100996.800 (1.29) 99769.600 (0.05) 88979.200 (-10.77)
parsec3/fluidanimate 531429.600 531855.200 (0.08) 531744.800 (0.06) 532158.600 (0.14) 428154.000 (-19.43)
parsec3/freqmine 553063.600 552561.000 (-0.09) 556588.600 (0.64) 553518.000 (0.08) 65516.800 (-88.15)
parsec3/raytrace 894129.800 894332.400 (0.02) 889421.800 (-0.53) 892801.000 (-0.15) 363634.000 (-59.33)
parsec3/streamcluster 110887.200 110949.400 (0.06) 111508.400 (0.56) 111645.000 (0.68) 109921.200 (-0.87)
parsec3/swaptions 5688.600 5660.800 (-0.49) 5656.400 (-0.57) 5709.200 (0.36) 4201.000 (-26.15)
parsec3/vips 31774.800 31992.000 (0.68) 32134.800 (1.13) 32212.400 (1.38) 29026.000 (-8.65)
parsec3/x264 81897.400 81842.200 (-0.07) 83073.800 (1.44) 82435.200 (0.66) 80929.400 (-1.18)
splash2x/barnes 1216429.200 1212158.000 (-0.35) 1223021.400 (0.54) 1218261.200 (0.15) 710678.800 (-41.58)
splash2x/fft 9582824.800 9732597.400 (1.56) 9695113.400 (1.17) 9665607.200 (0.86) 7959449.000 (-16.94)
splash2x/lu_cb 509782.600 509423.400 (-0.07) 514467.000 (0.92) 510521.000 (0.14) 346267.200 (-32.08)
splash2x/lu_ncb 509735.200 510578.000 (0.17) 513892.200 (0.82) 509864.800 (0.03) 429509.800 (-15.74)
splash2x/ocean_cp 3402516.400 3405858.200 (0.10) 3442579.400 (1.18) 3411920.400 (0.28) 2782917.800 (-18.21)
splash2x/ocean_ncp 3924875.800 3921542.800 (-0.08) 7179644.000 (82.93) 5243201.400 (33.59) 2760506.600 (-29.67)
splash2x/radiosity 1472925.800 1475449.200 (0.17) 1485645.800 (0.86) 1473646.000 (0.05) 248785.000 (-83.11)
splash2x/radix 1748452.000 1750998.000 (0.15) 1434846.600 (-17.94) 1606307.800 (-8.13) 1713493.600 (-2.00)
splash2x/raytrace 23265.600 23278.400 (0.06) 29232.800 (25.65) 27050.400 (16.27) 16464.600 (-29.23)
splash2x/volrend 44020.600 44048.400 (0.06) 44148.400 (0.29) 44125.400 (0.24) 28101.800 (-36.16)
splash2x/water_nsquared 29420.800 29409.600 (-0.04) 29808.400 (1.32) 29984.800 (1.92) 25234.000 (-14.23)
splash2x/water_spatial 656716.000 656514.200 (-0.03) 656023.000 (-0.11) 656411.600 (-0.05) 498736.400 (-24.06)
total 28416316.000 28589600.000 (0.61) 31541823.000 (11.00) 29712600.000 (4.56) 20860800.000 (-26.59)

In total, 26.59% of residential sets were reduced.

With parsec3/freqmine, 'prcl' reduced 88.15% of residential sets and 22.30% of
system memory usage while incurring only 2.91% runtime overhead.


Appendix F: Prototype Evaluations
=================================

A prototype of DAMON has evaluated on an Intel Xeon E7-8837 machine using 20
benchmarks that picked from SPEC CPU 2006, NAS, Tensorflow Benchmark,
SPLASH-2X, and PARSEC 3 benchmark suite. Nonethless, this section provides
only summary of the results. For more detail, please refer to the slides used
for the introduction of DAMON at the Linux Plumbers Conference 2019[1] or the
MIDDLEWARE'19 industrial track paper[2].

[1] SeongJae Park, Tracing Data Access Pattern with Bounded Overhead and
Best-effort Accuracy. In The Linux Kernel Summit, September 2019.
https://linuxplumbersconf.org/event/4/contributions/548/
[2] SeongJae Park, Yunjae Lee, Heon Y. Yeom, Profiling Dynamic Data Access
Patterns with Controlled Overhead and Quality. In 20th ACM/IFIP
International Middleware Conference Industry, December 2019.
https://dl.acm.org/doi/10.1145/3366626.3368125


Quality
-------

We first traced and visualized the data access pattern of each workload. We
were able to confirm that the visualized results are reasonably accurate by
manually comparing those with the source code of the workloads.

To see the usefulness of the monitoring, we optimized 9 memory intensive
workloads among them for memory pressure situations using the DAMON outputs.
In detail, we identified frequently accessed memory regions in each workload
based on the DAMON results and protected them with ``mlock()`` system calls by
manually modifying the source code. The optimized versions consistently show
speedup (2.55x in best case, 1.65x in average) under artificial memory
pressures. We use cgroups for the pressure.


Overhead
--------

We also measured the overhead of DAMON. The upperbound we set was kept as
expected. Besides, it was much lower (0.6 percent of the bound in best case,
13.288 percent of the bound in average). This reduction of the overhead is
mainly resulted from its core mechanism called adaptive regions adjustment.
Refer to 'Appendix D' for more detail about the mechanism. We also compared
the overhead of DAMON with that of a straightforward periodic PTE Accessed bit
checking based monitoring. DAMON's overhead was smaller than it by 94,242.42x
in best case, 3,159.61x in average.

The latest version of DAMON running with its default configuration consumes
only up to 1% of CPU time when applied to realistic workloads in PARSEC3 and
SPLASH-2X and makes no visible slowdown to the target processes.


2020-04-27 12:08:39

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 02/15] mm/page_ext: Export lookup_page_ext() to GPL modules

From: SeongJae Park <[email protected]>

This commit exports 'lookup_page_ext()' to GPL modules. This will be
used by DAMON.

Signed-off-by: SeongJae Park <[email protected]>
---
mm/page_ext.c | 1 +
1 file changed, 1 insertion(+)

diff --git a/mm/page_ext.c b/mm/page_ext.c
index 4ade843ff588..71169b45bba9 100644
--- a/mm/page_ext.c
+++ b/mm/page_ext.c
@@ -131,6 +131,7 @@ struct page_ext *lookup_page_ext(const struct page *page)
MAX_ORDER_NR_PAGES);
return get_entry(base, index);
}
+EXPORT_SYMBOL_GPL(lookup_page_ext);

static int __init alloc_node_page_ext(int nid)
{
--
2.17.1

2020-04-27 12:10:26

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 06/15] mm/damon: Apply dynamic memory mapping changes

From: SeongJae Park <[email protected]>

Only a number of parts in the virtual address space of the processes is
mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, tracking every memory
mapping change might incur an overhead. For the reason, DAMON applies
the dynamic memory mapping changes to the tracking regions only for each
of a user-specified time interval (``regions update interval``).

Signed-off-by: SeongJae Park <[email protected]>
---
include/linux/damon.h | 10 +++--
mm/damon.c | 101 +++++++++++++++++++++++++++++++++++++++++-
2 files changed, 106 insertions(+), 5 deletions(-)

diff --git a/include/linux/damon.h b/include/linux/damon.h
index f1c3f491fc50..62b9f90ed87b 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -34,17 +34,21 @@ struct damon_task {
/*
* For each 'sample_interval', DAMON checks whether each region is accessed or
* not. It aggregates and keeps the access information (number of accesses to
- * each region) for each 'aggr_interval' time.
+ * each region) for 'aggr_interval' time. DAMON also checks whether the memory
+ * mapping of the target tasks has changed (e.g., by mmap() calls from the
+ * application) and applies the changes for each 'regions_update_interval'.
*
* All time intervals are in micro-seconds.
*/
struct damon_ctx {
unsigned long sample_interval;
unsigned long aggr_interval;
+ unsigned long regions_update_interval;
unsigned long min_nr_regions;
unsigned long max_nr_regions;

struct timespec64 last_aggregation;
+ struct timespec64 last_regions_update;

struct task_struct *kdamond;
bool kdamond_stop;
@@ -54,8 +58,8 @@ struct damon_ctx {
};

int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids);
-int damon_set_attrs(struct damon_ctx *ctx,
- unsigned long sample_int, unsigned long aggr_int,
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+ unsigned long aggr_int, unsigned long regions_update_int,
unsigned long min_nr_reg, unsigned long max_nr_reg);
int damon_start(struct damon_ctx *ctx);
int damon_stop(struct damon_ctx *ctx);
diff --git a/mm/damon.c b/mm/damon.c
index cec946197e13..2ee93014628b 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -697,6 +697,98 @@ static void kdamond_split_regions(struct damon_ctx *ctx)
damon_split_regions_of(ctx, t);
}

+/*
+ * Check whether it is time to check and apply the dynamic mmap changes
+ *
+ * Returns true if it is.
+ */
+static bool kdamond_need_update_regions(struct damon_ctx *ctx)
+{
+ return damon_check_reset_time_interval(&ctx->last_regions_update,
+ ctx->regions_update_interval);
+}
+
+/*
+ * Check whether regions are intersecting
+ *
+ * Note that this function checks 'struct damon_region' and 'struct region'.
+ *
+ * Returns true if it is.
+ */
+static bool damon_intersect(struct damon_region *r, struct region *re)
+{
+ return !(r->vm_end <= re->start || re->end <= r->vm_start);
+}
+
+/*
+ * Update damon regions for the three big regions of the given task
+ *
+ * t the given task
+ * bregions the three big regions of the task
+ */
+static void damon_apply_three_regions(struct damon_ctx *ctx,
+ struct damon_task *t, struct region bregions[3])
+{
+ struct damon_region *r, *next;
+ unsigned int i = 0;
+
+ /* Remove regions which are not in the three big regions now */
+ damon_for_each_region_safe(r, next, t) {
+ for (i = 0; i < 3; i++) {
+ if (damon_intersect(r, &bregions[i]))
+ break;
+ }
+ if (i == 3)
+ damon_destroy_region(r);
+ }
+
+ /* Adjust intersecting regions to fit with the three big regions */
+ for (i = 0; i < 3; i++) {
+ struct damon_region *first = NULL, *last;
+ struct damon_region *newr;
+ struct region *br;
+
+ br = &bregions[i];
+ /* Get the first and last regions which intersects with br */
+ damon_for_each_region(r, t) {
+ if (damon_intersect(r, br)) {
+ if (!first)
+ first = r;
+ last = r;
+ }
+ if (r->vm_start >= br->end)
+ break;
+ }
+ if (!first) {
+ /* no damon_region intersects with this big region */
+ newr = damon_new_region(ctx,
+ ALIGN_DOWN(br->start, MIN_REGION),
+ ALIGN(br->end, MIN_REGION));
+ if (!newr)
+ continue;
+ damon_insert_region(newr, damon_prev_region(r), r);
+ } else {
+ first->vm_start = ALIGN_DOWN(br->start, MIN_REGION);
+ last->vm_end = ALIGN(br->end, MIN_REGION);
+ }
+ }
+}
+
+/*
+ * Update regions for current memory mappings
+ */
+static void kdamond_update_regions(struct damon_ctx *ctx)
+{
+ struct region three_regions[3];
+ struct damon_task *t;
+
+ damon_for_each_task(ctx, t) {
+ if (damon_three_regions_of(t, three_regions))
+ continue;
+ damon_apply_three_regions(ctx, t, three_regions);
+ }
+}
+
/*
* Check whether current monitoring should be stopped
*
@@ -752,6 +844,9 @@ static int kdamond_fn(void *data)
kdamond_reset_aggregated(ctx);
kdamond_split_regions(ctx);
}
+
+ if (kdamond_need_update_regions(ctx))
+ kdamond_update_regions(ctx);
}
damon_for_each_task(ctx, t) {
damon_for_each_region_safe(r, next, t)
@@ -859,6 +954,7 @@ int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids)
* damon_set_attrs() - Set attributes for the monitoring.
* @ctx: monitoring context
* @sample_int: time interval between samplings
+ * @regions_update_int: time interval between vma update checks
* @aggr_int: time interval between aggregations
* @min_nr_reg: minimal number of regions
* @max_nr_reg: maximum number of regions
@@ -868,8 +964,8 @@ int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids)
*
* Return: 0 on success, negative error code otherwise.
*/
-int damon_set_attrs(struct damon_ctx *ctx,
- unsigned long sample_int, unsigned long aggr_int,
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+ unsigned long aggr_int, unsigned long regions_update_int,
unsigned long min_nr_reg, unsigned long max_nr_reg)
{
if (min_nr_reg < 3) {
@@ -885,6 +981,7 @@ int damon_set_attrs(struct damon_ctx *ctx,

ctx->sample_interval = sample_int;
ctx->aggr_interval = aggr_int;
+ ctx->regions_update_interval = regions_update_int;
ctx->min_nr_regions = min_nr_reg;
ctx->max_nr_regions = max_nr_reg;

--
2.17.1

2020-04-27 12:10:26

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 04/15] mm/damon: Implement region based sampling

From: SeongJae Park <[email protected]>

This commit implements DAMON's basic access check and region based
sampling mechanisms. This change would seems make no sense, mainly
because it is only a part of the DAMON's logics. Following two commits
will make more sense.

Basic Access Check
------------------

DAMON basically reports what pages are how frequently accessed. Note
that the frequency is not an absolute number of accesses, but a relative
frequency among the pages of the target workloads.

Users can control the resolution of the reports by setting two time
intervals, ``sampling interval`` and ``aggregation interval``. In
detail, DAMON checks access to each page per ``sampling interval``,
aggregates the results (counts the number of the accesses to each page),
and reports the aggregated results per ``aggregation interval``. For
the access check of each page, DAMON uses the Accessed bits of PTEs.

This is thus similar to common periodic access checks based access
tracking mechanisms, which overhead is increasing as the size of the
target process grows.

Region Based Sampling
---------------------

To avoid the unbounded increase of the overhead, DAMON groups a number
of adjacent pages that assumed to have same access frequencies into a
region. As long as the assumption (pages in a region have same access
frequencies) is kept, only one page in the region is required to be
checked. Thus, for each ``sampling interval``, DAMON randomly picks one
page in each region and clears its Accessed bit. After one more
``sampling interval``, DAMON reads the Accessed bit of the page and
increases the access frequency of the region if the bit has set
meanwhile. Therefore, the monitoring overhead is controllable by
setting the number of regions.

Nonetheless, this scheme cannot preserve the quality of the output if
the assumption is not kept. Following commit will introduce how we can
make the guarantee with best effort.

Signed-off-by: SeongJae Park <[email protected]>
---
include/linux/damon.h | 25 ++
mm/damon.c | 597 ++++++++++++++++++++++++++++++++++++++++++
2 files changed, 622 insertions(+)

diff --git a/include/linux/damon.h b/include/linux/damon.h
index 19f411d36c0d..558dd6ae0afa 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -11,6 +11,8 @@
#define _DAMON_H_

#include <linux/random.h>
+#include <linux/mutex.h>
+#include <linux/time64.h>
#include <linux/types.h>

/* Represents a monitoring target region of [vm_start, vm_end) */
@@ -29,8 +31,31 @@ struct damon_task {
struct list_head list;
};

+/*
+ * For each 'sample_interval', DAMON checks whether each region is accessed or
+ * not. It aggregates and keeps the access information (number of accesses to
+ * each region) for each 'aggr_interval' time.
+ *
+ * All time intervals are in micro-seconds.
+ */
struct damon_ctx {
+ unsigned long sample_interval;
+ unsigned long aggr_interval;
+ unsigned long min_nr_regions;
+
+ struct timespec64 last_aggregation;
+
+ struct task_struct *kdamond;
+ bool kdamond_stop;
+ struct mutex kdamond_lock;
+
struct list_head tasks_list; /* 'damon_task' objects */
};

+int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids);
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+ unsigned long aggr_int, unsigned long min_nr_reg);
+int damon_start(struct damon_ctx *ctx);
+int damon_stop(struct damon_ctx *ctx);
+
#endif
diff --git a/mm/damon.c b/mm/damon.c
index e319c1e19f3d..9c9aa18e846a 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -10,10 +10,19 @@
#define pr_fmt(fmt) "damon: " fmt

#include <linux/damon.h>
+#include <linux/delay.h>
+#include <linux/kthread.h>
#include <linux/mm.h>
#include <linux/module.h>
+#include <linux/page_idle.h>
+#include <linux/random.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/task.h>
#include <linux/slab.h>

+/* Minimal region size. Every damon_region is aligned by this. */
+#define MIN_REGION PAGE_SIZE
+
#define damon_get_task_struct(t) \
(get_pid_task(find_vpid(t->pid), PIDTYPE_PID))

@@ -156,6 +165,594 @@ static unsigned int nr_damon_regions(struct damon_task *t)
return nr_regions;
}

+/*
+ * Get the mm_struct of the given task
+ *
+ * Caller _must_ put the mm_struct after use, unless it is NULL.
+ *
+ * Returns the mm_struct of the task on success, NULL on failure
+ */
+static struct mm_struct *damon_get_mm(struct damon_task *t)
+{
+ struct task_struct *task;
+ struct mm_struct *mm;
+
+ task = damon_get_task_struct(t);
+ if (!task)
+ return NULL;
+
+ mm = get_task_mm(task);
+ put_task_struct(task);
+ return mm;
+}
+
+/*
+ * Size-evenly split a region into 'nr_pieces' small regions
+ *
+ * Returns 0 on success, or negative error code otherwise.
+ */
+static int damon_split_region_evenly(struct damon_ctx *ctx,
+ struct damon_region *r, unsigned int nr_pieces)
+{
+ unsigned long sz_orig, sz_piece, orig_end;
+ struct damon_region *n = NULL, *next;
+ unsigned long start;
+
+ if (!r || !nr_pieces)
+ return -EINVAL;
+
+ orig_end = r->vm_end;
+ sz_orig = r->vm_end - r->vm_start;
+ sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, MIN_REGION);
+
+ if (!sz_piece)
+ return -EINVAL;
+
+ r->vm_end = r->vm_start + sz_piece;
+ next = damon_next_region(r);
+ for (start = r->vm_end; start + sz_piece <= orig_end;
+ start += sz_piece) {
+ n = damon_new_region(ctx, start, start + sz_piece);
+ if (!n)
+ return -ENOMEM;
+ damon_insert_region(n, r, next);
+ r = n;
+ }
+ /* complement last region for possible rounding error */
+ if (n)
+ n->vm_end = orig_end;
+
+ return 0;
+}
+
+struct region {
+ unsigned long start;
+ unsigned long end;
+};
+
+static unsigned long sz_region(struct region *r)
+{
+ return r->end - r->start;
+}
+
+static void swap_regions(struct region *r1, struct region *r2)
+{
+ struct region tmp;
+
+ tmp = *r1;
+ *r1 = *r2;
+ *r2 = tmp;
+}
+
+/*
+ * Find three regions separated by two biggest unmapped regions
+ *
+ * vma the head vma of the target address space
+ * regions an array of three 'struct region's that results will be saved
+ *
+ * This function receives an address space and finds three regions in it which
+ * separated by the two biggest unmapped regions in the space. Please refer to
+ * below comments of 'damon_init_regions_of()' function to know why this is
+ * necessary.
+ *
+ * Returns 0 if success, or negative error code otherwise.
+ */
+static int damon_three_regions_in_vmas(struct vm_area_struct *vma,
+ struct region regions[3])
+{
+ struct region gap = {0}, first_gap = {0}, second_gap = {0};
+ struct vm_area_struct *last_vma = NULL;
+ unsigned long start = 0;
+
+ /* Find two biggest gaps so that first_gap > second_gap > others */
+ for (; vma; vma = vma->vm_next) {
+ if (!last_vma) {
+ start = vma->vm_start;
+ last_vma = vma;
+ continue;
+ }
+ gap.start = last_vma->vm_end;
+ gap.end = vma->vm_start;
+ if (sz_region(&gap) > sz_region(&second_gap)) {
+ swap_regions(&gap, &second_gap);
+ if (sz_region(&second_gap) > sz_region(&first_gap))
+ swap_regions(&second_gap, &first_gap);
+ }
+ last_vma = vma;
+ }
+
+ if (!sz_region(&second_gap) || !sz_region(&first_gap))
+ return -EINVAL;
+
+ /* Sort the two biggest gaps by address */
+ if (first_gap.start > second_gap.start)
+ swap_regions(&first_gap, &second_gap);
+
+ /* Store the result */
+ regions[0].start = ALIGN(start, MIN_REGION);
+ regions[0].end = ALIGN(first_gap.start, MIN_REGION);
+ regions[1].start = ALIGN(first_gap.end, MIN_REGION);
+ regions[1].end = ALIGN(second_gap.start, MIN_REGION);
+ regions[2].start = ALIGN(second_gap.end, MIN_REGION);
+ regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION);
+
+ return 0;
+}
+
+/*
+ * Get the three regions in the given task
+ *
+ * Returns 0 on success, negative error code otherwise.
+ */
+static int damon_three_regions_of(struct damon_task *t,
+ struct region regions[3])
+{
+ struct mm_struct *mm;
+ int rc;
+
+ mm = damon_get_mm(t);
+ if (!mm)
+ return -EINVAL;
+
+ down_read(&mm->mmap_sem);
+ rc = damon_three_regions_in_vmas(mm->mmap, regions);
+ up_read(&mm->mmap_sem);
+
+ mmput(mm);
+ return rc;
+}
+
+/*
+ * Initialize the monitoring target regions for the given task
+ *
+ * t the given target task
+ *
+ * Because only a number of small portions of the entire address space
+ * is actually mapped to the memory and accessed, monitoring the unmapped
+ * regions is wasteful. That said, because we can deal with small noises,
+ * tracking every mapping is not strictly required but could even incur a high
+ * overhead if the mapping frequently changes or the number of mappings is
+ * high. Nonetheless, this may seems very weird. DAMON's dynamic regions
+ * adjustment mechanism, which will be implemented with following commit will
+ * make this more sense.
+ *
+ * For the reason, we convert the complex mappings to three distinct regions
+ * that cover every mapped area of the address space. Also the two gaps
+ * between the three regions are the two biggest unmapped areas in the given
+ * address space. In detail, this function first identifies the start and the
+ * end of the mappings and the two biggest unmapped areas of the address space.
+ * Then, it constructs the three regions as below:
+ *
+ * [mappings[0]->start, big_two_unmapped_areas[0]->start)
+ * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
+ * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
+ *
+ * As usual memory map of processes is as below, the gap between the heap and
+ * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
+ * region and the stack will be two biggest unmapped regions. Because these
+ * gaps are exceptionally huge areas in usual address space, excluding these
+ * two biggest unmapped regions will be sufficient to make a trade-off.
+ *
+ * <heap>
+ * <BIG UNMAPPED REGION 1>
+ * <uppermost mmap()-ed region>
+ * (other mmap()-ed regions and small unmapped regions)
+ * <lowermost mmap()-ed region>
+ * <BIG UNMAPPED REGION 2>
+ * <stack>
+ */
+static void damon_init_regions_of(struct damon_ctx *c, struct damon_task *t)
+{
+ struct damon_region *r, *m = NULL;
+ struct region regions[3];
+ int i;
+
+ if (damon_three_regions_of(t, regions)) {
+ pr_err("Failed to get three regions of task %d\n", t->pid);
+ return;
+ }
+
+ /* Set the initial three regions of the task */
+ for (i = 0; i < 3; i++) {
+ r = damon_new_region(c, regions[i].start, regions[i].end);
+ if (!r) {
+ pr_err("%d'th init region creation failed\n", i);
+ return;
+ }
+ damon_add_region(r, t);
+ if (i == 1)
+ m = r;
+ }
+
+ /* Split the middle region into 'min_nr_regions - 2' regions */
+ if (damon_split_region_evenly(c, m, c->min_nr_regions - 2))
+ pr_warn("Init middle region failed to be split\n");
+}
+
+/* Initialize '->regions_list' of every task */
+static void kdamond_init_regions(struct damon_ctx *ctx)
+{
+ struct damon_task *t;
+
+ damon_for_each_task(ctx, t)
+ damon_init_regions_of(ctx, t);
+}
+
+static void damon_mkold(struct mm_struct *mm, unsigned long addr)
+{
+ pte_t *pte = NULL;
+ pmd_t *pmd = NULL;
+ spinlock_t *ptl;
+
+ if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
+ return;
+
+ if (pte) {
+ if (pte_young(*pte)) {
+ clear_page_idle(pte_page(*pte));
+ set_page_young(pte_page(*pte));
+ }
+ *pte = pte_mkold(*pte);
+ pte_unmap_unlock(pte, ptl);
+ return;
+ }
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (pmd_young(*pmd)) {
+ clear_page_idle(pmd_page(*pmd));
+ set_page_young(pmd_page(*pmd));
+ }
+ *pmd = pmd_mkold(*pmd);
+ spin_unlock(ptl);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+}
+
+static void damon_prepare_access_check(struct damon_ctx *ctx,
+ struct mm_struct *mm, struct damon_region *r)
+{
+ r->sampling_addr = damon_rand(r->vm_start, r->vm_end);
+
+ damon_mkold(mm, r->sampling_addr);
+}
+
+static void kdamond_prepare_access_checks(struct damon_ctx *ctx)
+{
+ struct damon_task *t;
+ struct mm_struct *mm;
+ struct damon_region *r;
+
+ damon_for_each_task(ctx, t) {
+ mm = damon_get_mm(t);
+ if (!mm)
+ continue;
+ damon_for_each_region(r, t)
+ damon_prepare_access_check(ctx, mm, r);
+ mmput(mm);
+ }
+}
+
+static bool damon_young(struct mm_struct *mm, unsigned long addr,
+ unsigned long *page_sz)
+{
+ pte_t *pte = NULL;
+ pmd_t *pmd = NULL;
+ spinlock_t *ptl;
+ bool young = false;
+
+ if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
+ return false;
+
+ *page_sz = PAGE_SIZE;
+ if (pte) {
+ young = pte_young(*pte);
+ pte_unmap_unlock(pte, ptl);
+ return young;
+ }
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ young = pmd_young(*pmd);
+ spin_unlock(ptl);
+ *page_sz = ((1UL) << HPAGE_PMD_SHIFT);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+ return young;
+}
+
+/*
+ * Check whether the region was accessed and prepare for next check
+ *
+ * mm 'mm_struct' for the given virtual address space
+ * r the region to be checked
+ */
+static void damon_check_access(struct damon_ctx *ctx,
+ struct mm_struct *mm, struct damon_region *r)
+{
+ static struct mm_struct *last_mm;
+ static unsigned long last_addr;
+ static unsigned long last_page_sz = PAGE_SIZE;
+ static bool last_accessed;
+
+ /* If the region is in the last checked page, reuse the result */
+ if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
+ ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
+ if (last_accessed)
+ r->nr_accesses++;
+ return;
+ }
+
+ last_accessed = damon_young(mm, r->sampling_addr, &last_page_sz);
+ if (last_accessed)
+ r->nr_accesses++;
+
+ last_mm = mm;
+ last_addr = r->sampling_addr;
+}
+
+static void kdamond_check_accesses(struct damon_ctx *ctx)
+{
+ struct damon_task *t;
+ struct mm_struct *mm;
+ struct damon_region *r;
+
+ damon_for_each_task(ctx, t) {
+ mm = damon_get_mm(t);
+ if (!mm)
+ continue;
+ damon_for_each_region(r, t)
+ damon_check_access(ctx, mm, r);
+ mmput(mm);
+ }
+}
+
+/**
+ * damon_check_reset_time_interval() - Check if a time interval is elapsed.
+ * @baseline: the time to check whether the interval has elapsed since
+ * @interval: the time interval (microseconds)
+ *
+ * See whether the given time interval has passed since the given baseline
+ * time. If so, it also updates the baseline to current time for next check.
+ *
+ * Return: true if the time interval has passed, or false otherwise.
+ */
+static bool damon_check_reset_time_interval(struct timespec64 *baseline,
+ unsigned long interval)
+{
+ struct timespec64 now;
+
+ ktime_get_coarse_ts64(&now);
+ if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
+ interval * 1000)
+ return false;
+ *baseline = now;
+ return true;
+}
+
+/*
+ * Check whether it is time to flush the aggregated information
+ */
+static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
+{
+ return damon_check_reset_time_interval(&ctx->last_aggregation,
+ ctx->aggr_interval);
+}
+
+/*
+ * Reset the aggregated monitoring results
+ */
+static void kdamond_reset_aggregated(struct damon_ctx *c)
+{
+ struct damon_task *t;
+ struct damon_region *r;
+
+ damon_for_each_task(c, t) {
+ damon_for_each_region(r, t)
+ r->nr_accesses = 0;
+ }
+}
+
+/*
+ * Check whether current monitoring should be stopped
+ *
+ * The monitoring is stopped when either the user requested to stop, or all
+ * monitoring target tasks are dead.
+ *
+ * Returns true if need to stop current monitoring.
+ */
+static bool kdamond_need_stop(struct damon_ctx *ctx)
+{
+ struct damon_task *t;
+ struct task_struct *task;
+ bool stop;
+
+ mutex_lock(&ctx->kdamond_lock);
+ stop = ctx->kdamond_stop;
+ mutex_unlock(&ctx->kdamond_lock);
+ if (stop)
+ return true;
+
+ damon_for_each_task(ctx, t) {
+ task = damon_get_task_struct(t);
+ if (task) {
+ put_task_struct(task);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/*
+ * The monitoring daemon that runs as a kernel thread
+ */
+static int kdamond_fn(void *data)
+{
+ struct damon_ctx *ctx = (struct damon_ctx *)data;
+ struct damon_task *t;
+ struct damon_region *r, *next;
+
+ pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
+ kdamond_init_regions(ctx);
+ while (!kdamond_need_stop(ctx)) {
+ kdamond_prepare_access_checks(ctx);
+
+ usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
+
+ kdamond_check_accesses(ctx);
+
+ if (kdamond_aggregate_interval_passed(ctx))
+ kdamond_reset_aggregated(ctx);
+
+ }
+ damon_for_each_task(ctx, t) {
+ damon_for_each_region_safe(r, next, t)
+ damon_destroy_region(r);
+ }
+ pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid);
+ mutex_lock(&ctx->kdamond_lock);
+ ctx->kdamond = NULL;
+ mutex_unlock(&ctx->kdamond_lock);
+
+ do_exit(0);
+}
+
+/*
+ * Controller functions
+ */
+
+static bool damon_kdamond_running(struct damon_ctx *ctx)
+{
+ bool running;
+
+ mutex_lock(&ctx->kdamond_lock);
+ running = ctx->kdamond != NULL;
+ mutex_unlock(&ctx->kdamond_lock);
+
+ return running;
+}
+
+/**
+ * damon_start() - Starts monitoring with given context.
+ * @ctx: monitoring context
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_start(struct damon_ctx *ctx)
+{
+ int err = -EBUSY;
+
+ mutex_lock(&ctx->kdamond_lock);
+ if (!ctx->kdamond) {
+ err = 0;
+ ctx->kdamond_stop = false;
+ ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond");
+ if (IS_ERR(ctx->kdamond))
+ err = PTR_ERR(ctx->kdamond);
+ }
+ mutex_unlock(&ctx->kdamond_lock);
+
+ return err;
+}
+
+/**
+ * damon_stop() - Stops monitoring of given context.
+ * @ctx: monitoring context
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_stop(struct damon_ctx *ctx)
+{
+ mutex_lock(&ctx->kdamond_lock);
+ if (ctx->kdamond) {
+ ctx->kdamond_stop = true;
+ mutex_unlock(&ctx->kdamond_lock);
+ while (damon_kdamond_running(ctx))
+ usleep_range(ctx->sample_interval,
+ ctx->sample_interval * 2);
+ return 0;
+ }
+ mutex_unlock(&ctx->kdamond_lock);
+
+ return -EPERM;
+}
+
+/**
+ * damon_set_pids() - Set monitoring target processes.
+ * @ctx: monitoring context
+ * @pids: array of target processes pids
+ * @nr_pids: number of entries in @pids
+ *
+ * This function should not be called while the kdamond is running.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids)
+{
+ ssize_t i;
+ struct damon_task *t, *next;
+
+ damon_for_each_task_safe(ctx, t, next)
+ damon_destroy_task(t);
+
+ for (i = 0; i < nr_pids; i++) {
+ t = damon_new_task(pids[i]);
+ if (!t) {
+ pr_err("Failed to alloc damon_task\n");
+ return -ENOMEM;
+ }
+ damon_add_task(ctx, t);
+ }
+
+ return 0;
+}
+
+/**
+ * damon_set_attrs() - Set attributes for the monitoring.
+ * @ctx: monitoring context
+ * @sample_int: time interval between samplings
+ * @aggr_int: time interval between aggregations
+ * @min_nr_reg: minimal number of regions
+ *
+ * This function should not be called while the kdamond is running.
+ * Every time interval is in micro-seconds.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+ unsigned long aggr_int, unsigned long min_nr_reg)
+{
+ if (min_nr_reg < 3) {
+ pr_err("min_nr_regions (%lu) must be at least 3\n",
+ min_nr_reg);
+ return -EINVAL;
+ }
+
+ ctx->sample_interval = sample_int;
+ ctx->aggr_interval = aggr_int;
+ ctx->min_nr_regions = min_nr_reg;
+
+ return 0;
+}
+
static int __init damon_init(void)
{
return 0;
--
2.17.1

2020-04-27 12:10:58

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 03/15] mm: Introduce Data Access MONitor (DAMON)

From: SeongJae Park <[email protected]>

This commit introduces a kernel module named DAMON. Note that this
commit is implementing only the stub for the module load/unload, basic
data structures, and simple manipulation functions of the structures to
keep the size of commit small. The core mechanisms of DAMON will be
implemented one by one by following commits.

Signed-off-by: SeongJae Park <[email protected]>
---
include/linux/damon.h | 36 +++++++++
mm/Kconfig | 12 +++
mm/Makefile | 1 +
mm/damon.c | 173 ++++++++++++++++++++++++++++++++++++++++++
4 files changed, 222 insertions(+)
create mode 100644 include/linux/damon.h
create mode 100644 mm/damon.c

diff --git a/include/linux/damon.h b/include/linux/damon.h
new file mode 100644
index 000000000000..19f411d36c0d
--- /dev/null
+++ b/include/linux/damon.h
@@ -0,0 +1,36 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * DAMON api
+ *
+ * Copyright 2019-2020 Amazon.com, Inc. or its affiliates.
+ *
+ * Author: SeongJae Park <[email protected]>
+ */
+
+#ifndef _DAMON_H_
+#define _DAMON_H_
+
+#include <linux/random.h>
+#include <linux/types.h>
+
+/* Represents a monitoring target region of [vm_start, vm_end) */
+struct damon_region {
+ unsigned long vm_start;
+ unsigned long vm_end;
+ unsigned long sampling_addr;
+ unsigned int nr_accesses;
+ struct list_head list;
+};
+
+/* Represents a monitoring target task */
+struct damon_task {
+ int pid;
+ struct list_head regions_list;
+ struct list_head list;
+};
+
+struct damon_ctx {
+ struct list_head tasks_list; /* 'damon_task' objects */
+};
+
+#endif
diff --git a/mm/Kconfig b/mm/Kconfig
index ab80933be65f..9ea49633a6df 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -739,4 +739,16 @@ config ARCH_HAS_HUGEPD
config MAPPING_DIRTY_HELPERS
bool

+config DAMON
+ tristate "Data Access Monitor"
+ depends on MMU
+ help
+ Provides data access monitoring.
+
+ DAMON is a kernel module that allows users to monitor the actual
+ memory access pattern of specific user-space processes. It aims to
+ be 1) accurate enough to be useful for performance-centric domains,
+ and 2) sufficiently light-weight so that it can be applied online.
+ If unsure, say N.
+
endmenu
diff --git a/mm/Makefile b/mm/Makefile
index 272e66039e70..5346314edee6 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -110,3 +110,4 @@ obj-$(CONFIG_HMM_MIRROR) += hmm.o
obj-$(CONFIG_MEMFD_CREATE) += memfd.o
obj-$(CONFIG_MAPPING_DIRTY_HELPERS) += mapping_dirty_helpers.o
obj-$(CONFIG_PTDUMP_CORE) += ptdump.o
+obj-$(CONFIG_DAMON) += damon.o
diff --git a/mm/damon.c b/mm/damon.c
new file mode 100644
index 000000000000..e319c1e19f3d
--- /dev/null
+++ b/mm/damon.c
@@ -0,0 +1,173 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Data Access Monitor
+ *
+ * Copyright 2019-2020 Amazon.com, Inc. or its affiliates.
+ *
+ * Author: SeongJae Park <[email protected]>
+ */
+
+#define pr_fmt(fmt) "damon: " fmt
+
+#include <linux/damon.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#define damon_get_task_struct(t) \
+ (get_pid_task(find_vpid(t->pid), PIDTYPE_PID))
+
+#define damon_next_region(r) \
+ (container_of(r->list.next, struct damon_region, list))
+
+#define damon_prev_region(r) \
+ (container_of(r->list.prev, struct damon_region, list))
+
+#define damon_for_each_region(r, t) \
+ list_for_each_entry(r, &t->regions_list, list)
+
+#define damon_for_each_region_safe(r, next, t) \
+ list_for_each_entry_safe(r, next, &t->regions_list, list)
+
+#define damon_for_each_task(ctx, t) \
+ list_for_each_entry(t, &(ctx)->tasks_list, list)
+
+#define damon_for_each_task_safe(ctx, t, next) \
+ list_for_each_entry_safe(t, next, &(ctx)->tasks_list, list)
+
+/* Get a random number in [l, r) */
+#define damon_rand(l, r) (l + prandom_u32() % (r - l))
+
+/*
+ * Construct a damon_region struct
+ *
+ * Returns the pointer to the new struct if success, or NULL otherwise
+ */
+static struct damon_region *damon_new_region(struct damon_ctx *ctx,
+ unsigned long vm_start, unsigned long vm_end)
+{
+ struct damon_region *region;
+
+ region = kmalloc(sizeof(*region), GFP_KERNEL);
+ if (!region)
+ return NULL;
+
+ region->vm_start = vm_start;
+ region->vm_end = vm_end;
+ region->nr_accesses = 0;
+ INIT_LIST_HEAD(&region->list);
+
+ return region;
+}
+
+/*
+ * Add a region between two other regions
+ */
+static inline void damon_insert_region(struct damon_region *r,
+ struct damon_region *prev, struct damon_region *next)
+{
+ __list_add(&r->list, &prev->list, &next->list);
+}
+
+static void damon_add_region(struct damon_region *r, struct damon_task *t)
+{
+ list_add_tail(&r->list, &t->regions_list);
+}
+
+static void damon_del_region(struct damon_region *r)
+{
+ list_del(&r->list);
+}
+
+static void damon_free_region(struct damon_region *r)
+{
+ kfree(r);
+}
+
+static void damon_destroy_region(struct damon_region *r)
+{
+ damon_del_region(r);
+ damon_free_region(r);
+}
+
+/*
+ * Construct a damon_task struct
+ *
+ * Returns the pointer to the new struct if success, or NULL otherwise
+ */
+static struct damon_task *damon_new_task(int pid)
+{
+ struct damon_task *t;
+
+ t = kmalloc(sizeof(*t), GFP_KERNEL);
+ if (!t)
+ return NULL;
+
+ t->pid = pid;
+ INIT_LIST_HEAD(&t->regions_list);
+
+ return t;
+}
+
+static void damon_add_task(struct damon_ctx *ctx, struct damon_task *t)
+{
+ list_add_tail(&t->list, &ctx->tasks_list);
+}
+
+static void damon_del_task(struct damon_task *t)
+{
+ list_del(&t->list);
+}
+
+static void damon_free_task(struct damon_task *t)
+{
+ struct damon_region *r, *next;
+
+ damon_for_each_region_safe(r, next, t)
+ damon_free_region(r);
+ kfree(t);
+}
+
+static void damon_destroy_task(struct damon_task *t)
+{
+ damon_del_task(t);
+ damon_free_task(t);
+}
+
+static unsigned int nr_damon_tasks(struct damon_ctx *ctx)
+{
+ struct damon_task *t;
+ unsigned int nr_tasks = 0;
+
+ damon_for_each_task(ctx, t)
+ nr_tasks++;
+
+ return nr_tasks;
+}
+
+static unsigned int nr_damon_regions(struct damon_task *t)
+{
+ struct damon_region *r;
+ unsigned int nr_regions = 0;
+
+ damon_for_each_region(r, t)
+ nr_regions++;
+
+ return nr_regions;
+}
+
+static int __init damon_init(void)
+{
+ return 0;
+}
+
+static void __exit damon_exit(void)
+{
+}
+
+module_init(damon_init);
+module_exit(damon_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SeongJae Park <[email protected]>");
+MODULE_DESCRIPTION("DAMON: Data Access MONitor");
--
2.17.1

2020-04-27 12:10:59

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 05/15] mm/damon: Adaptively adjust regions

From: SeongJae Park <[email protected]>

At the beginning of the monitoring, DAMON constructs the initial regions
by evenly splitting the memory mapped address space of the process into
the user-specified minimal number of regions. In this initial state,
the assumption of the regions (pages in same region have similar access
frequencies) is normally not kept and thus the monitoring quality could
be low. To keep the assumption as much as possible, DAMON adaptively
merges and splits each region.

For each ``aggregation interval``, it compares the access frequencies of
adjacent regions and merges those if the frequency difference is small.
Then, after it reports and clears the aggregated access frequency of
each region, it splits each region into two regions if the total number
of regions is smaller than the half of the user-specified maximum number
of regions.

In this way, DAMON provides its best-effort quality and minimal overhead
while keeping the bounds users set for their trade-off.

Signed-off-by: SeongJae Park <[email protected]>
---
include/linux/damon.h | 6 +-
mm/damon.c | 158 +++++++++++++++++++++++++++++++++++++++---
2 files changed, 152 insertions(+), 12 deletions(-)

diff --git a/include/linux/damon.h b/include/linux/damon.h
index 558dd6ae0afa..f1c3f491fc50 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -42,6 +42,7 @@ struct damon_ctx {
unsigned long sample_interval;
unsigned long aggr_interval;
unsigned long min_nr_regions;
+ unsigned long max_nr_regions;

struct timespec64 last_aggregation;

@@ -53,8 +54,9 @@ struct damon_ctx {
};

int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids);
-int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
- unsigned long aggr_int, unsigned long min_nr_reg);
+int damon_set_attrs(struct damon_ctx *ctx,
+ unsigned long sample_int, unsigned long aggr_int,
+ unsigned long min_nr_reg, unsigned long max_nr_reg);
int damon_start(struct damon_ctx *ctx);
int damon_stop(struct damon_ctx *ctx);

diff --git a/mm/damon.c b/mm/damon.c
index 9c9aa18e846a..cec946197e13 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -332,9 +332,12 @@ static int damon_three_regions_of(struct damon_task *t,
* regions is wasteful. That said, because we can deal with small noises,
* tracking every mapping is not strictly required but could even incur a high
* overhead if the mapping frequently changes or the number of mappings is
- * high. Nonetheless, this may seems very weird. DAMON's dynamic regions
- * adjustment mechanism, which will be implemented with following commit will
- * make this more sense.
+ * high. The adaptive regions adjustment mechanism will further help to deal
+ * with the noise by simply identifying the unmapped areas as a region that
+ * has no access. Moreover, applying the real mappings that would have many
+ * unmapped areas inside will make the adaptive mechanism quite complex. That
+ * said, too huge unmapped areas inside the monitoring target should be removed
+ * to not take the time for the adaptive mechanism.
*
* For the reason, we convert the complex mappings to three distinct regions
* that cover every mapped area of the address space. Also the two gaps
@@ -508,20 +511,25 @@ static void damon_check_access(struct damon_ctx *ctx,
last_addr = r->sampling_addr;
}

-static void kdamond_check_accesses(struct damon_ctx *ctx)
+static unsigned int kdamond_check_accesses(struct damon_ctx *ctx)
{
struct damon_task *t;
struct mm_struct *mm;
struct damon_region *r;
+ unsigned int max_nr_accesses = 0;

damon_for_each_task(ctx, t) {
mm = damon_get_mm(t);
if (!mm)
continue;
- damon_for_each_region(r, t)
+ damon_for_each_region(r, t) {
damon_check_access(ctx, mm, r);
+ max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
+ }
+
mmput(mm);
}
+ return max_nr_accesses;
}

/**
@@ -570,6 +578,125 @@ static void kdamond_reset_aggregated(struct damon_ctx *c)
}
}

+#define sz_damon_region(r) (r->vm_end - r->vm_start)
+
+/*
+ * Merge two adjacent regions into one region
+ */
+static void damon_merge_two_regions(struct damon_region *l,
+ struct damon_region *r)
+{
+ l->nr_accesses = (l->nr_accesses * sz_damon_region(l) +
+ r->nr_accesses * sz_damon_region(r)) /
+ (sz_damon_region(l) + sz_damon_region(r));
+ l->vm_end = r->vm_end;
+ damon_destroy_region(r);
+}
+
+#define diff_of(a, b) (a > b ? a - b : b - a)
+
+/*
+ * Merge adjacent regions having similar access frequencies
+ *
+ * t task affected by merge operation
+ * thres '->nr_accesses' diff threshold for the merge
+ */
+static void damon_merge_regions_of(struct damon_task *t, unsigned int thres)
+{
+ struct damon_region *r, *prev = NULL, *next;
+
+ damon_for_each_region_safe(r, next, t) {
+ if (!prev || prev->vm_end != r->vm_start ||
+ diff_of(prev->nr_accesses, r->nr_accesses) > thres) {
+ prev = r;
+ continue;
+ }
+ damon_merge_two_regions(prev, r);
+ }
+}
+
+/*
+ * Merge adjacent regions having similar access frequencies
+ *
+ * threshold merge regions having nr_accesses diff larger than this
+ *
+ * This function merges monitoring target regions which are adjacent and their
+ * access frequencies are similar. This is for minimizing the monitoring
+ * overhead under the dynamically changeable access pattern. If a merge was
+ * unnecessarily made, later 'kdamond_split_regions()' will revert it.
+ */
+static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold)
+{
+ struct damon_task *t;
+
+ damon_for_each_task(c, t)
+ damon_merge_regions_of(t, threshold);
+}
+
+/*
+ * Split a region in two
+ *
+ * r the region to be split
+ * sz_r size of the first sub-region that will be made
+ */
+static void damon_split_region_at(struct damon_ctx *ctx,
+ struct damon_region *r, unsigned long sz_r)
+{
+ struct damon_region *new;
+
+ new = damon_new_region(ctx, r->vm_start + sz_r, r->vm_end);
+ r->vm_end = new->vm_start;
+
+ damon_insert_region(new, r, damon_next_region(r));
+}
+
+/* Split every region in the given task into two randomly-sized regions */
+static void damon_split_regions_of(struct damon_ctx *ctx, struct damon_task *t)
+{
+ struct damon_region *r, *next;
+ unsigned long sz_orig_region, sz_left_region;
+
+ damon_for_each_region_safe(r, next, t) {
+ sz_orig_region = r->vm_end - r->vm_start;
+
+ /*
+ * Randomly select size of left sub-region to be at least
+ * 10 percent and at most 90% of original region
+ */
+ sz_left_region = ALIGN_DOWN(damon_rand(1, 10) * sz_orig_region
+ / 10, MIN_REGION);
+ /* Do not allow blank region */
+ if (sz_left_region == 0 || sz_left_region >= sz_orig_region)
+ continue;
+
+ damon_split_region_at(ctx, r, sz_left_region);
+ }
+}
+
+/*
+ * splits every target region into two randomly-sized regions
+ *
+ * This function splits every target region into two random-sized regions if
+ * current total number of the regions is equal or smaller than half of the
+ * user-specified maximum number of regions. This is for maximizing the
+ * monitoring accuracy under the dynamically changeable access patterns. If a
+ * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
+ * it.
+ */
+static void kdamond_split_regions(struct damon_ctx *ctx)
+{
+ struct damon_task *t;
+ unsigned int nr_regions = 0;
+
+ damon_for_each_task(ctx, t)
+ nr_regions += nr_damon_regions(t);
+ if (nr_regions > ctx->max_nr_regions / 2)
+ return;
+
+ damon_for_each_task(ctx, t)
+ damon_split_regions_of(ctx, t);
+}
+
/*
* Check whether current monitoring should be stopped
*
@@ -609,6 +736,7 @@ static int kdamond_fn(void *data)
struct damon_ctx *ctx = (struct damon_ctx *)data;
struct damon_task *t;
struct damon_region *r, *next;
+ unsigned int max_nr_accesses = 0;

pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
kdamond_init_regions(ctx);
@@ -617,11 +745,13 @@ static int kdamond_fn(void *data)

usleep_range(ctx->sample_interval, ctx->sample_interval + 1);

- kdamond_check_accesses(ctx);
+ max_nr_accesses = kdamond_check_accesses(ctx);

- if (kdamond_aggregate_interval_passed(ctx))
+ if (kdamond_aggregate_interval_passed(ctx)) {
+ kdamond_merge_regions(ctx, max_nr_accesses / 10);
kdamond_reset_aggregated(ctx);
-
+ kdamond_split_regions(ctx);
+ }
}
damon_for_each_task(ctx, t) {
damon_for_each_region_safe(r, next, t)
@@ -731,24 +861,32 @@ int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids)
* @sample_int: time interval between samplings
* @aggr_int: time interval between aggregations
* @min_nr_reg: minimal number of regions
+ * @max_nr_reg: maximum number of regions
*
* This function should not be called while the kdamond is running.
* Every time interval is in micro-seconds.
*
* Return: 0 on success, negative error code otherwise.
*/
-int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
- unsigned long aggr_int, unsigned long min_nr_reg)
+int damon_set_attrs(struct damon_ctx *ctx,
+ unsigned long sample_int, unsigned long aggr_int,
+ unsigned long min_nr_reg, unsigned long max_nr_reg)
{
if (min_nr_reg < 3) {
pr_err("min_nr_regions (%lu) must be at least 3\n",
min_nr_reg);
return -EINVAL;
}
+ if (min_nr_reg > max_nr_reg) {
+ pr_err("invalid nr_regions. min (%lu) > max (%lu)\n",
+ min_nr_reg, max_nr_reg);
+ return -EINVAL;
+ }

ctx->sample_interval = sample_int;
ctx->aggr_interval = aggr_int;
ctx->min_nr_regions = min_nr_reg;
+ ctx->max_nr_regions = max_nr_reg;

return 0;
}
--
2.17.1

2020-04-27 12:11:08

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 08/15] mm/damon: Implement access pattern recording

From: SeongJae Park <[email protected]>

This commit implements the recording feature of DAMON. If this feature
is enabled, DAMON writes the monitored access patterns in its binary
format into a file which specified by the user. This is already able to
be implemented by each user using the callbacks. However, as the
recording is expected to be used widely, this commit implements the
feature in the DAMON, for more convenience and efficiency.

Signed-off-by: SeongJae Park <[email protected]>
---
include/linux/damon.h | 7 +++
mm/damon.c | 131 +++++++++++++++++++++++++++++++++++++++++-
2 files changed, 135 insertions(+), 3 deletions(-)

diff --git a/include/linux/damon.h b/include/linux/damon.h
index 264569b21502..bc46ea00e9a1 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -50,6 +50,11 @@ struct damon_ctx {
struct timespec64 last_aggregation;
struct timespec64 last_regions_update;

+ unsigned char *rbuf;
+ unsigned int rbuf_len;
+ unsigned int rbuf_offset;
+ char *rfile_path;
+
struct task_struct *kdamond;
bool kdamond_stop;
struct mutex kdamond_lock;
@@ -65,6 +70,8 @@ int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids);
int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
unsigned long aggr_int, unsigned long regions_update_int,
unsigned long min_nr_reg, unsigned long max_nr_reg);
+int damon_set_recording(struct damon_ctx *ctx,
+ unsigned int rbuf_len, char *rfile_path);
int damon_start(struct damon_ctx *ctx);
int damon_stop(struct damon_ctx *ctx);

diff --git a/mm/damon.c b/mm/damon.c
index 863b60e16a4a..621217b58173 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -44,6 +44,9 @@
#define damon_for_each_task_safe(ctx, t, next) \
list_for_each_entry_safe(t, next, &(ctx)->tasks_list, list)

+#define MAX_RECORD_BUFFER_LEN (4 * 1024 * 1024)
+#define MAX_RFILE_PATH_LEN 256
+
/* Get a random number in [l, r) */
#define damon_rand(l, r) (l + prandom_u32() % (r - l))

@@ -565,16 +568,80 @@ static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
}

/*
- * Reset the aggregated monitoring results
+ * Flush the content in the result buffer to the result file
+ */
+static void damon_flush_rbuffer(struct damon_ctx *ctx)
+{
+ ssize_t sz;
+ loff_t pos = 0;
+ struct file *rfile;
+
+ rfile = filp_open(ctx->rfile_path, O_CREAT | O_RDWR | O_APPEND, 0644);
+ if (IS_ERR(rfile)) {
+ pr_err("Cannot open the result file %s\n",
+ ctx->rfile_path);
+ return;
+ }
+
+ while (ctx->rbuf_offset) {
+ sz = kernel_write(rfile, ctx->rbuf, ctx->rbuf_offset, &pos);
+ if (sz < 0)
+ break;
+ ctx->rbuf_offset -= sz;
+ }
+ filp_close(rfile, NULL);
+}
+
+/*
+ * Write a data into the result buffer
+ */
+static void damon_write_rbuf(struct damon_ctx *ctx, void *data, ssize_t size)
+{
+ if (!ctx->rbuf_len || !ctx->rbuf)
+ return;
+ if (ctx->rbuf_offset + size > ctx->rbuf_len)
+ damon_flush_rbuffer(ctx);
+
+ memcpy(&ctx->rbuf[ctx->rbuf_offset], data, size);
+ ctx->rbuf_offset += size;
+}
+
+/*
+ * Flush the aggregated monitoring results to the result buffer
+ *
+ * Stores current tracking results to the result buffer and reset 'nr_accesses'
+ * of each region. The format for the result buffer is as below:
+ *
+ * <time> <number of tasks> <array of task infos>
+ *
+ * task info: <pid> <number of regions> <array of region infos>
+ * region info: <start address> <end address> <nr_accesses>
*/
static void kdamond_reset_aggregated(struct damon_ctx *c)
{
struct damon_task *t;
- struct damon_region *r;
+ struct timespec64 now;
+ unsigned int nr;
+
+ ktime_get_coarse_ts64(&now);
+
+ damon_write_rbuf(c, &now, sizeof(struct timespec64));
+ nr = nr_damon_tasks(c);
+ damon_write_rbuf(c, &nr, sizeof(nr));

damon_for_each_task(c, t) {
- damon_for_each_region(r, t)
+ struct damon_region *r;
+
+ damon_write_rbuf(c, &t->pid, sizeof(t->pid));
+ nr = nr_damon_regions(t);
+ damon_write_rbuf(c, &nr, sizeof(nr));
+ damon_for_each_region(r, t) {
+ damon_write_rbuf(c, &r->vm_start, sizeof(r->vm_start));
+ damon_write_rbuf(c, &r->vm_end, sizeof(r->vm_end));
+ damon_write_rbuf(c, &r->nr_accesses,
+ sizeof(r->nr_accesses));
r->nr_accesses = 0;
+ }
}
}

@@ -820,6 +887,14 @@ static bool kdamond_need_stop(struct damon_ctx *ctx)
return true;
}

+static void kdamond_write_record_header(struct damon_ctx *ctx)
+{
+ int recfmt_ver = 1;
+
+ damon_write_rbuf(ctx, "damon_recfmt_ver", 16);
+ damon_write_rbuf(ctx, &recfmt_ver, sizeof(recfmt_ver));
+}
+
/*
* The monitoring daemon that runs as a kernel thread
*/
@@ -832,6 +907,9 @@ static int kdamond_fn(void *data)

pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
kdamond_init_regions(ctx);
+
+ kdamond_write_record_header(ctx);
+
while (!kdamond_need_stop(ctx)) {
kdamond_prepare_access_checks(ctx);
if (ctx->sample_cb)
@@ -852,6 +930,7 @@ static int kdamond_fn(void *data)
if (kdamond_need_update_regions(ctx))
kdamond_update_regions(ctx);
}
+ damon_flush_rbuffer(ctx);
damon_for_each_task(ctx, t) {
damon_for_each_region_safe(r, next, t)
damon_destroy_region(r);
@@ -954,6 +1033,52 @@ int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids)
return 0;
}

+/**
+ * damon_set_recording() - Set attributes for the recording.
+ * @ctx: target kdamond context
+ * @rbuf_len: length of the result buffer
+ * @rfile_path: path to the monitor result files
+ *
+ * Setting 'rbuf_len' 0 disables recording.
+ *
+ * This function should not be called while the kdamond is running.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_set_recording(struct damon_ctx *ctx,
+ unsigned int rbuf_len, char *rfile_path)
+{
+ size_t rfile_path_len;
+
+ if (rbuf_len > MAX_RECORD_BUFFER_LEN) {
+ pr_err("too long (>%d) result buffer length\n",
+ MAX_RECORD_BUFFER_LEN);
+ return -EINVAL;
+ }
+ rfile_path_len = strnlen(rfile_path, MAX_RFILE_PATH_LEN);
+ if (rfile_path_len >= MAX_RFILE_PATH_LEN) {
+ pr_err("too long (>%d) result file path %s\n",
+ MAX_RFILE_PATH_LEN, rfile_path);
+ return -EINVAL;
+ }
+ ctx->rbuf_len = rbuf_len;
+ kfree(ctx->rbuf);
+ kfree(ctx->rfile_path);
+ ctx->rfile_path = NULL;
+ if (!rbuf_len) {
+ ctx->rbuf = NULL;
+ } else {
+ ctx->rbuf = kvmalloc(rbuf_len, GFP_KERNEL);
+ if (!ctx->rbuf)
+ return -ENOMEM;
+ }
+ ctx->rfile_path = kmalloc(rfile_path_len + 1, GFP_KERNEL);
+ if (!ctx->rfile_path)
+ return -ENOMEM;
+ strncpy(ctx->rfile_path, rfile_path, rfile_path_len + 1);
+ return 0;
+}
+
/**
* damon_set_attrs() - Set attributes for the monitoring.
* @ctx: monitoring context
--
2.17.1

2020-04-27 12:11:18

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 07/15] mm/damon: Implement callbacks

From: SeongJae Park <[email protected]>

This commit implements callbacks for DAMON. Using this, DAMON users can
install their callbacks for each step of the access monitoring so that
they can do something interesting with the monitored access patterns
online. For example, callbacks can report the monitored patterns to
users or do some access pattern based memory management such as
proactive reclamations or access pattern based THP promotions/demotions
decision makings.

Signed-off-by: SeongJae Park <[email protected]>
---
include/linux/damon.h | 4 ++++
mm/damon.c | 4 ++++
2 files changed, 8 insertions(+)

diff --git a/include/linux/damon.h b/include/linux/damon.h
index 62b9f90ed87b..264569b21502 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -55,6 +55,10 @@ struct damon_ctx {
struct mutex kdamond_lock;

struct list_head tasks_list; /* 'damon_task' objects */
+
+ /* callbacks */
+ void (*sample_cb)(struct damon_ctx *context);
+ void (*aggregate_cb)(struct damon_ctx *context);
};

int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids);
diff --git a/mm/damon.c b/mm/damon.c
index 2ee93014628b..863b60e16a4a 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -834,6 +834,8 @@ static int kdamond_fn(void *data)
kdamond_init_regions(ctx);
while (!kdamond_need_stop(ctx)) {
kdamond_prepare_access_checks(ctx);
+ if (ctx->sample_cb)
+ ctx->sample_cb(ctx);

usleep_range(ctx->sample_interval, ctx->sample_interval + 1);

@@ -841,6 +843,8 @@ static int kdamond_fn(void *data)

if (kdamond_aggregate_interval_passed(ctx)) {
kdamond_merge_regions(ctx, max_nr_accesses / 10);
+ if (ctx->aggregate_cb)
+ ctx->aggregate_cb(ctx);
kdamond_reset_aggregated(ctx);
kdamond_split_regions(ctx);
}
--
2.17.1

2020-04-27 12:11:28

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 09/15] mm/damon: Add debugfs interface

From: SeongJae Park <[email protected]>

This commit adds a debugfs interface for DAMON.

DAMON exports four files, ``attrs``, ``pids``, ``record``, and
``monitor_on`` under its debugfs directory, ``<debugfs>/damon/``.

Attributes
----------

Users can read and write the ``sampling interval``, ``aggregation
interval``, ``regions update interval``, and min/max number of
monitoring target regions by reading from and writing to the ``attrs``
file. For example, below commands set those values to 5 ms, 100 ms,
1,000 ms, 10, 1000 and check it again::

# cd <debugfs>/damon
# echo 5000 100000 1000000 10 1000 > attrs
# cat attrs
5000 100000 1000000 10 1000

Target PIDs
-----------

Users can read and write the pids of current monitoring target processes
by reading from and writing to the ``pids`` file. For example, below
commands set processes having pids 42 and 4242 as the processes to be
monitored and check it again::

# cd <debugfs>/damon
# echo 42 4242 > pids
# cat pids
42 4242

Note that setting the pids doesn't start the monitoring.

Record
------

DAMON supports direct monitoring result record feature. The recorded
results are first written to a buffer and flushed to a file in batch.
Users can set the size of the buffer and the path to the result file by
reading from and writing to the ``record`` file. For example, below
commands set the buffer to be 4 KiB and the result to be saved in
'/damon.data'.

# cd <debugfs>/damon
# echo 4096 /damon.data > pids
# cat record
4096 /damon.data

Turning On/Off
--------------

You can check current status, start and stop the monitoring by reading
from and writing to the ``monitor_on`` file. Writing ``on`` to the file
starts DAMON to monitor the target processes with the attributes.
Writing ``off`` to the file stops DAMON. DAMON also stops if every
target processes is terminated. Below example commands turn on, off,
and check status of DAMON::

# cd <debugfs>/damon
# echo on > monitor_on
# echo off > monitor_on
# cat monitor_on
off

Please note that you cannot write to the ``attrs`` and ``pids`` files
while the monitoring is turned on. If you write to the files while
DAMON is running, ``-EINVAL`` will be returned.

Signed-off-by: SeongJae Park <[email protected]>
---
mm/damon.c | 351 ++++++++++++++++++++++++++++++++++++++++++++++++++++-
1 file changed, 350 insertions(+), 1 deletion(-)

diff --git a/mm/damon.c b/mm/damon.c
index 621217b58173..f810d0764840 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -10,6 +10,7 @@
#define pr_fmt(fmt) "damon: " fmt

#include <linux/damon.h>
+#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/mm.h>
@@ -50,6 +51,15 @@
/* Get a random number in [l, r) */
#define damon_rand(l, r) (l + prandom_u32() % (r - l))

+/* A monitoring context for debugfs interface users. */
+static struct damon_ctx damon_user_ctx = {
+ .sample_interval = 5 * 1000,
+ .aggr_interval = 100 * 1000,
+ .regions_update_interval = 1000 * 1000,
+ .min_nr_regions = 10,
+ .max_nr_regions = 1000,
+};
+
/*
* Construct a damon_region struct
*
@@ -1117,13 +1127,352 @@ int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
return 0;
}

-static int __init damon_init(void)
+static ssize_t debugfs_monitor_on_read(struct file *file,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ char monitor_on_buf[5];
+ bool monitor_on;
+ int len;
+
+ monitor_on = damon_kdamond_running(ctx);
+ len = snprintf(monitor_on_buf, 5, monitor_on ? "on\n" : "off\n");
+
+ return simple_read_from_buffer(buf, count, ppos, monitor_on_buf, len);
+}
+
+static ssize_t debugfs_monitor_on_write(struct file *file,
+ const char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ ssize_t ret;
+ char cmdbuf[5];
+ int err;
+
+ ret = simple_write_to_buffer(cmdbuf, 5, ppos, buf, count);
+ if (ret < 0)
+ return ret;
+
+ if (sscanf(cmdbuf, "%s", cmdbuf) != 1)
+ return -EINVAL;
+ if (!strncmp(cmdbuf, "on", 5))
+ err = damon_start(ctx);
+ else if (!strncmp(cmdbuf, "off", 5))
+ err = damon_stop(ctx);
+ else
+ return -EINVAL;
+
+ if (err)
+ ret = err;
+ return ret;
+}
+
+static ssize_t damon_sprint_pids(struct damon_ctx *ctx, char *buf, ssize_t len)
+{
+ struct damon_task *t;
+ int written = 0;
+ int rc;
+
+ damon_for_each_task(ctx, t) {
+ rc = snprintf(&buf[written], len - written, "%d ", t->pid);
+ if (!rc)
+ return -ENOMEM;
+ written += rc;
+ }
+ if (written)
+ written -= 1;
+ written += snprintf(&buf[written], len - written, "\n");
+ return written;
+}
+
+static ssize_t debugfs_pids_read(struct file *file,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ ssize_t len;
+ char pids_buf[320];
+
+ len = damon_sprint_pids(ctx, pids_buf, 320);
+ if (len < 0)
+ return len;
+
+ return simple_read_from_buffer(buf, count, ppos, pids_buf, len);
+}
+
+/*
+ * Converts a string into an array of unsigned long integers
+ *
+ * Returns an array of unsigned long integers if the conversion success, or
+ * NULL otherwise.
+ */
+static int *str_to_pids(const char *str, ssize_t len, ssize_t *nr_pids)
+{
+ int *pids;
+ const int max_nr_pids = 32;
+ int pid;
+ int pos = 0, parsed, ret;
+
+ *nr_pids = 0;
+ pids = kmalloc_array(max_nr_pids, sizeof(pid), GFP_KERNEL);
+ if (!pids)
+ return NULL;
+ while (*nr_pids < max_nr_pids && pos < len) {
+ ret = sscanf(&str[pos], "%d%n", &pid, &parsed);
+ pos += parsed;
+ if (ret != 1)
+ break;
+ pids[*nr_pids] = pid;
+ *nr_pids += 1;
+ }
+ if (*nr_pids == 0) {
+ kfree(pids);
+ pids = NULL;
+ }
+
+ return pids;
+}
+
+static ssize_t debugfs_pids_write(struct file *file,
+ const char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ char *kbuf;
+ int *targets;
+ ssize_t nr_targets;
+ ssize_t ret;
+ int err;
+
+ kbuf = kmalloc(count, GFP_KERNEL);
+ if (!kbuf)
+ return -ENOMEM;
+
+ ret = simple_write_to_buffer(kbuf, count, ppos, buf, count);
+ if (ret < 0)
+ goto out;
+
+ targets = str_to_pids(kbuf, ret, &nr_targets);
+ if (!targets) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ mutex_lock(&ctx->kdamond_lock);
+ if (ctx->kdamond) {
+ ret = -EINVAL;
+ goto unlock_out;
+ }
+
+ err = damon_set_pids(ctx, targets, nr_targets);
+ if (err)
+ ret = err;
+unlock_out:
+ mutex_unlock(&ctx->kdamond_lock);
+ kfree(targets);
+out:
+ kfree(kbuf);
+ return ret;
+}
+
+static ssize_t debugfs_record_read(struct file *file,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ char record_buf[20 + MAX_RFILE_PATH_LEN];
+ int ret;
+
+ ret = snprintf(record_buf, ARRAY_SIZE(record_buf), "%u %s\n",
+ ctx->rbuf_len, ctx->rfile_path);
+ return simple_read_from_buffer(buf, count, ppos, record_buf, ret);
+}
+
+static ssize_t debugfs_record_write(struct file *file,
+ const char __user *buf, size_t count, loff_t *ppos)
{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ char *kbuf;
+ unsigned int rbuf_len;
+ char rfile_path[MAX_RFILE_PATH_LEN];
+ ssize_t ret;
+ int err;
+
+ kbuf = kmalloc(count + 1, GFP_KERNEL);
+ if (!kbuf)
+ return -ENOMEM;
+ kbuf[count] = '\0';
+
+ ret = simple_write_to_buffer(kbuf, count, ppos, buf, count);
+ if (ret < 0)
+ goto out;
+ if (sscanf(kbuf, "%u %s",
+ &rbuf_len, rfile_path) != 2) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ mutex_lock(&ctx->kdamond_lock);
+ if (ctx->kdamond) {
+ ret = -EBUSY;
+ goto unlock_out;
+ }
+
+ err = damon_set_recording(ctx, rbuf_len, rfile_path);
+ if (err)
+ ret = err;
+unlock_out:
+ mutex_unlock(&ctx->kdamond_lock);
+out:
+ kfree(kbuf);
+ return ret;
+}
+
+
+static ssize_t debugfs_attrs_read(struct file *file,
+ char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ char kbuf[128];
+ int ret;
+
+ ret = snprintf(kbuf, ARRAY_SIZE(kbuf), "%lu %lu %lu %lu %lu\n",
+ ctx->sample_interval, ctx->aggr_interval,
+ ctx->regions_update_interval, ctx->min_nr_regions,
+ ctx->max_nr_regions);
+
+ return simple_read_from_buffer(buf, count, ppos, kbuf, ret);
+}
+
+static ssize_t debugfs_attrs_write(struct file *file,
+ const char __user *buf, size_t count, loff_t *ppos)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ unsigned long s, a, r, minr, maxr;
+ char *kbuf;
+ ssize_t ret;
+ int err;
+
+ kbuf = kmalloc(count, GFP_KERNEL);
+ if (!kbuf)
+ return -ENOMEM;
+
+ ret = simple_write_to_buffer(kbuf, count, ppos, buf, count);
+ if (ret < 0)
+ goto out;
+
+ if (sscanf(kbuf, "%lu %lu %lu %lu %lu",
+ &s, &a, &r, &minr, &maxr) != 5) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ mutex_lock(&ctx->kdamond_lock);
+ if (ctx->kdamond) {
+ ret = -EBUSY;
+ goto unlock_out;
+ }
+
+ err = damon_set_attrs(ctx, s, a, r, minr, maxr);
+ if (err)
+ ret = err;
+unlock_out:
+ mutex_unlock(&ctx->kdamond_lock);
+out:
+ kfree(kbuf);
+ return ret;
+}
+
+static const struct file_operations monitor_on_fops = {
+ .owner = THIS_MODULE,
+ .read = debugfs_monitor_on_read,
+ .write = debugfs_monitor_on_write,
+};
+
+static const struct file_operations pids_fops = {
+ .owner = THIS_MODULE,
+ .read = debugfs_pids_read,
+ .write = debugfs_pids_write,
+};
+
+static const struct file_operations record_fops = {
+ .owner = THIS_MODULE,
+ .read = debugfs_record_read,
+ .write = debugfs_record_write,
+};
+
+static const struct file_operations attrs_fops = {
+ .owner = THIS_MODULE,
+ .read = debugfs_attrs_read,
+ .write = debugfs_attrs_write,
+};
+
+static struct dentry *debugfs_root;
+
+static int __init damon_debugfs_init(void)
+{
+ const char * const file_names[] = {"attrs", "record",
+ "pids", "monitor_on"};
+ const struct file_operations *fops[] = {&attrs_fops, &record_fops,
+ &pids_fops, &monitor_on_fops};
+ int i;
+
+ debugfs_root = debugfs_create_dir("damon", NULL);
+ if (!debugfs_root) {
+ pr_err("failed to create the debugfs dir\n");
+ return -ENOMEM;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(file_names); i++) {
+ if (!debugfs_create_file(file_names[i], 0600, debugfs_root,
+ NULL, fops[i])) {
+ pr_err("failed to create %s file\n", file_names[i]);
+ return -ENOMEM;
+ }
+ }
+
return 0;
}

+static int __init damon_init_user_ctx(void)
+{
+ int rc;
+
+ struct damon_ctx *ctx = &damon_user_ctx;
+
+ ktime_get_coarse_ts64(&ctx->last_aggregation);
+ ctx->last_regions_update = ctx->last_aggregation;
+
+ rc = damon_set_recording(ctx, 1024 * 1024, "/damon.data");
+ if (rc)
+ return rc;
+
+ mutex_init(&ctx->kdamond_lock);
+
+ INIT_LIST_HEAD(&ctx->tasks_list);
+
+ return 0;
+}
+
+static int __init damon_init(void)
+{
+ int rc;
+
+ rc = damon_init_user_ctx();
+ if (rc)
+ return rc;
+
+ rc = damon_debugfs_init();
+ if (rc)
+ pr_err("%s: debugfs init failed\n", __func__);
+
+ return rc;
+}
+
static void __exit damon_exit(void)
{
+ damon_stop(&damon_user_ctx);
+ debugfs_remove_recursive(debugfs_root);
+
+ kfree(damon_user_ctx.rbuf);
+ kfree(damon_user_ctx.rfile_path);
}

module_init(damon_init);
--
2.17.1

2020-04-27 12:11:55

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 10/15] mm/damon: Add tracepoints

From: SeongJae Park <[email protected]>

This commit adds a tracepoint for DAMON. It traces the monitoring
results of each region for each aggregation interval. Using this, DAMON
will be easily integrated with any tracepoints supporting tools such as
perf.

Signed-off-by: SeongJae Park <[email protected]>
---
include/trace/events/damon.h | 43 ++++++++++++++++++++++++++++++++++++
mm/damon.c | 5 +++++
2 files changed, 48 insertions(+)
create mode 100644 include/trace/events/damon.h

diff --git a/include/trace/events/damon.h b/include/trace/events/damon.h
new file mode 100644
index 000000000000..22236642d366
--- /dev/null
+++ b/include/trace/events/damon.h
@@ -0,0 +1,43 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM damon
+
+#if !defined(_TRACE_DAMON_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_DAMON_H
+
+#include <linux/types.h>
+#include <linux/tracepoint.h>
+
+TRACE_EVENT(damon_aggregated,
+
+ TP_PROTO(int pid, unsigned int nr_regions,
+ unsigned long vm_start, unsigned long vm_end,
+ unsigned int nr_accesses),
+
+ TP_ARGS(pid, nr_regions, vm_start, vm_end, nr_accesses),
+
+ TP_STRUCT__entry(
+ __field(int, pid)
+ __field(unsigned int, nr_regions)
+ __field(unsigned long, vm_start)
+ __field(unsigned long, vm_end)
+ __field(unsigned int, nr_accesses)
+ ),
+
+ TP_fast_assign(
+ __entry->pid = pid;
+ __entry->nr_regions = nr_regions;
+ __entry->vm_start = vm_start;
+ __entry->vm_end = vm_end;
+ __entry->nr_accesses = nr_accesses;
+ ),
+
+ TP_printk("pid=%d nr_regions=%u %lu-%lu: %u", __entry->pid,
+ __entry->nr_regions, __entry->vm_start,
+ __entry->vm_end, __entry->nr_accesses)
+);
+
+#endif /* _TRACE_DAMON_H */
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/mm/damon.c b/mm/damon.c
index f810d0764840..6829b2d1166f 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -9,6 +9,8 @@

#define pr_fmt(fmt) "damon: " fmt

+#define CREATE_TRACE_POINTS
+
#include <linux/damon.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
@@ -20,6 +22,7 @@
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/slab.h>
+#include <trace/events/damon.h>

/* Minimal region size. Every damon_region is aligned by this. */
#define MIN_REGION PAGE_SIZE
@@ -650,6 +653,8 @@ static void kdamond_reset_aggregated(struct damon_ctx *c)
damon_write_rbuf(c, &r->vm_end, sizeof(r->vm_end));
damon_write_rbuf(c, &r->nr_accesses,
sizeof(r->nr_accesses));
+ trace_damon_aggregated(t->pid, nr,
+ r->vm_start, r->vm_end, r->nr_accesses);
r->nr_accesses = 0;
}
}
--
2.17.1

2020-04-27 12:12:38

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 11/15] tools: Add a minimal user-space tool for DAMON

From: SeongJae Park <[email protected]>

This commit adds a shallow wrapper python script, ``/tools/damon/damo``
that provides more convenient interface. Note that it is only aimed to
be used for minimal reference of the DAMON's debugfs interfaces and for
debugging of the DAMON itself.

Signed-off-by: SeongJae Park <[email protected]>
---
tools/damon/.gitignore | 1 +
tools/damon/_dist.py | 36 ++++
tools/damon/_recfile.py | 23 +++
tools/damon/bin2txt.py | 67 +++++++
tools/damon/damo | 37 ++++
tools/damon/heats.py | 362 ++++++++++++++++++++++++++++++++++++++
tools/damon/nr_regions.py | 91 ++++++++++
tools/damon/record.py | 212 ++++++++++++++++++++++
tools/damon/report.py | 45 +++++
tools/damon/wss.py | 97 ++++++++++
10 files changed, 971 insertions(+)
create mode 100644 tools/damon/.gitignore
create mode 100644 tools/damon/_dist.py
create mode 100644 tools/damon/_recfile.py
create mode 100644 tools/damon/bin2txt.py
create mode 100755 tools/damon/damo
create mode 100644 tools/damon/heats.py
create mode 100644 tools/damon/nr_regions.py
create mode 100644 tools/damon/record.py
create mode 100644 tools/damon/report.py
create mode 100644 tools/damon/wss.py

diff --git a/tools/damon/.gitignore b/tools/damon/.gitignore
new file mode 100644
index 000000000000..96403d36ff93
--- /dev/null
+++ b/tools/damon/.gitignore
@@ -0,0 +1 @@
+__pycache__/*
diff --git a/tools/damon/_dist.py b/tools/damon/_dist.py
new file mode 100644
index 000000000000..9851ec964e5c
--- /dev/null
+++ b/tools/damon/_dist.py
@@ -0,0 +1,36 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+import os
+import struct
+import subprocess
+
+def access_patterns(f):
+ nr_regions = struct.unpack('I', f.read(4))[0]
+
+ patterns = []
+ for r in range(nr_regions):
+ saddr = struct.unpack('L', f.read(8))[0]
+ eaddr = struct.unpack('L', f.read(8))[0]
+ nr_accesses = struct.unpack('I', f.read(4))[0]
+ patterns.append([eaddr - saddr, nr_accesses])
+ return patterns
+
+def plot_dist(data_file, output_file, xlabel, ylabel):
+ terminal = output_file.split('.')[-1]
+ if not terminal in ['pdf', 'jpeg', 'png', 'svg']:
+ os.remove(data_file)
+ print("Unsupported plot output type.")
+ exit(-1)
+
+ gnuplot_cmd = """
+ set term %s;
+ set output '%s';
+ set key off;
+ set xlabel '%s';
+ set ylabel '%s';
+ plot '%s' with linespoints;""" % (terminal, output_file, xlabel, ylabel,
+ data_file)
+ subprocess.call(['gnuplot', '-e', gnuplot_cmd])
+ os.remove(data_file)
+
diff --git a/tools/damon/_recfile.py b/tools/damon/_recfile.py
new file mode 100644
index 000000000000..331b4d8165d8
--- /dev/null
+++ b/tools/damon/_recfile.py
@@ -0,0 +1,23 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+import struct
+
+fmt_version = 0
+
+def set_fmt_version(f):
+ global fmt_version
+
+ mark = f.read(16)
+ if mark == b'damon_recfmt_ver':
+ fmt_version = struct.unpack('i', f.read(4))[0]
+ else:
+ fmt_version = 0
+ f.seek(0)
+ return fmt_version
+
+def pid(f):
+ if fmt_version == 0:
+ return struct.unpack('L', f.read(8))[0]
+ else:
+ return struct.unpack('i', f.read(4))[0]
diff --git a/tools/damon/bin2txt.py b/tools/damon/bin2txt.py
new file mode 100644
index 000000000000..8b9b57a0d727
--- /dev/null
+++ b/tools/damon/bin2txt.py
@@ -0,0 +1,67 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+import argparse
+import os
+import struct
+import sys
+
+import _recfile
+
+def parse_time(bindat):
+ "bindat should be 16 bytes"
+ sec = struct.unpack('l', bindat[0:8])[0]
+ nsec = struct.unpack('l', bindat[8:16])[0]
+ return sec * 1000000000 + nsec;
+
+def pr_region(f):
+ saddr = struct.unpack('L', f.read(8))[0]
+ eaddr = struct.unpack('L', f.read(8))[0]
+ nr_accesses = struct.unpack('I', f.read(4))[0]
+ print("%012x-%012x(%10d):\t%d" %
+ (saddr, eaddr, eaddr - saddr, nr_accesses))
+
+def pr_task_info(f):
+ pid = _recfile.pid(f)
+ print("pid: ", pid)
+ nr_regions = struct.unpack('I', f.read(4))[0]
+ print("nr_regions: ", nr_regions)
+ for r in range(nr_regions):
+ pr_region(f)
+
+def set_argparser(parser):
+ parser.add_argument('--input', '-i', type=str, metavar='<file>',
+ default='damon.data', help='input file name')
+
+def main(args=None):
+ if not args:
+ parser = argparse.ArgumentParser()
+ set_argparser(parser)
+ args = parser.parse_args()
+
+ file_path = args.input
+
+ if not os.path.isfile(file_path):
+ print('input file (%s) is not exist' % file_path)
+ exit(1)
+
+ with open(file_path, 'rb') as f:
+ _recfile.set_fmt_version(f)
+ start_time = None
+ while True:
+ timebin = f.read(16)
+ if len(timebin) != 16:
+ break
+ time = parse_time(timebin)
+ if not start_time:
+ start_time = time
+ print("start_time: ", start_time)
+ print("rel time: %16d" % (time - start_time))
+ nr_tasks = struct.unpack('I', f.read(4))[0]
+ print("nr_tasks: ", nr_tasks)
+ for t in range(nr_tasks):
+ pr_task_info(f)
+ print("")
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/damon/damo b/tools/damon/damo
new file mode 100755
index 000000000000..58e1099ae5fc
--- /dev/null
+++ b/tools/damon/damo
@@ -0,0 +1,37 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+import argparse
+
+import record
+import report
+
+class SubCmdHelpFormatter(argparse.RawDescriptionHelpFormatter):
+ def _format_action(self, action):
+ parts = super(argparse.RawDescriptionHelpFormatter,
+ self)._format_action(action)
+ # skip sub parsers help
+ if action.nargs == argparse.PARSER:
+ parts = '\n'.join(parts.split('\n')[1:])
+ return parts
+
+parser = argparse.ArgumentParser(formatter_class=SubCmdHelpFormatter)
+
+subparser = parser.add_subparsers(title='command', dest='command',
+ metavar='<command>')
+subparser.required = True
+
+parser_record = subparser.add_parser('record',
+ help='record data accesses of the given target processes')
+record.set_argparser(parser_record)
+
+parser_report = subparser.add_parser('report',
+ help='report the recorded data accesses in the specified form')
+report.set_argparser(parser_report)
+
+args = parser.parse_args()
+
+if args.command == 'record':
+ record.main(args)
+elif args.command == 'report':
+ report.main(args)
diff --git a/tools/damon/heats.py b/tools/damon/heats.py
new file mode 100644
index 000000000000..99837083874e
--- /dev/null
+++ b/tools/damon/heats.py
@@ -0,0 +1,362 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+"""
+Transform binary trace data into human readable text that can be used for
+heatmap drawing, or directly plot the data in a heatmap format.
+
+Format of the text is:
+
+ <time> <space> <heat>
+ ...
+
+"""
+
+import argparse
+import os
+import struct
+import subprocess
+import sys
+import tempfile
+
+import _recfile
+
+class HeatSample:
+ space_idx = None
+ sz_time_space = None
+ heat = None
+
+ def __init__(self, space_idx, sz_time_space, heat):
+ if sz_time_space < 0:
+ raise RuntimeError()
+ self.space_idx = space_idx
+ self.sz_time_space = sz_time_space
+ self.heat = heat
+
+ def total_heat(self):
+ return self.heat * self.sz_time_space
+
+ def merge(self, sample):
+ "sample must have a space idx that same to self"
+ heat_sum = self.total_heat() + sample.total_heat()
+ self.heat = heat_sum / (self.sz_time_space + sample.sz_time_space)
+ self.sz_time_space += sample.sz_time_space
+
+def pr_samples(samples, time_idx, time_unit, region_unit):
+ display_time = time_idx * time_unit
+ for idx, sample in enumerate(samples):
+ display_addr = idx * region_unit
+ if not sample:
+ print("%s\t%s\t%s" % (display_time, display_addr, 0.0))
+ continue
+ print("%s\t%s\t%s" % (display_time, display_addr, sample.total_heat() /
+ time_unit / region_unit))
+
+def to_idx(value, min_, unit):
+ return (value - min_) // unit
+
+def read_task_heats(f, pid, aunit, amin, amax):
+ pid_ = _recfile.pid(f)
+ nr_regions = struct.unpack('I', f.read(4))[0]
+ if pid_ != pid:
+ f.read(20 * nr_regions)
+ return None
+ samples = []
+ for i in range(nr_regions):
+ saddr = struct.unpack('L', f.read(8))[0]
+ eaddr = struct.unpack('L', f.read(8))[0]
+ eaddr = min(eaddr, amax - 1)
+ heat = struct.unpack('I', f.read(4))[0]
+
+ if eaddr <= amin:
+ continue
+ if saddr >= amax:
+ continue
+ saddr = max(amin, saddr)
+ eaddr = min(amax, eaddr)
+
+ sidx = to_idx(saddr, amin, aunit)
+ eidx = to_idx(eaddr - 1, amin, aunit)
+ for idx in range(sidx, eidx + 1):
+ sa = max(amin + idx * aunit, saddr)
+ ea = min(amin + (idx + 1) * aunit, eaddr)
+ sample = HeatSample(idx, (ea - sa), heat)
+ samples.append(sample)
+ return samples
+
+def parse_time(bindat):
+ sec = struct.unpack('l', bindat[0:8])[0]
+ nsec = struct.unpack('l', bindat[8:16])[0]
+ return sec * 1000000000 + nsec
+
+def apply_samples(target_samples, samples, start_time, end_time, aunit, amin):
+ for s in samples:
+ sample = HeatSample(s.space_idx,
+ s.sz_time_space * (end_time - start_time), s.heat)
+ idx = sample.space_idx
+ if not target_samples[idx]:
+ target_samples[idx] = sample
+ else:
+ target_samples[idx].merge(sample)
+
+def __pr_heats(f, pid, tunit, tmin, tmax, aunit, amin, amax):
+ heat_samples = [None] * ((amax - amin) // aunit)
+
+ start_time = 0
+ end_time = 0
+ last_flushed = -1
+ while True:
+ start_time = end_time
+ timebin = f.read(16)
+ if (len(timebin)) != 16:
+ break
+ end_time = parse_time(timebin)
+ nr_tasks = struct.unpack('I', f.read(4))[0]
+ samples_set = {}
+ for t in range(nr_tasks):
+ samples = read_task_heats(f, pid, aunit, amin, amax)
+ if samples:
+ samples_set[pid] = samples
+ if not pid in samples_set:
+ continue
+ if start_time >= tmax:
+ continue
+ if end_time <= tmin:
+ continue
+ start_time = max(start_time, tmin)
+ end_time = min(end_time, tmax)
+
+ sidx = to_idx(start_time, tmin, tunit)
+ eidx = to_idx(end_time - 1, tmin, tunit)
+ for idx in range(sidx, eidx + 1):
+ if idx != last_flushed:
+ pr_samples(heat_samples, idx, tunit, aunit)
+ heat_samples = [None] * ((amax - amin) // aunit)
+ last_flushed = idx
+ st = max(start_time, tmin + idx * tunit)
+ et = min(end_time, tmin + (idx + 1) * tunit)
+ apply_samples(heat_samples, samples_set[pid], st, et, aunit, amin)
+
+def pr_heats(args):
+ binfile = args.input
+ pid = args.pid
+ tres = args.tres
+ tmin = args.tmin
+ ares = args.ares
+ amin = args.amin
+
+ tunit = (args.tmax - tmin) // tres
+ aunit = (args.amax - amin) // ares
+
+ # Compensate the values so that those fit with the resolution
+ tmax = tmin + tunit * tres
+ amax = amin + aunit * ares
+
+ with open(binfile, 'rb') as f:
+ _recfile.set_fmt_version(f)
+ __pr_heats(f, pid, tunit, tmin, tmax, aunit, amin, amax)
+
+class GuideInfo:
+ pid = None
+ start_time = None
+ end_time = None
+ lowest_addr = None
+ highest_addr = None
+ gaps = None
+
+ def __init__(self, pid, start_time):
+ self.pid = pid
+ self.start_time = start_time
+ self.gaps = []
+
+ def regions(self):
+ regions = []
+ region = [self.lowest_addr]
+ for gap in self.gaps:
+ for idx, point in enumerate(gap):
+ if idx == 0:
+ region.append(point)
+ regions.append(region)
+ else:
+ region = [point]
+ region.append(self.highest_addr)
+ regions.append(region)
+ return regions
+
+ def total_space(self):
+ ret = 0
+ for r in self.regions():
+ ret += r[1] - r[0]
+ return ret
+
+ def __str__(self):
+ lines = ['pid:%d' % self.pid]
+ lines.append('time: %d-%d (%d)' % (self.start_time, self.end_time,
+ self.end_time - self.start_time))
+ for idx, region in enumerate(self.regions()):
+ lines.append('region\t%2d: %020d-%020d (%d)' %
+ (idx, region[0], region[1], region[1] - region[0]))
+ return '\n'.join(lines)
+
+def is_overlap(region1, region2):
+ if region1[1] < region2[0]:
+ return False
+ if region2[1] < region1[0]:
+ return False
+ return True
+
+def overlap_region_of(region1, region2):
+ return [max(region1[0], region2[0]), min(region1[1], region2[1])]
+
+def overlapping_regions(regions1, regions2):
+ overlap_regions = []
+ for r1 in regions1:
+ for r2 in regions2:
+ if is_overlap(r1, r2):
+ r1 = overlap_region_of(r1, r2)
+ if r1:
+ overlap_regions.append(r1)
+ return overlap_regions
+
+def get_guide_info(binfile):
+ "Read file, return the set of guide information objects of the data"
+ guides = {}
+ with open(binfile, 'rb') as f:
+ _recfile.set_fmt_version(f)
+ while True:
+ timebin = f.read(16)
+ if len(timebin) != 16:
+ break
+ monitor_time = parse_time(timebin)
+ nr_tasks = struct.unpack('I', f.read(4))[0]
+ for t in range(nr_tasks):
+ pid = _recfile.pid(f)
+ nr_regions = struct.unpack('I', f.read(4))[0]
+ if not pid in guides:
+ guides[pid] = GuideInfo(pid, monitor_time)
+ guide = guides[pid]
+ guide.end_time = monitor_time
+
+ last_addr = None
+ gaps = []
+ for r in range(nr_regions):
+ saddr = struct.unpack('L', f.read(8))[0]
+ eaddr = struct.unpack('L', f.read(8))[0]
+ f.read(4)
+
+ if not guide.lowest_addr or saddr < guide.lowest_addr:
+ guide.lowest_addr = saddr
+ if not guide.highest_addr or eaddr > guide.highest_addr:
+ guide.highest_addr = eaddr
+
+ if not last_addr:
+ last_addr = eaddr
+ continue
+ if last_addr != saddr:
+ gaps.append([last_addr, saddr])
+ last_addr = eaddr
+
+ if not guide.gaps:
+ guide.gaps = gaps
+ else:
+ guide.gaps = overlapping_regions(guide.gaps, gaps)
+ return sorted(list(guides.values()), key=lambda x: x.total_space(),
+ reverse=True)
+
+def pr_guide(binfile):
+ for guide in get_guide_info(binfile):
+ print(guide)
+
+def region_sort_key(region):
+ return region[1] - region[0]
+
+def set_missed_args(args):
+ if args.pid and args.tmin and args.tmax and args.amin and args.amax:
+ return
+ guides = get_guide_info(args.input)
+ guide = guides[0]
+ if not args.pid:
+ args.pid = guide.pid
+ for g in guides:
+ if g.pid == args.pid:
+ guide = g
+ break
+
+ if not args.tmin:
+ args.tmin = guide.start_time
+ if not args.tmax:
+ args.tmax = guide.end_time
+
+ if not args.amin or not args.amax:
+ region = sorted(guide.regions(), key=lambda x: x[1] - x[0],
+ reverse=True)[0]
+ args.amin = region[0]
+ args.amax = region[1]
+
+def plot_heatmap(data_file, output_file):
+ terminal = output_file.split('.')[-1]
+ if not terminal in ['pdf', 'jpeg', 'png', 'svg']:
+ os.remove(data_file)
+ print("Unsupported plot output type.")
+ exit(-1)
+
+ gnuplot_cmd = """
+ set term %s;
+ set output '%s';
+ set key off;
+ set xrange [0:];
+ set yrange [0:];
+ set xlabel 'Time (ns)';
+ set ylabel 'Virtual Address (bytes)';
+ plot '%s' using 1:2:3 with image;""" % (terminal, output_file, data_file)
+ subprocess.call(['gnuplot', '-e', gnuplot_cmd])
+ os.remove(data_file)
+
+def set_argparser(parser):
+ parser.add_argument('--input', '-i', type=str, metavar='<file>',
+ default='damon.data', help='input file name')
+ parser.add_argument('--pid', metavar='<pid>', type=int,
+ help='pid of target task')
+ parser.add_argument('--tres', metavar='<resolution>', type=int,
+ default=500, help='time resolution of the output')
+ parser.add_argument('--tmin', metavar='<time>', type=lambda x: int(x,0),
+ help='minimal time of the output')
+ parser.add_argument('--tmax', metavar='<time>', type=lambda x: int(x,0),
+ help='maximum time of the output')
+ parser.add_argument('--ares', metavar='<resolution>', type=int, default=500,
+ help='space address resolution of the output')
+ parser.add_argument('--amin', metavar='<address>', type=lambda x: int(x,0),
+ help='minimal space address of the output')
+ parser.add_argument('--amax', metavar='<address>', type=lambda x: int(x,0),
+ help='maximum space address of the output')
+ parser.add_argument('--guide', action='store_true',
+ help='print a guidance for the min/max/resolution settings')
+ parser.add_argument('--heatmap', metavar='<file>', type=str,
+ help='heatmap image file to create')
+
+def main(args=None):
+ if not args:
+ parser = argparse.ArgumentParser()
+ set_argparser(parser)
+ args = parser.parse_args()
+
+ if args.guide:
+ pr_guide(args.input)
+ else:
+ set_missed_args(args)
+ orig_stdout = sys.stdout
+ if args.heatmap:
+ tmp_path = tempfile.mkstemp()[1]
+ tmp_file = open(tmp_path, 'w')
+ sys.stdout = tmp_file
+
+ pr_heats(args)
+
+ if args.heatmap:
+ sys.stdout = orig_stdout
+ tmp_file.flush()
+ tmp_file.close()
+ plot_heatmap(tmp_path, args.heatmap)
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/damon/nr_regions.py b/tools/damon/nr_regions.py
new file mode 100644
index 000000000000..655ee50a7b8d
--- /dev/null
+++ b/tools/damon/nr_regions.py
@@ -0,0 +1,91 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+"Print out distribution of the number of regions in the given record"
+
+import argparse
+import struct
+import sys
+import tempfile
+
+import _dist
+import _recfile
+
+def set_argparser(parser):
+ parser.add_argument('--input', '-i', type=str, metavar='<file>',
+ default='damon.data', help='input file name')
+ parser.add_argument('--range', '-r', type=int, nargs=3,
+ metavar=('<start>', '<stop>', '<step>'),
+ help='range of percentiles to print')
+ parser.add_argument('--sortby', '-s', choices=['time', 'size'],
+ help='the metric to be used for sorting the number of regions')
+ parser.add_argument('--plot', '-p', type=str, metavar='<file>',
+ help='plot the distribution to an image file')
+
+def main(args=None):
+ if not args:
+ parser = argparse.ArgumentParser()
+ set_argparser(parser)
+ args = parser.parse_args()
+
+ percentiles = [0, 25, 50, 75, 100]
+
+ file_path = args.input
+ if args.range:
+ percentiles = range(args.range[0], args.range[1], args.range[2])
+ nr_regions_sort = True
+ if args.sortby == 'time':
+ nr_regions_sort = False
+
+ pid_pattern_map = {}
+ with open(file_path, 'rb') as f:
+ _recfile.set_fmt_version(f)
+ start_time = None
+ while True:
+ timebin = f.read(16)
+ if len(timebin) != 16:
+ break
+ nr_tasks = struct.unpack('I', f.read(4))[0]
+ for t in range(nr_tasks):
+ pid = _recfile.pid(f)
+ if not pid in pid_pattern_map:
+ pid_pattern_map[pid] = []
+ pid_pattern_map[pid].append(_dist.access_patterns(f))
+
+ orig_stdout = sys.stdout
+ if args.plot:
+ tmp_path = tempfile.mkstemp()[1]
+ tmp_file = open(tmp_path, 'w')
+ sys.stdout = tmp_file
+
+ print('# <percentile> <# regions>')
+ for pid in pid_pattern_map.keys():
+ # Skip firs 20 regions as those would not adaptively adjusted
+ snapshots = pid_pattern_map[pid][20:]
+ nr_regions_dist = []
+ for snapshot in snapshots:
+ nr_regions_dist.append(len(snapshot))
+ if nr_regions_sort:
+ nr_regions_dist.sort(reverse=False)
+
+ print('# pid\t%s' % pid)
+ print('# avr:\t%d' % (sum(nr_regions_dist) / len(nr_regions_dist)))
+ for percentile in percentiles:
+ thres_idx = int(percentile / 100.0 * len(nr_regions_dist))
+ if thres_idx == len(nr_regions_dist):
+ thres_idx -= 1
+ threshold = nr_regions_dist[thres_idx]
+ print('%d\t%d' % (percentile, nr_regions_dist[thres_idx]))
+
+ if args.plot:
+ sys.stdout = orig_stdout
+ tmp_file.flush()
+ tmp_file.close()
+ xlabel = 'runtime (percent)'
+ if nr_regions_sort:
+ xlabel = 'percentile'
+ _dist.plot_dist(tmp_path, args.plot, xlabel,
+ 'number of monitoring target regions')
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/damon/record.py b/tools/damon/record.py
new file mode 100644
index 000000000000..a547d479a103
--- /dev/null
+++ b/tools/damon/record.py
@@ -0,0 +1,212 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+"""
+Record data access patterns of the target process.
+"""
+
+import argparse
+import copy
+import os
+import signal
+import subprocess
+import time
+
+debugfs_attrs = None
+debugfs_record = None
+debugfs_pids = None
+debugfs_monitor_on = None
+
+def set_target_pid(pid):
+ return subprocess.call('echo %s > %s' % (pid, debugfs_pids), shell=True,
+ executable='/bin/bash')
+
+def turn_damon(on_off):
+ return subprocess.call("echo %s > %s" % (on_off, debugfs_monitor_on),
+ shell=True, executable="/bin/bash")
+
+def is_damon_running():
+ with open(debugfs_monitor_on, 'r') as f:
+ return f.read().strip() == 'on'
+
+def do_record(target, is_target_cmd, attrs, old_attrs):
+ if os.path.isfile(attrs.rfile_path):
+ os.rename(attrs.rfile_path, attrs.rfile_path + '.old')
+
+ if attrs.apply():
+ print('attributes (%s) failed to be applied' % attrs)
+ cleanup_exit(old_attrs, -1)
+ print('# damon attrs: %s' % attrs)
+ if is_target_cmd:
+ p = subprocess.Popen(target, shell=True, executable='/bin/bash')
+ target = p.pid
+ if set_target_pid(target):
+ print('pid setting (%s) failed' % target)
+ cleanup_exit(old_attrs, -2)
+ if turn_damon('on'):
+ print('could not turn on damon' % target)
+ cleanup_exit(old_attrs, -3)
+ if is_target_cmd:
+ p.wait()
+ while True:
+ # damon will turn it off by itself if the target tasks are terminated.
+ if not is_damon_running():
+ break
+ time.sleep(1)
+
+ cleanup_exit(old_attrs, 0)
+
+class Attrs:
+ sample_interval = None
+ aggr_interval = None
+ regions_update_interval = None
+ min_nr_regions = None
+ max_nr_regions = None
+ rbuf_len = None
+ rfile_path = None
+
+ def __init__(self, s, a, r, n, x, l, f):
+ self.sample_interval = s
+ self.aggr_interval = a
+ self.regions_update_interval = r
+ self.min_nr_regions = n
+ self.max_nr_regions = x
+ self.rbuf_len = l
+ self.rfile_path = f
+
+ def __str__(self):
+ return "%s %s %s %s %s %s %s" % (self.sample_interval, self.aggr_interval,
+ self.regions_update_interval, self.min_nr_regions,
+ self.max_nr_regions, self.rbuf_len, self.rfile_path)
+
+ def attr_str(self):
+ return "%s %s %s %s %s " % (self.sample_interval, self.aggr_interval,
+ self.regions_update_interval, self.min_nr_regions,
+ self.max_nr_regions)
+
+ def record_str(self):
+ return '%s %s ' % (self.rbuf_len, self.rfile_path)
+
+ def apply(self):
+ ret = subprocess.call('echo %s > %s' % (self.attr_str(), debugfs_attrs),
+ shell=True, executable='/bin/bash')
+ if ret:
+ return ret
+ return subprocess.call('echo %s > %s' % (self.record_str(),
+ debugfs_record), shell=True, executable='/bin/bash')
+
+def current_attrs():
+ with open(debugfs_attrs, 'r') as f:
+ attrs = f.read().split()
+ attrs = [int(x) for x in attrs]
+
+ with open(debugfs_record, 'r') as f:
+ rattrs = f.read().split()
+ attrs.append(int(rattrs[0]))
+ attrs.append(rattrs[1])
+ return Attrs(*attrs)
+
+def cmd_args_to_attrs(args):
+ "Generate attributes with specified arguments"
+ sample_interval = args.sample
+ aggr_interval = args.aggr
+ regions_update_interval = args.updr
+ min_nr_regions = args.minr
+ max_nr_regions = args.maxr
+ rbuf_len = args.rbuf
+ if not os.path.isabs(args.out):
+ args.out = os.path.join(os.getcwd(), args.out)
+ rfile_path = args.out
+ return Attrs(sample_interval, aggr_interval, regions_update_interval,
+ min_nr_regions, max_nr_regions, rbuf_len, rfile_path)
+
+def cleanup_exit(orig_attrs, exit_code):
+ if is_damon_running():
+ if turn_damon('off'):
+ print('failed to turn damon off!')
+ if orig_attrs:
+ if orig_attrs.apply():
+ print('original attributes (%s) restoration failed!' % orig_attrs)
+ exit(exit_code)
+
+def sighandler(signum, frame):
+ print('\nsignal %s received' % signum)
+ cleanup_exit(orig_attrs, signum)
+
+def chk_update_debugfs(debugfs):
+ global debugfs_attrs
+ global debugfs_record
+ global debugfs_pids
+ global debugfs_monitor_on
+
+ debugfs_damon = os.path.join(debugfs, 'damon')
+ debugfs_attrs = os.path.join(debugfs_damon, 'attrs')
+ debugfs_record = os.path.join(debugfs_damon, 'record')
+ debugfs_pids = os.path.join(debugfs_damon, 'pids')
+ debugfs_monitor_on = os.path.join(debugfs_damon, 'monitor_on')
+
+ if not os.path.isdir(debugfs_damon):
+ print("damon debugfs dir (%s) not found", debugfs_damon)
+ exit(1)
+
+ for f in [debugfs_attrs, debugfs_record, debugfs_pids, debugfs_monitor_on]:
+ if not os.path.isfile(f):
+ print("damon debugfs file (%s) not found" % f)
+ exit(1)
+
+def chk_permission():
+ if os.geteuid() != 0:
+ print("Run as root")
+ exit(1)
+
+def set_argparser(parser):
+ parser.add_argument('target', type=str, metavar='<target>',
+ help='the target command or the pid to record')
+ parser.add_argument('-s', '--sample', metavar='<interval>', type=int,
+ default=5000, help='sampling interval')
+ parser.add_argument('-a', '--aggr', metavar='<interval>', type=int,
+ default=100000, help='aggregate interval')
+ parser.add_argument('-u', '--updr', metavar='<interval>', type=int,
+ default=1000000, help='regions update interval')
+ parser.add_argument('-n', '--minr', metavar='<# regions>', type=int,
+ default=10, help='minimal number of regions')
+ parser.add_argument('-m', '--maxr', metavar='<# regions>', type=int,
+ default=1000, help='maximum number of regions')
+ parser.add_argument('-l', '--rbuf', metavar='<len>', type=int,
+ default=1024*1024, help='length of record result buffer')
+ parser.add_argument('-o', '--out', metavar='<file path>', type=str,
+ default='damon.data', help='output file path')
+ parser.add_argument('-d', '--debugfs', metavar='<debugfs>', type=str,
+ default='/sys/kernel/debug', help='debugfs mounted path')
+
+def main(args=None):
+ global orig_attrs
+ if not args:
+ parser = argparse.ArgumentParser()
+ set_argparser(parser)
+ args = parser.parse_args()
+
+ chk_permission()
+ chk_update_debugfs(args.debugfs)
+
+ signal.signal(signal.SIGINT, sighandler)
+ signal.signal(signal.SIGTERM, sighandler)
+ orig_attrs = current_attrs()
+
+ new_attrs = cmd_args_to_attrs(args)
+ target = args.target
+
+ target_fields = target.split()
+ if not subprocess.call('which %s > /dev/null' % target_fields[0],
+ shell=True, executable='/bin/bash'):
+ do_record(target, True, new_attrs, orig_attrs)
+ else:
+ try:
+ pid = int(target)
+ except:
+ print('target \'%s\' is neither a command, nor a pid' % target)
+ exit(1)
+ do_record(target, False, new_attrs, orig_attrs)
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/damon/report.py b/tools/damon/report.py
new file mode 100644
index 000000000000..c661c7b2f1af
--- /dev/null
+++ b/tools/damon/report.py
@@ -0,0 +1,45 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+import argparse
+
+import bin2txt
+import heats
+import nr_regions
+import wss
+
+def set_argparser(parser):
+ subparsers = parser.add_subparsers(title='report type', dest='report_type',
+ metavar='<report type>', help='the type of the report to generate')
+ subparsers.required = True
+
+ parser_raw = subparsers.add_parser('raw', help='human readable raw data')
+ bin2txt.set_argparser(parser_raw)
+
+ parser_heats = subparsers.add_parser('heats', help='heats of regions')
+ heats.set_argparser(parser_heats)
+
+ parser_wss = subparsers.add_parser('wss', help='working set size')
+ wss.set_argparser(parser_wss)
+
+ parser_nr_regions = subparsers.add_parser('nr_regions',
+ help='number of regions')
+ nr_regions.set_argparser(parser_nr_regions)
+
+def main(args=None):
+ if not args:
+ parser = argparse.ArgumentParser()
+ set_argparser(parser)
+ args = parser.parse_args()
+
+ if args.report_type == 'raw':
+ bin2txt.main(args)
+ elif args.report_type == 'heats':
+ heats.main(args)
+ elif args.report_type == 'wss':
+ wss.main(args)
+ elif args.report_type == 'nr_regions':
+ nr_regions.main(args)
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/damon/wss.py b/tools/damon/wss.py
new file mode 100644
index 000000000000..b43065176cfd
--- /dev/null
+++ b/tools/damon/wss.py
@@ -0,0 +1,97 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+"Print out the distribution of the working set sizes of the given trace"
+
+import argparse
+import struct
+import sys
+import tempfile
+
+import _dist
+import _recfile
+
+def set_argparser(parser):
+ parser.add_argument('--input', '-i', type=str, metavar='<file>',
+ default='damon.data', help='input file name')
+ parser.add_argument('--range', '-r', type=int, nargs=3,
+ metavar=('<start>', '<stop>', '<step>'),
+ help='range of wss percentiles to print')
+ parser.add_argument('--sortby', '-s', choices=['time', 'size'],
+ help='the metric to be used for the sort of the working set sizes')
+ parser.add_argument('--plot', '-p', type=str, metavar='<file>',
+ help='plot the distribution to an image file')
+
+def main(args=None):
+ if not args:
+ parser = argparse.ArgumentParser()
+ set_argparser(parser)
+ args = parser.parse_args()
+
+ percentiles = [0, 25, 50, 75, 100]
+
+ file_path = args.input
+ if args.range:
+ percentiles = range(args.range[0], args.range[1], args.range[2])
+ wss_sort = True
+ if args.sortby == 'time':
+ wss_sort = False
+
+ pid_pattern_map = {}
+ with open(file_path, 'rb') as f:
+ _recfile.set_fmt_version(f)
+ start_time = None
+ while True:
+ timebin = f.read(16)
+ if len(timebin) != 16:
+ break
+ nr_tasks = struct.unpack('I', f.read(4))[0]
+ for t in range(nr_tasks):
+ pid = _recfile.pid(f)
+ if not pid in pid_pattern_map:
+ pid_pattern_map[pid] = []
+ pid_pattern_map[pid].append(_dist.access_patterns(f))
+
+ orig_stdout = sys.stdout
+ if args.plot:
+ tmp_path = tempfile.mkstemp()[1]
+ tmp_file = open(tmp_path, 'w')
+ sys.stdout = tmp_file
+
+ print('# <percentile> <wss>')
+ for pid in pid_pattern_map.keys():
+ # Skip first 20 snapshots as regions may not adjusted yet.
+ snapshots = pid_pattern_map[pid][20:]
+ wss_dist = []
+ for snapshot in snapshots:
+ wss = 0
+ for p in snapshot:
+ # Ignore regions not accessed
+ if p[1] <= 0:
+ continue
+ wss += p[0]
+ wss_dist.append(wss)
+ if wss_sort:
+ wss_dist.sort(reverse=False)
+
+ print('# pid\t%s' % pid)
+ print('# avr:\t%d' % (sum(wss_dist) / len(wss_dist)))
+ for percentile in percentiles:
+ thres_idx = int(percentile / 100.0 * len(wss_dist))
+ if thres_idx == len(wss_dist):
+ thres_idx -= 1
+ threshold = wss_dist[thres_idx]
+ print('%d\t%d' % (percentile, wss_dist[thres_idx]))
+
+ if args.plot:
+ sys.stdout = orig_stdout
+ tmp_file.flush()
+ tmp_file.close()
+ xlabel = 'runtime (percent)'
+ if wss_sort:
+ xlabel = 'percentile'
+ _dist.plot_dist(tmp_path, args.plot, xlabel,
+ 'working set size (bytes)')
+
+if __name__ == '__main__':
+ main()
--
2.17.1

2020-04-27 12:13:23

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 14/15] mm/damon: Add user space selftests

From: SeongJae Park <[email protected]>

This commit adds a simple user space tests for DAMON. The tests are
using kselftest framework.

Signed-off-by: SeongJae Park <[email protected]>
---
tools/testing/selftests/damon/Makefile | 7 +
.../selftests/damon/_chk_dependency.sh | 28 ++++
tools/testing/selftests/damon/_chk_record.py | 108 ++++++++++++++
.../testing/selftests/damon/debugfs_attrs.sh | 139 ++++++++++++++++++
.../testing/selftests/damon/debugfs_record.sh | 50 +++++++
5 files changed, 332 insertions(+)
create mode 100644 tools/testing/selftests/damon/Makefile
create mode 100644 tools/testing/selftests/damon/_chk_dependency.sh
create mode 100644 tools/testing/selftests/damon/_chk_record.py
create mode 100755 tools/testing/selftests/damon/debugfs_attrs.sh
create mode 100755 tools/testing/selftests/damon/debugfs_record.sh

diff --git a/tools/testing/selftests/damon/Makefile b/tools/testing/selftests/damon/Makefile
new file mode 100644
index 000000000000..cfd5393a4639
--- /dev/null
+++ b/tools/testing/selftests/damon/Makefile
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0
+# Makefile for damon selftests
+
+TEST_FILES = _chk_dependency.sh _chk_record_file.py
+TEST_PROGS = debugfs_attrs.sh debugfs_record.sh
+
+include ../lib.mk
diff --git a/tools/testing/selftests/damon/_chk_dependency.sh b/tools/testing/selftests/damon/_chk_dependency.sh
new file mode 100644
index 000000000000..814dcadd5e96
--- /dev/null
+++ b/tools/testing/selftests/damon/_chk_dependency.sh
@@ -0,0 +1,28 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+
+# Kselftest framework requirement - SKIP code is 4.
+ksft_skip=4
+
+DBGFS=/sys/kernel/debug/damon
+
+if [ $EUID -ne 0 ];
+then
+ echo "Run as root"
+ exit $ksft_skip
+fi
+
+if [ ! -d $DBGFS ]
+then
+ echo "$DBGFS not found"
+ exit $ksft_skip
+fi
+
+for f in attrs record pids monitor_on
+do
+ if [ ! -f "$DBGFS/$f" ]
+ then
+ echo "$f not found"
+ exit 1
+ fi
+done
diff --git a/tools/testing/selftests/damon/_chk_record.py b/tools/testing/selftests/damon/_chk_record.py
new file mode 100644
index 000000000000..5cfcf4161404
--- /dev/null
+++ b/tools/testing/selftests/damon/_chk_record.py
@@ -0,0 +1,108 @@
+#!/usr/bin/env python3
+# SPDX-License-Identifier: GPL-2.0
+
+"Check whether the DAMON record file is valid"
+
+import argparse
+import struct
+import sys
+
+fmt_version = 0
+
+def set_fmt_version(f):
+ global fmt_version
+
+ mark = f.read(16)
+ if mark == b'damon_recfmt_ver':
+ fmt_version = struct.unpack('i', f.read(4))[0]
+ else:
+ fmt_version = 0
+ f.seek(0)
+ return fmt_version
+
+def read_pid(f):
+ if fmt_version == 0:
+ pid = struct.unpack('L', f.read(8))[0]
+ else:
+ pid = struct.unpack('i', f.read(4))[0]
+def err_percent(val, expected):
+ return abs(val - expected) / expected * 100
+
+def chk_task_info(f):
+ pid = read_pid(f)
+ nr_regions = struct.unpack('I', f.read(4))[0]
+
+ if nr_regions > max_nr_regions:
+ print('too many regions: %d > %d' % (nr_regions, max_nr_regions))
+ exit(1)
+
+ nr_gaps = 0
+ eaddr = 0
+ for r in range(nr_regions):
+ saddr = struct.unpack('L', f.read(8))[0]
+ if eaddr and saddr != eaddr:
+ nr_gaps += 1
+ eaddr = struct.unpack('L', f.read(8))[0]
+ nr_accesses = struct.unpack('I', f.read(4))[0]
+
+ if saddr >= eaddr:
+ print('wrong region [%d,%d)' % (saddr, eaddr))
+ exit(1)
+
+ max_nr_accesses = aint / sint
+ if nr_accesses > max_nr_accesses:
+ if err_percent(nr_accesses, max_nr_accesses) > 15:
+ print('too high nr_access: expected %d but %d' %
+ (max_nr_accesses, nr_accesses))
+ exit(1)
+ if nr_gaps != 2:
+ print('number of gaps are not two but %d' % nr_gaps)
+ exit(1)
+
+def parse_time_us(bindat):
+ sec = struct.unpack('l', bindat[0:8])[0]
+ nsec = struct.unpack('l', bindat[8:16])[0]
+ return (sec * 1000000000 + nsec) / 1000
+
+def main():
+ global sint
+ global aint
+ global min_nr
+ global max_nr_regions
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument('file', metavar='<file>',
+ help='path to the record file')
+ parser.add_argument('--attrs', metavar='<attrs>',
+ default='5000 100000 1000000 10 1000',
+ help='content of debugfs attrs file')
+ args = parser.parse_args()
+ file_path = args.file
+ attrs = [int(x) for x in args.attrs.split()]
+ sint, aint, rint, min_nr, max_nr_regions = attrs
+
+ with open(file_path, 'rb') as f:
+ set_fmt_version(f)
+ last_aggr_time = None
+ while True:
+ timebin = f.read(16)
+ if len(timebin) != 16:
+ break
+
+ now = parse_time_us(timebin)
+ if not last_aggr_time:
+ last_aggr_time = now
+ else:
+ error = err_percent(now - last_aggr_time, aint)
+ if error > 15:
+ print('wrong aggr interval: expected %d, but %d' %
+ (aint, now - last_aggr_time))
+ exit(1)
+ last_aggr_time = now
+
+ nr_tasks = struct.unpack('I', f.read(4))[0]
+ for t in range(nr_tasks):
+ chk_task_info(f)
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/testing/selftests/damon/debugfs_attrs.sh b/tools/testing/selftests/damon/debugfs_attrs.sh
new file mode 100755
index 000000000000..d5188b0f71b1
--- /dev/null
+++ b/tools/testing/selftests/damon/debugfs_attrs.sh
@@ -0,0 +1,139 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+
+source ./_chk_dependency.sh
+
+# Test attrs file
+file="$DBGFS/attrs"
+
+ORIG_CONTENT=$(cat $file)
+
+echo 1 2 3 4 5 > $file
+if [ $? -ne 0 ]
+then
+ echo "$file write failed"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo 1 2 3 4 > $file
+if [ $? -eq 0 ]
+then
+ echo "$file write success (should failed)"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+CONTENT=$(cat $file)
+if [ "$CONTENT" != "1 2 3 4 5" ]
+then
+ echo "$file not written"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo $ORIG_CONTENT > $file
+
+# Test record file
+file="$DBGFS/record"
+
+ORIG_CONTENT=$(cat $file)
+
+echo "4242 foo.bar" > $file
+if [ $? -ne 0 ]
+then
+ echo "$file writing sane input failed"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo abc 2 3 > $file
+if [ $? -eq 0 ]
+then
+ echo "$file writing insane input 1 success (should failed)"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo 123 > $file
+if [ $? -eq 0 ]
+then
+ echo "$file writing insane input 2 success (should failed)"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+CONTENT=$(cat $file)
+if [ "$CONTENT" != "4242 foo.bar" ]
+then
+ echo "$file not written"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo "0 null" > $file
+if [ $? -ne 0 ]
+then
+ echo "$file disabling write fail"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+CONTENT=$(cat $file)
+if [ "$CONTENT" != "0 null" ]
+then
+ echo "$file not disabled"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo "4242 foo.bar" > $file
+if [ $? -ne 0 ]
+then
+ echo "$file writing sane data again fail"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo $ORIG_CONTENT > $file
+
+# Test pids file
+file="$DBGFS/pids"
+
+ORIG_CONTENT=$(cat $file)
+
+echo "1 2 3 4" > $file
+if [ $? -ne 0 ]
+then
+ echo "$file write fail"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo "1 2 abc 4" > $file
+if [ $? -ne 0 ]
+then
+ echo "$file write fail"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo abc 2 3 > $file
+if [ $? -eq 0 ]
+then
+ echo "$file write success (should failed)"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+CONTENT=$(cat $file)
+if [ "$CONTENT" != "1 2" ]
+then
+ echo "$file not written"
+ echo $ORIG_CONTENT > $file
+ exit 1
+fi
+
+echo $ORIG_CONTENT > $file
+
+echo "PASS"
diff --git a/tools/testing/selftests/damon/debugfs_record.sh b/tools/testing/selftests/damon/debugfs_record.sh
new file mode 100755
index 000000000000..fa9e07eea258
--- /dev/null
+++ b/tools/testing/selftests/damon/debugfs_record.sh
@@ -0,0 +1,50 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+
+source ./_chk_dependency.sh
+
+restore_attrs()
+{
+ echo $ORIG_ATTRS > $DBGFS/attrs
+ echo $ORIG_PIDS > $DBGFS/pids
+ echo $ORIG_RECORD > $DBGFS/record
+}
+
+ORIG_ATTRS=$(cat $DBGFS/attrs)
+ORIG_PIDS=$(cat $DBGFS/pids)
+ORIG_RECORD=$(cat $DBGFS/record)
+
+rfile=$pwd/damon.data
+
+rm -f $rfile
+ATTRS="5000 100000 1000000 10 1000"
+echo $ATTRS > $DBGFS/attrs
+echo 4096 $rfile > $DBGFS/record
+sleep 5 &
+echo $(pidof sleep) > $DBGFS/pids
+echo on > $DBGFS/monitor_on
+sleep 0.5
+killall sleep
+echo off > $DBGFS/monitor_on
+
+sync
+
+if [ ! -f $rfile ]
+then
+ echo "record file not made"
+ restore_attrs
+
+ exit 1
+fi
+
+python3 ./_chk_record.py $rfile --attrs "$ATTRS"
+if [ $? -ne 0 ]
+then
+ echo "record file is wrong"
+ restore_attrs
+ exit 1
+fi
+
+rm -f $rfile
+restore_attrs
+echo "PASS"
--
2.17.1

2020-04-27 12:14:47

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 12/15] Documentation/admin-guide/mm: Add a document for DAMON

From: SeongJae Park <[email protected]>

This commit adds a simple document for DAMON under
`Documentation/admin-guide/mm`.

Signed-off-by: SeongJae Park <[email protected]>
---
.../admin-guide/mm/data_access_monitor.rst | 428 ++++++++++++++++++
Documentation/admin-guide/mm/index.rst | 1 +
2 files changed, 429 insertions(+)
create mode 100644 Documentation/admin-guide/mm/data_access_monitor.rst

diff --git a/Documentation/admin-guide/mm/data_access_monitor.rst b/Documentation/admin-guide/mm/data_access_monitor.rst
new file mode 100644
index 000000000000..1d5e18d6ab9e
--- /dev/null
+++ b/Documentation/admin-guide/mm/data_access_monitor.rst
@@ -0,0 +1,428 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================
+DAMON: Data Access MONitor
+==========================
+
+Introduction
+============
+
+Memory management decisions can be improved if finer data access information is
+available. However, because such finer information usually comes with higher
+overhead, most systems including Linux forgives the potential benefit and rely
+on only coarse information or some light-weight heuristics.
+
+A number of data access pattern awared memory management optimizations
+consistently say the potential benefit is not small (2.55x speedup). However,
+none of those has successfully adopted into into the Linux kernel mainly due to
+the absence of a scalable and efficient data access monitoring mechanism.
+
+DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
+enough to be used for the DRAM level memory management, 2) light-weight enough
+to be applied online, and 3) keeps predefined upper-bound overhead
+regardless of the size of target workloads (thus scalable).
+
+DAMON is implemented as a standalone kernel module and provides several simple
+interfaces. Owing to that, though it has mainly designed for the kernel's
+memory management mechanisms, it can be also used for a wide range of user
+space programs and people.
+
+
+Frequently Asked Questions
+==========================
+
+Q: Why not integrated with perf?
+A: From the perspective of perf like profilers, DAMON can be thought of as a
+data source in kernel, like tracepoints, pressure stall information (psi), or
+idle page tracking. Thus, it can be easily integrated with those. However,
+this patchset doesn't provide a fancy perf integration because current step of
+DAMON development is focused on its core logic only. That said, DAMON already
+provides two interfaces for user space programs, which based on debugfs and
+tracepoint, respectively. Using the tracepoint interface, you can use DAMON
+with perf. This patchset also provides the debugfs interface based user space
+tool for DAMON. It can be used to record, visualize, and analyze data access
+pattern of target processes in a convenient way.
+
+Q: Why a new module, instead of extending perf or other tools?
+A: First, DAMON aims to be used by other programs including the kernel.
+Therefore, having dependency to specific tools like perf is not desirable.
+Second, because it need to be lightweight as much as possible so that it can be
+used online, any unnecessary overhead such as kernel - user space context
+switching cost should be avoided. These are the two most biggest reasons why
+DAMON is implemented in the kernel space. The idle page tracking subsystem
+would be the kernel module that most seems similar to DAMON. However, it's own
+interface is not compatible with DAMON. Also, the internal implementation of
+it has no common part to be reused by DAMON.
+
+Q: Can 'perf mem' provide the data required for DAMON?
+A: On the systems supporting 'perf mem', yes. DAMON is using the PTE Accessed
+bits in low level. Other H/W or S/W features that can be used for the purpose
+could be used. However, as explained with above question, DAMON need to be
+implemented in the kernel space.
+
+
+Expected Use-cases
+==================
+
+A straightforward usecase of DAMON would be the program behavior analysis.
+With the DAMON output, users can confirm whether the program is running as
+intended or not. This will be useful for debuggings and tests of design
+points.
+
+The monitored results can also be useful for counting the dynamic working set
+size of workloads. For the administration of memory overcommitted systems or
+selection of the environments (e.g., containers providing different amount of
+memory) for your workloads, this will be useful.
+
+If you are a programmer, you can optimize your program by managing the memory
+based on the actual data access pattern. For example, you can identify the
+dynamic hotness of your data using DAMON and call ``mlock()`` to keep your hot
+data in DRAM, or call ``madvise()`` with ``MADV_PAGEOUT`` to proactively
+reclaim cold data. Even though your program is guaranteed to not encounter
+memory pressure, you can still improve the performance by applying the DAMON
+outputs for call of ``MADV_HUGEPAGE`` and ``MADV_NOHUGEPAGE``. More creative
+optimizations would be possible. Our evaluations of DAMON includes a
+straightforward optimization using the ``mlock()``. Please refer to the below
+Evaluation section for more detail.
+
+As DAMON incurs very low overhead, such optimizations can be applied not only
+offline, but also online. Also, there is no reason to limit such optimizations
+to the user space. Several parts of the kernel's memory management mechanisms
+could be also optimized using DAMON. The reclamation, the THP (de)promotion
+decisions, and the compaction would be such a candidates.
+
+
+Mechanisms of DAMON
+===================
+
+
+Basic Access Check
+------------------
+
+DAMON basically reports what pages are how frequently accessed. The report is
+passed to users in binary format via a ``result file`` which users can set it's
+path. Note that the frequency is not an absolute number of accesses, but a
+relative frequency among the pages of the target workloads.
+
+Users can also control the resolution of the reports by setting two time
+intervals, ``sampling interval`` and ``aggregation interval``. In detail,
+DAMON checks access to each page per ``sampling interval``, aggregates the
+results (counts the number of the accesses to each page), and reports the
+aggregated results per ``aggregation interval``. For the access check of each
+page, DAMON uses the Accessed bits of PTEs.
+
+This is thus similar to the previously mentioned periodic access checks based
+mechanisms, which overhead is increasing as the size of the target process
+grows.
+
+
+Region Based Sampling
+---------------------
+
+To avoid the unbounded increase of the overhead, DAMON groups a number of
+adjacent pages that assumed to have same access frequencies into a region. As
+long as the assumption (pages in a region have same access frequencies) is
+kept, only one page in the region is required to be checked. Thus, for each
+``sampling interval``, DAMON randomly picks one page in each region and clears
+its Accessed bit. After one more ``sampling interval``, DAMON reads the
+Accessed bit of the page and increases the access frequency of the region if
+the bit has set meanwhile. Therefore, the monitoring overhead is controllable
+by setting the number of regions. DAMON allows users to set the minimal and
+maximum number of regions for the trade-off.
+
+Except the assumption, this is almost same with the above-mentioned
+miniature-like static region based sampling. In other words, this scheme
+cannot preserve the quality of the output if the assumption is not guaranteed.
+
+
+Adaptive Regions Adjustment
+---------------------------
+
+At the beginning of the monitoring, DAMON constructs the initial regions by
+evenly splitting the memory mapped address space of the process into the
+user-specified minimal number of regions. In this initial state, the
+assumption is normally not kept and thus the quality could be low. To keep the
+assumption as much as possible, DAMON adaptively merges and splits each region.
+For each ``aggregation interval``, it compares the access frequencies of
+adjacent regions and merges those if the frequency difference is small. Then,
+after it reports and clears the aggregated access frequency of each region, it
+splits each region into two regions if the total number of regions is smaller
+than the half of the user-specified maximum number of regions.
+
+In this way, DAMON provides its best-effort quality and minimal overhead while
+keeping the bounds users set for their trade-off.
+
+
+Applying Complex and Dynamic Memory Mappings
+--------------------------------------------
+
+Only a number of small parts in the super-huge virtual address space of the
+processes is mapped to physical memory and accessed. Thus, tracking the
+unmapped address regions is just wasteful. However, because DAMON can deal
+with some level of noises using the adaptive regions adjustment mechanism,
+tracking every mapping is not strictly required but could even incur a high
+overhead in somce cases. That said, too huge unmapped areas inside the
+monitoring target should be removed to not take the time for the adaptive
+mechanism.
+
+For the reason, DAMON converts the complex mappings to three distinct regions
+that cover every mapped areas of the address space. Also the two gaps between
+the three regions are the two biggest unmapped areas in the given address
+space. The two biggest unmapped areas might be the gap between the heap and
+the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
+region and the stack will be two biggest unmapped regions. Because these gaps
+are exceptionally huge areas in usual address space, excluding these two
+biggest unmapped regions will be sufficient to make a trade-off.
+
+To further minimize dynamic mapping changes applying overhead, DAMON check the
+dynamic memory mapping changes and applies it to the abstracted target area
+only for each of a user-specified time interval (``regions update interval``).
+
+
+``debugfs`` Interface
+=====================
+
+DAMON exports four files, ``attrs``, ``pids``, ``record``, and ``monitor_on``
+under its debugfs directory, ``<debugfs>/damon/``.
+
+Attributes
+----------
+
+Users can read and write the ``sampling interval``, ``aggregation interval``,
+``regions update interval``, and min/max number of monitoring target regions by
+reading from and writing to the ``attrs`` file. For example, below commands
+set those values to 5 ms, 100 ms, 1,000 ms, 10, 1000 and check it again::
+
+ # cd <debugfs>/damon
+ # echo 5000 100000 1000000 10 1000 > attrs
+ # cat attrs
+ 5000 100000 1000000 10 1000
+
+Target PIDs
+-----------
+
+Users can read and write the pids of current monitoring target processes by
+reading from and writing to the ``pids`` file. For example, below commands set
+processes having pids 42 and 4242 as the processes to be monitored and check it
+again::
+
+ # cd <debugfs>/damon
+ # echo 42 4242 > pids
+ # cat pids
+ 42 4242
+
+Note that setting the pids doesn't start the monitoring.
+
+Record
+------
+
+DAMON supports direct monitoring result record feature. The recorded results
+are first written to a buffer and flushed to a file in batch. Users can set
+the size of the buffer and the path to the result file by reading from and
+writing to the ``record`` file. For example, below commands set the buffer to
+be 4 KiB and the result to be saved in ``/damon.data``.
+
+ # cd <debugfs>/damon
+ # echo "4096 /damon.data" > record
+ # cat record
+ 4096 /damon.data
+
+Turning On/Off
+--------------
+
+You can check current status, start and stop the monitoring by reading from and
+writing to the ``monitor_on`` file. Writing ``on`` to the file starts DAMON to
+monitor the target processes with the attributes. Writing ``off`` to the file
+stops DAMON. DAMON also stops if every target processes is terminated.
+Below example commands turn on, off, and check status of DAMON::
+
+ # cd <debugfs>/damon
+ # echo on > monitor_on
+ # echo off > monitor_on
+ # cat monitor_on
+ off
+
+Please note that you cannot write to the ``attrs`` and ``pids`` files while the
+monitoring is turned on. If you write to the files while DAMON is running, an
+error code such as ``-EBUSY`` will be returned.
+
+
+User Space Tool for DAMON
+=========================
+
+There is a user space tool for DAMON, ``/tools/damon/damo``. It provides
+another user interface which more convenient than the debugfs interface.
+Nevertheless, note that it is only aimed to be used for minimal reference of
+the DAMON's debugfs interfaces and for tests of the DAMON itself. Based on the
+debugfs interface, you can create another cool and more convenient user space
+tools.
+
+The interface of the tool is basically subcommand based. You can almost always
+use ``-h`` option to get help of the use of each subcommand. Currently, it
+supports two subcommands, ``record`` and ``report``.
+
+
+Recording Data Access Pattern
+-----------------------------
+
+The ``record`` subcommand records the data access pattern of target process in
+a file (``./damon.data`` by default) using DAMON. You can specifies the target
+as either pid or a command for an execution of the process. Below example
+shows a command target usage::
+
+ # cd <kernel>/tools/damon/
+ # ./damo record "sleep 5"
+
+The tool will execute ``sleep 5`` by itself and record the data access patterns
+of the process. Below example shows a pid target usage::
+
+ # sleep 5 &
+ # ./damo record `pidof sleep`
+
+You can set more detailed attributes and path to the recorded data file using
+optional arguments to the subcommand. Use the ``-h`` option for more help.
+
+
+Analyzing Data Access Pattern
+-----------------------------
+
+The ``report`` subcommand reads a data access pattern record file (if not
+explicitly specified, reads ``./damon.data`` file if exists) and generates
+reports of various types. You can specify what type of report you want using
+sub-subcommand to ``report`` subcommand. For supported types, pass the ``-h``
+option to ``report`` subcommand.
+
+
+raw
+~~~
+
+``raw`` sub-subcommand simply transforms the record, which is storing the data
+access patterns in binary format to human readable text. For example::
+
+ $ ./damo report raw
+ start_time: 193485829398
+ rel time: 0
+ nr_tasks: 1
+ pid: 1348
+ nr_regions: 4
+ 560189609000-56018abce000( 22827008): 0
+ 7fbdff59a000-7fbdffaf1a00( 5601792): 0
+ 7fbdffaf1a00-7fbdffbb5000( 800256): 1
+ 7ffea0dc0000-7ffea0dfd000( 249856): 0
+
+ rel time: 100000731
+ nr_tasks: 1
+ pid: 1348
+ nr_regions: 6
+ 560189609000-56018abce000( 22827008): 0
+ 7fbdff59a000-7fbdff8ce933( 3361075): 0
+ 7fbdff8ce933-7fbdffaf1a00( 2240717): 1
+ 7fbdffaf1a00-7fbdffb66d99( 480153): 0
+ 7fbdffb66d99-7fbdffbb5000( 320103): 1
+ 7ffea0dc0000-7ffea0dfd000( 249856): 0
+
+The first line shows recording started timestamp (nanosecond). Records of data
+access patterns are following this. Each record is sperated by a blank line.
+Each record first specifies the recorded time (``rel time``), number of
+monitored tasks in this record (``nr_tasks``). Multiple number of records of
+data access pattern for each task continue. Each data access pattern for each
+task shows first it's pid (``pid``) and number of monitored virtual address
+regions in this access pattern (``nr_regions``). After that, each line shows
+start/end address, size, and number of monitored accesses to the region for
+each of the regions.
+
+
+heats
+~~~~~
+
+The ``raw`` type shows detailed information but it is exhaustive to manually
+read and analyzed. For the reason, ``heats`` plots the data in heatmap form,
+using time as x-axis, virtual address as y-axis, and access frequency as
+z-axis. Also, users set the resolution and start/end point of each axis via
+optional arguments. For example::
+
+ $ ./damo report heats --tres 3 --ares 3
+ 0 0 0.0
+ 0 7609002 0.0
+ 0 15218004 0.0
+ 66112620851 0 0.0
+ 66112620851 7609002 0.0
+ 66112620851 15218004 0.0
+ 132225241702 0 0.0
+ 132225241702 7609002 0.0
+ 132225241702 15218004 0.0
+
+This command shows the recorded access pattern of the ``sleep`` command using 3
+data points for each of time axis and address axis. Therefore, it shows 9 data
+points in total.
+
+Users can easily converts this text output into heatmap image or other 3D
+representation using various tools such as 'gnuplot'. ``raw`` sub-subcommand
+also provides 'gnuplot' based heatmap image creation. For this, you can use
+``--heatmap`` option. Also, note that because it uses 'gnuplot' internally, it
+will fail if 'gnuplot' is not installed on your system. For example::
+
+ $ ./damo report heats --heatmap heatmap.png
+
+Creates ``heatmap.png`` file containing the heatmap image. It supports
+``pdf``, ``png``, ``jpeg``, and ``svg``.
+
+For proper zoom in / zoom out, you need to see the layout of the record. For
+that, use '--guide' option. If the option is given, it will provide useful
+information about the records in the record file. For example::
+
+ $ ./damo report heats --guide
+ pid:1348
+ time: 193485829398-198337863555 (4852034157)
+ region 0: 00000094564599762944-00000094564622589952 (22827008)
+ region 1: 00000140454009610240-00000140454016012288 (6402048)
+ region 2: 00000140731597193216-00000140731597443072 (249856)
+
+The output shows monitored regions (start and end addresses in byte) and
+monitored time duration (start and end time in nanosecond) of each target task.
+Therefore, it would be wise to plot only each region rather than plotting
+entire address space in one heatmap because the gaps between the regions are so
+huge in this case.
+
+
+wss
+~~~
+
+The ``wss`` type shows the distribution or time-varying working set sizes of
+the recorded workload using the records. For example::
+
+ $ ./damo report wss
+ # <percentile> <wss>
+ # pid 1348
+ # avr: 66228
+ 0 0
+ 25 0
+ 50 0
+ 75 0
+ 100 1920615
+
+Without any option, it shows the distribution of the working set sizes as
+above. Basically it shows 0th, 25th, 50th, 75th, and 100th percentile and
+average of the measured working set sizes in the access pattern records. In
+this case, the working set size was zero for 75th percentile but 1,920,615
+bytes in max and 66,228 in average.
+
+By setting the sort key of the percentile using '--sortby', you can also see
+how the working set size is chronologically changed. For example::
+
+ $ ./damo report wss --sortby time
+ # <percentile> <wss>
+ # pid 1348
+ # avr: 66228
+ 0 0
+ 25 0
+ 50 0
+ 75 0
+ 100 0
+
+The average is still 66,228. And, because we sorted the working set using
+recorded time and the access is very short, we cannot show when the access
+made.
+
+Users can specify the resolution of the distribution (``--range``). It also
+supports 'gnuplot' based simple visualization (``--plot``) of the distribution.
diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst
index 11db46448354..d3d0ba373eb6 100644
--- a/Documentation/admin-guide/mm/index.rst
+++ b/Documentation/admin-guide/mm/index.rst
@@ -27,6 +27,7 @@ the Linux memory management.

concepts
cma_debugfs
+ data_access_monitor
hugetlbpage
idle_page_tracking
ksm
--
2.17.1

2020-04-27 12:15:06

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 13/15] mm/damon: Add kunit tests

From: SeongJae Park <[email protected]>

This commit adds kunit based unit tests for DAMON.

Signed-off-by: SeongJae Park <[email protected]>
Reviewed-by: Brendan Higgins <[email protected]>
---
mm/Kconfig | 11 +
mm/damon-test.h | 615 ++++++++++++++++++++++++++++++++++++++++++++++++
mm/damon.c | 6 +
3 files changed, 632 insertions(+)
create mode 100644 mm/damon-test.h

diff --git a/mm/Kconfig b/mm/Kconfig
index 9ea49633a6df..81ace52f1c23 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -751,4 +751,15 @@ config DAMON
and 2) sufficiently light-weight so that it can be applied online.
If unsure, say N.

+config DAMON_KUNIT_TEST
+ bool "Test for damon"
+ depends on DAMON=y && KUNIT
+ help
+ This builds the DAMON Kunit test suite.
+
+ For more information on KUnit and unit tests in general, please refer
+ to the KUnit documentation.
+
+ If unsure, say N.
+
endmenu
diff --git a/mm/damon-test.h b/mm/damon-test.h
new file mode 100644
index 000000000000..439ffce783f6
--- /dev/null
+++ b/mm/damon-test.h
@@ -0,0 +1,615 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Data Access Monitor Unit Tests
+ *
+ * Copyright 2019 Amazon.com, Inc. or its affiliates. All rights reserved.
+ *
+ * Author: SeongJae Park <[email protected]>
+ */
+
+#ifdef CONFIG_DAMON_KUNIT_TEST
+
+#ifndef _DAMON_TEST_H
+#define _DAMON_TEST_H
+
+#include <kunit/test.h>
+
+static void damon_test_str_to_pids(struct kunit *test)
+{
+ char *question;
+ int *answers;
+ int expected[] = {12, 35, 46};
+ ssize_t nr_integers = 0, i;
+
+ question = "123";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)1, nr_integers);
+ KUNIT_EXPECT_EQ(test, 123, answers[0]);
+ kfree(answers);
+
+ question = "123abc";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)1, nr_integers);
+ KUNIT_EXPECT_EQ(test, 123, answers[0]);
+ kfree(answers);
+
+ question = "a123";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)0, nr_integers);
+ KUNIT_EXPECT_PTR_EQ(test, answers, (int *)NULL);
+
+ question = "12 35";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)2, nr_integers);
+ for (i = 0; i < nr_integers; i++)
+ KUNIT_EXPECT_EQ(test, expected[i], answers[i]);
+ kfree(answers);
+
+ question = "12 35 46";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)3, nr_integers);
+ for (i = 0; i < nr_integers; i++)
+ KUNIT_EXPECT_EQ(test, expected[i], answers[i]);
+ kfree(answers);
+
+ question = "12 35 abc 46";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)2, nr_integers);
+ for (i = 0; i < 2; i++)
+ KUNIT_EXPECT_EQ(test, expected[i], answers[i]);
+ kfree(answers);
+
+ question = "";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)0, nr_integers);
+ KUNIT_EXPECT_PTR_EQ(test, (int *)NULL, answers);
+ kfree(answers);
+
+ question = "\n";
+ answers = str_to_pids(question, strnlen(question, 128), &nr_integers);
+ KUNIT_EXPECT_EQ(test, (ssize_t)0, nr_integers);
+ KUNIT_EXPECT_PTR_EQ(test, (int *)NULL, answers);
+ kfree(answers);
+}
+
+static void damon_test_regions(struct kunit *test)
+{
+ struct damon_region *r;
+ struct damon_task *t;
+
+ r = damon_new_region(&damon_user_ctx, 1, 2);
+ KUNIT_EXPECT_EQ(test, 1ul, r->vm_start);
+ KUNIT_EXPECT_EQ(test, 2ul, r->vm_end);
+ KUNIT_EXPECT_EQ(test, 0u, r->nr_accesses);
+
+ t = damon_new_task(42);
+ KUNIT_EXPECT_EQ(test, 0u, nr_damon_regions(t));
+
+ damon_add_region(r, t);
+ KUNIT_EXPECT_EQ(test, 1u, nr_damon_regions(t));
+
+ damon_del_region(r);
+ KUNIT_EXPECT_EQ(test, 0u, nr_damon_regions(t));
+
+ damon_free_task(t);
+}
+
+static void damon_test_tasks(struct kunit *test)
+{
+ struct damon_ctx *c = &damon_user_ctx;
+ struct damon_task *t;
+
+ t = damon_new_task(42);
+ KUNIT_EXPECT_EQ(test, 42, t->pid);
+ KUNIT_EXPECT_EQ(test, 0u, nr_damon_tasks(c));
+
+ damon_add_task(&damon_user_ctx, t);
+ KUNIT_EXPECT_EQ(test, 1u, nr_damon_tasks(c));
+
+ damon_destroy_task(t);
+ KUNIT_EXPECT_EQ(test, 0u, nr_damon_tasks(c));
+}
+
+static void damon_test_set_pids(struct kunit *test)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ int pids[] = {1, 2, 3};
+ char buf[64];
+
+ damon_set_pids(ctx, pids, 3);
+ damon_sprint_pids(ctx, buf, 64);
+ KUNIT_EXPECT_STREQ(test, (char *)buf, "1 2 3\n");
+
+ damon_set_pids(ctx, NULL, 0);
+ damon_sprint_pids(ctx, buf, 64);
+ KUNIT_EXPECT_STREQ(test, (char *)buf, "\n");
+
+ damon_set_pids(ctx, (int []){1, 2}, 2);
+ damon_sprint_pids(ctx, buf, 64);
+ KUNIT_EXPECT_STREQ(test, (char *)buf, "1 2\n");
+
+ damon_set_pids(ctx, (int []){2}, 1);
+ damon_sprint_pids(ctx, buf, 64);
+ KUNIT_EXPECT_STREQ(test, (char *)buf, "2\n");
+
+ damon_set_pids(ctx, NULL, 0);
+ damon_sprint_pids(ctx, buf, 64);
+ KUNIT_EXPECT_STREQ(test, (char *)buf, "\n");
+}
+
+/*
+ * Test damon_three_regions_in_vmas() function
+ *
+ * DAMON converts the complex and dynamic memory mappings of each target task
+ * to three discontiguous regions which cover every mapped areas. However, the
+ * three regions should not include the two biggest unmapped areas in the
+ * original mapping, because the two biggest areas are normally the areas
+ * between 1) heap and the mmap()-ed regions, and 2) the mmap()-ed regions and
+ * stack. Because these two unmapped areas are very huge but obviously never
+ * accessed, covering the region is just a waste.
+ *
+ * 'damon_three_regions_in_vmas() receives an address space of a process. It
+ * first identifies the start of mappings, end of mappings, and the two biggest
+ * unmapped areas. After that, based on the information, it constructs the
+ * three regions and returns. For more detail, refer to the comment of
+ * 'damon_init_regions_of()' function definition in 'mm/damon.c' file.
+ *
+ * For example, suppose virtual address ranges of 10-20, 20-25, 200-210,
+ * 210-220, 300-305, and 307-330 (Other comments represent this mappings in
+ * more short form: 10-20-25, 200-210-220, 300-305, 307-330) of a process are
+ * mapped. To cover every mappings, the three regions should start with 10,
+ * and end with 305. The process also has three unmapped areas, 25-200,
+ * 220-300, and 305-307. Among those, 25-200 and 220-300 are the biggest two
+ * unmapped areas, and thus it should be converted to three regions of 10-25,
+ * 200-220, and 300-330.
+ */
+static void damon_test_three_regions_in_vmas(struct kunit *test)
+{
+ struct region regions[3] = {0,};
+ /* 10-20-25, 200-210-220, 300-305, 307-330 */
+ struct vm_area_struct vmas[] = {
+ (struct vm_area_struct) {.vm_start = 10, .vm_end = 20},
+ (struct vm_area_struct) {.vm_start = 20, .vm_end = 25},
+ (struct vm_area_struct) {.vm_start = 200, .vm_end = 210},
+ (struct vm_area_struct) {.vm_start = 210, .vm_end = 220},
+ (struct vm_area_struct) {.vm_start = 300, .vm_end = 305},
+ (struct vm_area_struct) {.vm_start = 307, .vm_end = 330},
+ };
+ vmas[0].vm_next = &vmas[1];
+ vmas[1].vm_next = &vmas[2];
+ vmas[2].vm_next = &vmas[3];
+ vmas[3].vm_next = &vmas[4];
+ vmas[4].vm_next = &vmas[5];
+ vmas[5].vm_next = NULL;
+
+ damon_three_regions_in_vmas(&vmas[0], regions);
+
+ KUNIT_EXPECT_EQ(test, 10ul, regions[0].start);
+ KUNIT_EXPECT_EQ(test, 25ul, regions[0].end);
+ KUNIT_EXPECT_EQ(test, 200ul, regions[1].start);
+ KUNIT_EXPECT_EQ(test, 220ul, regions[1].end);
+ KUNIT_EXPECT_EQ(test, 300ul, regions[2].start);
+ KUNIT_EXPECT_EQ(test, 330ul, regions[2].end);
+}
+
+/* Clean up global state of damon */
+static void damon_cleanup_global_state(void)
+{
+ struct damon_task *t, *next;
+
+ damon_for_each_task_safe(&damon_user_ctx, t, next)
+ damon_destroy_task(t);
+
+ damon_user_ctx.rbuf_offset = 0;
+}
+
+/*
+ * Test kdamond_reset_aggregated()
+ *
+ * DAMON checks access to each region and aggregates this information as the
+ * access frequency of each region. In detail, it increases '->nr_accesses' of
+ * regions that an access has confirmed. 'kdamond_reset_aggregated()' flushes
+ * the aggregated information ('->nr_accesses' of each regions) to the result
+ * buffer. As a result of the flushing, the '->nr_accesses' of regions are
+ * initialized to zero.
+ */
+static void damon_test_aggregate(struct kunit *test)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ int pids[] = {1, 2, 3};
+ unsigned long saddr[][3] = {{10, 20, 30}, {5, 42, 49}, {13, 33, 55} };
+ unsigned long eaddr[][3] = {{15, 27, 40}, {31, 45, 55}, {23, 44, 66} };
+ unsigned long accesses[][3] = {{42, 95, 84}, {10, 20, 30}, {0, 1, 2} };
+ struct damon_task *t;
+ struct damon_region *r;
+ int it, ir;
+ ssize_t sz, sr, sp;
+
+ damon_set_recording(ctx, 256, "damon.data");
+ damon_set_pids(ctx, pids, 3);
+
+ it = 0;
+ damon_for_each_task(ctx, t) {
+ for (ir = 0; ir < 3; ir++) {
+ r = damon_new_region(ctx,
+ saddr[it][ir], eaddr[it][ir]);
+ r->nr_accesses = accesses[it][ir];
+ damon_add_region(r, t);
+ }
+ it++;
+ }
+ kdamond_reset_aggregated(ctx);
+ it = 0;
+ damon_for_each_task(ctx, t) {
+ ir = 0;
+ /* '->nr_accesses' should be zeroed */
+ damon_for_each_region(r, t) {
+ KUNIT_EXPECT_EQ(test, 0u, r->nr_accesses);
+ ir++;
+ }
+ /* regions should be preserved */
+ KUNIT_EXPECT_EQ(test, 3, ir);
+ it++;
+ }
+ /* tasks also should be preserved */
+ KUNIT_EXPECT_EQ(test, 3, it);
+
+ /* The aggregated information should be written in the buffer */
+ sr = sizeof(r->vm_start) + sizeof(r->vm_end) + sizeof(r->nr_accesses);
+ sp = sizeof(t->pid) + sizeof(unsigned int) + 3 * sr;
+ sz = sizeof(struct timespec64) + sizeof(unsigned int) + 3 * sp;
+ KUNIT_EXPECT_EQ(test, (unsigned int)sz, ctx->rbuf_offset);
+
+ damon_set_recording(ctx, 0, "damon.data");
+ damon_cleanup_global_state();
+}
+
+static void damon_test_write_rbuf(struct kunit *test)
+{
+ struct damon_ctx *ctx = &damon_user_ctx;
+ char *data;
+
+ damon_set_recording(&damon_user_ctx, 256, "damon.data");
+
+ data = "hello";
+ damon_write_rbuf(ctx, data, strnlen(data, 256));
+ KUNIT_EXPECT_EQ(test, ctx->rbuf_offset, 5u);
+
+ damon_write_rbuf(ctx, data, 0);
+ KUNIT_EXPECT_EQ(test, ctx->rbuf_offset, 5u);
+
+ KUNIT_EXPECT_STREQ(test, (char *)ctx->rbuf, data);
+ damon_set_recording(&damon_user_ctx, 0, "damon.data");
+}
+
+static struct damon_region *__nth_region_of(struct damon_task *t, int idx)
+{
+ struct damon_region *r;
+ unsigned int i = 0;
+
+ damon_for_each_region(r, t) {
+ if (i++ == idx)
+ return r;
+ }
+
+ return NULL;
+}
+
+/*
+ * Test 'damon_apply_three_regions()'
+ *
+ * test kunit object
+ * regions an array containing start/end addresses of current
+ * monitoring target regions
+ * nr_regions the number of the addresses in 'regions'
+ * three_regions The three regions that need to be applied now
+ * expected start/end addresses of monitoring target regions that
+ * 'three_regions' are applied
+ * nr_expected the number of addresses in 'expected'
+ *
+ * The memory mapping of the target processes changes dynamically. To follow
+ * the change, DAMON periodically reads the mappings, simplifies it to the
+ * three regions, and updates the monitoring target regions to fit in the three
+ * regions. The update of current target regions is the role of
+ * 'damon_apply_three_regions()'.
+ *
+ * This test passes the given target regions and the new three regions that
+ * need to be applied to the function and check whether it updates the regions
+ * as expected.
+ */
+static void damon_do_test_apply_three_regions(struct kunit *test,
+ unsigned long *regions, int nr_regions,
+ struct region *three_regions,
+ unsigned long *expected, int nr_expected)
+{
+ struct damon_task *t;
+ struct damon_region *r;
+ int i;
+
+ t = damon_new_task(42);
+ for (i = 0; i < nr_regions / 2; i++) {
+ r = damon_new_region(&damon_user_ctx,
+ regions[i * 2], regions[i * 2 + 1]);
+ damon_add_region(r, t);
+ }
+ damon_add_task(&damon_user_ctx, t);
+
+ damon_apply_three_regions(&damon_user_ctx, t, three_regions);
+
+ for (i = 0; i < nr_expected / 2; i++) {
+ r = __nth_region_of(t, i);
+ KUNIT_EXPECT_EQ(test, r->vm_start, expected[i * 2]);
+ KUNIT_EXPECT_EQ(test, r->vm_end, expected[i * 2 + 1]);
+ }
+
+ damon_cleanup_global_state();
+}
+
+/*
+ * This function test most common case where the three big regions are only
+ * slightly changed. Target regions should adjust their boundary (10-20-30,
+ * 50-55, 70-80, 90-100) to fit with the new big regions or remove target
+ * regions (57-79) that now out of the three regions.
+ */
+static void damon_test_apply_three_regions1(struct kunit *test)
+{
+ /* 10-20-30, 50-55-57-59, 70-80-90-100 */
+ unsigned long regions[] = {10, 20, 20, 30, 50, 55, 55, 57, 57, 59,
+ 70, 80, 80, 90, 90, 100};
+ /* 5-27, 45-55, 73-104 */
+ struct region new_three_regions[3] = {
+ (struct region){.start = 5, .end = 27},
+ (struct region){.start = 45, .end = 55},
+ (struct region){.start = 73, .end = 104} };
+ /* 5-20-27, 45-55, 73-80-90-104 */
+ unsigned long expected[] = {5, 20, 20, 27, 45, 55,
+ 73, 80, 80, 90, 90, 104};
+
+ damon_do_test_apply_three_regions(test, regions, ARRAY_SIZE(regions),
+ new_three_regions, expected, ARRAY_SIZE(expected));
+}
+
+/*
+ * Test slightly bigger change. Similar to above, but the second big region
+ * now require two target regions (50-55, 57-59) to be removed.
+ */
+static void damon_test_apply_three_regions2(struct kunit *test)
+{
+ /* 10-20-30, 50-55-57-59, 70-80-90-100 */
+ unsigned long regions[] = {10, 20, 20, 30, 50, 55, 55, 57, 57, 59,
+ 70, 80, 80, 90, 90, 100};
+ /* 5-27, 56-57, 65-104 */
+ struct region new_three_regions[3] = {
+ (struct region){.start = 5, .end = 27},
+ (struct region){.start = 56, .end = 57},
+ (struct region){.start = 65, .end = 104} };
+ /* 5-20-27, 56-57, 65-80-90-104 */
+ unsigned long expected[] = {5, 20, 20, 27, 56, 57,
+ 65, 80, 80, 90, 90, 104};
+
+ damon_do_test_apply_three_regions(test, regions, ARRAY_SIZE(regions),
+ new_three_regions, expected, ARRAY_SIZE(expected));
+}
+
+/*
+ * Test a big change. The second big region has totally freed and mapped to
+ * different area (50-59 -> 61-63). The target regions which were in the old
+ * second big region (50-55-57-59) should be removed and new target region
+ * covering the second big region (61-63) should be created.
+ */
+static void damon_test_apply_three_regions3(struct kunit *test)
+{
+ /* 10-20-30, 50-55-57-59, 70-80-90-100 */
+ unsigned long regions[] = {10, 20, 20, 30, 50, 55, 55, 57, 57, 59,
+ 70, 80, 80, 90, 90, 100};
+ /* 5-27, 61-63, 65-104 */
+ struct region new_three_regions[3] = {
+ (struct region){.start = 5, .end = 27},
+ (struct region){.start = 61, .end = 63},
+ (struct region){.start = 65, .end = 104} };
+ /* 5-20-27, 61-63, 65-80-90-104 */
+ unsigned long expected[] = {5, 20, 20, 27, 61, 63,
+ 65, 80, 80, 90, 90, 104};
+
+ damon_do_test_apply_three_regions(test, regions, ARRAY_SIZE(regions),
+ new_three_regions, expected, ARRAY_SIZE(expected));
+}
+
+/*
+ * Test another big change. Both of the second and third big regions (50-59
+ * and 70-100) has totally freed and mapped to different area (30-32 and
+ * 65-68). The target regions which were in the old second and third big
+ * regions should now be removed and new target regions covering the new second
+ * and third big regions should be crated.
+ */
+static void damon_test_apply_three_regions4(struct kunit *test)
+{
+ /* 10-20-30, 50-55-57-59, 70-80-90-100 */
+ unsigned long regions[] = {10, 20, 20, 30, 50, 55, 55, 57, 57, 59,
+ 70, 80, 80, 90, 90, 100};
+ /* 5-7, 30-32, 65-68 */
+ struct region new_three_regions[3] = {
+ (struct region){.start = 5, .end = 7},
+ (struct region){.start = 30, .end = 32},
+ (struct region){.start = 65, .end = 68} };
+ /* expect 5-7, 30-32, 65-68 */
+ unsigned long expected[] = {5, 7, 30, 32, 65, 68};
+
+ damon_do_test_apply_three_regions(test, regions, ARRAY_SIZE(regions),
+ new_three_regions, expected, ARRAY_SIZE(expected));
+}
+
+static void damon_test_split_evenly(struct kunit *test)
+{
+ struct damon_ctx *c = &damon_user_ctx;
+ struct damon_task *t;
+ struct damon_region *r;
+ unsigned long i;
+
+ KUNIT_EXPECT_EQ(test, damon_split_region_evenly(c, NULL, 5), -EINVAL);
+
+ t = damon_new_task(42);
+ r = damon_new_region(&damon_user_ctx, 0, 100);
+ KUNIT_EXPECT_EQ(test, damon_split_region_evenly(c, r, 0), -EINVAL);
+
+ damon_add_region(r, t);
+ KUNIT_EXPECT_EQ(test, damon_split_region_evenly(c, r, 10), 0);
+ KUNIT_EXPECT_EQ(test, nr_damon_regions(t), 10u);
+
+ i = 0;
+ damon_for_each_region(r, t) {
+ KUNIT_EXPECT_EQ(test, r->vm_start, i++ * 10);
+ KUNIT_EXPECT_EQ(test, r->vm_end, i * 10);
+ }
+ damon_free_task(t);
+
+ t = damon_new_task(42);
+ r = damon_new_region(&damon_user_ctx, 5, 59);
+ damon_add_region(r, t);
+ KUNIT_EXPECT_EQ(test, damon_split_region_evenly(c, r, 5), 0);
+ KUNIT_EXPECT_EQ(test, nr_damon_regions(t), 5u);
+
+ i = 0;
+ damon_for_each_region(r, t) {
+ if (i == 4)
+ break;
+ KUNIT_EXPECT_EQ(test, r->vm_start, 5 + 10 * i++);
+ KUNIT_EXPECT_EQ(test, r->vm_end, 5 + 10 * i);
+ }
+ KUNIT_EXPECT_EQ(test, r->vm_start, 5 + 10 * i);
+ KUNIT_EXPECT_EQ(test, r->vm_end, 59ul);
+ damon_free_task(t);
+
+ t = damon_new_task(42);
+ r = damon_new_region(&damon_user_ctx, 5, 6);
+ damon_add_region(r, t);
+ KUNIT_EXPECT_EQ(test, damon_split_region_evenly(c, r, 2), -EINVAL);
+ KUNIT_EXPECT_EQ(test, nr_damon_regions(t), 1u);
+
+ damon_for_each_region(r, t) {
+ KUNIT_EXPECT_EQ(test, r->vm_start, 5ul);
+ KUNIT_EXPECT_EQ(test, r->vm_end, 6ul);
+ }
+ damon_free_task(t);
+}
+
+static void damon_test_split_at(struct kunit *test)
+{
+ struct damon_task *t;
+ struct damon_region *r;
+
+ t = damon_new_task(42);
+ r = damon_new_region(&damon_user_ctx, 0, 100);
+ damon_add_region(r, t);
+ damon_split_region_at(&damon_user_ctx, r, 25);
+ KUNIT_EXPECT_EQ(test, r->vm_start, 0ul);
+ KUNIT_EXPECT_EQ(test, r->vm_end, 25ul);
+
+ r = damon_next_region(r);
+ KUNIT_EXPECT_EQ(test, r->vm_start, 25ul);
+ KUNIT_EXPECT_EQ(test, r->vm_end, 100ul);
+
+ damon_free_task(t);
+}
+
+static void damon_test_merge_two(struct kunit *test)
+{
+ struct damon_task *t;
+ struct damon_region *r, *r2, *r3;
+ int i;
+
+ t = damon_new_task(42);
+ r = damon_new_region(&damon_user_ctx, 0, 100);
+ r->nr_accesses = 10;
+ damon_add_region(r, t);
+ r2 = damon_new_region(&damon_user_ctx, 100, 300);
+ r2->nr_accesses = 20;
+ damon_add_region(r2, t);
+
+ damon_merge_two_regions(r, r2);
+ KUNIT_EXPECT_EQ(test, r->vm_start, 0ul);
+ KUNIT_EXPECT_EQ(test, r->vm_end, 300ul);
+ KUNIT_EXPECT_EQ(test, r->nr_accesses, 16u);
+
+ i = 0;
+ damon_for_each_region(r3, t) {
+ KUNIT_EXPECT_PTR_EQ(test, r, r3);
+ i++;
+ }
+ KUNIT_EXPECT_EQ(test, i, 1);
+
+ damon_free_task(t);
+}
+
+static void damon_test_merge_regions_of(struct kunit *test)
+{
+ struct damon_task *t;
+ struct damon_region *r;
+ unsigned long sa[] = {0, 100, 114, 122, 130, 156, 170, 184};
+ unsigned long ea[] = {100, 112, 122, 130, 156, 170, 184, 230};
+ unsigned int nrs[] = {0, 0, 10, 10, 20, 30, 1, 2};
+
+ unsigned long saddrs[] = {0, 114, 130, 156, 170};
+ unsigned long eaddrs[] = {112, 130, 156, 170, 230};
+ int i;
+
+ t = damon_new_task(42);
+ for (i = 0; i < ARRAY_SIZE(sa); i++) {
+ r = damon_new_region(&damon_user_ctx, sa[i], ea[i]);
+ r->nr_accesses = nrs[i];
+ damon_add_region(r, t);
+ }
+
+ damon_merge_regions_of(t, 9);
+ /* 0-112, 114-130, 130-156, 156-170 */
+ KUNIT_EXPECT_EQ(test, nr_damon_regions(t), 5u);
+ for (i = 0; i < 5; i++) {
+ r = __nth_region_of(t, i);
+ KUNIT_EXPECT_EQ(test, r->vm_start, saddrs[i]);
+ KUNIT_EXPECT_EQ(test, r->vm_end, eaddrs[i]);
+ }
+ damon_free_task(t);
+}
+
+static void damon_test_split_regions_of(struct kunit *test)
+{
+ struct damon_task *t;
+ struct damon_region *r;
+
+ t = damon_new_task(42);
+ r = damon_new_region(&damon_user_ctx, 0, 22);
+ damon_add_region(r, t);
+ damon_split_regions_of(&damon_user_ctx, t);
+ KUNIT_EXPECT_EQ(test, nr_damon_regions(t), 2u);
+ damon_free_task(t);
+}
+
+static struct kunit_case damon_test_cases[] = {
+ KUNIT_CASE(damon_test_str_to_pids),
+ KUNIT_CASE(damon_test_tasks),
+ KUNIT_CASE(damon_test_regions),
+ KUNIT_CASE(damon_test_set_pids),
+ KUNIT_CASE(damon_test_three_regions_in_vmas),
+ KUNIT_CASE(damon_test_aggregate),
+ KUNIT_CASE(damon_test_write_rbuf),
+ KUNIT_CASE(damon_test_apply_three_regions1),
+ KUNIT_CASE(damon_test_apply_three_regions2),
+ KUNIT_CASE(damon_test_apply_three_regions3),
+ KUNIT_CASE(damon_test_apply_three_regions4),
+ KUNIT_CASE(damon_test_split_evenly),
+ KUNIT_CASE(damon_test_split_at),
+ KUNIT_CASE(damon_test_merge_two),
+ KUNIT_CASE(damon_test_merge_regions_of),
+ KUNIT_CASE(damon_test_split_regions_of),
+ {},
+};
+
+static struct kunit_suite damon_test_suite = {
+ .name = "damon",
+ .test_cases = damon_test_cases,
+};
+kunit_test_suite(damon_test_suite);
+
+#endif /* _DAMON_TEST_H */
+
+#endif /* CONFIG_DAMON_KUNIT_TEST */
diff --git a/mm/damon.c b/mm/damon.c
index 6829b2d1166f..95f5d94b97e6 100644
--- a/mm/damon.c
+++ b/mm/damon.c
@@ -25,7 +25,11 @@
#include <trace/events/damon.h>

/* Minimal region size. Every damon_region is aligned by this. */
+#ifndef CONFIG_DAMON_KUNIT_TEST
#define MIN_REGION PAGE_SIZE
+#else
+#define MIN_REGION 1
+#endif

#define damon_get_task_struct(t) \
(get_pid_task(find_vpid(t->pid), PIDTYPE_PID))
@@ -1486,3 +1490,5 @@ module_exit(damon_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("SeongJae Park <[email protected]>");
MODULE_DESCRIPTION("DAMON: Data Access MONitor");
+
+#include "damon-test.h"
--
2.17.1

2020-04-27 12:15:45

by SeongJae Park

[permalink] [raw]
Subject: [PATCH v9 15/15] MAINTAINERS: Update for DAMON

From: SeongJae Park <[email protected]>

This commit updates MAINTAINERS file for DAMON related files.

Signed-off-by: SeongJae Park <[email protected]>
---
MAINTAINERS | 12 ++++++++++++
1 file changed, 12 insertions(+)

diff --git a/MAINTAINERS b/MAINTAINERS
index 5a5332b3591d..cb4a7fa3cdfe 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -4661,6 +4661,18 @@ F: net/ax25/ax25_out.c
F: net/ax25/ax25_timer.c
F: net/ax25/sysctl_net_ax25.c

+DATA ACCESS MONITOR
+M: SeongJae Park <[email protected]>
+L: [email protected]
+S: Maintained
+F: Documentation/admin-guide/mm/data_access_monitor.rst
+F: include/linux/damon.h
+F: include/trace/events/damon.h
+F: mm/damon-test.h
+F: mm/damon.c
+F: tools/damon/*
+F: tools/testing/selftests/damon/*
+
DAVICOM FAST ETHERNET (DMFE) NETWORK DRIVER
L: [email protected]
S: Orphan
--
2.17.1

2020-04-28 12:30:14

by Jonathan Cameron

[permalink] [raw]
Subject: Re: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

On Mon, 27 Apr 2020 14:04:27 +0200
SeongJae Park <[email protected]> wrote:

> From: SeongJae Park <[email protected]>
>
> Introduction
> ============
>
> Memory management decisions can be improved if finer data access information is
> available. However, because such finer information usually comes with higher
> overhead, most systems including Linux forgives the potential benefit and rely
> on only coarse information or some light-weight heuristics. The pseudo-LRU and
> the aggressive THP promotions are such examples.
>
> A number of data access pattern awared memory management optimizations (refer
> to 'Appendix A' for more details) consistently say the potential benefit is not
> small. However, none of those has successfully merged to the mainline Linux
> kernel mainly due to the absence of a scalable and efficient data access
> monitoring mechanism. Refer to 'Appendix B' to see the limitations of existing
> memory monitoring mechanisms.
>
> DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
> enough to be used for the DRAM level memory management (a straightforward
> DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough
> to be applied online (compared to a straightforward access monitoring scheme,
> DAMON is up to 94,242.42x lighter) and 3) keeps predefined upper-bound overhead
> regardless of the size of target workloads (thus scalable). Refer to 'Appendix
> C' if you interested in how it is possible, and 'Appendix F' to know how the
> numbers collected.
>
> DAMON has mainly designed for the kernel's memory management mechanisms.
> However, because it is implemented as a standalone kernel module and provides
> several interfaces, it can be used by a wide range of users including kernel
> space programs, user space programs, programmers, and administrators. DAMON
> is now supporting the monitoring only, but it will also provide simple and
> convenient data access pattern awared memory managements by itself. Refer to
> 'Appendix D' for more detailed expected usages of DAMON.
>
>
> Boring? Here Are Something Colorful
> ===================================
>
> For intuitive understanding of DAMON, I made web pages[1-8] showing the
> visualized dynamic data access pattern of various realistic workloads in
> PARSEC3 and SPLASH-2X bechmark suites. The figures are generated using the
> user space tool in 10th patch of this patchset.
>
> There are pages showing the heatmap format dynamic access pattern of each
> workload for heap area[1], mmap()-ed area[2], and stack[3] area. I splitted
> the entire address space to the three area because there are huge unmapped
> regions between the areas.
>
> You can also show how the dynamic working set size of each workload is
> distributed[4], and how it is chronologically changing[5].
>
> The most important characteristic of DAMON is its promise of the upperbound of
> the monitoring overhead. To show whether DAMON keeps the promise well, I
> visualized the number of monitoring operations required for each 5
> milliseconds, which is configured to not exceed 1000. You can show the
> distribution of the numbers[6] and how it changes chronologically[7].
>
> [1] https://damonitor.github.io/reports/latest/by_image/heatmap.0.png.html
> [2] https://damonitor.github.io/reports/latest/by_image/heatmap.1.png.html
> [3] https://damonitor.github.io/reports/latest/by_image/heatmap.2.png.html
> [4] https://damonitor.github.io/reports/latest/by_image/wss_sz.png.html
> [5] https://damonitor.github.io/reports/latest/by_image/wss_time.png.html
> [6] https://damonitor.github.io/reports/latest/by_image/nr_regions_sz.png.html
> [7] https://damonitor.github.io/reports/latest/by_image/nr_regions_time.png.html
>
>
> Future Plans
> ============
>
> This patchset is only for the first stage of DAMON. As soon as this patchset
> is merged, official patchsets for below future plans will be posted.
>
>
> Automate Data Access Pattern-aware Memory Management
> ----------------------------------------------------
>
> Though DAMON provides the monitoring feature, implementing data access pattern
> aware memory management schemes could be difficult to beginners. DAMON will be
> able to do most of the work by itself in near future. Users will be required
> to only describe what kind of data access monitoring-based operation schemes
> they want.
>
> By applying a very simple scheme for THP promotion/demotion with a latest
> version of the patchset (not posted yet), DAMON achieved 18x lower memory space
> overhead compared to THP while preserving about 50% of the THP performance
> benefit with SPLASH-2X benchmark suite.
>
> An RFC patchset for this plan is already available
> (https://lore.kernel.org/linux-mm/[email protected]/).
>
>
> Support Various Address Spaces
> ------------------------------
>
> Currently, DAMON supports virtual memory address spaces using PTE Accessed bits
> as its access checking primitive. However, the core design of DAMON is not
> dependent to such implementation details. In a future, DAMON will decouple
> those and support various address spaces including physical memory. It will
> further allow users to configure and even implement the primitives by
> themselves for their special usecase. Monitoring of page cache, NUMA nodes,
> specific files, or block devices would be examples of such usecases.
>
> An RFC patchset for this plan is already available
> (https://lore.kernel.org/linux-mm/[email protected]/).
>
>
> Frequently Asked Questions
> ==========================
>
> Q: Why a new module, instead of extending perf or other tools?
> A: First, DAMON aims to be used by other programs including the kernel.
> Therefore, having dependency to specific tools like perf is not desirable.
> Second, because it need to be lightweight as much as possible so that it can be
> used online, any unnecessary overhead such as kernel - user space context
> switching cost should be avoided. These are the two most biggest reasons why
> DAMON is implemented in the kernel space. The idle page tracking subsystem
> would be the kernel module that most seems similar to DAMON. However, its own
> interface is not compatible with DAMON. Also, the internal implementation of
> it has no common part to be reused by DAMON.
>
> Q: Can 'perf mem' or PMUs used instead of DAMON?
> A: No. Roughly speaking, DAMON has two seperate layers. The low layer is
> access check of pages, and the higher layer is its core mechanisms for overhead
> controlling. For the low layer, DAMON is now using the PTE Accessed bits.
> Other H/W or S/W features that can be used for the access check of pages, such
> as 'perf mem', PMU, or even page idle, could be used instead in the layer.
> However, those could not alternate the high layer of DAMON.
>
>
> Evaluations
> ===========
>
> We evaluated DAMON's overhead, monitoring quality and usefulness using 25
> realistic workloads on my QEMU/KVM based virtual machine.
>
> DAMON is lightweight. It consumes only -0.18% more system memory and up to 1%
> CPU time. It makes target worloads only 0.55% slower.
>
> DAMON is accurate and useful for memory management optimizations. An
> experimental DAMON-based operation scheme for THP removes 66.2% of THP memory
> overheads while preserving 54.78% of THP speedup. Another experimental
> DAMON-based 'proactive reclamation' implementation reduced 88.15% of
> residentail sets and 22.30% of system memory footprint while incurring only
> 2.91% runtime overhead in best case (parsec3/freqmine).
>
> NOTE that the experimentail THP optimization and proactive reclamation are not
> for production, just only for proof of concepts.
>
> Please refer to 'Appendix E' for detailed evaluation setup and results.
>
>
> References
> ==========
>
> Prototypes of DAMON have introduced by an LPC kernel summit track talk[1] and
> two academic papers[2,3]. Please refer to those for more detailed information,
> especially the evaluations. The latest version of the patchsets has also
> introduced by an LWN artice[4].
>
> [1] SeongJae Park, Tracing Data Access Pattern with Bounded Overhead and
> Best-effort Accuracy. In The Linux Kernel Summit, September 2019.
> https://linuxplumbersconf.org/event/4/contributions/548/
> [2] SeongJae Park, Yunjae Lee, Heon Y. Yeom, Profiling Dynamic Data Access
> Patterns with Controlled Overhead and Quality. In 20th ACM/IFIP
> International Middleware Conference Industry, December 2019.
> https://dl.acm.org/doi/10.1145/3366626.3368125
> [3] SeongJae Park, Yunjae Lee, Yunhee Kim, Heon Y. Yeom, Profiling Dynamic Data
> Access Patterns with Bounded Overhead and Accuracy. In IEEE International
> Workshop on Foundations and Applications of Self- Systems (FAS 2019), June
> 2019.
> [4] Jonathan Corbet, Memory-management optimization with DAMON. In Linux Weekly
> News (LWN), Feb 2020. https://lwn.net/Articles/812707/
>
>
> Baseline and Complete Git Trees
> ===============================
>
> The patches are based on the v5.6. You can also clone the complete git
> tree:
>
> $ git clone git://github.com/sjp38/linux -b damon/patches/v9
>
> The web is also available:
> https://github.com/sjp38/linux/releases/tag/damon/patches/v9
>
> This patchset contains patches for the stabled main logic of DAMON only. The
> latest DAMON development tree is also available at:
> https://github.com/sjp38/linux/tree/damon/master
>
>
> Sequence Of Patches
> ===================
>
> The patches are organized in the following sequence. The first two patches are
> preparation of DAMON patchset. The 1st patch adds typos found in previous
> versions of DAMON patchset to 'scripts/spelling.txt' so that the typos can be
> caught by 'checkpatch.pl'. The 2nd patch exports 'lookup_page_ext()' to GPL
> modules so that it can be used by DAMON even though it is built as a loadable
> module.
>
> Next four patches implement the core of DAMON and it's programming interface.
> The 3rd patch introduces DAMON module, it's data structures, and data structure
> related common functions. Each of following three patches (4nd to 6th)
> implements the core mechanisms of DAMON, namely regions based sampling,
> adaptive regions adjustment, and dynamic memory mapping chage adoption,
> respectively, with programming interface supports of those.
>
> Following four patches are for low level users of DAMON. The 7th patch
> implements callbacks for each of monitoring steps so that users can do whatever
> they want with the access patterns. The 8th one implements recording of access
> patterns in DAMON for better convenience and efficiency. Each of next two
> patches (9th and 10th) respectively adds a debugfs interface for privileged
> people and/or programs in user space, and a tracepoint for other tracepoints
> supporting tracers such as perf.
>
> Two patches for high level users of DAMON follows. To provide a minimal
> reference to the debugfs interface and for high level use/tests of the DAMON,
> the next patch (11th) implements an user space tool. The 12th patch adds a
> document for administrators of DAMON.
>
> Next two patches are for tests. The 13th and 14th patches provide unit tests
> (based on kunit) and user space tests (based on kselftest), respectively.
>
> Finally, the last patch (15th) updates the MAINTAINERS file.
>
>
> Patch History
> =============
>
> The most biggest change in this version is support of minimal region size,
> which defaults to 'PAGE_SIZE'. This change will reduce unnecessary region
> splits and thus improve the quality of the output. In a future, we will be
> able to make this configurable for support of various access check primitives
> such as PMUs.

That is a good improvement. Might be interesting to consider taking
hugepages into account as well.

One issue I've noted is that we have a degeneracy problem with the current
region merging and splitting that perhaps could do with a small tweak.

Currently we can end with a very small number of regions because there
is no limit on how many regions can be merged in a give pass for merging.
However, splitting only doubles the number of regions.

I've been experimenting with a few loops of the splitting algorithm to ensure
we don't end up stuck with limited regions. I think the problem we are working
around can be roughly described as:

1) Program allocates a lot of memory - not really touching much of it.
2) Damon fuses the large memory allocations in to one region because the
access counts are always near 0.
3) Program finishes setup.
4) Program accesses a few pages in the huge reason a lot, but not that much
for most of the rest. Taking an extreme option, the page in the middle
gets all the accesses and the other 1G on either side gets none.
5) As a split always breaks the page in two, the chances of significantly
different values for the two resulting regions is low (as we only sample
the hot page occasionally).

If we just run the splits twice if the number of regions < max regions / 4
then over time we should eventually get a region with the single hot page in it.
We will get there faster if we split more (keeping below max regions).

As we always remain below max regions, we are still obeying the fixed
maximum overhead and actually monitoring at closer to the desired granularity.

Jonathan

>
> Changes from v8
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Make regions always aligned by minimal region size that can be changed
> (Stefan Nuernberger)
> - Store binary format version in the recording file (Stefan Nuernberger)
> - Use 'int' for pid instead of 'unsigned long' (Stefan Nuernberger)
> - Fix a race condition in damon thread termination (Stefan Nuernberger)
> - Optimize random value generation and recording (Stefan Nuernberger)
> - Clean up commit messages and comments (Stefan Nuernberger)
> - Clean up code (Stefan Nuernberger)
> - Use explicit signalling and 'do_exit()' for damon thread termination
> - Add more typos to spelling.txt
> - Update the performance evaluation results
> - Describe future plans in the cover letter
>
> Changes from v7
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Cleanup variable names (Jonathan Cameron)
> - Split sampling address setup from access_check() (Jonathan Cameron)
> - Make sampling address to always locate in the region (Jonathan Cameron)
> - Make initial region's sampling addr to be old (Jonathan Cameron)
> - Split kdamond on/off function to seperate functions (Jonathan Cameron)
> - Fix wrong kernel doc comments (Jonathan Cameron)
> - Reset 'last_accessed' to false in kdamond_check_access() if necessary
> - Rebase on v5.6
>
> Changes from v6
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Wordsmith cover letter (Shakeel Butt)
> - Cleanup code and commit messages (Jonathan Cameron)
> - Avoid kthread_run() under spinlock critical section (Jonathan Cameron)
> - Use kthread_stop() (Jonathan Cameron)
> - Change tracepoint to trace regions (Jonathan Cameron)
> - Implement API from the beginning (Jonathan Cameron)
> - Fix typos (Jonathan Cameron)
> - Fix access checking to properly handle regions smaller than single page
> (Jonathan Cameron)
> - Add found typos to 'scripts/spelling.txt'
> - Add recent evaluation results including DAMON-based Operation Schemes
>
> Changes from v5
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Fix minor bugs (sampling, record attributes, debugfs and user space tool)
> - selftests: Add debugfs interface tests for the bugs
> - Modify the user space tool to use its self default values for parameters
> - Fix pmg huge page access check
>
> Changes from v4
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Add 'Reviewed-by' for the kunit tests patch (Brendan Higgins)
> - Make the unit test to depedns on 'DAMON=y' (Randy Dunlap and kbuild bot)
> Reported-by: kbuild test robot <[email protected]>
> - Fix m68k module build issue
> Reported-by: kbuild test robot <[email protected]>
> - Add selftests
> - Seperate patches for low level users from core logics for better reading
> - Clean up debugfs interface
> - Trivial nitpicks
>
> Changes from v3
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Fix i386 build issue
> Reported-by: kbuild test robot <[email protected]>
> - Increase the default size of the monitoring result buffer to 1 MiB
> - Fix misc bugs in debugfs interface
>
> Changes from v2
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Move MAINTAINERS changes to last commit (Brendan Higgins)
> - Add descriptions for kunittest: why not only entire mappings and what the 4
> input sets are trying to test (Brendan Higgins)
> - Remove 'kdamond_need_stop()' test (Brendan Higgins)
> - Discuss about the 'perf mem' and DAMON (Peter Zijlstra)
> - Make CV clearly say what it actually does (Peter Zijlstra)
> - Answer why new module (Qian Cai)
> - Diable DAMON by default (Randy Dunlap)
> - Change the interface: Seperate recording attributes
> (attrs, record, rules) and allow multiple kdamond instances
> - Implement kernel API interface
>
> Changes from v1
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Rebase on v5.5
> - Add a tracepoint for integration with other tracers (Kirill A. Shutemov)
> - document: Add more description for the user space tool (Brendan Higgins)
> - unittest: Improve readability (Brendan Higgins)
> - unittest: Use consistent name and helpers function (Brendan Higgins)
> - Update PG_Young to avoid reclaim logic interference (Yunjae Lee)
>
> Changes from RFC
> (https://lore.kernel.org/linux-mm/[email protected]/)
> - Specify an ambiguous plan of access pattern based mm optimizations
> - Support loadable module build
> - Cleanup code
>
> SeongJae Park (15):
> scripts/spelling: Add a few more typos
> mm/page_ext: Export lookup_page_ext() to GPL modules
> mm: Introduce Data Access MONitor (DAMON)
> mm/damon: Implement region based sampling
> mm/damon: Adaptively adjust regions
> mm/damon: Apply dynamic memory mapping changes
> mm/damon: Implement callbacks
> mm/damon: Implement access pattern recording
> mm/damon: Add debugfs interface
> mm/damon: Add tracepoints
> tools: Add a minimal user-space tool for DAMON
> Documentation/admin-guide/mm: Add a document for DAMON
> mm/damon: Add kunit tests
> mm/damon: Add user space selftests
> MAINTAINERS: Update for DAMON
>
> .../admin-guide/mm/data_access_monitor.rst | 428 +++++
> Documentation/admin-guide/mm/index.rst | 1 +
> MAINTAINERS | 12 +
> include/linux/damon.h | 78 +
> include/trace/events/damon.h | 43 +
> mm/Kconfig | 23 +
> mm/Makefile | 1 +
> mm/damon-test.h | 615 +++++++
> mm/damon.c | 1494 +++++++++++++++++
> mm/page_ext.c | 1 +
> scripts/spelling.txt | 8 +
> tools/damon/.gitignore | 1 +
> tools/damon/_dist.py | 36 +
> tools/damon/_recfile.py | 23 +
> tools/damon/bin2txt.py | 67 +
> tools/damon/damo | 37 +
> tools/damon/heats.py | 362 ++++
> tools/damon/nr_regions.py | 91 +
> tools/damon/record.py | 212 +++
> tools/damon/report.py | 45 +
> tools/damon/wss.py | 97 ++
> tools/testing/selftests/damon/Makefile | 7 +
> .../selftests/damon/_chk_dependency.sh | 28 +
> tools/testing/selftests/damon/_chk_record.py | 108 ++
> .../testing/selftests/damon/debugfs_attrs.sh | 139 ++
> .../testing/selftests/damon/debugfs_record.sh | 50 +
> 26 files changed, 4007 insertions(+)
> create mode 100644 Documentation/admin-guide/mm/data_access_monitor.rst
> create mode 100644 include/linux/damon.h
> create mode 100644 include/trace/events/damon.h
> create mode 100644 mm/damon-test.h
> create mode 100644 mm/damon.c
> create mode 100644 tools/damon/.gitignore
> create mode 100644 tools/damon/_dist.py
> create mode 100644 tools/damon/_recfile.py
> create mode 100644 tools/damon/bin2txt.py
> create mode 100755 tools/damon/damo
> create mode 100644 tools/damon/heats.py
> create mode 100644 tools/damon/nr_regions.py
> create mode 100644 tools/damon/record.py
> create mode 100644 tools/damon/report.py
> create mode 100644 tools/damon/wss.py
> create mode 100644 tools/testing/selftests/damon/Makefile
> create mode 100644 tools/testing/selftests/damon/_chk_dependency.sh
> create mode 100644 tools/testing/selftests/damon/_chk_record.py
> create mode 100755 tools/testing/selftests/damon/debugfs_attrs.sh
> create mode 100755 tools/testing/selftests/damon/debugfs_record.sh
>


2020-04-28 13:27:09

by SeongJae Park

[permalink] [raw]
Subject: Re: Re: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

On Tue, 28 Apr 2020 13:27:04 +0100 Jonathan Cameron <[email protected]> wrote:

> On Mon, 27 Apr 2020 14:04:27 +0200
> SeongJae Park <[email protected]> wrote:
>
> > From: SeongJae Park <[email protected]>
> >
> > Introduction
> > ============
> >
> > Memory management decisions can be improved if finer data access information is
> > available. However, because such finer information usually comes with higher
> > overhead, most systems including Linux forgives the potential benefit and rely
> > on only coarse information or some light-weight heuristics. The pseudo-LRU and
> > the aggressive THP promotions are such examples.
> >
> > A number of data access pattern awared memory management optimizations (refer
> > to 'Appendix A' for more details) consistently say the potential benefit is not
> > small. However, none of those has successfully merged to the mainline Linux
> > kernel mainly due to the absence of a scalable and efficient data access
> > monitoring mechanism. Refer to 'Appendix B' to see the limitations of existing
> > memory monitoring mechanisms.
> >
> > DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
> > enough to be used for the DRAM level memory management (a straightforward
> > DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough
> > to be applied online (compared to a straightforward access monitoring scheme,
> > DAMON is up to 94,242.42x lighter) and 3) keeps predefined upper-bound overhead
> > regardless of the size of target workloads (thus scalable). Refer to 'Appendix
> > C' if you interested in how it is possible, and 'Appendix F' to know how the
> > numbers collected.
> >
> > DAMON has mainly designed for the kernel's memory management mechanisms.
> > However, because it is implemented as a standalone kernel module and provides
> > several interfaces, it can be used by a wide range of users including kernel
> > space programs, user space programs, programmers, and administrators. DAMON
> > is now supporting the monitoring only, but it will also provide simple and
> > convenient data access pattern awared memory managements by itself. Refer to
> > 'Appendix D' for more detailed expected usages of DAMON.
> >
[...]
> >
> > Future Plans
> > ============
> >
> > This patchset is only for the first stage of DAMON. As soon as this patchset
> > is merged, official patchsets for below future plans will be posted.
> >
[...]
> >
> > Support Various Address Spaces
> > ------------------------------
> >
> > Currently, DAMON supports virtual memory address spaces using PTE Accessed bits
> > as its access checking primitive. However, the core design of DAMON is not
> > dependent to such implementation details. In a future, DAMON will decouple
> > those and support various address spaces including physical memory. It will
> > further allow users to configure and even implement the primitives by
> > themselves for their special usecase. Monitoring of page cache, NUMA nodes,
> > specific files, or block devices would be examples of such usecases.
> >
> > An RFC patchset for this plan is already available
> > (https://lore.kernel.org/linux-mm/[email protected]/).
> >
[...]
> >
> > Patch History
> > =============
> >
> > The most biggest change in this version is support of minimal region size,
> > which defaults to 'PAGE_SIZE'. This change will reduce unnecessary region
> > splits and thus improve the quality of the output. In a future, we will be
> > able to make this configurable for support of various access check primitives
> > such as PMUs.
>
> That is a good improvement. Might be interesting to consider taking
> hugepages into account as well.

Thanks! Kudos to Stefan and you for giving me the comments for the change.

As abovely mentioned in 'Future Plans' section, DAMON will be highly
configurable. You can see the plan in more detail via the RFC patchset[1].
Thus, the minimal region size will also be able to configured as users want,
including the size of the hugepage.

[1] https://lore.kernel.org/linux-mm/[email protected]/

>
> One issue I've noted is that we have a degeneracy problem with the current
> region merging and splitting that perhaps could do with a small tweak.
>
> Currently we can end with a very small number of regions because there
> is no limit on how many regions can be merged in a give pass for merging.
> However, splitting only doubles the number of regions.
>
> I've been experimenting with a few loops of the splitting algorithm to ensure
> we don't end up stuck with limited regions. I think the problem we are working
> around can be roughly described as:
>
> 1) Program allocates a lot of memory - not really touching much of it.
> 2) Damon fuses the large memory allocations in to one region because the
> access counts are always near 0.
> 3) Program finishes setup.
> 4) Program accesses a few pages in the huge reason a lot, but not that much
> for most of the rest. Taking an extreme option, the page in the middle
> gets all the accesses and the other 1G on either side gets none.
> 5) As a split always breaks the page in two, the chances of significantly
> different values for the two resulting regions is low (as we only sample
> the hot page occasionally).
>
> If we just run the splits twice if the number of regions < max regions / 4
> then over time we should eventually get a region with the single hot page in it.
> We will get there faster if we split more (keeping below max regions).
>
> As we always remain below max regions, we are still obeying the fixed
> maximum overhead and actually monitoring at closer to the desired granularity.

Good point. However, as you also mentioned, DAMON will slowly, but eventually
adjust the regions appropriately.

And yes, your suggested solution will work pretty well. Indeed, my one
previous colleague found this problem on a few of special workloads and tried
the solution you suggested. The improvement was clear.

However, I didn't adopt the solution due to below reasons.

First, IMHO, this is an accuracy improvement, rather than bug fix. But the
extent of the enhancement didn't seem very critical to me. Most of other
workloads didn't show such problem (and thus improvement). Even with the
workloads showing the problem, the problem was not seem so critical.

Second, if the low accuracy is problem, users could get higher accuracy by
simply adjusting the sampling interval and/or aggregation interval to lower
value. This is the supposed way to trade the accuracy with the overhead.

Finally, I would like to keep code as simple as it can.

For same reasons, I would like to keep the code as currently is until real user
problem is reported. If you have different opinions, please feel free to yell
at me.


Thanks,
SeongJae Park

>
> Jonathan
>
> >
> > Changes from v8
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Make regions always aligned by minimal region size that can be changed
> > (Stefan Nuernberger)
> > - Store binary format version in the recording file (Stefan Nuernberger)
> > - Use 'int' for pid instead of 'unsigned long' (Stefan Nuernberger)
> > - Fix a race condition in damon thread termination (Stefan Nuernberger)
> > - Optimize random value generation and recording (Stefan Nuernberger)
> > - Clean up commit messages and comments (Stefan Nuernberger)
> > - Clean up code (Stefan Nuernberger)
> > - Use explicit signalling and 'do_exit()' for damon thread termination
> > - Add more typos to spelling.txt
> > - Update the performance evaluation results
> > - Describe future plans in the cover letter
> >
> > Changes from v7
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Cleanup variable names (Jonathan Cameron)
> > - Split sampling address setup from access_check() (Jonathan Cameron)
> > - Make sampling address to always locate in the region (Jonathan Cameron)
> > - Make initial region's sampling addr to be old (Jonathan Cameron)
> > - Split kdamond on/off function to seperate functions (Jonathan Cameron)
> > - Fix wrong kernel doc comments (Jonathan Cameron)
> > - Reset 'last_accessed' to false in kdamond_check_access() if necessary
> > - Rebase on v5.6
> >
> > Changes from v6
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Wordsmith cover letter (Shakeel Butt)
> > - Cleanup code and commit messages (Jonathan Cameron)
> > - Avoid kthread_run() under spinlock critical section (Jonathan Cameron)
> > - Use kthread_stop() (Jonathan Cameron)
> > - Change tracepoint to trace regions (Jonathan Cameron)
> > - Implement API from the beginning (Jonathan Cameron)
> > - Fix typos (Jonathan Cameron)
> > - Fix access checking to properly handle regions smaller than single page
> > (Jonathan Cameron)
> > - Add found typos to 'scripts/spelling.txt'
> > - Add recent evaluation results including DAMON-based Operation Schemes
> >
> > Changes from v5
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Fix minor bugs (sampling, record attributes, debugfs and user space tool)
> > - selftests: Add debugfs interface tests for the bugs
> > - Modify the user space tool to use its self default values for parameters
> > - Fix pmg huge page access check
> >
> > Changes from v4
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Add 'Reviewed-by' for the kunit tests patch (Brendan Higgins)
> > - Make the unit test to depedns on 'DAMON=y' (Randy Dunlap and kbuild bot)
> > Reported-by: kbuild test robot <[email protected]>
> > - Fix m68k module build issue
> > Reported-by: kbuild test robot <[email protected]>
> > - Add selftests
> > - Seperate patches for low level users from core logics for better reading
> > - Clean up debugfs interface
> > - Trivial nitpicks
> >
> > Changes from v3
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Fix i386 build issue
> > Reported-by: kbuild test robot <[email protected]>
> > - Increase the default size of the monitoring result buffer to 1 MiB
> > - Fix misc bugs in debugfs interface
> >
> > Changes from v2
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Move MAINTAINERS changes to last commit (Brendan Higgins)
> > - Add descriptions for kunittest: why not only entire mappings and what the 4
> > input sets are trying to test (Brendan Higgins)
> > - Remove 'kdamond_need_stop()' test (Brendan Higgins)
> > - Discuss about the 'perf mem' and DAMON (Peter Zijlstra)
> > - Make CV clearly say what it actually does (Peter Zijlstra)
> > - Answer why new module (Qian Cai)
> > - Diable DAMON by default (Randy Dunlap)
> > - Change the interface: Seperate recording attributes
> > (attrs, record, rules) and allow multiple kdamond instances
> > - Implement kernel API interface
> >
> > Changes from v1
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Rebase on v5.5
> > - Add a tracepoint for integration with other tracers (Kirill A. Shutemov)
> > - document: Add more description for the user space tool (Brendan Higgins)
> > - unittest: Improve readability (Brendan Higgins)
> > - unittest: Use consistent name and helpers function (Brendan Higgins)
> > - Update PG_Young to avoid reclaim logic interference (Yunjae Lee)
> >
> > Changes from RFC
> > (https://lore.kernel.org/linux-mm/[email protected]/)
> > - Specify an ambiguous plan of access pattern based mm optimizations
> > - Support loadable module build
> > - Cleanup code
> >
> > SeongJae Park (15):
> > scripts/spelling: Add a few more typos
> > mm/page_ext: Export lookup_page_ext() to GPL modules
> > mm: Introduce Data Access MONitor (DAMON)
> > mm/damon: Implement region based sampling
> > mm/damon: Adaptively adjust regions
> > mm/damon: Apply dynamic memory mapping changes
> > mm/damon: Implement callbacks
> > mm/damon: Implement access pattern recording
> > mm/damon: Add debugfs interface
> > mm/damon: Add tracepoints
> > tools: Add a minimal user-space tool for DAMON
> > Documentation/admin-guide/mm: Add a document for DAMON
> > mm/damon: Add kunit tests
> > mm/damon: Add user space selftests
> > MAINTAINERS: Update for DAMON
> >
> > .../admin-guide/mm/data_access_monitor.rst | 428 +++++
> > Documentation/admin-guide/mm/index.rst | 1 +
> > MAINTAINERS | 12 +
> > include/linux/damon.h | 78 +
> > include/trace/events/damon.h | 43 +
> > mm/Kconfig | 23 +
> > mm/Makefile | 1 +
> > mm/damon-test.h | 615 +++++++
> > mm/damon.c | 1494 +++++++++++++++++
> > mm/page_ext.c | 1 +
> > scripts/spelling.txt | 8 +
> > tools/damon/.gitignore | 1 +
> > tools/damon/_dist.py | 36 +
> > tools/damon/_recfile.py | 23 +
> > tools/damon/bin2txt.py | 67 +
> > tools/damon/damo | 37 +
> > tools/damon/heats.py | 362 ++++
> > tools/damon/nr_regions.py | 91 +
> > tools/damon/record.py | 212 +++
> > tools/damon/report.py | 45 +
> > tools/damon/wss.py | 97 ++
> > tools/testing/selftests/damon/Makefile | 7 +
> > .../selftests/damon/_chk_dependency.sh | 28 +
> > tools/testing/selftests/damon/_chk_record.py | 108 ++
> > .../testing/selftests/damon/debugfs_attrs.sh | 139 ++
> > .../testing/selftests/damon/debugfs_record.sh | 50 +
> > 26 files changed, 4007 insertions(+)
> > create mode 100644 Documentation/admin-guide/mm/data_access_monitor.rst
> > create mode 100644 include/linux/damon.h
> > create mode 100644 include/trace/events/damon.h
> > create mode 100644 mm/damon-test.h
> > create mode 100644 mm/damon.c
> > create mode 100644 tools/damon/.gitignore
> > create mode 100644 tools/damon/_dist.py
> > create mode 100644 tools/damon/_recfile.py
> > create mode 100644 tools/damon/bin2txt.py
> > create mode 100755 tools/damon/damo
> > create mode 100644 tools/damon/heats.py
> > create mode 100644 tools/damon/nr_regions.py
> > create mode 100644 tools/damon/record.py
> > create mode 100644 tools/damon/report.py
> > create mode 100644 tools/damon/wss.py
> > create mode 100644 tools/testing/selftests/damon/Makefile
> > create mode 100644 tools/testing/selftests/damon/_chk_dependency.sh
> > create mode 100644 tools/testing/selftests/damon/_chk_record.py
> > create mode 100755 tools/testing/selftests/damon/debugfs_attrs.sh
> > create mode 100755 tools/testing/selftests/damon/debugfs_record.sh

2020-04-28 16:20:04

by Jonathan Cameron

[permalink] [raw]
Subject: Re: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

On Tue, 28 Apr 2020 15:23:42 +0200
SeongJae Park <[email protected]> wrote:

> On Tue, 28 Apr 2020 13:27:04 +0100 Jonathan Cameron <[email protected]> wrote:
>
> > On Mon, 27 Apr 2020 14:04:27 +0200
> > SeongJae Park <[email protected]> wrote:
> >
> > > From: SeongJae Park <[email protected]>
> > >
> > > Introduction
> > > ============
> > >
> > > Memory management decisions can be improved if finer data access information is
> > > available. However, because such finer information usually comes with higher
> > > overhead, most systems including Linux forgives the potential benefit and rely
> > > on only coarse information or some light-weight heuristics. The pseudo-LRU and
> > > the aggressive THP promotions are such examples.
> > >
> > > A number of data access pattern awared memory management optimizations (refer
> > > to 'Appendix A' for more details) consistently say the potential benefit is not
> > > small. However, none of those has successfully merged to the mainline Linux
> > > kernel mainly due to the absence of a scalable and efficient data access
> > > monitoring mechanism. Refer to 'Appendix B' to see the limitations of existing
> > > memory monitoring mechanisms.
> > >
> > > DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
> > > enough to be used for the DRAM level memory management (a straightforward
> > > DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough
> > > to be applied online (compared to a straightforward access monitoring scheme,
> > > DAMON is up to 94,242.42x lighter) and 3) keeps predefined upper-bound overhead
> > > regardless of the size of target workloads (thus scalable). Refer to 'Appendix
> > > C' if you interested in how it is possible, and 'Appendix F' to know how the
> > > numbers collected.
> > >
> > > DAMON has mainly designed for the kernel's memory management mechanisms.
> > > However, because it is implemented as a standalone kernel module and provides
> > > several interfaces, it can be used by a wide range of users including kernel
> > > space programs, user space programs, programmers, and administrators. DAMON
> > > is now supporting the monitoring only, but it will also provide simple and
> > > convenient data access pattern awared memory managements by itself. Refer to
> > > 'Appendix D' for more detailed expected usages of DAMON.
> > >
> [...]
> > >
> > > Future Plans
> > > ============
> > >
> > > This patchset is only for the first stage of DAMON. As soon as this patchset
> > > is merged, official patchsets for below future plans will be posted.
> > >
> [...]
> > >
> > > Support Various Address Spaces
> > > ------------------------------
> > >
> > > Currently, DAMON supports virtual memory address spaces using PTE Accessed bits
> > > as its access checking primitive. However, the core design of DAMON is not
> > > dependent to such implementation details. In a future, DAMON will decouple
> > > those and support various address spaces including physical memory. It will
> > > further allow users to configure and even implement the primitives by
> > > themselves for their special usecase. Monitoring of page cache, NUMA nodes,
> > > specific files, or block devices would be examples of such usecases.
> > >
> > > An RFC patchset for this plan is already available
> > > (https://lore.kernel.org/linux-mm/[email protected]/).
> > >
> [...]
> > >
> > > Patch History
> > > =============
> > >
> > > The most biggest change in this version is support of minimal region size,
> > > which defaults to 'PAGE_SIZE'. This change will reduce unnecessary region
> > > splits and thus improve the quality of the output. In a future, we will be
> > > able to make this configurable for support of various access check primitives
> > > such as PMUs.
> >
> > That is a good improvement. Might be interesting to consider taking
> > hugepages into account as well.
>
> Thanks! Kudos to Stefan and you for giving me the comments for the change.
>
> As abovely mentioned in 'Future Plans' section, DAMON will be highly
> configurable. You can see the plan in more detail via the RFC patchset[1].
> Thus, the minimal region size will also be able to configured as users want,
> including the size of the hugepage.
>
> [1] https://lore.kernel.org/linux-mm/[email protected]/
>
> >
> > One issue I've noted is that we have a degeneracy problem with the current
> > region merging and splitting that perhaps could do with a small tweak.
> >
> > Currently we can end with a very small number of regions because there
> > is no limit on how many regions can be merged in a give pass for merging.
> > However, splitting only doubles the number of regions.
> >
> > I've been experimenting with a few loops of the splitting algorithm to ensure
> > we don't end up stuck with limited regions. I think the problem we are working
> > around can be roughly described as:
> >
> > 1) Program allocates a lot of memory - not really touching much of it.
> > 2) Damon fuses the large memory allocations in to one region because the
> > access counts are always near 0.
> > 3) Program finishes setup.
> > 4) Program accesses a few pages in the huge reason a lot, but not that much
> > for most of the rest. Taking an extreme option, the page in the middle
> > gets all the accesses and the other 1G on either side gets none.
> > 5) As a split always breaks the page in two, the chances of significantly
> > different values for the two resulting regions is low (as we only sample
> > the hot page occasionally).
> >
> > If we just run the splits twice if the number of regions < max regions / 4
> > then over time we should eventually get a region with the single hot page in it.
> > We will get there faster if we split more (keeping below max regions).
> >
> > As we always remain below max regions, we are still obeying the fixed
> > maximum overhead and actually monitoring at closer to the desired granularity.
>
> Good point. However, as you also mentioned, DAMON will slowly, but eventually
> adjust the regions appropriately.
>
> And yes, your suggested solution will work pretty well. Indeed, my one
> previous colleague found this problem on a few of special workloads and tried
> the solution you suggested. The improvement was clear.
>
> However, I didn't adopt the solution due to below reasons.
>
> First, IMHO, this is an accuracy improvement, rather than bug fix. But the
> extent of the enhancement didn't seem very critical to me. Most of other
> workloads didn't show such problem (and thus improvement). Even with the
> workloads showing the problem, the problem was not seem so critical.
>
> Second, if the low accuracy is problem, users could get higher accuracy by
> simply adjusting the sampling interval and/or aggregation interval to lower
> value. This is the supposed way to trade the accuracy with the overhead.

I disagree. There is very little chance of getting out of this situation with the
current splitting. Changing sampling and aggregation intervals doesn't actually help.

Let's draw out an example to discuss.

Toy state - taking just one block of memory.

0 = not accessed page (very cold)
X = accessed page (extremely hot)

First few cycles - no accesses

in X.Regions list average value estimated by damon.

Region C is needed to set the max and will never be aggregated.

aggregation cycle then state.
0.start
0.accessed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X
0.regions (percent)| A (0) | B (0) | C(1)|
0.merge | A | C |
0.split | A | B | C |

After a few cycles, hot page
1.start
1.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.regions (acc_cnt)| A (1/18) | B (0) | C(1)|
1.merge | A | C |
1.split | A | B | C |
2.start
2.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.regions (acc_cnt)| A (1/12) | B (0) | C(1)|
2.merge | A | C |
2.split | A | B | C |
3.start
3.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.regions (acc_cnt)| A (0) | B (1/21) | C(1)|
3.merge | A | C |
3.split | A | B | C |

Now make that 1000 pages long with the hot page at page 500.
So the average best case we will ever get is a 1/500 * number of sample period
between aggregations.

So what are the chances of failing to aggregate on the sample after we split
at that optimal point? We need to successfully sample that one page enough that
we get it 10% of the time.

I 'think' this a case of where the 10% point is on the CDF of a binomial
f(1/N, M) where N is number of bins and Mis number of samples.

Using matlab online I think the best chance you ever get is when you take 10 samples
and need just one of them to be in the region.

p = 1 - binocdf(0,10,1/N)
For N = 500, p = 0.0198
For N = 1000, p = 0.0099

Someone with better maths than me can check.

Now this just got us to the point where we won't aggregate the region for one
round of aggregation. We may split it again and if the resulting region is small
enough might not merge it the next aggregation cycle.

So I'd argue that allowing at least 2 repeats of splitting is well worth while.
It is just a couple of additional lines of code.

>
> Finally, I would like to keep code as simple as it can.
>
> For same reasons, I would like to keep the code as currently is until real user
> problem is reported. If you have different opinions, please feel free to yell
> at me.

:)

>
>
> Thanks,
> SeongJae Park
>
> >
> > Jonathan
> >
> > >
> > > Changes from v8
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Make regions always aligned by minimal region size that can be changed
> > > (Stefan Nuernberger)
> > > - Store binary format version in the recording file (Stefan Nuernberger)
> > > - Use 'int' for pid instead of 'unsigned long' (Stefan Nuernberger)
> > > - Fix a race condition in damon thread termination (Stefan Nuernberger)
> > > - Optimize random value generation and recording (Stefan Nuernberger)
> > > - Clean up commit messages and comments (Stefan Nuernberger)
> > > - Clean up code (Stefan Nuernberger)
> > > - Use explicit signalling and 'do_exit()' for damon thread termination
> > > - Add more typos to spelling.txt
> > > - Update the performance evaluation results
> > > - Describe future plans in the cover letter
> > >
> > > Changes from v7
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Cleanup variable names (Jonathan Cameron)
> > > - Split sampling address setup from access_check() (Jonathan Cameron)
> > > - Make sampling address to always locate in the region (Jonathan Cameron)
> > > - Make initial region's sampling addr to be old (Jonathan Cameron)
> > > - Split kdamond on/off function to seperate functions (Jonathan Cameron)
> > > - Fix wrong kernel doc comments (Jonathan Cameron)
> > > - Reset 'last_accessed' to false in kdamond_check_access() if necessary
> > > - Rebase on v5.6
> > >
> > > Changes from v6
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Wordsmith cover letter (Shakeel Butt)
> > > - Cleanup code and commit messages (Jonathan Cameron)
> > > - Avoid kthread_run() under spinlock critical section (Jonathan Cameron)
> > > - Use kthread_stop() (Jonathan Cameron)
> > > - Change tracepoint to trace regions (Jonathan Cameron)
> > > - Implement API from the beginning (Jonathan Cameron)
> > > - Fix typos (Jonathan Cameron)
> > > - Fix access checking to properly handle regions smaller than single page
> > > (Jonathan Cameron)
> > > - Add found typos to 'scripts/spelling.txt'
> > > - Add recent evaluation results including DAMON-based Operation Schemes
> > >
> > > Changes from v5
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Fix minor bugs (sampling, record attributes, debugfs and user space tool)
> > > - selftests: Add debugfs interface tests for the bugs
> > > - Modify the user space tool to use its self default values for parameters
> > > - Fix pmg huge page access check
> > >
> > > Changes from v4
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Add 'Reviewed-by' for the kunit tests patch (Brendan Higgins)
> > > - Make the unit test to depedns on 'DAMON=y' (Randy Dunlap and kbuild bot)
> > > Reported-by: kbuild test robot <[email protected]>
> > > - Fix m68k module build issue
> > > Reported-by: kbuild test robot <[email protected]>
> > > - Add selftests
> > > - Seperate patches for low level users from core logics for better reading
> > > - Clean up debugfs interface
> > > - Trivial nitpicks
> > >
> > > Changes from v3
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Fix i386 build issue
> > > Reported-by: kbuild test robot <[email protected]>
> > > - Increase the default size of the monitoring result buffer to 1 MiB
> > > - Fix misc bugs in debugfs interface
> > >
> > > Changes from v2
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Move MAINTAINERS changes to last commit (Brendan Higgins)
> > > - Add descriptions for kunittest: why not only entire mappings and what the 4
> > > input sets are trying to test (Brendan Higgins)
> > > - Remove 'kdamond_need_stop()' test (Brendan Higgins)
> > > - Discuss about the 'perf mem' and DAMON (Peter Zijlstra)
> > > - Make CV clearly say what it actually does (Peter Zijlstra)
> > > - Answer why new module (Qian Cai)
> > > - Diable DAMON by default (Randy Dunlap)
> > > - Change the interface: Seperate recording attributes
> > > (attrs, record, rules) and allow multiple kdamond instances
> > > - Implement kernel API interface
> > >
> > > Changes from v1
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Rebase on v5.5
> > > - Add a tracepoint for integration with other tracers (Kirill A. Shutemov)
> > > - document: Add more description for the user space tool (Brendan Higgins)
> > > - unittest: Improve readability (Brendan Higgins)
> > > - unittest: Use consistent name and helpers function (Brendan Higgins)
> > > - Update PG_Young to avoid reclaim logic interference (Yunjae Lee)
> > >
> > > Changes from RFC
> > > (https://lore.kernel.org/linux-mm/[email protected]/)
> > > - Specify an ambiguous plan of access pattern based mm optimizations
> > > - Support loadable module build
> > > - Cleanup code
> > >
> > > SeongJae Park (15):
> > > scripts/spelling: Add a few more typos
> > > mm/page_ext: Export lookup_page_ext() to GPL modules
> > > mm: Introduce Data Access MONitor (DAMON)
> > > mm/damon: Implement region based sampling
> > > mm/damon: Adaptively adjust regions
> > > mm/damon: Apply dynamic memory mapping changes
> > > mm/damon: Implement callbacks
> > > mm/damon: Implement access pattern recording
> > > mm/damon: Add debugfs interface
> > > mm/damon: Add tracepoints
> > > tools: Add a minimal user-space tool for DAMON
> > > Documentation/admin-guide/mm: Add a document for DAMON
> > > mm/damon: Add kunit tests
> > > mm/damon: Add user space selftests
> > > MAINTAINERS: Update for DAMON
> > >
> > > .../admin-guide/mm/data_access_monitor.rst | 428 +++++
> > > Documentation/admin-guide/mm/index.rst | 1 +
> > > MAINTAINERS | 12 +
> > > include/linux/damon.h | 78 +
> > > include/trace/events/damon.h | 43 +
> > > mm/Kconfig | 23 +
> > > mm/Makefile | 1 +
> > > mm/damon-test.h | 615 +++++++
> > > mm/damon.c | 1494 +++++++++++++++++
> > > mm/page_ext.c | 1 +
> > > scripts/spelling.txt | 8 +
> > > tools/damon/.gitignore | 1 +
> > > tools/damon/_dist.py | 36 +
> > > tools/damon/_recfile.py | 23 +
> > > tools/damon/bin2txt.py | 67 +
> > > tools/damon/damo | 37 +
> > > tools/damon/heats.py | 362 ++++
> > > tools/damon/nr_regions.py | 91 +
> > > tools/damon/record.py | 212 +++
> > > tools/damon/report.py | 45 +
> > > tools/damon/wss.py | 97 ++
> > > tools/testing/selftests/damon/Makefile | 7 +
> > > .../selftests/damon/_chk_dependency.sh | 28 +
> > > tools/testing/selftests/damon/_chk_record.py | 108 ++
> > > .../testing/selftests/damon/debugfs_attrs.sh | 139 ++
> > > .../testing/selftests/damon/debugfs_record.sh | 50 +
> > > 26 files changed, 4007 insertions(+)
> > > create mode 100644 Documentation/admin-guide/mm/data_access_monitor.rst
> > > create mode 100644 include/linux/damon.h
> > > create mode 100644 include/trace/events/damon.h
> > > create mode 100644 mm/damon-test.h
> > > create mode 100644 mm/damon.c
> > > create mode 100644 tools/damon/.gitignore
> > > create mode 100644 tools/damon/_dist.py
> > > create mode 100644 tools/damon/_recfile.py
> > > create mode 100644 tools/damon/bin2txt.py
> > > create mode 100755 tools/damon/damo
> > > create mode 100644 tools/damon/heats.py
> > > create mode 100644 tools/damon/nr_regions.py
> > > create mode 100644 tools/damon/record.py
> > > create mode 100644 tools/damon/report.py
> > > create mode 100644 tools/damon/wss.py
> > > create mode 100644 tools/testing/selftests/damon/Makefile
> > > create mode 100644 tools/testing/selftests/damon/_chk_dependency.sh
> > > create mode 100644 tools/testing/selftests/damon/_chk_record.py
> > > create mode 100755 tools/testing/selftests/damon/debugfs_attrs.sh
> > > create mode 100755 tools/testing/selftests/damon/debugfs_record.sh


2020-04-29 07:52:49

by SeongJae Park

[permalink] [raw]
Subject: Re: Re: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

On Tue, 28 Apr 2020 17:17:13 +0100 Jonathan Cameron <[email protected]> wrote:

> On Tue, 28 Apr 2020 15:23:42 +0200
> SeongJae Park <[email protected]> wrote:
>
> > On Tue, 28 Apr 2020 13:27:04 +0100 Jonathan Cameron <[email protected]> wrote:
> >
> > > On Mon, 27 Apr 2020 14:04:27 +0200
> > > SeongJae Park <[email protected]> wrote:
> > >
> > > > From: SeongJae Park <[email protected]>
> > > >
> > > > Introduction
> > > > ============
> > > >
> > > > Memory management decisions can be improved if finer data access information is
> > > > available. However, because such finer information usually comes with higher
> > > > overhead, most systems including Linux forgives the potential benefit and rely
> > > > on only coarse information or some light-weight heuristics. The pseudo-LRU and
> > > > the aggressive THP promotions are such examples.
> > > >
> > > > A number of data access pattern awared memory management optimizations (refer
> > > > to 'Appendix A' for more details) consistently say the potential benefit is not
> > > > small. However, none of those has successfully merged to the mainline Linux
> > > > kernel mainly due to the absence of a scalable and efficient data access
> > > > monitoring mechanism. Refer to 'Appendix B' to see the limitations of existing
> > > > memory monitoring mechanisms.
> > > >
> > > > DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
> > > > enough to be used for the DRAM level memory management (a straightforward
> > > > DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough
> > > > to be applied online (compared to a straightforward access monitoring scheme,
> > > > DAMON is up to 94,242.42x lighter) and 3) keeps predefined upper-bound overhead
> > > > regardless of the size of target workloads (thus scalable). Refer to 'Appendix
> > > > C' if you interested in how it is possible, and 'Appendix F' to know how the
> > > > numbers collected.
> > > >
> > > > DAMON has mainly designed for the kernel's memory management mechanisms.
> > > > However, because it is implemented as a standalone kernel module and provides
> > > > several interfaces, it can be used by a wide range of users including kernel
> > > > space programs, user space programs, programmers, and administrators. DAMON
> > > > is now supporting the monitoring only, but it will also provide simple and
> > > > convenient data access pattern awared memory managements by itself. Refer to
> > > > 'Appendix D' for more detailed expected usages of DAMON.
> > > >
> > [...]
> > > >
> > > > Future Plans
> > > > ============
> > > >
> > > > This patchset is only for the first stage of DAMON. As soon as this patchset
> > > > is merged, official patchsets for below future plans will be posted.
> > > >
> > [...]
> > > >
> > > > Support Various Address Spaces
> > > > ------------------------------
> > > >
> > > > Currently, DAMON supports virtual memory address spaces using PTE Accessed bits
> > > > as its access checking primitive. However, the core design of DAMON is not
> > > > dependent to such implementation details. In a future, DAMON will decouple
> > > > those and support various address spaces including physical memory. It will
> > > > further allow users to configure and even implement the primitives by
> > > > themselves for their special usecase. Monitoring of page cache, NUMA nodes,
> > > > specific files, or block devices would be examples of such usecases.
> > > >
> > > > An RFC patchset for this plan is already available
> > > > (https://lore.kernel.org/linux-mm/[email protected]/).
> > > >
> > [...]
> > > >
> > > > Patch History
> > > > =============
> > > >
> > > > The most biggest change in this version is support of minimal region size,
> > > > which defaults to 'PAGE_SIZE'. This change will reduce unnecessary region
> > > > splits and thus improve the quality of the output. In a future, we will be
> > > > able to make this configurable for support of various access check primitives
> > > > such as PMUs.
> > >
> > > That is a good improvement. Might be interesting to consider taking
> > > hugepages into account as well.
> >
> > Thanks! Kudos to Stefan and you for giving me the comments for the change.
> >
> > As abovely mentioned in 'Future Plans' section, DAMON will be highly
> > configurable. You can see the plan in more detail via the RFC patchset[1].
> > Thus, the minimal region size will also be able to configured as users want,
> > including the size of the hugepage.
> >
> > [1] https://lore.kernel.org/linux-mm/[email protected]/
> >
> > >
> > > One issue I've noted is that we have a degeneracy problem with the current
> > > region merging and splitting that perhaps could do with a small tweak.
> > >
> > > Currently we can end with a very small number of regions because there
> > > is no limit on how many regions can be merged in a give pass for merging.
> > > However, splitting only doubles the number of regions.
> > >
> > > I've been experimenting with a few loops of the splitting algorithm to ensure
> > > we don't end up stuck with limited regions. I think the problem we are working
> > > around can be roughly described as:
> > >
> > > 1) Program allocates a lot of memory - not really touching much of it.
> > > 2) Damon fuses the large memory allocations in to one region because the
> > > access counts are always near 0.
> > > 3) Program finishes setup.
> > > 4) Program accesses a few pages in the huge reason a lot, but not that much
> > > for most of the rest. Taking an extreme option, the page in the middle
> > > gets all the accesses and the other 1G on either side gets none.
> > > 5) As a split always breaks the page in two, the chances of significantly
> > > different values for the two resulting regions is low (as we only sample
> > > the hot page occasionally).
> > >
> > > If we just run the splits twice if the number of regions < max regions / 4
> > > then over time we should eventually get a region with the single hot page in it.
> > > We will get there faster if we split more (keeping below max regions).
> > >
> > > As we always remain below max regions, we are still obeying the fixed
> > > maximum overhead and actually monitoring at closer to the desired granularity.
> >
> > Good point. However, as you also mentioned, DAMON will slowly, but eventually
> > adjust the regions appropriately.
> >
> > And yes, your suggested solution will work pretty well. Indeed, my one
> > previous colleague found this problem on a few of special workloads and tried
> > the solution you suggested. The improvement was clear.
> >
> > However, I didn't adopt the solution due to below reasons.
> >
> > First, IMHO, this is an accuracy improvement, rather than bug fix. But the
> > extent of the enhancement didn't seem very critical to me. Most of other
> > workloads didn't show such problem (and thus improvement). Even with the
> > workloads showing the problem, the problem was not seem so critical.
> >
> > Second, if the low accuracy is problem, users could get higher accuracy by
> > simply adjusting the sampling interval and/or aggregation interval to lower
> > value. This is the supposed way to trade the accuracy with the overhead.
>
> I disagree. There is very little chance of getting out of this situation with the
> current splitting. Changing sampling and aggregation intervals doesn't actually help.
>
> Let's draw out an example to discuss.
>
> Toy state - taking just one block of memory.
>
> 0 = not accessed page (very cold)
> X = accessed page (extremely hot)
>
> First few cycles - no accesses
>
> in X.Regions list average value estimated by damon.
>
> Region C is needed to set the max and will never be aggregated.
>
> aggregation cycle then state.
> 0.start
> 0.accessed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X
> 0.regions (percent)| A (0) | B (0) | C(1)|
> 0.merge | A | C |
> 0.split | A | B | C |
>
> After a few cycles, hot page
> 1.start
> 1.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 1.regions (acc_cnt)| A (1/18) | B (0) | C(1)|

^ not count but ratio, right?

> 1.merge | A | C |
> 1.split | A | B | C |
> 2.start
> 2.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 2.regions (acc_cnt)| A (1/12) | B (0) | C(1)|
> 2.merge | A | C |
> 2.split | A | B | C |
> 3.start
> 3.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 3.regions (acc_cnt)| A (0) | B (1/21) | C(1)|
> 3.merge | A | C |
> 3.split | A | B | C |
>
> Now make that 1000 pages long with the hot page at page 500.
> So the average best case we will ever get is a 1/500 * number of sample period
> between aggregations.

So nice example, thank you! Now I understand the point.

So, the problem is that we cannot find the small hot region near the _middle_
because we split each region into only two subregions.

>
> So what are the chances of failing to aggregate on the sample after we split
> at that optimal point? We need to successfully sample that one page enough that
> we get it 10% of the time.
>
> I 'think' this a case of where the 10% point is on the CDF of a binomial
> f(1/N, M) where N is number of bins and Mis number of samples.
>
> Using matlab online I think the best chance you ever get is when you take 10 samples
> and need just one of them to be in the region.
>
> p = 1 - binocdf(0,10,1/N)
> For N = 500, p = 0.0198
> For N = 1000, p = 0.0099
>
> Someone with better maths than me can check.
>
> Now this just got us to the point where we won't aggregate the region for one
> round of aggregation. We may split it again and if the resulting region is small
> enough might not merge it the next aggregation cycle.
>
> So I'd argue that allowing at least 2 repeats of splitting is well worth while.
> It is just a couple of additional lines of code.

Nice suggestion, I will apply this suggestion in the next spin. It might be as
below:

if (nr_regions() < nr_max_regions / 4)
split_into_4_regions();
else if (nr_regions() < nr_max_regions / 2)
split_into_2_regions();

If this pseudo-code is missing some of your point, please let me know.

>
> >
> > Finally, I would like to keep code as simple as it can.
> >
> > For same reasons, I would like to keep the code as currently is until real user
> > problem is reported. If you have different opinions, please feel free to yell
> > at me.
>
> :)

Appreciate your explanations and suggestions.


Thanks,
SeongJae Park

2020-04-29 09:20:56

by Jonathan Cameron

[permalink] [raw]
Subject: Re: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

On Wed, 29 Apr 2020 09:49:54 +0200
SeongJae Park <[email protected]> wrote:

> On Tue, 28 Apr 2020 17:17:13 +0100 Jonathan Cameron <[email protected]> wrote:
>
> > On Tue, 28 Apr 2020 15:23:42 +0200
> > SeongJae Park <[email protected]> wrote:
> >
> > > On Tue, 28 Apr 2020 13:27:04 +0100 Jonathan Cameron <[email protected]> wrote:
> > >
> > > > On Mon, 27 Apr 2020 14:04:27 +0200
> > > > SeongJae Park <[email protected]> wrote:
> > > >
> > > > > From: SeongJae Park <[email protected]>
> > > > >
> > > > > Introduction
> > > > > ============
> > > > >
> > > > > Memory management decisions can be improved if finer data access information is
> > > > > available. However, because such finer information usually comes with higher
> > > > > overhead, most systems including Linux forgives the potential benefit and rely
> > > > > on only coarse information or some light-weight heuristics. The pseudo-LRU and
> > > > > the aggressive THP promotions are such examples.
> > > > >
> > > > > A number of data access pattern awared memory management optimizations (refer
> > > > > to 'Appendix A' for more details) consistently say the potential benefit is not
> > > > > small. However, none of those has successfully merged to the mainline Linux
> > > > > kernel mainly due to the absence of a scalable and efficient data access
> > > > > monitoring mechanism. Refer to 'Appendix B' to see the limitations of existing
> > > > > memory monitoring mechanisms.
> > > > >
> > > > > DAMON is a data access monitoring subsystem for the problem. It is 1) accurate
> > > > > enough to be used for the DRAM level memory management (a straightforward
> > > > > DAMON-based optimization achieved up to 2.55x speedup), 2) light-weight enough
> > > > > to be applied online (compared to a straightforward access monitoring scheme,
> > > > > DAMON is up to 94,242.42x lighter) and 3) keeps predefined upper-bound overhead
> > > > > regardless of the size of target workloads (thus scalable). Refer to 'Appendix
> > > > > C' if you interested in how it is possible, and 'Appendix F' to know how the
> > > > > numbers collected.
> > > > >
> > > > > DAMON has mainly designed for the kernel's memory management mechanisms.
> > > > > However, because it is implemented as a standalone kernel module and provides
> > > > > several interfaces, it can be used by a wide range of users including kernel
> > > > > space programs, user space programs, programmers, and administrators. DAMON
> > > > > is now supporting the monitoring only, but it will also provide simple and
> > > > > convenient data access pattern awared memory managements by itself. Refer to
> > > > > 'Appendix D' for more detailed expected usages of DAMON.
> > > > >
> > > [...]
> > > > >
> > > > > Future Plans
> > > > > ============
> > > > >
> > > > > This patchset is only for the first stage of DAMON. As soon as this patchset
> > > > > is merged, official patchsets for below future plans will be posted.
> > > > >
> > > [...]
> > > > >
> > > > > Support Various Address Spaces
> > > > > ------------------------------
> > > > >
> > > > > Currently, DAMON supports virtual memory address spaces using PTE Accessed bits
> > > > > as its access checking primitive. However, the core design of DAMON is not
> > > > > dependent to such implementation details. In a future, DAMON will decouple
> > > > > those and support various address spaces including physical memory. It will
> > > > > further allow users to configure and even implement the primitives by
> > > > > themselves for their special usecase. Monitoring of page cache, NUMA nodes,
> > > > > specific files, or block devices would be examples of such usecases.
> > > > >
> > > > > An RFC patchset for this plan is already available
> > > > > (https://lore.kernel.org/linux-mm/[email protected]/).
> > > > >
> > > [...]
> > > > >
> > > > > Patch History
> > > > > =============
> > > > >
> > > > > The most biggest change in this version is support of minimal region size,
> > > > > which defaults to 'PAGE_SIZE'. This change will reduce unnecessary region
> > > > > splits and thus improve the quality of the output. In a future, we will be
> > > > > able to make this configurable for support of various access check primitives
> > > > > such as PMUs.
> > > >
> > > > That is a good improvement. Might be interesting to consider taking
> > > > hugepages into account as well.
> > >
> > > Thanks! Kudos to Stefan and you for giving me the comments for the change.
> > >
> > > As abovely mentioned in 'Future Plans' section, DAMON will be highly
> > > configurable. You can see the plan in more detail via the RFC patchset[1].
> > > Thus, the minimal region size will also be able to configured as users want,
> > > including the size of the hugepage.
> > >
> > > [1] https://lore.kernel.org/linux-mm/[email protected]/
> > >
> > > >
> > > > One issue I've noted is that we have a degeneracy problem with the current
> > > > region merging and splitting that perhaps could do with a small tweak.
> > > >
> > > > Currently we can end with a very small number of regions because there
> > > > is no limit on how many regions can be merged in a give pass for merging.
> > > > However, splitting only doubles the number of regions.
> > > >
> > > > I've been experimenting with a few loops of the splitting algorithm to ensure
> > > > we don't end up stuck with limited regions. I think the problem we are working
> > > > around can be roughly described as:
> > > >
> > > > 1) Program allocates a lot of memory - not really touching much of it.
> > > > 2) Damon fuses the large memory allocations in to one region because the
> > > > access counts are always near 0.
> > > > 3) Program finishes setup.
> > > > 4) Program accesses a few pages in the huge reason a lot, but not that much
> > > > for most of the rest. Taking an extreme option, the page in the middle
> > > > gets all the accesses and the other 1G on either side gets none.
> > > > 5) As a split always breaks the page in two, the chances of significantly
> > > > different values for the two resulting regions is low (as we only sample
> > > > the hot page occasionally).
> > > >
> > > > If we just run the splits twice if the number of regions < max regions / 4
> > > > then over time we should eventually get a region with the single hot page in it.
> > > > We will get there faster if we split more (keeping below max regions).
> > > >
> > > > As we always remain below max regions, we are still obeying the fixed
> > > > maximum overhead and actually monitoring at closer to the desired granularity.
> > >
> > > Good point. However, as you also mentioned, DAMON will slowly, but eventually
> > > adjust the regions appropriately.
> > >
> > > And yes, your suggested solution will work pretty well. Indeed, my one
> > > previous colleague found this problem on a few of special workloads and tried
> > > the solution you suggested. The improvement was clear.
> > >
> > > However, I didn't adopt the solution due to below reasons.
> > >
> > > First, IMHO, this is an accuracy improvement, rather than bug fix. But the
> > > extent of the enhancement didn't seem very critical to me. Most of other
> > > workloads didn't show such problem (and thus improvement). Even with the
> > > workloads showing the problem, the problem was not seem so critical.
> > >
> > > Second, if the low accuracy is problem, users could get higher accuracy by
> > > simply adjusting the sampling interval and/or aggregation interval to lower
> > > value. This is the supposed way to trade the accuracy with the overhead.
> >
> > I disagree. There is very little chance of getting out of this situation with the
> > current splitting. Changing sampling and aggregation intervals doesn't actually help.
> >
> > Let's draw out an example to discuss.
> >
> > Toy state - taking just one block of memory.
> >
> > 0 = not accessed page (very cold)
> > X = accessed page (extremely hot)
> >
> > First few cycles - no accesses
> >
> > in X.Regions list average value estimated by damon.
> >
> > Region C is needed to set the max and will never be aggregated.
> >
> > aggregation cycle then state.
> > 0.start
> > 0.accessed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X
> > 0.regions (percent)| A (0) | B (0) | C(1)|
> > 0.merge | A | C |
> > 0.split | A | B | C |
> >
> > After a few cycles, hot page
> > 1.start
> > 1.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> > 1.regions (acc_cnt)| A (1/18) | B (0) | C(1)|
>
> ^ not count but ratio, right?

oops. Absolutely.

>
> > 1.merge | A | C |
> > 1.split | A | B | C |
> > 2.start
> > 2.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> > 2.regions (acc_cnt)| A (1/12) | B (0) | C(1)|
> > 2.merge | A | C |
> > 2.split | A | B | C |
> > 3.start
> > 3.accessed 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> > 3.regions (acc_cnt)| A (0) | B (1/21) | C(1)|
> > 3.merge | A | C |
> > 3.split | A | B | C |
> >
> > Now make that 1000 pages long with the hot page at page 500.
> > So the average best case we will ever get is a 1/500 * number of sample period
> > between aggregations.
>
> So nice example, thank you! Now I understand the point.
>
> So, the problem is that we cannot find the small hot region near the _middle_
> because we split each region into only two subregions.

Exactly. Pathological case :(

>
> >
> > So what are the chances of failing to aggregate on the sample after we split
> > at that optimal point? We need to successfully sample that one page enough that
> > we get it 10% of the time.
> >
> > I 'think' this a case of where the 10% point is on the CDF of a binomial
> > f(1/N, M) where N is number of bins and Mis number of samples.
> >
> > Using matlab online I think the best chance you ever get is when you take 10 samples
> > and need just one of them to be in the region.
> >
> > p = 1 - binocdf(0,10,1/N)
> > For N = 500, p = 0.0198
> > For N = 1000, p = 0.0099
> >
> > Someone with better maths than me can check.
> >
> > Now this just got us to the point where we won't aggregate the region for one
> > round of aggregation. We may split it again and if the resulting region is small
> > enough might not merge it the next aggregation cycle.
> >
> > So I'd argue that allowing at least 2 repeats of splitting is well worth while.
> > It is just a couple of additional lines of code.
>
> Nice suggestion, I will apply this suggestion in the next spin. It might be as
> below:
>
> if (nr_regions() < nr_max_regions / 4)
> split_into_4_regions();
> else if (nr_regions() < nr_max_regions / 2)
> split_into_2_regions();
>
> If this pseudo-code is missing some of your point, please let me know.

That's it. My prototype was less efficient in that it just ran the
2 way split twice if we still had too few regions, but result is very
nearly the same (potentially some changes in the location of the split as
10-90% both times vs whatever limits you put in the 4 region version).

>
> >
> > >
> > > Finally, I would like to keep code as simple as it can.
> > >
> > > For same reasons, I would like to keep the code as currently is until real user
> > > problem is reported. If you have different opinions, please feel free to yell
> > > at me.
> >
> > :)
>
> Appreciate your explanations and suggestions.

You are welcome.

Out of interest, do you have any comparative data on how 'accurate' the resulting
estimates are vs a more precise heatmap from a memory trace?

I'm looking at gathering such data but much happier to leverage your work if
you've already done it!

Thanks,

Jonathan

>
>
> Thanks,
> SeongJae Park


2020-04-29 10:15:18

by SeongJae Park

[permalink] [raw]
Subject: Re: Re: [PATCH v9 00/15] Introduce Data Access MONitor (DAMON)

On Wed, 29 Apr 2020 10:18:06 +0100 Jonathan Cameron <[email protected]> wrote:

> On Wed, 29 Apr 2020 09:49:54 +0200
> SeongJae Park <[email protected]> wrote:
>
> > On Tue, 28 Apr 2020 17:17:13 +0100 Jonathan Cameron <[email protected]> wrote:
> >
> > > On Tue, 28 Apr 2020 15:23:42 +0200
> > > SeongJae Park <[email protected]> wrote:
> > >
> > > > On Tue, 28 Apr 2020 13:27:04 +0100 Jonathan Cameron <[email protected]> wrote:
> > > >
> > > > > On Mon, 27 Apr 2020 14:04:27 +0200
> > > > > SeongJae Park <[email protected]> wrote:
> > > > >
> > > > > > From: SeongJae Park <[email protected]>
> > > > > >
> > > > > > Introduction
> > > > > > ============
> > > > > >
[...]
> >
> > Appreciate your explanations and suggestions.
>
> You are welcome.
>
> Out of interest, do you have any comparative data on how 'accurate' the resulting
> estimates are vs a more precise heatmap from a memory trace?

No, I don't have such data.

I'm only comparing the big trends of heatmap, working set sizes analyzed from
the recorded access pattern and the DAMOS performance results for each version
using my human eye, to check regression.

>
> I'm looking at gathering such data but much happier to leverage your work if
> you've already done it!

That would be great. If I get such data later, I will let you know. I will be
also very happy if you could get it first and share with me.

Maybe we could make and use another variant of DAMON, which uses page-size
regions only and disable the adaptive regions adjustment. It will be also
useful for overhead comparison. Actually, I heard that my previous colleague
made this variant for the comparison based on a prototype of DAMON. I will
also consider extending DAMON to support such variant.

Also, if you need the heatmaps, analyzed working set size distribution, and/or
the record file itself for each version of the patchsets, please let me know.


Thanks,
SeongJae Park