Rockchp's NFC(Nand Flash Controller) has four versions: V600, V622, V800 and
V900.This series patch can support all four versions.
Changes in v12:
- Fix some warnings while make dt_binding_check
- Drop a allOf defined
Changes in v11:
- Fix compile error.
Changes in v10:
- Fix compile error on master v5.9-rc7.
Changes in v9:
- The nfc->buffer will realloc while the page size of the second mtd
is large than the first one
- Fix coding style.
- Remove struct rk_nfc_clk.
- Prepend some function with rk_nfc_.
- Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout.
- Remove function rk_nfc_read_byte and rk_nfc_write_byte.
- Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
- Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
Changes in v8:
- Fix a error while make dt_binding_check
Changes in v7:
- Fix some wrong define
- Rebase to linux-next.
- Fix coding style.
- Reserved 4 bytes at the beginning of the oob area.
- Page raw read and write included ecc data.
Changes in v6:
- Fix some wrong define
- Modified the definition of compatible
- The mtd->name set by NAND label property.
- Add some comments.
- Fix compile error.
Changes in v5:
- Fix some wrong define.
- Add boot-medium define.
- Remove some compatible define.
- Add boot blocks support with different ECC for bootROM.
- Rename rockchip-nand.c to rockchip-nand-controller.c.
- Unification of other variable names.
- Remove some compatible define.
Changes in v4:
- The compatible define with rkxx_nfc.
- Add assigned-clocks.
- Fix some wrong defineChanges in.
- Define platform data structure for the register offsets.
- The compatible define with rkxx_nfc.
- Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
- Use exec_op instead of legacy hooks.
Changes in v3:
- Change the title for the dt-bindings.
Changes in v2:
- Fix compile error.
- Include header files sorted by file name.
Yifeng Zhao (8):
dt-bindings: mtd: Describe Rockchip RK3xxx NAND flash controller
mtd: rawnand: rockchip: NFC drivers for RK3308, RK2928 and others
MAINTAINERS: add maintainers to ROCKCHIP NFC
arm64: dts: rockchip: Add NFC node for RK3308 SoC
arm64: dts: rockchip: Add NFC node for PX30 SoC
arm: dts: rockchip: Add NFC node for RV1108 SoC
arm: dts: rockchip: Add NFC node for RK2928 and other SoCs
arm: dts: rockchip: Add NFC node for RK3036 SoC
.../mtd/rockchip,nand-controller.yaml | 161 ++
MAINTAINERS | 4 +-
arch/arm/boot/dts/rk3036.dtsi | 52 +
arch/arm/boot/dts/rk3xxx.dtsi | 9 +
arch/arm/boot/dts/rv1108.dtsi | 11 +
arch/arm64/boot/dts/rockchip/px30.dtsi | 15 +
arch/arm64/boot/dts/rockchip/rk3308.dtsi | 15 +
drivers/mtd/nand/raw/Kconfig | 12 +
drivers/mtd/nand/raw/Makefile | 1 +
.../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++
10 files changed, 1717 insertions(+), 2 deletions(-)
create mode 100644 Documentation/devicetree/bindings/mtd/rockchip,nand-controller.yaml
create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
--
2.17.1
Add NAND FLASH Controller(NFC) node for PX30 SoC.
Signed-off-by: Yifeng Zhao <[email protected]>
---
(no changes since v1)
arch/arm64/boot/dts/rockchip/px30.dtsi | 15 +++++++++++++++
1 file changed, 15 insertions(+)
diff --git a/arch/arm64/boot/dts/rockchip/px30.dtsi b/arch/arm64/boot/dts/rockchip/px30.dtsi
index 2695ea8cda14..6cd67e80d623 100644
--- a/arch/arm64/boot/dts/rockchip/px30.dtsi
+++ b/arch/arm64/boot/dts/rockchip/px30.dtsi
@@ -973,6 +973,21 @@
status = "disabled";
};
+ nfc: nand-controller@ff3b0000 {
+ compatible = "rockchip,px30-nfc";
+ reg = <0x0 0xff3b0000 0x0 0x4000>;
+ interrupts = <GIC_SPI 57 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cru HCLK_NANDC>, <&cru SCLK_NANDC>;
+ clock-names = "ahb", "nfc";
+ assigned-clocks = <&cru SCLK_NANDC>;
+ assigned-clock-rates = <150000000>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&flash_ale &flash_bus8 &flash_cle &flash_cs0
+ &flash_rdn &flash_rdy &flash_wrn &flash_dqs>;
+ power-domains = <&power PX30_PD_MMC_NAND>;
+ status = "disabled";
+ };
+
gpu: gpu@ff400000 {
compatible = "rockchip,px30-mali", "arm,mali-bifrost";
reg = <0x0 0xff400000 0x0 0x4000>;
--
2.17.1
Add NAND FLASH Controller(NFC) node for RK3036 SoC.
Signed-off-by: Yifeng Zhao <[email protected]>
---
(no changes since v1)
arch/arm/boot/dts/rk3036.dtsi | 52 +++++++++++++++++++++++++++++++++++
1 file changed, 52 insertions(+)
diff --git a/arch/arm/boot/dts/rk3036.dtsi b/arch/arm/boot/dts/rk3036.dtsi
index 093567022386..dda5a1f79aca 100644
--- a/arch/arm/boot/dts/rk3036.dtsi
+++ b/arch/arm/boot/dts/rk3036.dtsi
@@ -292,6 +292,21 @@
status = "disabled";
};
+ nfc: nand-controller@10500000 {
+ compatible = "rockchip,rk3036-nfc",
+ "rockchip,rk2928-nfc";
+ reg = <0x10500000 0x4000>;
+ interrupts = <GIC_SPI 18 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cru HCLK_NANDC>, <&cru SCLK_NANDC>;
+ clock-names = "ahb", "nfc";
+ assigned-clocks = <&cru SCLK_NANDC>;
+ assigned-clock-rates = <150000000>;
+ pinctrl-0 = <&flash_ale &flash_bus8 &flash_cle &flash_csn0
+ &flash_rdn &flash_rdy &flash_wrn>;
+ pinctrl-names = "default";
+ status = "disabled";
+ };
+
cru: clock-controller@20000000 {
compatible = "rockchip,rk3036-cru";
reg = <0x20000000 0x1000>;
@@ -643,6 +658,43 @@
};
};
+ nfc {
+ flash_ale: flash-ale {
+ rockchip,pins = <2 RK_PA0 1 &pcfg_pull_default>;
+ };
+
+ flash_bus8: flash-bus8 {
+ rockchip,pins = <1 RK_PD0 1 &pcfg_pull_default>,
+ <1 RK_PD1 1 &pcfg_pull_default>,
+ <1 RK_PD2 1 &pcfg_pull_default>,
+ <1 RK_PD3 1 &pcfg_pull_default>,
+ <1 RK_PD4 1 &pcfg_pull_default>,
+ <1 RK_PD5 1 &pcfg_pull_default>,
+ <1 RK_PD6 1 &pcfg_pull_default>,
+ <1 RK_PD7 1 &pcfg_pull_default>;
+ };
+
+ flash_cle: flash-cle {
+ rockchip,pins = <2 RK_PA1 1 &pcfg_pull_default>;
+ };
+
+ flash_csn0: flash-csn0 {
+ rockchip,pins = <2 RK_PA6 1 &pcfg_pull_default>;
+ };
+
+ flash_rdn: flash-rdn {
+ rockchip,pins = <2 RK_PA3 1 &pcfg_pull_default>;
+ };
+
+ flash_rdy: flash-rdy {
+ rockchip,pins = <2 RK_PA4 1 &pcfg_pull_default>;
+ };
+
+ flash_wrn: flash-wrn {
+ rockchip,pins = <2 RK_PA2 1 &pcfg_pull_default>;
+ };
+ };
+
emac {
emac_xfer: emac-xfer {
rockchip,pins = <2 RK_PB2 1 &pcfg_pull_default>, /* crs_dvalid */
--
2.17.1
This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
8-bit NAND interface on the ARM based RK3308 platform.
Support Rockchip SoCs and NFC versions:
- PX30 and RK3326(NFCv900).
ECC: 16/40/60/70 bits/1KB.
CLOCK: ahb and nfc.
- RK3308 and RV1108(NFCv800).
ECC: 16 bits/1KB.
CLOCK: ahb and nfc.
- RK3036 and RK3128(NFCv622).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb and nfc.
- RK3066, RK3188 and RK2928(NFCv600).
ECC: 16/24/40/60 bits/1KB.
CLOCK: ahb.
Supported features:
- Read full page data by DMA.
- Support HW ECC(one step is 1KB).
- Support 2 - 32K page size.
- Support 8 CS(depend on SoCs)
Limitations:
- No support for the ecc step size is 512.
- Untested on some SoCs.
- No support for subpages.
- No support for the builtin randomizer.
- The original bad block mask is not supported. It is recommended to use
the BBT(bad block table).
Signed-off-by: Yifeng Zhao <[email protected]>
---
(no changes since v11)
Changes in v11:
- Fix compile error.
Changes in v10:
- Fix compile error on master v5.9-rc7.
Changes in v9:
- The nfc->buffer will realloc while the page size of the second mtd
is large than the first one
- Fix coding style.
- Remove struct rk_nfc_clk.
- Prepend some function with rk_nfc_.
- Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout.
- Remove function rk_nfc_read_byte and rk_nfc_write_byte.
- Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
- Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
Changes in v7:
- Rebase to linux-next.
- Fix coding style.
- Reserved 4 bytes at the beginning of the oob area.
- Page raw read and write included ecc data.
Changes in v6:
- The mtd->name set by NAND label property.
- Add some comments.
- Fix compile error.
Changes in v5:
- Add boot blocks support with different ECC for bootROM.
- Rename rockchip-nand.c to rockchip-nand-controller.c.
- Unification of other variable names.
- Remove some compatible define.
Changes in v4:
- Define platform data structure for the register offsets.
- The compatible define with rkxx_nfc.
- Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
- Use exec_op instead of legacy hooks.
Changes in v2:
- Fix compile error.
- Include header files sorted by file name.
drivers/mtd/nand/raw/Kconfig | 12 +
drivers/mtd/nand/raw/Makefile | 1 +
.../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++
3 files changed, 1452 insertions(+)
create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 6c46f25b57e2..2cc533e4e239 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
Enables the driver for the Arasan NAND flash controller on
Zynq Ultrascale+ MPSoC.
+config MTD_NAND_ROCKCHIP
+ tristate "Rockchip NAND controller"
+ depends on ARCH_ROCKCHIP && HAS_IOMEM
+ help
+ Enables support for NAND controller on Rockchip SoCs.
+ There are four different versions of NAND FLASH Controllers,
+ including:
+ NFC v600: RK2928, RK3066, RK3188
+ NFC v622: RK3036, RK3128
+ NFC v800: RK3308, RV1108
+ NFC v900: PX30, RK3326
+
comment "Misc"
config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 2930f5b9015d..960c9be25204 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
new file mode 100644
index 000000000000..cf28c5936209
--- /dev/null
+++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
@@ -0,0 +1,1439 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Rockchip NAND Flash controller driver.
+ * Copyright (C) 2020 Rockchip Inc.
+ * Author: Yifeng Zhao <[email protected]>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/*
+ * NFC Page Data Layout:
+ * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
+ * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
+ * ......
+ * NAND Page Data Layout:
+ * 1024 * n Data + m Bytes oob
+ * Original Bad Block Mask Location:
+ * First byte of oob(spare).
+ * nand_chip->oob_poi data layout:
+ * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
+ */
+
+/* NAND controller register definition */
+#define NFC_READ (0)
+#define NFC_WRITE (1)
+
+#define NFC_FMCTL (0x00)
+#define FMCTL_CE_SEL_M 0xFF
+#define FMCTL_CE_SEL(x) (1 << (x))
+#define FMCTL_WP BIT(8)
+#define FMCTL_RDY BIT(9)
+
+#define NFC_FMWAIT (0x04)
+#define FLCTL_RST BIT(0)
+#define FLCTL_WR (1) /* 0: read, 1: write */
+#define FLCTL_XFER_ST BIT(2)
+#define FLCTL_XFER_EN BIT(3)
+#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
+#define FLCTL_XFER_READY BIT(20)
+#define FLCTL_XFER_SECTOR (22)
+#define FLCTL_TOG_FIX BIT(29)
+
+#define BCHCTL_BANK_M (7 << 5)
+#define BCHCTL_BANK (5)
+
+#define DMA_ST BIT(0)
+#define DMA_WR (1) /* 0: write, 1: read */
+#define DMA_EN BIT(2)
+#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
+#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
+#define DMA_INC_NUM (9) /* 1 - 16 */
+
+#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
+ (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
+#define INT_DMA BIT(0)
+#define NFC_BANK (0x800)
+#define NFC_BANK_STEP (0x100)
+#define BANK_DATA (0x00)
+#define BANK_ADDR (0x04)
+#define BANK_CMD (0x08)
+#define NFC_SRAM0 (0x1000)
+#define NFC_SRAM1 (0x1400)
+#define NFC_SRAM_SIZE (0x400)
+#define NFC_TIMEOUT (500000)
+#define NFC_MAX_OOB_PER_STEP 128
+#define NFC_MIN_OOB_PER_STEP 64
+#define MAX_DATA_SIZE 0xFFFC
+#define MAX_ADDRESS_CYC 6
+#define NFC_ECC_MAX_MODES 4
+#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
+#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
+#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
+#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
+
+enum nfc_type {
+ NFC_V6,
+ NFC_V8,
+ NFC_V9,
+};
+
+/**
+ * struct rk_ecc_cnt_status: represent a ecc status data.
+ * @err_flag_bit: error flag bit index at register.
+ * @low: ecc count low bit index at register.
+ * @low_mask: mask bit.
+ * @low_bn: ecc count low bit number.
+ * @high: ecc count high bit index at register.
+ * @high_mask: mask bit
+ */
+struct ecc_cnt_status {
+ u8 err_flag_bit;
+ u8 low;
+ u8 low_mask;
+ u8 low_bn;
+ u8 high;
+ u8 high_mask;
+};
+
+/*
+ * @type: nfc version
+ * @ecc_strengths: ecc strengths
+ * @ecc_cfgs: ecc config values
+ * @flctl_off: FLCTL register offset
+ * @bchctl_off: BCHCTL register offset
+ * @dma_data_buf_off: DMA_DATA_BUF register offset
+ * @dma_oob_buf_off: DMA_OOB_BUF register offset
+ * @dma_cfg_off: DMA_CFG register offset
+ * @dma_st_off: DMA_ST register offset
+ * @bch_st_off: BCG_ST register offset
+ * @randmz_off: RANDMZ register offset
+ * @int_en_off: interrupt enable register offset
+ * @int_clr_off: interrupt clean register offset
+ * @int_st_off: interrupt status register offset
+ * @oob0_off: oob0 register offset
+ * @oob1_off: oob1 register offset
+ * @ecc0: represent ECC0 status data
+ * @ecc1: represent ECC1 status data
+ */
+struct nfc_cfg {
+ enum nfc_type type;
+ u8 ecc_strengths[NFC_ECC_MAX_MODES];
+ u32 ecc_cfgs[NFC_ECC_MAX_MODES];
+ u32 flctl_off;
+ u32 bchctl_off;
+ u32 dma_cfg_off;
+ u32 dma_data_buf_off;
+ u32 dma_oob_buf_off;
+ u32 dma_st_off;
+ u32 bch_st_off;
+ u32 randmz_off;
+ u32 int_en_off;
+ u32 int_clr_off;
+ u32 int_st_off;
+ u32 oob0_off;
+ u32 oob1_off;
+ struct ecc_cnt_status ecc0;
+ struct ecc_cnt_status ecc1;
+};
+
+struct rk_nfc_nand_chip {
+ struct list_head node;
+ struct nand_chip chip;
+
+ u16 spare_per_sector;
+ u16 oob_buf_per_sector;
+ u16 boot_blks;
+ u16 boot_ecc;
+ u16 metadata_size;
+
+ u8 nsels;
+ u8 sels[0];
+ /* Nothing after this field. */
+};
+
+struct rk_nfc {
+ struct nand_controller controller;
+ const struct nfc_cfg *cfg;
+ struct device *dev;
+
+ struct clk *nfc_clk;
+ struct clk *ahb_clk;
+ void __iomem *regs;
+
+ u32 selected_bank;
+ u32 band_offset;
+ u32 cur_clk;
+
+ struct completion done;
+ struct list_head chips;
+
+ u8 *buffer;
+ u8 *page_buf;
+ u32 *oob_buf;
+ u32 buffer_size;
+
+ unsigned long assigned_cs;
+};
+
+static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip)
+{
+ return container_of(chip, struct rk_nfc_nand_chip, chip);
+}
+
+static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+ return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i)
+{
+ u8 *poi;
+
+ poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+
+ return poi;
+}
+
+static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+ u8 *poi;
+
+ poi = chip->oob_poi + rknand->metadata_size +
+ chip->ecc.bytes * i;
+
+ return poi;
+}
+
+static inline int rk_nfc_data_len(struct nand_chip *chip)
+{
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+
+ return chip->ecc.size + rknand->spare_per_sector;
+}
+
+static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->buffer + i * rk_nfc_data_len(chip);
+}
+
+static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size;
+}
+
+static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+ u32 val;
+
+ if (cs < 0) {
+ nfc->selected_bank = -1;
+ /* Deselect the currently selected target. */
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ writel(val, nfc->regs + NFC_FMCTL);
+ return;
+ }
+
+ nfc->selected_bank = rknand->sels[cs];
+ nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
+
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ val |= FMCTL_CE_SEL(nfc->selected_bank);
+
+ writel(val, nfc->regs + NFC_FMCTL);
+}
+
+static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
+{
+ int rc;
+ u32 val;
+
+ rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
+ val & FMCTL_RDY, 10, NFC_TIMEOUT);
+
+ return rc;
+}
+
+static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
+ BANK_DATA);
+}
+
+static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static int rk_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ unsigned int i, j, remaining, start;
+ int reg_offset = nfc->band_offset;
+ u8 *inbuf = NULL;
+ const u8 *outbuf;
+ u32 cnt = 0;
+ int ret = 0;
+
+ for (i = 0; i < subop->ninstrs; i++) {
+ const struct nand_op_instr *instr = &subop->instrs[i];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writeb(instr->ctx.cmd.opcode,
+ nfc->regs + reg_offset + BANK_CMD);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ remaining = nand_subop_get_num_addr_cyc(subop, i);
+ start = nand_subop_get_addr_start_off(subop, i);
+
+ for (j = 0; j < 8 && j + start < remaining; j++)
+ writeb(instr->ctx.addr.addrs[j + start],
+ nfc->regs + reg_offset + BANK_ADDR);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ case NAND_OP_DATA_OUT_INSTR:
+ start = nand_subop_get_data_start_off(subop, i);
+ cnt = nand_subop_get_data_len(subop, i);
+
+ if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+ outbuf = instr->ctx.data.buf.out + start;
+ rk_nfc_write_buf(nfc, outbuf, cnt);
+ } else {
+ inbuf = instr->ctx.data.buf.in + start;
+ rk_nfc_read_buf(nfc, inbuf, cnt);
+ }
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ if (rk_nfc_wait_ioready(nfc) < 0) {
+ ret = -ETIMEDOUT;
+ dev_err(nfc->dev, "IO not ready\n");
+ }
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static int rk_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ if (!check_only)
+ rk_nfc_select_chip(chip, op->cs);
+
+ return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
+ check_only);
+}
+
+static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
+ const struct nand_interface_config *conf)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *timings;
+ u32 rate, tc2rw, trwpw, trw2c;
+ u32 temp;
+
+ if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return -EOPNOTSUPP;
+
+ if (IS_ERR(nfc->nfc_clk))
+ rate = clk_get_rate(nfc->ahb_clk);
+ else
+ rate = clk_get_rate(nfc->nfc_clk);
+
+ /* Turn clock rate into kHz. */
+ rate /= 1000;
+
+ tc2rw = 1;
+ trw2c = 1;
+
+ trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
+ trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
+
+ temp = timings->tREA_max / 1000;
+ temp = DIV_ROUND_UP(temp * rate, 1000000);
+
+ if (trwpw < temp)
+ trwpw = temp;
+
+ /*
+ * ACCON: access timing control register
+ * -------------------------------------
+ * 31:18: reserved
+ * 17:12: csrw, clock cycles from the falling edge of CSn to the
+ * falling edge of RDn or WRn
+ * 11:11: reserved
+ * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
+ * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
+ * rising edge of CSn
+ */
+ temp = ACCTIMING(tc2rw, trwpw, trw2c);
+ writel(temp, nfc->regs + NFC_FMWAIT);
+
+ return 0;
+}
+
+static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
+ struct nand_ecc_ctrl *ecc,
+ uint32_t strength)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ u32 reg, i;
+
+ for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
+ if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
+ reg = nfc->cfg->ecc_cfgs[i];
+ break;
+ }
+ }
+
+ if (i >= NFC_ECC_MAX_MODES)
+ return -EINVAL;
+
+ writel(reg, nfc->regs + nfc->cfg->bchctl_off);
+
+ return 0;
+}
+
+static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
+ dma_addr_t dma_data, dma_addr_t dma_oob)
+{
+ u32 dma_reg, fl_reg, bch_reg;
+
+ dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
+ (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
+
+ fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
+ (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
+
+ if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
+ bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
+ bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
+ (nfc->selected_bank << BCHCTL_BANK);
+ writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
+ }
+
+ writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
+ writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+ fl_reg |= FLCTL_XFER_ST;
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
+{
+ void __iomem *ptr;
+ int ret = 0;
+ u32 reg;
+
+ ptr = nfc->regs + nfc->cfg->flctl_off;
+
+ ret = readl_relaxed_poll_timeout(ptr, reg,
+ reg & FLCTL_XFER_READY,
+ 10, NFC_TIMEOUT);
+
+ return ret;
+}
+
+static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ int ret = 0;
+ u32 i;
+
+ if (!buf)
+ memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ /* Copy data to nfc buffer. */
+ if (buf)
+ memcpy(rk_nfc_data_ptr(chip, i),
+ nand_data_ptr(chip, buf, i),
+ chip->ecc.size);
+ /*
+ * The first four bytes of OOB are reserved for the
+ * boot ROM. In some debugging cases, sush as dump
+ * data and write back, the last four bytes stored
+ * in OOB need to be write back.
+ */
+ if (!i)
+ memcpy(rk_nfc_oob_ptr(chip, i),
+ nand_oob_ptr(chip, chip->ecc.steps - 1),
+ NFC_SYS_DATA_SIZE);
+ else
+ memcpy(rk_nfc_oob_ptr(chip, i),
+ nand_oob_ptr(chip, i - 1),
+ NFC_SYS_DATA_SIZE);
+ /* Copy ecc data to nfc buffer. */
+ memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+ nand_oob_ecc_ptr(chip, i),
+ chip->ecc.bytes);
+ }
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
+ ret = nand_prog_page_end_op(chip);
+
+ /*
+ * Deselect the currently selected target after ops done,
+ * otherwise the NAND flash will has extra power consumption.
+ */
+ rk_nfc_select_chip(chip, -1);
+
+ return ret;
+}
+
+static int rk_nfc_write_oob(struct nand_chip *chip, int page)
+{
+ return rk_nfc_write_page_raw(chip, NULL, 1, page);
+}
+
+static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ int ret = 0, i, boot_rom_mode = 0;
+ dma_addr_t dma_data, dma_oob;
+ u32 reg;
+ u8 *oob;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ memcpy(nfc->page_buf, buf, mtd->writesize);
+
+ /*
+ * The first blocks (4, 8 or 16 depending on the device) are used
+ * by the boot ROM and the first 32 bits of oob need to link to
+ * the next page address in the same block.
+ * Config the ECC algorithm supported by the boot ROM.
+ */
+ if ((page < pages_per_blk * rknand->boot_blks) &&
+ (chip->options & NAND_IS_BOOT_MEDIUM)) {
+ boot_rom_mode = 1;
+ if (rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc,
+ rknand->boot_ecc);
+ }
+
+ for (i = 0; i < ecc->steps; i++) {
+ if (!i) {
+ reg = 0xFFFFFFFF;
+ } else {
+ oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+ reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
+ oob[3] << 24;
+ }
+ if (!i && boot_rom_mode)
+ reg = (page & (pages_per_blk - 1)) * 4;
+
+ if (nfc->cfg->type == NFC_V9)
+ nfc->oob_buf[i] = reg;
+ else
+ nfc->oob_buf[i * oob_step / 4] = reg;
+ }
+
+ dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
+ mtd->writesize, DMA_TO_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+
+ rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "write: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_TO_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+ if (ret) {
+ ret = -EIO;
+ dev_err(nfc->dev,
+ "write: wait transfer done timeout.\n");
+ }
+
+ if (ret)
+ return ret;
+
+ ret = nand_prog_page_end_op(chip);
+
+ /*
+ * Deselect the currently selected target after ops done,
+ * otherwise the NAND flash will has extra power consumption.
+ */
+ rk_nfc_select_chip(chip, -1);
+
+ return ret;
+}
+
+static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ int i;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+ rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize);
+
+ /*
+ * Deselect the currently selected target after ops done,
+ * otherwise the NAND flash will has extra power consumption.
+ */
+ rk_nfc_select_chip(chip, -1);
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ /*
+ * The first four bytes of OOB are reserved for the
+ * boot ROM. In some debugging cases, sush as dump data
+ * and write back, it`s need to read out this four bytes,
+ * otherwise this information will be lost during write back.
+ */
+ if (!i)
+ memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1),
+ rk_nfc_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+ else
+ memcpy(nand_oob_ptr(chip, i - 1),
+ rk_nfc_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+ /* Copy ecc data form nfc buffer. */
+ memcpy(nand_oob_ecc_ptr(chip, i),
+ rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+ chip->ecc.bytes);
+ /* Copy data form nfc buffer. */
+ if (buf)
+ memcpy(nand_data_ptr(chip, buf, i),
+ rk_nfc_data_ptr(chip, i),
+ chip->ecc.size);
+ }
+
+ return 0;
+}
+
+static int rk_nfc_read_oob(struct nand_chip *chip, int page)
+{
+ return rk_nfc_read_page_raw(chip, NULL, 1, page);
+}
+
+static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ dma_addr_t dma_data, dma_oob;
+ int ret = 0, i, boot_rom_mode = 0;
+ int bitflips = 0, bch_st;
+ u8 *oob;
+ u32 tmp;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+
+ dma_data = dma_map_single(nfc->dev, nfc->page_buf,
+ mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ /*
+ * The first blocks (4, 8 or 16 depending on the device)
+ * are used by the boot ROM.
+ * Config the ECC algorithm supported by the boot ROM.
+ */
+ if ((page < pages_per_blk * rknand->boot_blks) &&
+ (chip->options & NAND_IS_BOOT_MEDIUM)) {
+ boot_rom_mode = 1;
+ if (rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc,
+ rknand->boot_ecc);
+ }
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+ rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "read: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ if (ret) {
+ bitflips = -EIO;
+ dev_err(nfc->dev,
+ "read: wait transfer done timeout.\n");
+ goto out;
+ }
+
+ for (i = 1; i < ecc->steps; i++) {
+ oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+ if (nfc->cfg->type == NFC_V9)
+ tmp = nfc->oob_buf[i];
+ else
+ tmp = nfc->oob_buf[i * oob_step / 4];
+ *oob++ = (u8)tmp;
+ *oob++ = (u8)(tmp >> 8);
+ *oob++ = (u8)(tmp >> 16);
+ *oob++ = (u8)(tmp >> 24);
+ }
+
+ for (i = 0; i < ecc->steps / 2; i++) {
+ bch_st = readl_relaxed(nfc->regs +
+ nfc->cfg->bch_st_off + i * 4);
+ if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
+ bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
+ mtd->ecc_stats.failed++;
+ /* ECC failed, return the minimum number of error bits */
+ bitflips = ecc->strength + 1;
+ } else {
+ ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
+ mtd->ecc_stats.corrected += ret;
+ bitflips = max_t(u32, bitflips, ret);
+
+ ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
+ mtd->ecc_stats.corrected += ret;
+ bitflips = max_t(u32, bitflips, ret);
+ }
+ }
+out:
+ memcpy(buf, nfc->page_buf, mtd->writesize);
+
+ if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+ if (bitflips > ecc->strength)
+ dev_err(nfc->dev, "read page: %x ecc error!\n", page);
+
+ /*
+ * Deselect the currently selected target after ops done,
+ * otherwise the NAND flash will has extra power consumption.
+ */
+ rk_nfc_select_chip(chip, -1);
+
+ return bitflips;
+}
+
+static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
+{
+ /* Disable flash wp. */
+ writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
+ /* Config default timing 40ns at 150 Mhz nfc clock. */
+ writel(0x1081, nfc->regs + NFC_FMWAIT);
+ /* Disable randomizer and DMA. */
+ writel(0, nfc->regs + nfc->cfg->randmz_off);
+ writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static irqreturn_t rk_nfc_irq(int irq, void *id)
+{
+ struct rk_nfc *nfc = id;
+ u32 sta, ien;
+
+ sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
+ ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
+
+ if (!(sta & ien))
+ return IRQ_NONE;
+
+ writel(sta, nfc->regs + nfc->cfg->int_clr_off);
+ writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
+
+ complete(&nfc->done);
+
+ return IRQ_HANDLED;
+}
+
+static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc)
+{
+ int ret;
+
+ if (!IS_ERR(nfc->nfc_clk)) {
+ ret = clk_prepare_enable(nfc->nfc_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable nfc clk\n");
+ return ret;
+ }
+ }
+
+ ret = clk_prepare_enable(nfc->ahb_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable ahb clk\n");
+ if (!IS_ERR(nfc->nfc_clk))
+ clk_disable_unprepare(nfc->nfc_clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void rk_nfc_disable_clk(struct rk_nfc *nfc)
+{
+ if (!IS_ERR(nfc->nfc_clk))
+ clk_disable_unprepare(nfc->nfc_clk);
+ clk_disable_unprepare(nfc->ahb_clk);
+}
+
+static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+
+ if (section)
+ return -ERANGE;
+
+ /*
+ * The beginning of the oob area stores the reserved data for the NFC,
+ * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
+ */
+ oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
+ oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+
+ return 0;
+}
+
+static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oob_region->offset = rknand->metadata_size;
+ oob_region->length = mtd->oobsize - oob_region->offset;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
+ .free = rk_nfc_ooblayout_free,
+ .ecc = rk_nfc_ooblayout_ecc,
+};
+
+static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ const u8 *strengths = nfc->cfg->ecc_strengths;
+ u8 max_strength, nfc_max_strength;
+ int i;
+
+ nfc_max_strength = nfc->cfg->ecc_strengths[0];
+ /* If optional dt settings not present. */
+ if (!ecc->size || !ecc->strength ||
+ ecc->strength > nfc_max_strength) {
+ chip->ecc.size = 1024;
+ ecc->steps = mtd->writesize / ecc->size;
+
+ /*
+ * HW ECC always requests the number of ECC bytes per 1024 byte
+ * blocks. 4 Bytes is oob for sys data.
+ */
+ max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
+ fls(8 * 1024);
+ if (max_strength > nfc_max_strength)
+ max_strength = nfc_max_strength;
+
+ for (i = 0; i < 4; i++) {
+ if (max_strength >= strengths[i])
+ break;
+ }
+
+ if (i >= 4) {
+ dev_err(nfc->dev, "Unsupported ECC strength\n");
+ return -EOPNOTSUPP;
+ }
+
+ ecc->strength = strengths[i];
+ }
+ ecc->steps = mtd->writesize / ecc->size;
+ ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
+ /* HW ECC always work with even numbers of ECC bytes. */
+ ecc->bytes = ALIGN(ecc->bytes, 2);
+
+ rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+ return 0;
+}
+
+static int rk_nfc_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct device *dev = mtd->dev.parent;
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ u8 *temp_buf;
+ int len, oob_len;
+ int ret;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ dev_err(dev, "16 bits bus width not supported");
+ return -EINVAL;
+ }
+
+ if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+ return 0;
+
+ ret = rk_nfc_ecc_init(dev, mtd);
+ if (ret)
+ return ret;
+ rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
+ rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
+
+ if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
+ dev_err(dev,
+ "Driver needs at least %d bytes of meta data\n",
+ NFC_SYS_DATA_SIZE + 2);
+ return -EIO;
+ }
+ len = mtd->writesize + mtd->oobsize;
+
+ /* Check buffer first, avoid duplicate alloc buffer. */
+ if (nfc->buffer) {
+ if (len > nfc->buffer_size) {
+ temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA);
+ if (!temp_buf)
+ return -ENOMEM;
+ kfree(nfc->buffer);
+ nfc->buffer = temp_buf;
+ nfc->buffer_size = len;
+
+ oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+ temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
+ if (!temp_buf)
+ return -ENOMEM;
+ kfree(nfc->oob_buf);
+ nfc->oob_buf = (u32 *)temp_buf;
+ }
+ return 0;
+ }
+
+ nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->buffer)
+ return -ENOMEM;
+
+ oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+ nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->oob_buf) {
+ kfree(nfc->buffer);
+ nfc->buffer = NULL;
+ nfc->oob_buf = NULL;
+ return -ENOMEM;
+ }
+
+ nfc->buffer_size = len;
+ nfc->page_buf = nfc->buffer;
+
+ chip->ecc.write_page_raw = rk_nfc_write_page_raw;
+ chip->ecc.write_page = rk_nfc_write_page_hwecc;
+ chip->ecc.write_oob_raw = rk_nfc_write_oob;
+ chip->ecc.write_oob = rk_nfc_write_oob;
+
+ chip->ecc.read_page_raw = rk_nfc_read_page_raw;
+ chip->ecc.read_page = rk_nfc_read_page_hwecc;
+ chip->ecc.read_oob_raw = rk_nfc_read_oob;
+ chip->ecc.read_oob = rk_nfc_read_oob;
+
+ return 0;
+}
+
+static const struct nand_controller_ops rk_nfc_controller_ops = {
+ .attach_chip = rk_nfc_attach_chip,
+ .exec_op = rk_nfc_exec_op,
+ .setup_interface = rk_nfc_setup_data_interface,
+};
+
+static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
+ struct device_node *np)
+{
+ struct rk_nfc_nand_chip *rknand;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ int nsels;
+ u32 tmp;
+ int ret;
+ int i;
+
+ if (!of_get_property(np, "reg", &nsels))
+ return -ENODEV;
+ nsels /= sizeof(u32);
+ if (!nsels || nsels > NFC_MAX_NSELS) {
+ dev_err(dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
+ GFP_KERNEL);
+ if (!rknand)
+ return -ENOMEM;
+
+ rknand->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &tmp);
+ if (ret) {
+ dev_err(dev, "reg property failure : %d\n", ret);
+ return ret;
+ }
+
+ if (tmp >= NFC_MAX_NSELS) {
+ dev_err(dev, "invalid CS: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+ dev_err(dev, "CS %u already assigned\n", tmp);
+ return -EINVAL;
+ }
+
+ rknand->sels[i] = tmp;
+ }
+
+ chip = &rknand->chip;
+ chip->controller = &nfc->controller;
+
+ nand_set_flash_node(chip, np);
+
+ nand_set_controller_data(chip, nfc);
+
+ chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+ /* Set default mode in case dt entry is missing. */
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+
+ mtd = nand_to_mtd(chip);
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = dev;
+
+ if (!mtd->name) {
+ dev_err(nfc->dev, "NAND label property is mandatory\n");
+ return -EINVAL;
+ }
+
+ mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
+ rk_nfc_hw_init(nfc);
+ ret = nand_scan(chip, nsels);
+ if (ret)
+ return ret;
+
+ if (chip->options & NAND_IS_BOOT_MEDIUM) {
+ ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
+ rknand->boot_blks = ret ? 0 : tmp;
+
+ ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
+ &tmp);
+ rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "mtd parse partition error\n");
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ list_add_tail(&rknand->node, &nfc->chips);
+
+ return 0;
+}
+
+static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
+{
+ struct rk_nfc_nand_chip *rknand, *tmp;
+ struct nand_chip *chip;
+ int ret;
+
+ list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
+ chip = &rknand->chip;
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ list_del(&rknand->node);
+ }
+}
+
+static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
+{
+ struct device_node *np = dev->of_node, *nand_np;
+ int nchips = of_get_child_count(np);
+ int ret;
+
+ if (!nchips || nchips > NFC_MAX_NSELS) {
+ dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
+ nchips);
+ return -EINVAL;
+ }
+
+ for_each_child_of_node(np, nand_np) {
+ ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ rk_nfc_chips_cleanup(nfc);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static struct nfc_cfg nfc_v6_cfg = {
+ .type = NFC_V6,
+ .ecc_strengths = {60, 40, 24, 16},
+ .ecc_cfgs = {
+ 0x00040011, 0x00040001, 0x00000011, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v8_cfg = {
+ .type = NFC_V8,
+ .ecc_strengths = {16, 16, 16, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x00000001, 0x00000001, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v9_cfg = {
+ .type = NFC_V9,
+ .ecc_strengths = {70, 60, 40, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x06000001, 0x04000001, 0x02000001,
+ },
+ .flctl_off = 0x10,
+ .bchctl_off = 0x20,
+ .dma_cfg_off = 0x30,
+ .dma_data_buf_off = 0x34,
+ .dma_oob_buf_off = 0x38,
+ .dma_st_off = 0x3C,
+ .bch_st_off = 0x150,
+ .randmz_off = 0x208,
+ .int_en_off = 0x120,
+ .int_clr_off = 0x124,
+ .int_st_off = 0x128,
+ .oob0_off = 0x200,
+ .oob1_off = 0x204,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+ .ecc1 = {
+ .err_flag_bit = 18,
+ .low = 19,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+};
+
+static const struct of_device_id rk_nfc_id_table[] = {
+ {
+ .compatible = "rockchip,px30-nfc",
+ .data = &nfc_v9_cfg
+ },
+ {
+ .compatible = "rockchip,rk2928-nfc",
+ .data = &nfc_v6_cfg
+ },
+ {
+ .compatible = "rockchip,rv1108-nfc",
+ .data = &nfc_v8_cfg
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
+
+static int rk_nfc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rk_nfc *nfc;
+ int ret, irq;
+
+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nand_controller_init(&nfc->controller);
+ INIT_LIST_HEAD(&nfc->chips);
+ nfc->controller.ops = &rk_nfc_controller_ops;
+
+ nfc->cfg = of_device_get_match_data(dev);
+ nfc->dev = dev;
+
+ init_completion(&nfc->done);
+
+ nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nfc->regs)) {
+ ret = PTR_ERR(nfc->regs);
+ goto release_nfc;
+ }
+
+ nfc->nfc_clk = devm_clk_get(dev, "nfc");
+ if (IS_ERR(nfc->nfc_clk)) {
+ dev_dbg(dev, "no nfc clk\n");
+ /* Some earlier models, such as rk3066, have no nfc clk. */
+ }
+
+ nfc->ahb_clk = devm_clk_get(dev, "ahb");
+ if (IS_ERR(nfc->ahb_clk)) {
+ dev_err(dev, "no ahb clk\n");
+ ret = PTR_ERR(nfc->ahb_clk);
+ goto release_nfc;
+ }
+
+ ret = rk_nfc_enable_clk(dev, nfc);
+ if (ret)
+ goto release_nfc;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "no nfc irq resource\n");
+ ret = -EINVAL;
+ goto clk_disable;
+ }
+
+ writel(0, nfc->regs + nfc->cfg->int_en_off);
+ ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
+ if (ret) {
+ dev_err(dev, "failed to request nfc irq\n");
+ goto clk_disable;
+ }
+
+ platform_set_drvdata(pdev, nfc);
+
+ ret = rk_nfc_nand_chips_init(dev, nfc);
+ if (ret) {
+ dev_err(dev, "failed to init NAND chips\n");
+ goto clk_disable;
+ }
+ return 0;
+
+clk_disable:
+ rk_nfc_disable_clk(nfc);
+release_nfc:
+ return ret;
+}
+
+static int rk_nfc_remove(struct platform_device *pdev)
+{
+ struct rk_nfc *nfc = platform_get_drvdata(pdev);
+
+ kfree(nfc->buffer);
+ kfree(nfc->oob_buf);
+ rk_nfc_chips_cleanup(nfc);
+ rk_nfc_disable_clk(nfc);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_suspend(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+
+ rk_nfc_disable_clk(nfc);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_resume(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+ struct rk_nfc_nand_chip *rknand;
+ struct nand_chip *chip;
+ int ret;
+ u32 i;
+
+ ret = rk_nfc_enable_clk(dev, nfc);
+ if (ret)
+ return ret;
+
+ /* Reset NAND chip if VCC was powered off. */
+ list_for_each_entry(rknand, &nfc->chips, node) {
+ chip = &rknand->chip;
+ for (i = 0; i < rknand->nsels; i++)
+ nand_reset(chip, i);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops rk_nfc_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
+};
+
+static struct platform_driver rk_nfc_driver = {
+ .probe = rk_nfc_probe,
+ .remove = rk_nfc_remove,
+ .driver = {
+ .name = "rockchip-nfc",
+ .of_match_table = rk_nfc_id_table,
+ .pm = &rk_nfc_pm_ops,
+ },
+};
+
+module_platform_driver(rk_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Yifeng Zhao <[email protected]>");
+MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
+MODULE_ALIAS("platform:rockchip-nand-controller");
--
2.17.1
Hi Yifeng, Miquèl and others,
I've copied some comments from Miquèl from version 8 to this one here
and added some more. ;)
On 10/20/20 5:17 AM, Yifeng Zhao wrote:
> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
> 8-bit NAND interface on the ARM based RK3308 platform.
>
> Support Rockchip SoCs and NFC versions:
> - PX30 and RK3326(NFCv900).
> ECC: 16/40/60/70 bits/1KB.
> CLOCK: ahb and nfc.
> - RK3308 and RV1108(NFCv800).
> ECC: 16 bits/1KB.
> CLOCK: ahb and nfc.
> - RK3036 and RK3128(NFCv622).
> ECC: 16/24/40/60 bits/1KB.
> CLOCK: ahb and nfc.
> - RK3066, RK3188 and RK2928(NFCv600).
> ECC: 16/24/40/60 bits/1KB.
> CLOCK: ahb.
>
> Supported features:
> - Read full page data by DMA.
> - Support HW ECC(one step is 1KB).
> - Support 2 - 32K page size.
> - Support 8 CS(depend on SoCs)
>
> Limitations:
> - No support for the ecc step size is 512.
> - Untested on some SoCs.
> - No support for subpages.
> - No support for the builtin randomizer.
> - The original bad block mask is not supported. It is recommended to use
> the BBT(bad block table).
>
> Signed-off-by: Yifeng Zhao <[email protected]>
> ---
>
> (no changes since v11)
>
> Changes in v11:
> - Fix compile error.
>
> Changes in v10:
> - Fix compile error on master v5.9-rc7.
>
> Changes in v9:
> - The nfc->buffer will realloc while the page size of the second mtd
> is large than the first one
> - Fix coding style.
> - Remove struct rk_nfc_clk.
> - Prepend some function with rk_nfc_.
> - Replace function readl_poll_timeout_atomic with
readl_relaxed_poll_timeout.
> - Remove function rk_nfc_read_byte and rk_nfc_write_byte.
> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
>
> Changes in v7:
> - Rebase to linux-next.
> - Fix coding style.
> - Reserved 4 bytes at the beginning of the oob area.
> - Page raw read and write included ecc data.
>
> Changes in v6:
> - The mtd->name set by NAND label property.
> - Add some comments.
> - Fix compile error.
>
> Changes in v5:
> - Add boot blocks support with different ECC for bootROM.
> - Rename rockchip-nand.c to rockchip-nand-controller.c.
> - Unification of other variable names.
> - Remove some compatible define.
>
> Changes in v4:
> - Define platform data structure for the register offsets.
> - The compatible define with rkxx_nfc.
> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
> - Use exec_op instead of legacy hooks.
>
> Changes in v2:
> - Fix compile error.
> - Include header files sorted by file name.
>
> drivers/mtd/nand/raw/Kconfig | 12 +
> drivers/mtd/nand/raw/Makefile | 1 +
> .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++
> 3 files changed, 1452 insertions(+)
> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
>
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 6c46f25b57e2..2cc533e4e239 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
> Enables the driver for the Arasan NAND flash controller on
> Zynq Ultrascale+ MPSoC.
>
> +config MTD_NAND_ROCKCHIP
> + tristate "Rockchip NAND controller"
> + depends on ARCH_ROCKCHIP && HAS_IOMEM
> + help
> + Enables support for NAND controller on Rockchip SoCs.
> + There are four different versions of NAND FLASH Controllers,
> + including:
> + NFC v600: RK2928, RK3066, RK3188
> + NFC v622: RK3036, RK3128
> + NFC v800: RK3308, RV1108
> + NFC v900: PX30, RK3326
> +
> comment "Misc"
>
> config MTD_SM_COMMON
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index 2930f5b9015d..960c9be25204 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
>
> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o
nand_ids.o
> nand-objs += nand_onfi.o
> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c
b/drivers/mtd/nand/raw/rockchip-nand-controller.c
> new file mode 100644
> index 000000000000..cf28c5936209
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
> @@ -0,0 +1,1439 @@
> +// SPDX-License-Identifier: GPL-2.0 OR MIT
> +/*
> + * Rockchip NAND Flash controller driver.
> + * Copyright (C) 2020 Rockchip Inc.
> + * Author: Yifeng Zhao <[email protected]>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/interrupt.h>
> +#include <linux/iopoll.h>
> +#include <linux/module.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +/*
> + * NFC Page Data Layout:
> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
> + * ......
> + * NAND Page Data Layout:
> + * 1024 * n Data + m Bytes oob
> + * Original Bad Block Mask Location:
> + * First byte of oob(spare).
> + * nand_chip->oob_poi data layout:
> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
> + */
> +
> +/* NAND controller register definition */
> +#define NFC_READ (0)
> +#define NFC_WRITE (1)
> +
> +#define NFC_FMCTL (0x00)
> +#define FMCTL_CE_SEL_M 0xFF
> +#define FMCTL_CE_SEL(x) (1 << (x))
> +#define FMCTL_WP BIT(8)
> +#define FMCTL_RDY BIT(9)
> +
> +#define NFC_FMWAIT (0x04)
> +#define FLCTL_RST BIT(0)
> +#define FLCTL_WR (1) /* 0: read, 1: write */
> +#define FLCTL_XFER_ST BIT(2)
> +#define FLCTL_XFER_EN BIT(3)
> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
> +#define FLCTL_XFER_READY BIT(20)
> +#define FLCTL_XFER_SECTOR (22)
> +#define FLCTL_TOG_FIX BIT(29)
> +
> +#define BCHCTL_BANK_M (7 << 5)
> +#define BCHCTL_BANK (5)
> +
> +#define DMA_ST BIT(0)
> +#define DMA_WR (1) /* 0: write, 1: read */
> +#define DMA_EN BIT(2)
> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
> +#define DMA_INC_NUM (9) /* 1 - 16 */
> +
> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
> +#define INT_DMA BIT(0)
> +#define NFC_BANK (0x800)
> +#define NFC_BANK_STEP (0x100)
> +#define BANK_DATA (0x00)
> +#define BANK_ADDR (0x04)
> +#define BANK_CMD (0x08)
> +#define NFC_SRAM0 (0x1000)
> +#define NFC_SRAM1 (0x1400)
> +#define NFC_SRAM_SIZE (0x400)
> +#define NFC_TIMEOUT (500000)
> +#define NFC_MAX_OOB_PER_STEP 128
> +#define NFC_MIN_OOB_PER_STEP 64
> +#define MAX_DATA_SIZE 0xFFFC
> +#define MAX_ADDRESS_CYC 6
> +#define NFC_ECC_MAX_MODES 4
> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024
data.*/
> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
> +
> +enum nfc_type {
> + NFC_V6,
> + NFC_V8,
> + NFC_V9,
> +};
> +
> +/**
> + * struct rk_ecc_cnt_status: represent a ecc status data.
> + * @err_flag_bit: error flag bit index at register.
> + * @low: ecc count low bit index at register.
> + * @low_mask: mask bit.
> + * @low_bn: ecc count low bit number.
> + * @high: ecc count high bit index at register.
> + * @high_mask: mask bit
> + */
> +struct ecc_cnt_status {
> + u8 err_flag_bit;
> + u8 low;
> + u8 low_mask;
> + u8 low_bn;
> + u8 high;
> + u8 high_mask;
> +};
> +
> +/*
> + * @type: nfc version
> + * @ecc_strengths: ecc strengths
> + * @ecc_cfgs: ecc config values
> + * @flctl_off: FLCTL register offset
> + * @bchctl_off: BCHCTL register offset
> + * @dma_data_buf_off: DMA_DATA_BUF register offset
> + * @dma_oob_buf_off: DMA_OOB_BUF register offset
> + * @dma_cfg_off: DMA_CFG register offset
> + * @dma_st_off: DMA_ST register offset
> + * @bch_st_off: BCG_ST register offset
> + * @randmz_off: RANDMZ register offset
> + * @int_en_off: interrupt enable register offset
> + * @int_clr_off: interrupt clean register offset
> + * @int_st_off: interrupt status register offset
> + * @oob0_off: oob0 register offset
> + * @oob1_off: oob1 register offset
> + * @ecc0: represent ECC0 status data
> + * @ecc1: represent ECC1 status data
> + */
> +struct nfc_cfg {
> + enum nfc_type type;
> + u8 ecc_strengths[NFC_ECC_MAX_MODES];
> + u32 ecc_cfgs[NFC_ECC_MAX_MODES];
> + u32 flctl_off;
> + u32 bchctl_off;
> + u32 dma_cfg_off;
> + u32 dma_data_buf_off;
> + u32 dma_oob_buf_off;
> + u32 dma_st_off;
> + u32 bch_st_off;
> + u32 randmz_off;
> + u32 int_en_off;
> + u32 int_clr_off;
> + u32 int_st_off;
> + u32 oob0_off;
> + u32 oob1_off;
> + struct ecc_cnt_status ecc0;
> + struct ecc_cnt_status ecc1;
> +};
> +
> +struct rk_nfc_nand_chip {
> + struct list_head node;
> + struct nand_chip chip;
> +
> + u16 spare_per_sector;
> + u16 oob_buf_per_sector;
> + u16 boot_blks;
> + u16 boot_ecc;
> + u16 metadata_size;
> +
> + u8 nsels;
> + u8 sels[0];
> + /* Nothing after this field. */
> +};
> +
> +struct rk_nfc {
> + struct nand_controller controller;
> + const struct nfc_cfg *cfg;
> + struct device *dev;
> +
> + struct clk *nfc_clk;
> + struct clk *ahb_clk;
> + void __iomem *regs;
> +
> + u32 selected_bank;
> + u32 band_offset;
> + u32 cur_clk;
> +
> + struct completion done;
> + struct list_head chips;
> +
> + u8 *buffer;
> + u8 *page_buf;
> + u32 *oob_buf;
> + u32 buffer_size;
> +
> + unsigned long assigned_cs;
> +};
> +
> +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip)
> +{
> + return container_of(chip, struct rk_nfc_nand_chip, chip);
> +}
> +
> +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p,
int i)
rk_nfc_buf_to_data_ptr ?
Comment by Miquèl:
Please prepend all your functions with rk_nfc_
For the ftrace filters it is needed to have all functions start with
the same prefix in a module.
> +{
> + return (u8 *)p + i * chip->ecc.size;
> +}
> +
> +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i)
same here
> +{
> + u8 *poi;
> +
> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
> +
> + return poi;
> +}
> +
> +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i)
same here
> +{
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> + u8 *poi;
> +
> + poi = chip->oob_poi + rknand->metadata_size +
> + chip->ecc.bytes * i;
> +
> + return poi;
> +}
> +
> +static inline int rk_nfc_data_len(struct nand_chip *chip)
> +{
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> +
> + return chip->ecc.size + rknand->spare_per_sector;
> +}
> +
> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> + return nfc->buffer + i * rk_nfc_data_len(chip);
> +}
> +
> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size;
> +}
> +
> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> + u32 val;
> +
> + if (cs < 0) {
> + nfc->selected_bank = -1;
> + /* Deselect the currently selected target. */
> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
> + val &= ~FMCTL_CE_SEL_M;
> + writel(val, nfc->regs + NFC_FMCTL);
> + return;
> + }
> +
> + nfc->selected_bank = rknand->sels[cs];
> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
> +
> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
> + val &= ~FMCTL_CE_SEL_M;
> + val |= FMCTL_CE_SEL(nfc->selected_bank);
> +
> + writel(val, nfc->regs + NFC_FMCTL);
> +}
> +
> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
> +{
> + int rc;
> + u32 val;
> +
> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
> + val & FMCTL_RDY, 10, NFC_TIMEOUT);
> +
> + return rc;
> +}
> +
> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
> +{
> + int i;
> +
> + for (i = 0; i < len; i++)
> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
> + BANK_DATA);
> +}
> +
> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
> +{
> + int i;
> +
> + for (i = 0; i < len; i++)
> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
> +}
> +
> +static int rk_nfc_cmd(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + unsigned int i, j, remaining, start;
> + int reg_offset = nfc->band_offset;
> + u8 *inbuf = NULL;
> + const u8 *outbuf;
> + u32 cnt = 0;
> + int ret = 0;
> +
> + for (i = 0; i < subop->ninstrs; i++) {
> + const struct nand_op_instr *instr = &subop->instrs[i];
> +
> + switch (instr->type) {
> + case NAND_OP_CMD_INSTR:
> + writeb(instr->ctx.cmd.opcode,
> + nfc->regs + reg_offset + BANK_CMD);
> + break;
> +
> + case NAND_OP_ADDR_INSTR:
> + remaining = nand_subop_get_num_addr_cyc(subop, i);
> + start = nand_subop_get_addr_start_off(subop, i);
> +
> + for (j = 0; j < 8 && j + start < remaining; j++)
> + writeb(instr->ctx.addr.addrs[j + start],
> + nfc->regs + reg_offset + BANK_ADDR);
> + break;
> +
> + case NAND_OP_DATA_IN_INSTR:
> + case NAND_OP_DATA_OUT_INSTR:
> + start = nand_subop_get_data_start_off(subop, i);
> + cnt = nand_subop_get_data_len(subop, i);
> +
> + if (instr->type == NAND_OP_DATA_OUT_INSTR) {
> + outbuf = instr->ctx.data.buf.out + start;
> + rk_nfc_write_buf(nfc, outbuf, cnt);
> + } else {
> + inbuf = instr->ctx.data.buf.in + start;
> + rk_nfc_read_buf(nfc, inbuf, cnt);
> + }
> + break;
> +
> + case NAND_OP_WAITRDY_INSTR:
> + if (rk_nfc_wait_ioready(nfc) < 0) {
> + ret = -ETIMEDOUT;
> + dev_err(nfc->dev, "IO not ready\n");
> + }
> + break;
> + }
> + }
> +
> + return ret;
> +}
> +
> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
> + NAND_OP_PARSER_PATTERN(
> + rk_nfc_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
> + NAND_OP_PARSER_PATTERN(
> + rk_nfc_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> +);
> +
> +static int rk_nfc_exec_op(struct nand_chip *chip,
> + const struct nand_operation *op,
> + bool check_only)
> +{
> + if (!check_only)
> + rk_nfc_select_chip(chip, op->cs);
> +
> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
> + check_only);
> +}
> +
> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int
csline,
> + const struct nand_interface_config *conf)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + const struct nand_sdr_timings *timings;
> + u32 rate, tc2rw, trwpw, trw2c;
> + u32 temp;
> +
> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> + return 0;
> +
> + timings = nand_get_sdr_timings(conf);
> + if (IS_ERR(timings))
> + return -EOPNOTSUPP;
> +
> + if (IS_ERR(nfc->nfc_clk))
> + rate = clk_get_rate(nfc->ahb_clk);
> + else
> + rate = clk_get_rate(nfc->nfc_clk);
> +
> + /* Turn clock rate into kHz. */
> + rate /= 1000;
> +
> + tc2rw = 1;
> + trw2c = 1;
> +
> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
> +
> + temp = timings->tREA_max / 1000;
> + temp = DIV_ROUND_UP(temp * rate, 1000000);
> +
> + if (trwpw < temp)
> + trwpw = temp;
> +
> + /*
> + * ACCON: access timing control register
> + * -------------------------------------
> + * 31:18: reserved
> + * 17:12: csrw, clock cycles from the falling edge of CSn to the
> + * falling edge of RDn or WRn
> + * 11:11: reserved
> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
> + * rising edge of CSn
> + */
> + temp = ACCTIMING(tc2rw, trwpw, trw2c);
> + writel(temp, nfc->regs + NFC_FMWAIT);
> +
> + return 0;
> +}
> +
> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
> + struct nand_ecc_ctrl *ecc,
> + uint32_t strength)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + u32 reg, i;
> +
> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
> + reg = nfc->cfg->ecc_cfgs[i];
> + break;
> + }
> + }
> +
> + if (i >= NFC_ECC_MAX_MODES)
> + return -EINVAL;
> +
> + writel(reg, nfc->regs + nfc->cfg->bchctl_off);
> +
> + return 0;
> +}
> +
> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
> + dma_addr_t dma_data, dma_addr_t dma_oob)
> +{
> + u32 dma_reg, fl_reg, bch_reg;
> +
> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
> +
> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
> +
> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
> + (nfc->selected_bank << BCHCTL_BANK);
> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
> + }
> +
> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
> + fl_reg |= FLCTL_XFER_ST;
> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
> +}
> +
> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
> +{
> + void __iomem *ptr;
> + int ret = 0;
> + u32 reg;
> +
> + ptr = nfc->regs + nfc->cfg->flctl_off;
> +
> + ret = readl_relaxed_poll_timeout(ptr, reg,
> + reg & FLCTL_XFER_READY,
> + 10, NFC_TIMEOUT);
> +
> + return ret;
> +}
> +
> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
> + int oob_on, int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + int ret = 0;
> + u32 i;
> +
> + if (!buf)
> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
> +
> + for (i = 0; i < chip->ecc.steps; i++) {
> + /* Copy data to nfc buffer. */
> + if (buf)
> + memcpy(rk_nfc_data_ptr(chip, i),
> + nand_data_ptr(chip, buf, i),
> + chip->ecc.size);
> + /*
> + * The first four bytes of OOB are reserved for the
> + * boot ROM. In some debugging cases, sush as dump
such as
> + * data and write back, the last four bytes stored
> + * in OOB need to be write back.
such as with a read, erase and write back test
these 4 bytes stored in OOB also need to be written back.
> + */
> + if (!i)
> + memcpy(rk_nfc_oob_ptr(chip, i),
> + nand_oob_ptr(chip, chip->ecc.steps - 1),
> + NFC_SYS_DATA_SIZE);
> + else
> + memcpy(rk_nfc_oob_ptr(chip, i),
> + nand_oob_ptr(chip, i - 1),
> + NFC_SYS_DATA_SIZE);
> + /* Copy ecc data to nfc buffer. */
Copy ECC data to the NFC buffer.
> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
> + nand_oob_ecc_ptr(chip, i),
> + chip->ecc.bytes);
> + }
> +
> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
> + ret = nand_prog_page_end_op(chip);
> +
> + /*
> + * Deselect the currently selected target after ops done,
> + * otherwise the NAND flash will has extra power consumption.
will have
or use for example:
Deselect the currently selected target after the ops is done
to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
> +
> + return ret;
> +}
> +
> +static int rk_nfc_write_oob(struct nand_chip *chip, int page)
> +{
> + return rk_nfc_write_page_raw(chip, NULL, 1, page);
> +}
> +
> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
> + int oob_on, int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
> + NFC_MIN_OOB_PER_STEP;
> + int pages_per_blk = mtd->erasesize / mtd->writesize;
> + int ret = 0, i, boot_rom_mode = 0;
> + dma_addr_t dma_data, dma_oob;
> + u32 reg;
> + u8 *oob;
> +
> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +
> + memcpy(nfc->page_buf, buf, mtd->writesize);
> +
> + /*
> + * The first blocks (4, 8 or 16 depending on the device) are used
> + * by the boot ROM and the first 32 bits of oob need to link to
OOB
> + * the next page address in the same block.
Add more explanation why:
We can't copy OOB directly,
because this page address conflicts with the bad block marker (BBM),
so we shift all OOB including the BBM with 4 byte positions.
As consequence the OOB size then is also reduced with 4 bytes.
PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
If a NAND is not a boot medium the first 4 bytes are left untouched
by writing 0xFF to them.
0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
Could you include the above layout to make things more clear?
> + * Config the ECC algorithm supported by the boot ROM.
comment by Miquèl:
s/Config/Configure/
> + */
> + if ((page < pages_per_blk * rknand->boot_blks) &&
> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
> + boot_rom_mode = 1;
> + if (rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc,
> + rknand->boot_ecc);
> + }
> +
> + for (i = 0; i < ecc->steps; i++) {
> + if (!i) {
> + reg = 0xFFFFFFFF;
> + } else {
> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
> + oob[3] << 24;
> + }
> + if (!i && boot_rom_mode)
> + reg = (page & (pages_per_blk - 1)) * 4;
> +
> + if (nfc->cfg->type == NFC_V9)
> + nfc->oob_buf[i] = reg;
> + else
> + nfc->oob_buf[i * oob_step / 4] = reg;
Please use brackets.
> + }
> +
> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
Do you need this cast?
> + mtd->writesize, DMA_TO_DEVICE);
> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> + ecc->steps * oob_step,
> + DMA_TO_DEVICE);
> +
> + reinit_completion(&nfc->done);
> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
> +
> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
> + dma_oob);
> + ret = wait_for_completion_timeout(&nfc->done,
> + msecs_to_jiffies(100));
> + if (!ret)
> + dev_warn(nfc->dev, "write: wait dma done timeout.\n");
> + /*
> + * Whether the DMA transfer is completed or not. The driver
> + * needs to check the NFC`s status register to see if the data
> + * transfer was completed.
> + */
> + ret = rk_nfc_wait_for_xfer_done(nfc);
> +
> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> + DMA_TO_DEVICE);
> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> + DMA_TO_DEVICE);
> +
> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
> +
> + if (ret) {
> + ret = -EIO;
> + dev_err(nfc->dev,
> + "write: wait transfer done timeout.\n");
> + }
> +
> + if (ret)
> + return ret;
> +
> + ret = nand_prog_page_end_op(chip);
> +
> + /*
> + * Deselect the currently selected target after ops done,
> + * otherwise the NAND flash will has extra power consumption.
will have
or use for example:
Deselect the currently selected target after the ops is done
to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
> +
> + return ret;
> +}
> +
> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int
oob_on,
> + int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + int i;
> +
> + nand_read_page_op(chip, page, 0, NULL, 0);
> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize);
> +
> + /*
> + * Deselect the currently selected target after ops done,
> + * otherwise the NAND flash will has extra power consumption.
will have
or use for example:
Deselect the currently selected target after the ops is done
to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
> +
> + for (i = 0; i < chip->ecc.steps; i++) {
> + /*
> + * The first four bytes of OOB are reserved for the
> + * boot ROM. In some debugging cases, sush as dump data
such as
> + * and write back, it`s need to read out this four bytes,
such as with a read, erase and write back test
these 4 bytes also must be saved somewhere,
> + * otherwise this information will be lost during write back.
otherwise this information will be lost during a write back.
> + */
> + if (!i)
> + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1),
> + rk_nfc_oob_ptr(chip, i),
> + NFC_SYS_DATA_SIZE);
> + else
> + memcpy(nand_oob_ptr(chip, i - 1),
> + rk_nfc_oob_ptr(chip, i),
> + NFC_SYS_DATA_SIZE);
> + /* Copy ecc data form nfc buffer. */
Copy ECC data from the NFC buffer.
> + memcpy(nand_oob_ecc_ptr(chip, i),
> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
> + chip->ecc.bytes);
> + /* Copy data form nfc buffer. */
Copy data from the NFC buffer.
> + if (buf)
> + memcpy(nand_data_ptr(chip, buf, i),
> + rk_nfc_data_ptr(chip, i),
> + chip->ecc.size);
> + }
> +
> + return 0;
> +}
> +
> +static int rk_nfc_read_oob(struct nand_chip *chip, int page)
> +{
> + return rk_nfc_read_page_raw(chip, NULL, 1, page);
> +}
> +
> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_on,
> + int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
> + NFC_MIN_OOB_PER_STEP;
> + int pages_per_blk = mtd->erasesize / mtd->writesize;
> + dma_addr_t dma_data, dma_oob;
> + int ret = 0, i, boot_rom_mode = 0;
> + int bitflips = 0, bch_st;
> + u8 *oob;
> + u32 tmp;
> +
> + nand_read_page_op(chip, page, 0, NULL, 0);
> +
> + dma_data = dma_map_single(nfc->dev, nfc->page_buf,
> + mtd->writesize,
> + DMA_FROM_DEVICE);
> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> + ecc->steps * oob_step,
> + DMA_FROM_DEVICE);
> +
> + /*
> + * The first blocks (4, 8 or 16 depending on the device)
> + * are used by the boot ROM.
> + * Config the ECC algorithm supported by the boot ROM.
> + */
> + if ((page < pages_per_blk * rknand->boot_blks) &&
> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
> + boot_rom_mode = 1;
> + if (rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc,
> + rknand->boot_ecc);
> + }
> +
> + reinit_completion(&nfc->done);
> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
> + dma_oob);
> + ret = wait_for_completion_timeout(&nfc->done,
> + msecs_to_jiffies(100));
> + if (!ret)
> + dev_warn(nfc->dev, "read: wait dma done timeout.\n");
> + /*
> + * Whether the DMA transfer is completed or not. The driver
> + * needs to check the NFC`s status register to see if the data
> + * transfer was completed.
> + */
> + ret = rk_nfc_wait_for_xfer_done(nfc);
> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> + DMA_FROM_DEVICE);
> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> + DMA_FROM_DEVICE);
> +
> + if (ret) {
> + bitflips = -EIO;
> + dev_err(nfc->dev,
> + "read: wait transfer done timeout.\n");
> + goto out;
> + }
> +
> + for (i = 1; i < ecc->steps; i++) {
> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
> + if (nfc->cfg->type == NFC_V9)
> + tmp = nfc->oob_buf[i];
> + else
> + tmp = nfc->oob_buf[i * oob_step / 4];
> + *oob++ = (u8)tmp;
> + *oob++ = (u8)(tmp >> 8);
> + *oob++ = (u8)(tmp >> 16);
> + *oob++ = (u8)(tmp >> 24);
> + }
> +
> + for (i = 0; i < ecc->steps / 2; i++) {
Brackets here as well please
> + bch_st = readl_relaxed(nfc->regs +
> + nfc->cfg->bch_st_off + i * 4);
> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
> + mtd->ecc_stats.failed++;
> + /* ECC failed, return the minimum number of error bits */
> + bitflips = ecc->strength + 1;
Could you explain why:
bitflips = -1;
changed to:
bitflips = ecc->strength + 1;
Comment by Miquèl:
I think you should return 0.
Then the upper layer will check for failures.
> + } else {
> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
> + mtd->ecc_stats.corrected += ret;
> + bitflips = max_t(u32, bitflips, ret);
> +
> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
> + mtd->ecc_stats.corrected += ret;
> + bitflips = max_t(u32, bitflips, ret);
> + }
> + }
> +out:
> + memcpy(buf, nfc->page_buf, mtd->writesize);
> +
> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
> +
> + if (bitflips > ecc->strength)
> + dev_err(nfc->dev, "read page: %x ecc error!\n", page);
> +
> + /*
> + * Deselect the currently selected target after ops done,
> + * otherwise the NAND flash will has extra power consumption.
will have
or use for example:
Deselect the currently selected target after the ops is done
to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
> +
> + return bitflips;
> +}
> +
> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
> +{
> + /* Disable flash wp. */
> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
> + /* Config default timing 40ns at 150 Mhz nfc clock. */
> + writel(0x1081, nfc->regs + NFC_FMWAIT);
> + /* Disable randomizer and DMA. */
> + writel(0, nfc->regs + nfc->cfg->randmz_off);
> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
> +}
> +
> +static irqreturn_t rk_nfc_irq(int irq, void *id)
> +{
> + struct rk_nfc *nfc = id;
> + u32 sta, ien;
> +
> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
> +
> + if (!(sta & ien))
> + return IRQ_NONE;
> +
> + writel(sta, nfc->regs + nfc->cfg->int_clr_off);
> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
> +
> + complete(&nfc->done);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc)
Change function name, because there are 2 clocks.
_clks with an s to inform that there are several of them.
_clk ==>> _clks
> +{
> + int ret;
> +
> + if (!IS_ERR(nfc->nfc_clk)) {
> + ret = clk_prepare_enable(nfc->nfc_clk);
> + if (ret) {
> + dev_err(dev, "failed to enable nfc clk\n");
> + return ret;
> + }
> + }
> +
> + ret = clk_prepare_enable(nfc->ahb_clk);
> + if (ret) {
> + dev_err(dev, "failed to enable ahb clk\n");
> + if (!IS_ERR(nfc->nfc_clk))
> + clk_disable_unprepare(nfc->nfc_clk);
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static void rk_nfc_disable_clk(struct rk_nfc *nfc)
Change function name, because there are 2 clocks.
ditto
_clk ==>> _clks
> +{
> + if (!IS_ERR(nfc->nfc_clk))
> + clk_disable_unprepare(nfc->nfc_clk);
> + clk_disable_unprepare(nfc->ahb_clk);
> +}
> +
> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oob_region)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> +
> + if (section)
> + return -ERANGE;
> +
> + /*
> + * The beginning of the oob area stores the reserved data for the NFC,
OOB area
> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
> + */
> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
> + oob_region->offset = NFC_SYS_DATA_SIZE + 2;
> +
> + return 0;
> +}
> +
> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oob_region)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> +
> + if (section)
> + return -ERANGE;
> +
> + oob_region->offset = rknand->metadata_size;
> + oob_region->length = mtd->oobsize - oob_region->offset;
oob_region->length = mtd->oobsize - oob_region->offset;
oob_region->offset = rknand->metadata_size;
Keep length and offset in the same sort order as in rk_nfc_ooblayout_free().
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
> + .free = rk_nfc_ooblayout_free,
> + .ecc = rk_nfc_ooblayout_ecc,
> +};
> +
> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + const u8 *strengths = nfc->cfg->ecc_strengths;
> + u8 max_strength, nfc_max_strength;
> + int i;
> +
> + nfc_max_strength = nfc->cfg->ecc_strengths[0];
> + /* If optional dt settings not present. */
> + if (!ecc->size || !ecc->strength ||
> + ecc->strength > nfc_max_strength) {
> + chip->ecc.size = 1024;
> + ecc->steps = mtd->writesize / ecc->size;
> +
> + /*
> + * HW ECC always requests the number of ECC bytes per 1024 byte
> + * blocks. 4 Bytes is oob for sys data.
The first 4 OOB bytes are reserved for sys data.
> + */
> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
> + fls(8 * 1024);
> + if (max_strength > nfc_max_strength)
> + max_strength = nfc_max_strength;
> +
> + for (i = 0; i < 4; i++) {
> + if (max_strength >= strengths[i])
> + break;
> + }
> +
> + if (i >= 4) {
> + dev_err(nfc->dev, "Unsupported ECC strength\n");
> + return -EOPNOTSUPP;
> + }
> +
> + ecc->strength = strengths[i];
> + }
> + ecc->steps = mtd->writesize / ecc->size;
> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
> + /* HW ECC always work with even numbers of ECC bytes. */
> + ecc->bytes = ALIGN(ecc->bytes, 2);
> +
> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
> +
> + return 0;
> +}
> +
> +static int rk_nfc_attach_chip(struct nand_chip *chip)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct device *dev = mtd->dev.parent;
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + u8 *temp_buf;
> + int len, oob_len;
> + int ret;
> +
> + if (chip->options & NAND_BUSWIDTH_16) {
> + dev_err(dev, "16 bits bus width not supported");
> + return -EINVAL;
> + }
> +
> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
> + return 0;
> +
> + ret = rk_nfc_ecc_init(dev, mtd);
> + if (ret)
> + return ret;
> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
> +
> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
> + dev_err(dev,
> + "Driver needs at least %d bytes of meta data\n",
> + NFC_SYS_DATA_SIZE + 2);
> + return -EIO;
> + }
> + len = mtd->writesize + mtd->oobsize;
> +
> + /* Check buffer first, avoid duplicate alloc buffer. */
> + if (nfc->buffer) {
> + if (len > nfc->buffer_size) {
Check only for buffer_size.
Maybe split in 2. One size variable per buffer.
Reorder flow, see example?
> + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA);
> + if (!temp_buf)
> + return -ENOMEM;
> + kfree(nfc->buffer);
Is there a realloc for kernels or use helper?
> + nfc->buffer = temp_buf;
> + nfc->buffer_size = len;
> +
> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
> + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
> + if (!temp_buf)
> + return -ENOMEM;
> + kfree(nfc->oob_buf);
> + nfc->oob_buf = (u32 *)temp_buf;
> + }
> + return 0;
> + }
> +
Example:
// Check and resize existing buffer sizes.
new_len = mtd->writesize + mtd->oobsize;
if (nfc->buffer && new_len > nfc->buffer_size) {
ret = resize(...);
if (!ret)
return -ENOMEM;
nfc->buffer_size = new_len;
}
new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) {
ret = resize(...);
if (!ret) {
free(nfc->buffer);
return -ENOMEM;
}
nfc->oob_buffer_size = new_oob_len;
}
// If no buffers exists then create new buffers.
if (!nfc->buffer) {
ret = kzalloc(...);
if (!ret)
return -ENOMEM;
nfc->buffer_size = new_len;
}
if (!nfc->oob_buf) {
ret = kzalloc(...);
if (!ret) {
free(nfc->buffer);
return -ENOMEM;
}
nfc->oob_buffer_size = new_oob_len;
}
> + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA);
> + if (!nfc->buffer)
> + return -ENOMEM;
> +
> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
> + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
> + if (!nfc->oob_buf) {
> + kfree(nfc->buffer);
> + nfc->buffer = NULL;
> + nfc->oob_buf = NULL;
!nfc->oob_buf == (nfc->oob_buf = NULL)
Comment from Miquèl:
I don't think this is needed
If something is NULL then there's no need to set it to NULL again.
> + return -ENOMEM;
> + }
> +
> + nfc->buffer_size = len;
> + nfc->page_buf = nfc->buffer;
> +
> + chip->ecc.write_page_raw = rk_nfc_write_page_raw;
> + chip->ecc.write_page = rk_nfc_write_page_hwecc;
> + chip->ecc.write_oob_raw = rk_nfc_write_oob;
> + chip->ecc.write_oob = rk_nfc_write_oob;
> +
> + chip->ecc.read_page_raw = rk_nfc_read_page_raw;
> + chip->ecc.read_page = rk_nfc_read_page_hwecc;
> + chip->ecc.read_oob_raw = rk_nfc_read_oob;
> + chip->ecc.read_oob = rk_nfc_read_oob;
> +
> + return 0;
> +}
> +
> +static const struct nand_controller_ops rk_nfc_controller_ops = {
> + .attach_chip = rk_nfc_attach_chip,
> + .exec_op = rk_nfc_exec_op,
> + .setup_interface = rk_nfc_setup_data_interface,
> +};
> +
> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
> + struct device_node *np)
> +{
> + struct rk_nfc_nand_chip *rknand;
> + struct nand_chip *chip;
> + struct mtd_info *mtd;
> + int nsels;
> + u32 tmp;
> + int ret;
> + int i;
> +
> + if (!of_get_property(np, "reg", &nsels))
> + return -ENODEV;
> + nsels /= sizeof(u32);
> + if (!nsels || nsels > NFC_MAX_NSELS) {
> + dev_err(dev, "invalid reg property size %d\n", nsels);
> + return -EINVAL;
> + }
> +
> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
> + GFP_KERNEL);
> + if (!rknand)
> + return -ENOMEM;
> +
> + rknand->nsels = nsels;
> + for (i = 0; i < nsels; i++) {
> + ret = of_property_read_u32_index(np, "reg", i, &tmp);
> + if (ret) {
> + dev_err(dev, "reg property failure : %d\n", ret);
> + return ret;
> + }
> +
> + if (tmp >= NFC_MAX_NSELS) {
> + dev_err(dev, "invalid CS: %u\n", tmp);
> + return -EINVAL;
> + }
> +
> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
> + dev_err(dev, "CS %u already assigned\n", tmp);
> + return -EINVAL;
> + }
> +
> + rknand->sels[i] = tmp;
> + }
> +
> + chip = &rknand->chip;
> + chip->controller = &nfc->controller;
> +
> + nand_set_flash_node(chip, np);
> +
> + nand_set_controller_data(chip, nfc);
> +
> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
> +
> + /* Set default mode in case dt entry is missing. */
> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
> +
> + mtd = nand_to_mtd(chip);
> + mtd->owner = THIS_MODULE;
> + mtd->dev.parent = dev;
> +
> + if (!mtd->name) {
> + dev_err(nfc->dev, "NAND label property is mandatory\n");
> + return -EINVAL;
> + }
> +
> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
> + rk_nfc_hw_init(nfc);
> + ret = nand_scan(chip, nsels);
> + if (ret)
> + return ret;
> +
> + if (chip->options & NAND_IS_BOOT_MEDIUM) {
> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
> + rknand->boot_blks = ret ? 0 : tmp;
Comment by Miquèl:
Can't you guess this entry knowing the IP version/SoC version?
No, "rockchip,boot-blks" depends on the size of multiple partitions
and is user layout dependent.
> +
> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
> + &tmp);
> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
> + }
> +
> + ret = mtd_device_register(mtd, NULL, 0);
> + if (ret) {
> + dev_err(dev, "mtd parse partition error\n");
> + nand_cleanup(chip);
> + return ret;
> + }
> +
> + list_add_tail(&rknand->node, &nfc->chips);
> +
> + return 0;
> +}
> +
> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
> +{
> + struct rk_nfc_nand_chip *rknand, *tmp;
> + struct nand_chip *chip;
> + int ret;
> +
> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
> + chip = &rknand->chip;
> + ret = mtd_device_unregister(nand_to_mtd(chip));
> + WARN_ON(ret);
> + nand_cleanup(chip);
> + list_del(&rknand->node);
> + }
> +}
> +
> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
> +{
> + struct device_node *np = dev->of_node, *nand_np;
> + int nchips = of_get_child_count(np);
> + int ret;
> +
> + if (!nchips || nchips > NFC_MAX_NSELS) {
> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
> + nchips);
> + return -EINVAL;
> + }
> +
> + for_each_child_of_node(np, nand_np) {
> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
> + if (ret) {
> + of_node_put(nand_np);
> + rk_nfc_chips_cleanup(nfc);
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static struct nfc_cfg nfc_v6_cfg = {
> + .type = NFC_V6,
> + .ecc_strengths = {60, 40, 24, 16},
> + .ecc_cfgs = {
> + 0x00040011, 0x00040001, 0x00000011, 0x00000001,
> + },
> + .flctl_off = 0x08,
> + .bchctl_off = 0x0C,
> + .dma_cfg_off = 0x10,
> + .dma_data_buf_off = 0x14,
> + .dma_oob_buf_off = 0x18,
> + .dma_st_off = 0x1C,
> + .bch_st_off = 0x20,
> + .randmz_off = 0x150,
> + .int_en_off = 0x16C,
> + .int_clr_off = 0x170,
> + .int_st_off = 0x174,
> + .oob0_off = 0x200,
> + .oob1_off = 0x230,
> + .ecc0 = {
> + .err_flag_bit = 2,
> + .low = 3,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 27,
> + .high_mask = 0x1,
> + },
> + .ecc1 = {
> + .err_flag_bit = 15,
> + .low = 16,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 29,
> + .high_mask = 0x1,
> + },
> +};
> +
> +static struct nfc_cfg nfc_v8_cfg = {
> + .type = NFC_V8,
> + .ecc_strengths = {16, 16, 16, 16},
> + .ecc_cfgs = {
> + 0x00000001, 0x00000001, 0x00000001, 0x00000001,
> + },
> + .flctl_off = 0x08,
> + .bchctl_off = 0x0C,
> + .dma_cfg_off = 0x10,
> + .dma_data_buf_off = 0x14,
> + .dma_oob_buf_off = 0x18,
> + .dma_st_off = 0x1C,
> + .bch_st_off = 0x20,
> + .randmz_off = 0x150,
> + .int_en_off = 0x16C,
> + .int_clr_off = 0x170,
> + .int_st_off = 0x174,
> + .oob0_off = 0x200,
> + .oob1_off = 0x230,
> + .ecc0 = {
> + .err_flag_bit = 2,
> + .low = 3,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 27,
> + .high_mask = 0x1,
> + },
> + .ecc1 = {
> + .err_flag_bit = 15,
> + .low = 16,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 29,
> + .high_mask = 0x1,
> + },
> +};
> +
> +static struct nfc_cfg nfc_v9_cfg = {
> + .type = NFC_V9,
> + .ecc_strengths = {70, 60, 40, 16},
> + .ecc_cfgs = {
> + 0x00000001, 0x06000001, 0x04000001, 0x02000001,
> + },
> + .flctl_off = 0x10,
> + .bchctl_off = 0x20,
> + .dma_cfg_off = 0x30,
> + .dma_data_buf_off = 0x34,
> + .dma_oob_buf_off = 0x38,
> + .dma_st_off = 0x3C,
> + .bch_st_off = 0x150,
> + .randmz_off = 0x208,
> + .int_en_off = 0x120,
> + .int_clr_off = 0x124,
> + .int_st_off = 0x128,
> + .oob0_off = 0x200,
> + .oob1_off = 0x204,
> + .ecc0 = {
> + .err_flag_bit = 2,
> + .low = 3,
> + .low_mask = 0x7F,
> + .low_bn = 7,
> + .high = 0,
> + .high_mask = 0x0,
> + },
> + .ecc1 = {
> + .err_flag_bit = 18,
> + .low = 19,
> + .low_mask = 0x7F,
> + .low_bn = 7,
> + .high = 0,
> + .high_mask = 0x0,
> + },
> +};
> +
> +static const struct of_device_id rk_nfc_id_table[] = {
> + {
> + .compatible = "rockchip,px30-nfc",
> + .data = &nfc_v9_cfg
> + },
> + {
> + .compatible = "rockchip,rk2928-nfc",
> + .data = &nfc_v6_cfg
> + },
> + {
> + .compatible = "rockchip,rv1108-nfc",
> + .data = &nfc_v8_cfg
> + },
> + { /* sentinel */ }
> +};
> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
> +
> +static int rk_nfc_probe(struct platform_device *pdev)
> +{
> + struct device *dev = &pdev->dev;
> + struct rk_nfc *nfc;
> + int ret, irq;
> +
> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
> + if (!nfc)
> + return -ENOMEM;
> +
> + nand_controller_init(&nfc->controller);
> + INIT_LIST_HEAD(&nfc->chips);
> + nfc->controller.ops = &rk_nfc_controller_ops;
> +
> + nfc->cfg = of_device_get_match_data(dev);
> + nfc->dev = dev;
> +
> + init_completion(&nfc->done);
> +
> + nfc->regs = devm_platform_ioremap_resource(pdev, 0);
> + if (IS_ERR(nfc->regs)) {
> + ret = PTR_ERR(nfc->regs);
> + goto release_nfc;
> + }
> +
> + nfc->nfc_clk = devm_clk_get(dev, "nfc");
> + if (IS_ERR(nfc->nfc_clk)) {
> + dev_dbg(dev, "no nfc clk\n");
> + /* Some earlier models, such as rk3066, have no nfc clk. */
> + }
> +
> + nfc->ahb_clk = devm_clk_get(dev, "ahb");
> + if (IS_ERR(nfc->ahb_clk)) {
> + dev_err(dev, "no ahb clk\n");
> + ret = PTR_ERR(nfc->ahb_clk);
> + goto release_nfc;
> + }
> +
> + ret = rk_nfc_enable_clk(dev, nfc);
> + if (ret)
> + goto release_nfc;
> +
> + irq = platform_get_irq(pdev, 0);
> + if (irq < 0) {
> + dev_err(dev, "no nfc irq resource\n");
> + ret = -EINVAL;
> + goto clk_disable;
> + }
> +
> + writel(0, nfc->regs + nfc->cfg->int_en_off);
> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
> + if (ret) {
> + dev_err(dev, "failed to request nfc irq\n");
> + goto clk_disable;
> + }
> +
> + platform_set_drvdata(pdev, nfc);
> +
> + ret = rk_nfc_nand_chips_init(dev, nfc);
> + if (ret) {
> + dev_err(dev, "failed to init NAND chips\n");
> + goto clk_disable;
> + }
> + return 0;
> +
> +clk_disable:
> + rk_nfc_disable_clk(nfc);
> +release_nfc:
> + return ret;
> +}
> +
> +static int rk_nfc_remove(struct platform_device *pdev)
> +{
> + struct rk_nfc *nfc = platform_get_drvdata(pdev);
> +
> + kfree(nfc->buffer);
> + kfree(nfc->oob_buf);
> + rk_nfc_chips_cleanup(nfc);
> + rk_nfc_disable_clk(nfc);
> +
> + return 0;
> +}
> +
> +static int __maybe_unused rk_nfc_suspend(struct device *dev)
> +{
> + struct rk_nfc *nfc = dev_get_drvdata(dev);
> +
> + rk_nfc_disable_clk(nfc);
> +
> + return 0;
> +}
> +
> +static int __maybe_unused rk_nfc_resume(struct device *dev)
> +{
> + struct rk_nfc *nfc = dev_get_drvdata(dev);
> + struct rk_nfc_nand_chip *rknand;
> + struct nand_chip *chip;
> + int ret;
> + u32 i;
> +
> + ret = rk_nfc_enable_clk(dev, nfc);
> + if (ret)
> + return ret;
> +
> + /* Reset NAND chip if VCC was powered off. */
> + list_for_each_entry(rknand, &nfc->chips, node) {
> + chip = &rknand->chip;
> + for (i = 0; i < rknand->nsels; i++)
> + nand_reset(chip, i);
> + }
> +
> + return 0;
> +}
> +
> +static const struct dev_pm_ops rk_nfc_pm_ops = {
> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
> +};
> +
> +static struct platform_driver rk_nfc_driver = {
> + .probe = rk_nfc_probe,
> + .remove = rk_nfc_remove,
> + .driver = {
> + .name = "rockchip-nfc",
> + .of_match_table = rk_nfc_id_table,
> + .pm = &rk_nfc_pm_ops,
> + },
> +};
> +
> +module_platform_driver(rk_nfc_driver);
> +
> +MODULE_LICENSE("Dual MIT/GPL");
> +MODULE_AUTHOR("Yifeng Zhao <[email protected]>");
> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
> +MODULE_ALIAS("platform:rockchip-nand-controller");
>
Hi Miquèl and Johan,
I've fixed some comments, but there are still a few points I can`t understand.
>Hi Yifeng, Miquèl and others,
>
>I've copied some comments from Miquèl from version 8 to this one here
>and added some more. ;)
>
>
>On 10/20/20 5:17 AM, Yifeng Zhao wrote:
>> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
>> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
>> 8-bit NAND interface on the ARM based RK3308 platform.
>>
>> Support Rockchip SoCs and NFC versions:
>> - PX30 and RK3326(NFCv900).
>> ECC: 16/40/60/70 bits/1KB.
>> CLOCK: ahb and nfc.
>> - RK3308 and RV1108(NFCv800).
>> ECC: 16 bits/1KB.
>> CLOCK: ahb and nfc.
>> - RK3036 and RK3128(NFCv622).
>> ECC: 16/24/40/60 bits/1KB.
>> CLOCK: ahb and nfc.
>> - RK3066, RK3188 and RK2928(NFCv600).
>> ECC: 16/24/40/60 bits/1KB.
>> CLOCK: ahb.
>>
>> Supported features:
>> - Read full page data by DMA.
>> - Support HW ECC(one step is 1KB).
>> - Support 2 - 32K page size.
>> - Support 8 CS(depend on SoCs)
>>
>> Limitations:
>> - No support for the ecc step size is 512.
>> - Untested on some SoCs.
>> - No support for subpages.
>> - No support for the builtin randomizer.
>> - The original bad block mask is not supported. It is recommended to use
>> the BBT(bad block table).
>>
>> Signed-off-by: Yifeng Zhao <[email protected]>
>> ---
>>
>> (no changes since v11)
>>
>> Changes in v11:
>> - Fix compile error.
>>
>> Changes in v10:
>> - Fix compile error on master v5.9-rc7.
>>
>> Changes in v9:
>> - The nfc->buffer will realloc while the page size of the second mtd
>> is large than the first one
>> - Fix coding style.
>> - Remove struct rk_nfc_clk.
>> - Prepend some function with rk_nfc_.
>> - Replace function readl_poll_timeout_atomic with
>readl_relaxed_poll_timeout.
>> - Remove function rk_nfc_read_byte and rk_nfc_write_byte.
>> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
>> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
>>
>> Changes in v7:
>> - Rebase to linux-next.
>> - Fix coding style.
>> - Reserved 4 bytes at the beginning of the oob area.
>> - Page raw read and write included ecc data.
>>
>> Changes in v6:
>> - The mtd->name set by NAND label property.
>> - Add some comments.
>> - Fix compile error.
>>
>> Changes in v5:
>> - Add boot blocks support with different ECC for bootROM.
>> - Rename rockchip-nand.c to rockchip-nand-controller.c.
>> - Unification of other variable names.
>> - Remove some compatible define.
>>
>> Changes in v4:
>> - Define platform data structure for the register offsets.
>> - The compatible define with rkxx_nfc.
>> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
>> - Use exec_op instead of legacy hooks.
>>
>> Changes in v2:
>> - Fix compile error.
>> - Include header files sorted by file name.
>>
>> drivers/mtd/nand/raw/Kconfig | 12 +
>> drivers/mtd/nand/raw/Makefile | 1 +
>> .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++
>> 3 files changed, 1452 insertions(+)
>> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
>>
>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
>> index 6c46f25b57e2..2cc533e4e239 100644
>> --- a/drivers/mtd/nand/raw/Kconfig
>> +++ b/drivers/mtd/nand/raw/Kconfig
>> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
>> Enables the driver for the Arasan NAND flash controller on
>> Zynq Ultrascale+ MPSoC.
>>
>> +config MTD_NAND_ROCKCHIP
>> + tristate "Rockchip NAND controller"
>> + depends on ARCH_ROCKCHIP && HAS_IOMEM
>> + help
>> + Enables support for NAND controller on Rockchip SoCs.
>> + There are four different versions of NAND FLASH Controllers,
>> + including:
>> + NFC v600: RK2928, RK3066, RK3188
>> + NFC v622: RK3036, RK3128
>> + NFC v800: RK3308, RV1108
>> + NFC v900: PX30, RK3326
>> +
>> comment "Misc"
>>
>> config MTD_SM_COMMON
>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
>> index 2930f5b9015d..960c9be25204 100644
>> --- a/drivers/mtd/nand/raw/Makefile
>> +++ b/drivers/mtd/nand/raw/Makefile
>> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
>> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
>> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
>> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
>> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
>>
>> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o
>nand_ids.o
>> nand-objs += nand_onfi.o
>> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c
>b/drivers/mtd/nand/raw/rockchip-nand-controller.c
>> new file mode 100644
>> index 000000000000..cf28c5936209
>> --- /dev/null
>> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
>> @@ -0,0 +1,1439 @@
>> +// SPDX-License-Identifier: GPL-2.0 OR MIT
>> +/*
>> + * Rockchip NAND Flash controller driver.
>> + * Copyright (C) 2020 Rockchip Inc.
>> + * Author: Yifeng Zhao <[email protected]>
>> + */
>> +
>> +#include <linux/clk.h>
>> +#include <linux/delay.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/dmaengine.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/iopoll.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/mtd.h>
>> +#include <linux/mtd/rawnand.h>
>> +#include <linux/of.h>
>> +#include <linux/of_device.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/slab.h>
>> +
>> +/*
>> + * NFC Page Data Layout:
>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
>> + * ......
>> + * NAND Page Data Layout:
>> + * 1024 * n Data + m Bytes oob
>> + * Original Bad Block Mask Location:
>> + * First byte of oob(spare).
>> + * nand_chip->oob_poi data layout:
>> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
>> + */
>> +
>> +/* NAND controller register definition */
>> +#define NFC_READ (0)
>> +#define NFC_WRITE (1)
>> +
>> +#define NFC_FMCTL (0x00)
>> +#define FMCTL_CE_SEL_M 0xFF
>> +#define FMCTL_CE_SEL(x) (1 << (x))
>> +#define FMCTL_WP BIT(8)
>> +#define FMCTL_RDY BIT(9)
>> +
>> +#define NFC_FMWAIT (0x04)
>> +#define FLCTL_RST BIT(0)
>> +#define FLCTL_WR (1) /* 0: read, 1: write */
>> +#define FLCTL_XFER_ST BIT(2)
>> +#define FLCTL_XFER_EN BIT(3)
>> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
>> +#define FLCTL_XFER_READY BIT(20)
>> +#define FLCTL_XFER_SECTOR (22)
>> +#define FLCTL_TOG_FIX BIT(29)
>> +
>> +#define BCHCTL_BANK_M (7 << 5)
>> +#define BCHCTL_BANK (5)
>> +
>> +#define DMA_ST BIT(0)
>> +#define DMA_WR (1) /* 0: write, 1: read */
>> +#define DMA_EN BIT(2)
>> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
>> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
>> +#define DMA_INC_NUM (9) /* 1 - 16 */
>> +
>> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
>> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
>> +#define INT_DMA BIT(0)
>> +#define NFC_BANK (0x800)
>> +#define NFC_BANK_STEP (0x100)
>> +#define BANK_DATA (0x00)
>> +#define BANK_ADDR (0x04)
>> +#define BANK_CMD (0x08)
>> +#define NFC_SRAM0 (0x1000)
>> +#define NFC_SRAM1 (0x1400)
>> +#define NFC_SRAM_SIZE (0x400)
>> +#define NFC_TIMEOUT (500000)
>> +#define NFC_MAX_OOB_PER_STEP 128
>> +#define NFC_MIN_OOB_PER_STEP 64
>> +#define MAX_DATA_SIZE 0xFFFC
>> +#define MAX_ADDRESS_CYC 6
>> +#define NFC_ECC_MAX_MODES 4
>> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
>> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024
>data.*/
>> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
>> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
>> +
>> +enum nfc_type {
>> + NFC_V6,
>> + NFC_V8,
>> + NFC_V9,
>> +};
>> +
>> +/**
>> + * struct rk_ecc_cnt_status: represent a ecc status data.
>> + * @err_flag_bit: error flag bit index at register.
>> + * @low: ecc count low bit index at register.
>> + * @low_mask: mask bit.
>> + * @low_bn: ecc count low bit number.
>> + * @high: ecc count high bit index at register.
>> + * @high_mask: mask bit
>> + */
>> +struct ecc_cnt_status {
>> + u8 err_flag_bit;
>> + u8 low;
>> + u8 low_mask;
>> + u8 low_bn;
>> + u8 high;
>> + u8 high_mask;
>> +};
>> +
>> +/*
>> + * @type: nfc version
>> + * @ecc_strengths: ecc strengths
>> + * @ecc_cfgs: ecc config values
>> + * @flctl_off: FLCTL register offset
>> + * @bchctl_off: BCHCTL register offset
>> + * @dma_data_buf_off: DMA_DATA_BUF register offset
>> + * @dma_oob_buf_off: DMA_OOB_BUF register offset
>> + * @dma_cfg_off: DMA_CFG register offset
>> + * @dma_st_off: DMA_ST register offset
>> + * @bch_st_off: BCG_ST register offset
>> + * @randmz_off: RANDMZ register offset
>> + * @int_en_off: interrupt enable register offset
>> + * @int_clr_off: interrupt clean register offset
>> + * @int_st_off: interrupt status register offset
>> + * @oob0_off: oob0 register offset
>> + * @oob1_off: oob1 register offset
>> + * @ecc0: represent ECC0 status data
>> + * @ecc1: represent ECC1 status data
>> + */
>> +struct nfc_cfg {
>> + enum nfc_type type;
>> + u8 ecc_strengths[NFC_ECC_MAX_MODES];
>> + u32 ecc_cfgs[NFC_ECC_MAX_MODES];
>> + u32 flctl_off;
>> + u32 bchctl_off;
>> + u32 dma_cfg_off;
>> + u32 dma_data_buf_off;
>> + u32 dma_oob_buf_off;
>> + u32 dma_st_off;
>> + u32 bch_st_off;
>> + u32 randmz_off;
>> + u32 int_en_off;
>> + u32 int_clr_off;
>> + u32 int_st_off;
>> + u32 oob0_off;
>> + u32 oob1_off;
>> + struct ecc_cnt_status ecc0;
>> + struct ecc_cnt_status ecc1;
>> +};
>> +
>> +struct rk_nfc_nand_chip {
>> + struct list_head node;
>> + struct nand_chip chip;
>> +
>> + u16 spare_per_sector;
>> + u16 oob_buf_per_sector;
>> + u16 boot_blks;
>> + u16 boot_ecc;
>> + u16 metadata_size;
>> +
>> + u8 nsels;
>> + u8 sels[0];
>> + /* Nothing after this field. */
>> +};
>> +
>> +struct rk_nfc {
>> + struct nand_controller controller;
>> + const struct nfc_cfg *cfg;
>> + struct device *dev;
>> +
>> + struct clk *nfc_clk;
>> + struct clk *ahb_clk;
>> + void __iomem *regs;
>> +
>> + u32 selected_bank;
>> + u32 band_offset;
>> + u32 cur_clk;
>> +
>> + struct completion done;
>> + struct list_head chips;
>> +
>> + u8 *buffer;
>> + u8 *page_buf;
>> + u32 *oob_buf;
>> + u32 buffer_size;
>> +
>> + unsigned long assigned_cs;
>> +};
>> +
>> +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip)
Fixed it.,to_rknand -> rk_nfc_to_rknand
>> +{
>> + return container_of(chip, struct rk_nfc_nand_chip, chip);
>> +}
>> +
>> +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p,
>int i)
>
>rk_nfc_buf_to_data_ptr ?
>Comment by Miquèl:
>Please prepend all your functions with rk_nfc_
>
>For the ftrace filters it is needed to have all functions start with
>the same prefix in a module.
>
>
>> +{
>> + return (u8 *)p + i * chip->ecc.size;
>> +}
>> +
>> +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i)
>
>same here
>> +{
>> + u8 *poi;
>> +
>> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
>> +
>> + return poi;
>> +}
>> +
>> +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i)
>
>same here
>> +{
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> + u8 *poi;
>> +
>> + poi = chip->oob_poi + rknand->metadata_size +
>> + chip->ecc.bytes * i;
>> +
>> + return poi;
>> +}
>> +
>> +static inline int rk_nfc_data_len(struct nand_chip *chip)
>> +{
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> +
>> + return chip->ecc.size + rknand->spare_per_sector;
>> +}
>> +
>> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> +
>> + return nfc->buffer + i * rk_nfc_data_len(chip);
>> +}
>> +
>> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> +
>> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size;
>> +}
>> +
>> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> + u32 val;
>> +
>> + if (cs < 0) {
>> + nfc->selected_bank = -1;
>> + /* Deselect the currently selected target. */
>> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
>> + val &= ~FMCTL_CE_SEL_M;
>> + writel(val, nfc->regs + NFC_FMCTL);
>> + return;
>> + }
>> +
>> + nfc->selected_bank = rknand->sels[cs];
>> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
>> +
>> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
>> + val &= ~FMCTL_CE_SEL_M;
>> + val |= FMCTL_CE_SEL(nfc->selected_bank);
>> +
>> + writel(val, nfc->regs + NFC_FMCTL);
>> +}
>> +
>> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
>> +{
>> + int rc;
>> + u32 val;
>> +
>> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
>> + val & FMCTL_RDY, 10, NFC_TIMEOUT);
>> +
>> + return rc;
>> +}
>> +
>> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
>> +{
>> + int i;
>> +
>> + for (i = 0; i < len; i++)
>> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
>> + BANK_DATA);
>> +}
>> +
>> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
>> +{
>> + int i;
>> +
>> + for (i = 0; i < len; i++)
>> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
>> +}
>> +
>> +static int rk_nfc_cmd(struct nand_chip *chip,
>> + const struct nand_subop *subop)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + unsigned int i, j, remaining, start;
>> + int reg_offset = nfc->band_offset;
>> + u8 *inbuf = NULL;
>> + const u8 *outbuf;
>> + u32 cnt = 0;
>> + int ret = 0;
>> +
>> + for (i = 0; i < subop->ninstrs; i++) {
>> + const struct nand_op_instr *instr = &subop->instrs[i];
>> +
>> + switch (instr->type) {
>> + case NAND_OP_CMD_INSTR:
>> + writeb(instr->ctx.cmd.opcode,
>> + nfc->regs + reg_offset + BANK_CMD);
>> + break;
>> +
>> + case NAND_OP_ADDR_INSTR:
>> + remaining = nand_subop_get_num_addr_cyc(subop, i);
>> + start = nand_subop_get_addr_start_off(subop, i);
>> +
>> + for (j = 0; j < 8 && j + start < remaining; j++)
>> + writeb(instr->ctx.addr.addrs[j + start],
>> + nfc->regs + reg_offset + BANK_ADDR);
>> + break;
>> +
>> + case NAND_OP_DATA_IN_INSTR:
>> + case NAND_OP_DATA_OUT_INSTR:
>> + start = nand_subop_get_data_start_off(subop, i);
>> + cnt = nand_subop_get_data_len(subop, i);
>> +
>> + if (instr->type == NAND_OP_DATA_OUT_INSTR) {
>> + outbuf = instr->ctx.data.buf.out + start;
>> + rk_nfc_write_buf(nfc, outbuf, cnt);
>> + } else {
>> + inbuf = instr->ctx.data.buf.in + start;
>> + rk_nfc_read_buf(nfc, inbuf, cnt);
>> + }
>> + break;
>> +
>> + case NAND_OP_WAITRDY_INSTR:
>> + if (rk_nfc_wait_ioready(nfc) < 0) {
>> + ret = -ETIMEDOUT;
>> + dev_err(nfc->dev, "IO not ready\n");
>> + }
>> + break;
>> + }
>> + }
>> +
>> + return ret;
>> +}
>> +
>> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
>> + NAND_OP_PARSER_PATTERN(
>> + rk_nfc_cmd,
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
>> + NAND_OP_PARSER_PATTERN(
>> + rk_nfc_cmd,
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
>> +);
>> +
>> +static int rk_nfc_exec_op(struct nand_chip *chip,
>> + const struct nand_operation *op,
>> + bool check_only)
>> +{
>> + if (!check_only)
>> + rk_nfc_select_chip(chip, op->cs);
>> +
>> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
>> + check_only);
>> +}
>> +
>> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int
>csline,
>> + const struct nand_interface_config *conf)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + const struct nand_sdr_timings *timings;
>> + u32 rate, tc2rw, trwpw, trw2c;
>> + u32 temp;
>> +
>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
>> + return 0;
>> +
>> + timings = nand_get_sdr_timings(conf);
>> + if (IS_ERR(timings))
>> + return -EOPNOTSUPP;
>> +
>> + if (IS_ERR(nfc->nfc_clk))
>> + rate = clk_get_rate(nfc->ahb_clk);
>> + else
>> + rate = clk_get_rate(nfc->nfc_clk);
>> +
>> + /* Turn clock rate into kHz. */
>> + rate /= 1000;
>> +
>> + tc2rw = 1;
>> + trw2c = 1;
>> +
>> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
>> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
>> +
>> + temp = timings->tREA_max / 1000;
>> + temp = DIV_ROUND_UP(temp * rate, 1000000);
>> +
>> + if (trwpw < temp)
>> + trwpw = temp;
>> +
>> + /*
>> + * ACCON: access timing control register
>> + * -------------------------------------
>> + * 31:18: reserved
>> + * 17:12: csrw, clock cycles from the falling edge of CSn to the
>> + * falling edge of RDn or WRn
>> + * 11:11: reserved
>> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
>> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
>> + * rising edge of CSn
>> + */
>> + temp = ACCTIMING(tc2rw, trwpw, trw2c);
>> + writel(temp, nfc->regs + NFC_FMWAIT);
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
>> + struct nand_ecc_ctrl *ecc,
>> + uint32_t strength)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + u32 reg, i;
>> +
>> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
>> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
>> + reg = nfc->cfg->ecc_cfgs[i];
>> + break;
>> + }
>> + }
>> +
>> + if (i >= NFC_ECC_MAX_MODES)
>> + return -EINVAL;
>> +
>> + writel(reg, nfc->regs + nfc->cfg->bchctl_off);
>> +
>> + return 0;
>> +}
>> +
>> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
>> + dma_addr_t dma_data, dma_addr_t dma_oob)
>> +{
>> + u32 dma_reg, fl_reg, bch_reg;
>> +
>> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
>> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
>> +
>> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
>> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
>> +
>> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
>> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
>> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
>> + (nfc->selected_bank << BCHCTL_BANK);
>> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
>> + }
>> +
>> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
>> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
>> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
>> + fl_reg |= FLCTL_XFER_ST;
>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
>> +}
>> +
>> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
>> +{
>> + void __iomem *ptr;
>> + int ret = 0;
>> + u32 reg;
>> +
>> + ptr = nfc->regs + nfc->cfg->flctl_off;
>> +
>> + ret = readl_relaxed_poll_timeout(ptr, reg,
>> + reg & FLCTL_XFER_READY,
>> + 10, NFC_TIMEOUT);
>> +
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
>> + int oob_on, int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + int ret = 0;
>> + u32 i;
>> +
>> + if (!buf)
>> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
>> +
>> + for (i = 0; i < chip->ecc.steps; i++) {
>> + /* Copy data to nfc buffer. */
>> + if (buf)
>> + memcpy(rk_nfc_data_ptr(chip, i),
>> + nand_data_ptr(chip, buf, i),
>> + chip->ecc.size);
>
>> + /*
>> + * The first four bytes of OOB are reserved for the
>> + * boot ROM. In some debugging cases, sush as dump
>
>such as
>
>> + * data and write back, the last four bytes stored
>> + * in OOB need to be write back.
>
>such as with a read, erase and write back test
>these 4 bytes stored in OOB also need to be written back.
>> + */
>> + if (!i)
>> + memcpy(rk_nfc_oob_ptr(chip, i),
>> + nand_oob_ptr(chip, chip->ecc.steps - 1),
>> + NFC_SYS_DATA_SIZE);
>> + else
>> + memcpy(rk_nfc_oob_ptr(chip, i),
>> + nand_oob_ptr(chip, i - 1),
>> + NFC_SYS_DATA_SIZE);
>> + /* Copy ecc data to nfc buffer. */
>
>Copy ECC data to the NFC buffer.
>> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
>> + nand_oob_ecc_ptr(chip, i),
>> + chip->ecc.bytes);
>> + }
>> +
>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
>> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
>> + ret = nand_prog_page_end_op(chip);
>> +
>> + /*
>> + * Deselect the currently selected target after ops done,
>> + * otherwise the NAND flash will has extra power consumption.
>
>will have
>
>or use for example:
>
>Deselect the currently selected target after the ops is done
>to reduce the power consumption.
>
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_write_oob(struct nand_chip *chip, int page)
>> +{
>> + return rk_nfc_write_page_raw(chip, NULL, 1, page);
>> +}
>> +
>> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
>> + int oob_on, int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
>> + NFC_MIN_OOB_PER_STEP;
>> + int pages_per_blk = mtd->erasesize / mtd->writesize;
>> + int ret = 0, i, boot_rom_mode = 0;
>> + dma_addr_t dma_data, dma_oob;
>> + u32 reg;
>> + u8 *oob;
>> +
>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
>> +
>> + memcpy(nfc->page_buf, buf, mtd->writesize);
>> +
>> + /*
>> + * The first blocks (4, 8 or 16 depending on the device) are used
>> + * by the boot ROM and the first 32 bits of oob need to link to
>
>OOB
>
>> + * the next page address in the same block.
>
>Add more explanation why:
>
>We can't copy OOB directly,
>because this page address conflicts with the bad block marker (BBM),
>so we shift all OOB including the BBM with 4 byte positions.
>As consequence the OOB size then is also reduced with 4 bytes.
>
>PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
>
>If a NAND is not a boot medium the first 4 bytes are left untouched
>by writing 0xFF to them.
>
>0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
>
>
>Could you include the above layout to make things more clear?
>
>> + * Config the ECC algorithm supported by the boot ROM.
>
>comment by Miquèl:
>
>s/Config/Configure/
modified, please check again...
/*
* The first blocks (4, 8 or 16 depending on the device) are used
* by the boot ROM and the first 32 bits of OOB need to link to
* the next page address in the same block. We can't copy OOB
* directly, because this page address conflicts with the bad block
* marker (BBM), so we shift all OOB including the BBM with 4 byte
* positions. As consequence the OOB size then is also reduced with
* 4 bytes.
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
* If a NAND is not a boot medium, the first 4 bytes are left untouched
* by writing 0xFF to them.
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*/
>
>> + */
>> + if ((page < pages_per_blk * rknand->boot_blks) &&
>> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
>> + boot_rom_mode = 1;
>> + if (rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc,
>> + rknand->boot_ecc);
>> + }
>> +
>> + for (i = 0; i < ecc->steps; i++) {
>> + if (!i) {
>> + reg = 0xFFFFFFFF;
>> + } else {
>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
>> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
>> + oob[3] << 24;
>> + }
>> + if (!i && boot_rom_mode)
>> + reg = (page & (pages_per_blk - 1)) * 4;
>> +
>> + if (nfc->cfg->type == NFC_V9)
>> + nfc->oob_buf[i] = reg;
>> + else
>> + nfc->oob_buf[i * oob_step / 4] = reg;
>
>Please use brackets.
I don't understand this. Can you give an example of how to modify it?
>> + }
>> +
>> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
>
>Do you need this cast?
Yes, need dma_map_single to get phy_addr and do cache ops.
>> + mtd->writesize, DMA_TO_DEVICE);
>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
>> + ecc->steps * oob_step,
>> + DMA_TO_DEVICE);
>> +
>> + reinit_completion(&nfc->done);
>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
>> +
>> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
>> + dma_oob);
>> + ret = wait_for_completion_timeout(&nfc->done,
>> + msecs_to_jiffies(100));
>> + if (!ret)
>> + dev_warn(nfc->dev, "write: wait dma done timeout.\n");
>> + /*
>> + * Whether the DMA transfer is completed or not. The driver
>> + * needs to check the NFC`s status register to see if the data
>> + * transfer was completed.
>> + */
>> + ret = rk_nfc_wait_for_xfer_done(nfc);
>> +
>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
>> + DMA_TO_DEVICE);
>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
>> + DMA_TO_DEVICE);
>> +
>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>> +
>> + if (ret) {
>> + ret = -EIO;
>> + dev_err(nfc->dev,
>> + "write: wait transfer done timeout.\n");
>> + }
>> +
>> + if (ret)
>> + return ret;
>> +
>> + ret = nand_prog_page_end_op(chip);
>> +
>> + /*
>> + * Deselect the currently selected target after ops done,
>
>> + * otherwise the NAND flash will has extra power consumption.
>
>will have
>
>or use for example:
>
>Deselect the currently selected target after the ops is done
>to reduce the power consumption.
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int
>oob_on,
>> + int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + int i;
>> +
>> + nand_read_page_op(chip, page, 0, NULL, 0);
>> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize);
>> +
>> + /*
>> + * Deselect the currently selected target after ops done,
>
>> + * otherwise the NAND flash will has extra power consumption.
>
>will have
>
>or use for example:
>
>Deselect the currently selected target after the ops is done
>to reduce the power consumption.
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + for (i = 0; i < chip->ecc.steps; i++) {
>
>> + /*
>> + * The first four bytes of OOB are reserved for the
>> + * boot ROM. In some debugging cases, sush as dump data
>
>such as
>
>> + * and write back, it`s need to read out this four bytes,
>
>such as with a read, erase and write back test
>these 4 bytes also must be saved somewhere,
>
>> + * otherwise this information will be lost during write back.
>
>otherwise this information will be lost during a write back.
>> + */
>> + if (!i)
>> + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1),
>> + rk_nfc_oob_ptr(chip, i),
>> + NFC_SYS_DATA_SIZE);
>> + else
>> + memcpy(nand_oob_ptr(chip, i - 1),
>> + rk_nfc_oob_ptr(chip, i),
>> + NFC_SYS_DATA_SIZE);
>
>> + /* Copy ecc data form nfc buffer. */
>
>Copy ECC data from the NFC buffer.
>> + memcpy(nand_oob_ecc_ptr(chip, i),
>> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
>> + chip->ecc.bytes);
>
>> + /* Copy data form nfc buffer. */
>
>Copy data from the NFC buffer.
>> + if (buf)
>> + memcpy(nand_data_ptr(chip, buf, i),
>> + rk_nfc_data_ptr(chip, i),
>> + chip->ecc.size);
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_read_oob(struct nand_chip *chip, int page)
>> +{
>> + return rk_nfc_read_page_raw(chip, NULL, 1, page);
>> +}
>> +
>> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
>int oob_on,
>> + int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
>> + NFC_MIN_OOB_PER_STEP;
>> + int pages_per_blk = mtd->erasesize / mtd->writesize;
>> + dma_addr_t dma_data, dma_oob;
>> + int ret = 0, i, boot_rom_mode = 0;
>> + int bitflips = 0, bch_st;
>> + u8 *oob;
>> + u32 tmp;
>> +
>> + nand_read_page_op(chip, page, 0, NULL, 0);
>> +
>> + dma_data = dma_map_single(nfc->dev, nfc->page_buf,
>> + mtd->writesize,
>> + DMA_FROM_DEVICE);
>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
>> + ecc->steps * oob_step,
>> + DMA_FROM_DEVICE);
>> +
>> + /*
>> + * The first blocks (4, 8 or 16 depending on the device)
>> + * are used by the boot ROM.
>> + * Config the ECC algorithm supported by the boot ROM.
>> + */
>> + if ((page < pages_per_blk * rknand->boot_blks) &&
>> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
>> + boot_rom_mode = 1;
>> + if (rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc,
>> + rknand->boot_ecc);
>> + }
>> +
>> + reinit_completion(&nfc->done);
>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
>> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
>> + dma_oob);
>> + ret = wait_for_completion_timeout(&nfc->done,
>> + msecs_to_jiffies(100));
>> + if (!ret)
>> + dev_warn(nfc->dev, "read: wait dma done timeout.\n");
>> + /*
>> + * Whether the DMA transfer is completed or not. The driver
>> + * needs to check the NFC`s status register to see if the data
>> + * transfer was completed.
>> + */
>> + ret = rk_nfc_wait_for_xfer_done(nfc);
>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
>> + DMA_FROM_DEVICE);
>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
>> + DMA_FROM_DEVICE);
>> +
>> + if (ret) {
>> + bitflips = -EIO;
>> + dev_err(nfc->dev,
>> + "read: wait transfer done timeout.\n");
>> + goto out;
>> + }
>> +
>> + for (i = 1; i < ecc->steps; i++) {
>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
>> + if (nfc->cfg->type == NFC_V9)
>> + tmp = nfc->oob_buf[i];
>> + else
>> + tmp = nfc->oob_buf[i * oob_step / 4];
>> + *oob++ = (u8)tmp;
>> + *oob++ = (u8)(tmp >> 8);
>> + *oob++ = (u8)(tmp >> 16);
>> + *oob++ = (u8)(tmp >> 24);
>> + }
>> +
>> + for (i = 0; i < ecc->steps / 2; i++) {
>
>Brackets here as well please
I don't understand this. Can you give an example of how to modify it?
>> + bch_st = readl_relaxed(nfc->regs +
>> + nfc->cfg->bch_st_off + i * 4);
>> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
>> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
>> + mtd->ecc_stats.failed++;
>> + /* ECC failed, return the minimum number of error bits */
>> + bitflips = ecc->strength + 1;
>
>Could you explain why:
>
>bitflips = -1;
>
>changed to:
>
>bitflips = ecc->strength + 1;
>
>
>Comment by Miquèl:
>
>I think you should return 0.
>
>Then the upper layer will check for failures.
>
>> + } else {
>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
>> + mtd->ecc_stats.corrected += ret;
>> + bitflips = max_t(u32, bitflips, ret);
>> +
>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
>> + mtd->ecc_stats.corrected += ret;
>> + bitflips = max_t(u32, bitflips, ret);
>> + }
>> + }
>> +out:
>> + memcpy(buf, nfc->page_buf, mtd->writesize);
>> +
>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>> +
>> + if (bitflips > ecc->strength)
>> + dev_err(nfc->dev, "read page: %x ecc error!\n", page);
>> +
>> + /*
>> + * Deselect the currently selected target after ops done,
>
>> + * otherwise the NAND flash will has extra power consumption.
>
>will have
>
>or use for example:
>
>Deselect the currently selected target after the ops is done
>to reduce the power consumption.
>
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + return bitflips;
>> +}
>> +
>> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
>> +{
>> + /* Disable flash wp. */
>> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
>> + /* Config default timing 40ns at 150 Mhz nfc clock. */
>> + writel(0x1081, nfc->regs + NFC_FMWAIT);
>> + /* Disable randomizer and DMA. */
>> + writel(0, nfc->regs + nfc->cfg->randmz_off);
>> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
>> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
>> +}
>> +
>> +static irqreturn_t rk_nfc_irq(int irq, void *id)
>> +{
>> + struct rk_nfc *nfc = id;
>> + u32 sta, ien;
>> +
>> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
>> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
>> +
>> + if (!(sta & ien))
>> + return IRQ_NONE;
>> +
>> + writel(sta, nfc->regs + nfc->cfg->int_clr_off);
>> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
>> +
>> + complete(&nfc->done);
>> +
>> + return IRQ_HANDLED;
>> +}
>> +
>> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc)
>
>Change function name, because there are 2 clocks.
>
>_clks with an s to inform that there are several of them.
>
>_clk ==>> _clks
>
>> +{
>> + int ret;
>> +
>> + if (!IS_ERR(nfc->nfc_clk)) {
>> + ret = clk_prepare_enable(nfc->nfc_clk);
>> + if (ret) {
>> + dev_err(dev, "failed to enable nfc clk\n");
>> + return ret;
>> + }
>> + }
>> +
>> + ret = clk_prepare_enable(nfc->ahb_clk);
>> + if (ret) {
>> + dev_err(dev, "failed to enable ahb clk\n");
>> + if (!IS_ERR(nfc->nfc_clk))
>> + clk_disable_unprepare(nfc->nfc_clk);
>> + return ret;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static void rk_nfc_disable_clk(struct rk_nfc *nfc)
>
>Change function name, because there are 2 clocks.
>
>ditto
>
>_clk ==>> _clks
>
>> +{
>> + if (!IS_ERR(nfc->nfc_clk))
>> + clk_disable_unprepare(nfc->nfc_clk);
>> + clk_disable_unprepare(nfc->ahb_clk);
>> +}
>> +
>> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oob_region)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> +
>> + if (section)
>> + return -ERANGE;
>> +
>> + /*
>> + * The beginning of the oob area stores the reserved data for the NFC,
>
>OOB area
>
>> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
>> + */
>> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
>> + oob_region->offset = NFC_SYS_DATA_SIZE + 2;
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oob_region)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> +
>> + if (section)
>> + return -ERANGE;
>> +
>
>> + oob_region->offset = rknand->metadata_size;
>> + oob_region->length = mtd->oobsize - oob_region->offset;
>
> oob_region->length = mtd->oobsize - oob_region->offset;
> oob_region->offset = rknand->metadata_size;
>
>Keep length and offset in the same sort order as in rk_nfc_ooblayout_free().
modified:
oob_region->length = mtd->oobsize - rknand->metadata_size;
oob_region->offset = rknand->metadata_size;
>> +
>> + return 0;
>> +}
>> +
>> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
>> + .free = rk_nfc_ooblayout_free,
>> + .ecc = rk_nfc_ooblayout_ecc,
>> +};
>> +
>> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + const u8 *strengths = nfc->cfg->ecc_strengths;
>> + u8 max_strength, nfc_max_strength;
>> + int i;
>> +
>> + nfc_max_strength = nfc->cfg->ecc_strengths[0];
>> + /* If optional dt settings not present. */
>> + if (!ecc->size || !ecc->strength ||
>> + ecc->strength > nfc_max_strength) {
>> + chip->ecc.size = 1024;
>> + ecc->steps = mtd->writesize / ecc->size;
>> +
>> + /*
>> + * HW ECC always requests the number of ECC bytes per 1024 byte
>
>> + * blocks. 4 Bytes is oob for sys data.
>
>The first 4 OOB bytes are reserved for sys data.
>> + */
>> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
>> + fls(8 * 1024);
>> + if (max_strength > nfc_max_strength)
>> + max_strength = nfc_max_strength;
>> +
>> + for (i = 0; i < 4; i++) {
>> + if (max_strength >= strengths[i])
>> + break;
>> + }
>> +
>> + if (i >= 4) {
>> + dev_err(nfc->dev, "Unsupported ECC strength\n");
>> + return -EOPNOTSUPP;
>> + }
>> +
>> + ecc->strength = strengths[i];
>> + }
>> + ecc->steps = mtd->writesize / ecc->size;
>> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
>> + /* HW ECC always work with even numbers of ECC bytes. */
>> + ecc->bytes = ALIGN(ecc->bytes, 2);
>> +
>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_attach_chip(struct nand_chip *chip)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct device *dev = mtd->dev.parent;
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + u8 *temp_buf;
>> + int len, oob_len;
>> + int ret;
>> +
>> + if (chip->options & NAND_BUSWIDTH_16) {
>> + dev_err(dev, "16 bits bus width not supported");
>> + return -EINVAL;
>> + }
>> +
>> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
>> + return 0;
>> +
>> + ret = rk_nfc_ecc_init(dev, mtd);
>> + if (ret)
>> + return ret;
>> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
>> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
>> +
>> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
>> + dev_err(dev,
>> + "Driver needs at least %d bytes of meta data\n",
>> + NFC_SYS_DATA_SIZE + 2);
>> + return -EIO;
>> + }
>
>> + len = mtd->writesize + mtd->oobsize;
>
>> +
>> + /* Check buffer first, avoid duplicate alloc buffer. */
>> + if (nfc->buffer) {
>> + if (len > nfc->buffer_size) {
>
>Check only for buffer_size.
>Maybe split in 2. One size variable per buffer.
>Reorder flow, see example?
>
>> + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA);
>> + if (!temp_buf)
>> + return -ENOMEM;
>> + kfree(nfc->buffer);
>
>Is there a realloc for kernels or use helper?
>
>> + nfc->buffer = temp_buf;
>> + nfc->buffer_size = len;
>> +
>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
>> + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
>> + if (!temp_buf)
>> + return -ENOMEM;
>> + kfree(nfc->oob_buf);
>> + nfc->oob_buf = (u32 *)temp_buf;
>> + }
>> + return 0;
>> + }
>> +
>
>Example:
>
>// Check and resize existing buffer sizes.
>
>new_len = mtd->writesize + mtd->oobsize;
>
>if (nfc->buffer && new_len > nfc->buffer_size) {
> ret = resize(...);
> if (!ret)
> return -ENOMEM;
> nfc->buffer_size = new_len;
>}
>
>new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
>
>if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) {
> ret = resize(...);
> if (!ret) {
> free(nfc->buffer);
> return -ENOMEM;
> }
> nfc->oob_buffer_size = new_oob_len;
>}
>
>// If no buffers exists then create new buffers.
>
>if (!nfc->buffer) {
> ret = kzalloc(...);
> if (!ret)
> return -ENOMEM;
> nfc->buffer_size = new_len;
>}
>
>if (!nfc->oob_buf) {
> ret = kzalloc(...);
> if (!ret) {
> free(nfc->buffer);
> return -ENOMEM;
> }
> nfc->oob_buffer_size = new_oob_len;
>}
>
>
>> + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA);
>> + if (!nfc->buffer)
>> + return -ENOMEM;
>
>
>> +
>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
>> + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
>> + if (!nfc->oob_buf) {
>> + kfree(nfc->buffer);
>> + nfc->buffer = NULL;
>
>> + nfc->oob_buf = NULL;
>
>!nfc->oob_buf == (nfc->oob_buf = NULL)
>
>Comment from Miquèl:
>I don't think this is needed
>
>If something is NULL then there's no need to set it to NULL again.
>
>> + return -ENOMEM;
>> + }
>> +
>> + nfc->buffer_size = len;
>> + nfc->page_buf = nfc->buffer;
>> +
>> + chip->ecc.write_page_raw = rk_nfc_write_page_raw;
>> + chip->ecc.write_page = rk_nfc_write_page_hwecc;
>> + chip->ecc.write_oob_raw = rk_nfc_write_oob;
>> + chip->ecc.write_oob = rk_nfc_write_oob;
>> +
>> + chip->ecc.read_page_raw = rk_nfc_read_page_raw;
>> + chip->ecc.read_page = rk_nfc_read_page_hwecc;
>> + chip->ecc.read_oob_raw = rk_nfc_read_oob;
>> + chip->ecc.read_oob = rk_nfc_read_oob;
>> +
>> + return 0;
>> +}
>> +
>> +static const struct nand_controller_ops rk_nfc_controller_ops = {
>> + .attach_chip = rk_nfc_attach_chip,
>> + .exec_op = rk_nfc_exec_op,
>> + .setup_interface = rk_nfc_setup_data_interface,
>> +};
>> +
>> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
>> + struct device_node *np)
>> +{
>> + struct rk_nfc_nand_chip *rknand;
>> + struct nand_chip *chip;
>> + struct mtd_info *mtd;
>> + int nsels;
>> + u32 tmp;
>> + int ret;
>> + int i;
>> +
>> + if (!of_get_property(np, "reg", &nsels))
>> + return -ENODEV;
>> + nsels /= sizeof(u32);
>> + if (!nsels || nsels > NFC_MAX_NSELS) {
>> + dev_err(dev, "invalid reg property size %d\n", nsels);
>> + return -EINVAL;
>> + }
>> +
>> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
>> + GFP_KERNEL);
>> + if (!rknand)
>> + return -ENOMEM;
>> +
>> + rknand->nsels = nsels;
>> + for (i = 0; i < nsels; i++) {
>> + ret = of_property_read_u32_index(np, "reg", i, &tmp);
>> + if (ret) {
>> + dev_err(dev, "reg property failure : %d\n", ret);
>> + return ret;
>> + }
>> +
>> + if (tmp >= NFC_MAX_NSELS) {
>> + dev_err(dev, "invalid CS: %u\n", tmp);
>> + return -EINVAL;
>> + }
>> +
>> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
>> + dev_err(dev, "CS %u already assigned\n", tmp);
>> + return -EINVAL;
>> + }
>> +
>> + rknand->sels[i] = tmp;
>> + }
>> +
>> + chip = &rknand->chip;
>> + chip->controller = &nfc->controller;
>> +
>> + nand_set_flash_node(chip, np);
>> +
>> + nand_set_controller_data(chip, nfc);
>> +
>> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
>> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
>> +
>> + /* Set default mode in case dt entry is missing. */
>> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
>> +
>> + mtd = nand_to_mtd(chip);
>> + mtd->owner = THIS_MODULE;
>> + mtd->dev.parent = dev;
>> +
>> + if (!mtd->name) {
>> + dev_err(nfc->dev, "NAND label property is mandatory\n");
>> + return -EINVAL;
>> + }
>> +
>> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
>> + rk_nfc_hw_init(nfc);
>> + ret = nand_scan(chip, nsels);
>> + if (ret)
>> + return ret;
>> +
>> + if (chip->options & NAND_IS_BOOT_MEDIUM) {
>> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
>> + rknand->boot_blks = ret ? 0 : tmp;
>
>Comment by Miquèl:
>Can't you guess this entry knowing the IP version/SoC version?
>
>No, "rockchip,boot-blks" depends on the size of multiple partitions
>and is user layout dependent.
The "rockchip,boot-blks" is not a fixed number, can be configured with different number of blocks to store the pre loader
for the same SoC.
>> +
>> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
>> + &tmp);
>> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
>> + }
>> +
>> + ret = mtd_device_register(mtd, NULL, 0);
>> + if (ret) {
>> + dev_err(dev, "mtd parse partition error\n");
>> + nand_cleanup(chip);
>> + return ret;
>> + }
>> +
>> + list_add_tail(&rknand->node, &nfc->chips);
>> +
>> + return 0;
>> +}
>> +
>> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
>> +{
>> + struct rk_nfc_nand_chip *rknand, *tmp;
>> + struct nand_chip *chip;
>> + int ret;
>> +
>> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
>> + chip = &rknand->chip;
>> + ret = mtd_device_unregister(nand_to_mtd(chip));
>> + WARN_ON(ret);
>> + nand_cleanup(chip);
>> + list_del(&rknand->node);
>> + }
>> +}
>> +
>> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
>> +{
>> + struct device_node *np = dev->of_node, *nand_np;
>> + int nchips = of_get_child_count(np);
>> + int ret;
>> +
>> + if (!nchips || nchips > NFC_MAX_NSELS) {
>> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
>> + nchips);
>> + return -EINVAL;
>> + }
>> +
>> + for_each_child_of_node(np, nand_np) {
>> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
>> + if (ret) {
>> + of_node_put(nand_np);
>> + rk_nfc_chips_cleanup(nfc);
>> + return ret;
>> + }
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static struct nfc_cfg nfc_v6_cfg = {
>> + .type = NFC_V6,
>> + .ecc_strengths = {60, 40, 24, 16},
>> + .ecc_cfgs = {
>> + 0x00040011, 0x00040001, 0x00000011, 0x00000001,
>> + },
>> + .flctl_off = 0x08,
>> + .bchctl_off = 0x0C,
>> + .dma_cfg_off = 0x10,
>> + .dma_data_buf_off = 0x14,
>> + .dma_oob_buf_off = 0x18,
>> + .dma_st_off = 0x1C,
>> + .bch_st_off = 0x20,
>> + .randmz_off = 0x150,
>> + .int_en_off = 0x16C,
>> + .int_clr_off = 0x170,
>> + .int_st_off = 0x174,
>> + .oob0_off = 0x200,
>> + .oob1_off = 0x230,
>> + .ecc0 = {
>> + .err_flag_bit = 2,
>> + .low = 3,
>> + .low_mask = 0x1F,
>> + .low_bn = 5,
>> + .high = 27,
>> + .high_mask = 0x1,
>> + },
>> + .ecc1 = {
>> + .err_flag_bit = 15,
>> + .low = 16,
>> + .low_mask = 0x1F,
>> + .low_bn = 5,
>> + .high = 29,
>> + .high_mask = 0x1,
>> + },
>> +};
>> +
>> +static struct nfc_cfg nfc_v8_cfg = {
>> + .type = NFC_V8,
>> + .ecc_strengths = {16, 16, 16, 16},
>> + .ecc_cfgs = {
>> + 0x00000001, 0x00000001, 0x00000001, 0x00000001,
>> + },
>> + .flctl_off = 0x08,
>> + .bchctl_off = 0x0C,
>> + .dma_cfg_off = 0x10,
>> + .dma_data_buf_off = 0x14,
>> + .dma_oob_buf_off = 0x18,
>> + .dma_st_off = 0x1C,
>> + .bch_st_off = 0x20,
>> + .randmz_off = 0x150,
>> + .int_en_off = 0x16C,
>> + .int_clr_off = 0x170,
>> + .int_st_off = 0x174,
>> + .oob0_off = 0x200,
>> + .oob1_off = 0x230,
>> + .ecc0 = {
>> + .err_flag_bit = 2,
>> + .low = 3,
>> + .low_mask = 0x1F,
>> + .low_bn = 5,
>> + .high = 27,
>> + .high_mask = 0x1,
>> + },
>> + .ecc1 = {
>> + .err_flag_bit = 15,
>> + .low = 16,
>> + .low_mask = 0x1F,
>> + .low_bn = 5,
>> + .high = 29,
>> + .high_mask = 0x1,
>> + },
>> +};
>> +
>> +static struct nfc_cfg nfc_v9_cfg = {
>> + .type = NFC_V9,
>> + .ecc_strengths = {70, 60, 40, 16},
>> + .ecc_cfgs = {
>> + 0x00000001, 0x06000001, 0x04000001, 0x02000001,
>> + },
>> + .flctl_off = 0x10,
>> + .bchctl_off = 0x20,
>> + .dma_cfg_off = 0x30,
>> + .dma_data_buf_off = 0x34,
>> + .dma_oob_buf_off = 0x38,
>> + .dma_st_off = 0x3C,
>> + .bch_st_off = 0x150,
>> + .randmz_off = 0x208,
>> + .int_en_off = 0x120,
>> + .int_clr_off = 0x124,
>> + .int_st_off = 0x128,
>> + .oob0_off = 0x200,
>> + .oob1_off = 0x204,
>> + .ecc0 = {
>> + .err_flag_bit = 2,
>> + .low = 3,
>> + .low_mask = 0x7F,
>> + .low_bn = 7,
>> + .high = 0,
>> + .high_mask = 0x0,
>> + },
>> + .ecc1 = {
>> + .err_flag_bit = 18,
>> + .low = 19,
>> + .low_mask = 0x7F,
>> + .low_bn = 7,
>> + .high = 0,
>> + .high_mask = 0x0,
>> + },
>> +};
>> +
>> +static const struct of_device_id rk_nfc_id_table[] = {
>> + {
>> + .compatible = "rockchip,px30-nfc",
>> + .data = &nfc_v9_cfg
>> + },
>> + {
>> + .compatible = "rockchip,rk2928-nfc",
>> + .data = &nfc_v6_cfg
>> + },
>> + {
>> + .compatible = "rockchip,rv1108-nfc",
>> + .data = &nfc_v8_cfg
>> + },
>> + { /* sentinel */ }
>> +};
>> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
>> +
>> +static int rk_nfc_probe(struct platform_device *pdev)
>> +{
>> + struct device *dev = &pdev->dev;
>> + struct rk_nfc *nfc;
>> + int ret, irq;
>> +
>> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
>> + if (!nfc)
>> + return -ENOMEM;
>> +
>> + nand_controller_init(&nfc->controller);
>> + INIT_LIST_HEAD(&nfc->chips);
>> + nfc->controller.ops = &rk_nfc_controller_ops;
>> +
>> + nfc->cfg = of_device_get_match_data(dev);
>> + nfc->dev = dev;
>> +
>> + init_completion(&nfc->done);
>> +
>> + nfc->regs = devm_platform_ioremap_resource(pdev, 0);
>> + if (IS_ERR(nfc->regs)) {
>> + ret = PTR_ERR(nfc->regs);
>> + goto release_nfc;
>> + }
>> +
>> + nfc->nfc_clk = devm_clk_get(dev, "nfc");
>> + if (IS_ERR(nfc->nfc_clk)) {
>> + dev_dbg(dev, "no nfc clk\n");
>> + /* Some earlier models, such as rk3066, have no nfc clk. */
>> + }
>> +
>> + nfc->ahb_clk = devm_clk_get(dev, "ahb");
>> + if (IS_ERR(nfc->ahb_clk)) {
>> + dev_err(dev, "no ahb clk\n");
>> + ret = PTR_ERR(nfc->ahb_clk);
>> + goto release_nfc;
>> + }
>> +
>> + ret = rk_nfc_enable_clk(dev, nfc);
>> + if (ret)
>> + goto release_nfc;
>> +
>> + irq = platform_get_irq(pdev, 0);
>> + if (irq < 0) {
>> + dev_err(dev, "no nfc irq resource\n");
>> + ret = -EINVAL;
>> + goto clk_disable;
>> + }
>> +
>> + writel(0, nfc->regs + nfc->cfg->int_en_off);
>> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
>> + if (ret) {
>> + dev_err(dev, "failed to request nfc irq\n");
>> + goto clk_disable;
>> + }
>> +
>> + platform_set_drvdata(pdev, nfc);
>> +
>> + ret = rk_nfc_nand_chips_init(dev, nfc);
>> + if (ret) {
>> + dev_err(dev, "failed to init NAND chips\n");
>> + goto clk_disable;
>> + }
>> + return 0;
>> +
>> +clk_disable:
>> + rk_nfc_disable_clk(nfc);
>> +release_nfc:
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_remove(struct platform_device *pdev)
>> +{
>> + struct rk_nfc *nfc = platform_get_drvdata(pdev);
>> +
>> + kfree(nfc->buffer);
>> + kfree(nfc->oob_buf);
>> + rk_nfc_chips_cleanup(nfc);
>> + rk_nfc_disable_clk(nfc);
>> +
>> + return 0;
>> +}
>> +
>> +static int __maybe_unused rk_nfc_suspend(struct device *dev)
>> +{
>> + struct rk_nfc *nfc = dev_get_drvdata(dev);
>> +
>> + rk_nfc_disable_clk(nfc);
>> +
>> + return 0;
>> +}
>> +
>> +static int __maybe_unused rk_nfc_resume(struct device *dev)
>> +{
>> + struct rk_nfc *nfc = dev_get_drvdata(dev);
>> + struct rk_nfc_nand_chip *rknand;
>> + struct nand_chip *chip;
>> + int ret;
>> + u32 i;
>> +
>> + ret = rk_nfc_enable_clk(dev, nfc);
>> + if (ret)
>> + return ret;
>> +
>> + /* Reset NAND chip if VCC was powered off. */
>> + list_for_each_entry(rknand, &nfc->chips, node) {
>> + chip = &rknand->chip;
>> + for (i = 0; i < rknand->nsels; i++)
>> + nand_reset(chip, i);
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static const struct dev_pm_ops rk_nfc_pm_ops = {
>> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
>> +};
>> +
>> +static struct platform_driver rk_nfc_driver = {
>> + .probe = rk_nfc_probe,
>> + .remove = rk_nfc_remove,
>> + .driver = {
>> + .name = "rockchip-nfc",
>> + .of_match_table = rk_nfc_id_table,
>> + .pm = &rk_nfc_pm_ops,
>> + },
>> +};
>> +
>> +module_platform_driver(rk_nfc_driver);
>> +
>> +MODULE_LICENSE("Dual MIT/GPL");
>> +MODULE_AUTHOR("Yifeng Zhao <[email protected]>");
>> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
>> +MODULE_ALIAS("platform:rockchip-nand-controller");
>>
>
>
>
Hi,
Hope that I have the text and the brackets right now. ;)
Let us know if something is in need for improvement.
() Parentheses or round brackets
{} Braces or curly brackets
[] Brackets or square brackets
<> Chevrons or angle brackets
On 10/23/20 12:11 PM, 赵仪峰 wrote:
> Hi Miquèl and Johan,
>
> I've fixed some comments, but there are still a few points I can`t understand.
>
>> Hi Yifeng, Miquèl and others,
>>
>> I've copied some comments from Miquèl from version 8 to this one here
>> and added some more. ;)
>>
>>
>> On 10/20/20 5:17 AM, Yifeng Zhao wrote:
>>> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
>>> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
>>> 8-bit NAND interface on the ARM based RK3308 platform.
>>>
>>> Support Rockchip SoCs and NFC versions:
>>> - PX30 and RK3326(NFCv900).
>>> ECC: 16/40/60/70 bits/1KB.
>>> CLOCK: ahb and nfc.
>>> - RK3308 and RV1108(NFCv800).
>>> ECC: 16 bits/1KB.
>>> CLOCK: ahb and nfc.
>>> - RK3036 and RK3128(NFCv622).
>>> ECC: 16/24/40/60 bits/1KB.
>>> CLOCK: ahb and nfc.
>>> - RK3066, RK3188 and RK2928(NFCv600).
>>> ECC: 16/24/40/60 bits/1KB.
>>> CLOCK: ahb.
>>>
>>> Supported features:
>>> - Read full page data by DMA.
>>> - Support HW ECC(one step is 1KB).
>>> - Support 2 - 32K page size.
>>> - Support 8 CS(depend on SoCs)
>>>
>>> Limitations:
>>> - No support for the ecc step size is 512.
>>> - Untested on some SoCs.
>>> - No support for subpages.
>>> - No support for the builtin randomizer.
>>> - The original bad block mask is not supported. It is recommended to use
>>> the BBT(bad block table).
>>>
>>> Signed-off-by: Yifeng Zhao <[email protected]>
>>> ---
>>>
>>> (no changes since v11)
>>>
>>> Changes in v11:
>>> - Fix compile error.
>>>
>>> Changes in v10:
>>> - Fix compile error on master v5.9-rc7.
>>>
>>> Changes in v9:
>>> - The nfc->buffer will realloc while the page size of the second mtd
>>> is large than the first one
>>> - Fix coding style.
>>> - Remove struct rk_nfc_clk.
>>> - Prepend some function with rk_nfc_.
>>> - Replace function readl_poll_timeout_atomic with
>> readl_relaxed_poll_timeout.
>>> - Remove function rk_nfc_read_byte and rk_nfc_write_byte.
>>> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
>>> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
>>>
>>> Changes in v7:
>>> - Rebase to linux-next.
>>> - Fix coding style.
>>> - Reserved 4 bytes at the beginning of the oob area.
>>> - Page raw read and write included ecc data.
>>>
>>> Changes in v6:
>>> - The mtd->name set by NAND label property.
>>> - Add some comments.
>>> - Fix compile error.
>>>
>>> Changes in v5:
>>> - Add boot blocks support with different ECC for bootROM.
>>> - Rename rockchip-nand.c to rockchip-nand-controller.c.
>>> - Unification of other variable names.
>>> - Remove some compatible define.
>>>
>>> Changes in v4:
>>> - Define platform data structure for the register offsets.
>>> - The compatible define with rkxx_nfc.
>>> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
>>> - Use exec_op instead of legacy hooks.
>>>
>>> Changes in v2:
>>> - Fix compile error.
>>> - Include header files sorted by file name.
>>>
>>> drivers/mtd/nand/raw/Kconfig | 12 +
>>> drivers/mtd/nand/raw/Makefile | 1 +
>>> .../mtd/nand/raw/rockchip-nand-controller.c | 1439 +++++++++++++++++
>>> 3 files changed, 1452 insertions(+)
>>> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
>>>
>>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
>>> index 6c46f25b57e2..2cc533e4e239 100644
>>> --- a/drivers/mtd/nand/raw/Kconfig
>>> +++ b/drivers/mtd/nand/raw/Kconfig
>>> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
>>> Enables the driver for the Arasan NAND flash controller on
>>> Zynq Ultrascale+ MPSoC.
>>>
>>> +config MTD_NAND_ROCKCHIP
>>> + tristate "Rockchip NAND controller"
>>> + depends on ARCH_ROCKCHIP && HAS_IOMEM
>>> + help
>>> + Enables support for NAND controller on Rockchip SoCs.
>>> + There are four different versions of NAND FLASH Controllers,
>>> + including:
>>> + NFC v600: RK2928, RK3066, RK3188
>>> + NFC v622: RK3036, RK3128
>>> + NFC v800: RK3308, RV1108
>>> + NFC v900: PX30, RK3326
>>> +
>>> comment "Misc"
>>>
>>> config MTD_SM_COMMON
>>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
>>> index 2930f5b9015d..960c9be25204 100644
>>> --- a/drivers/mtd/nand/raw/Makefile
>>> +++ b/drivers/mtd/nand/raw/Makefile
>>> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
>>> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
>>> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
>>> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
>>> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
>>>
>>> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o
>> nand_ids.o
>>> nand-objs += nand_onfi.o
>>> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c
>> b/drivers/mtd/nand/raw/rockchip-nand-controller.c
>>> new file mode 100644
>>> index 000000000000..cf28c5936209
>>> --- /dev/null
>>> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
>>> @@ -0,0 +1,1439 @@
>>> +// SPDX-License-Identifier: GPL-2.0 OR MIT
>>> +/*
>>> + * Rockchip NAND Flash controller driver.
>>> + * Copyright (C) 2020 Rockchip Inc.
>>> + * Author: Yifeng Zhao <[email protected]>
>>> + */
>>> +
>>> +#include <linux/clk.h>
>>> +#include <linux/delay.h>
>>> +#include <linux/dma-mapping.h>
>>> +#include <linux/dmaengine.h>
>>> +#include <linux/interrupt.h>
>>> +#include <linux/iopoll.h>
>>> +#include <linux/module.h>
>>> +#include <linux/mtd/mtd.h>
>>> +#include <linux/mtd/rawnand.h>
>>> +#include <linux/of.h>
>>> +#include <linux/of_device.h>
>>> +#include <linux/platform_device.h>
>>> +#include <linux/slab.h>
>>> +
>>> +/*
>>> + * NFC Page Data Layout:
>>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
>>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
>>> + * ......
>>> + * NAND Page Data Layout:
>>> + * 1024 * n Data + m Bytes oob
>>> + * Original Bad Block Mask Location:
>>> + * First byte of oob(spare).
>>> + * nand_chip->oob_poi data layout:
>>> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
>>> + */
>>> +
>>> +/* NAND controller register definition */
>>> +#define NFC_READ (0)
>>> +#define NFC_WRITE (1)
>>> +
>>> +#define NFC_FMCTL (0x00)
>>> +#define FMCTL_CE_SEL_M 0xFF
>>> +#define FMCTL_CE_SEL(x) (1 << (x))
>>> +#define FMCTL_WP BIT(8)
>>> +#define FMCTL_RDY BIT(9)
>>> +
>>> +#define NFC_FMWAIT (0x04)
>>> +#define FLCTL_RST BIT(0)
>>> +#define FLCTL_WR (1) /* 0: read, 1: write */
>>> +#define FLCTL_XFER_ST BIT(2)
>>> +#define FLCTL_XFER_EN BIT(3)
>>> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
>>> +#define FLCTL_XFER_READY BIT(20)
>>> +#define FLCTL_XFER_SECTOR (22)
>>> +#define FLCTL_TOG_FIX BIT(29)
>>> +
>>> +#define BCHCTL_BANK_M (7 << 5)
>>> +#define BCHCTL_BANK (5)
>>> +
>>> +#define DMA_ST BIT(0)
>>> +#define DMA_WR (1) /* 0: write, 1: read */
>>> +#define DMA_EN BIT(2)
>>> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
>>> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
>>> +#define DMA_INC_NUM (9) /* 1 - 16 */
>>> +
>>> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
>>> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
>>> +#define INT_DMA BIT(0)
>>> +#define NFC_BANK (0x800)
>>> +#define NFC_BANK_STEP (0x100)
>>> +#define BANK_DATA (0x00)
>>> +#define BANK_ADDR (0x04)
>>> +#define BANK_CMD (0x08)
>>> +#define NFC_SRAM0 (0x1000)
>>> +#define NFC_SRAM1 (0x1400)
>>> +#define NFC_SRAM_SIZE (0x400)
>>> +#define NFC_TIMEOUT (500000)
>>> +#define NFC_MAX_OOB_PER_STEP 128
>>> +#define NFC_MIN_OOB_PER_STEP 64
>>> +#define MAX_DATA_SIZE 0xFFFC
>>> +#define MAX_ADDRESS_CYC 6
>>> +#define NFC_ECC_MAX_MODES 4
>>> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
>>> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024
>> data.*/
>>> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
>>> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
>>> +
>>> +enum nfc_type {
>>> + NFC_V6,
>>> + NFC_V8,
>>> + NFC_V9,
>>> +};
>>> +
>>> +/**
>>> + * struct rk_ecc_cnt_status: represent a ecc status data.
>>> + * @err_flag_bit: error flag bit index at register.
>>> + * @low: ecc count low bit index at register.
>>> + * @low_mask: mask bit.
>>> + * @low_bn: ecc count low bit number.
>>> + * @high: ecc count high bit index at register.
>>> + * @high_mask: mask bit
>>> + */
>>> +struct ecc_cnt_status {
>>> + u8 err_flag_bit;
>>> + u8 low;
>>> + u8 low_mask;
>>> + u8 low_bn;
>>> + u8 high;
>>> + u8 high_mask;
>>> +};
>>> +
>>> +/*
>>> + * @type: nfc version
>>> + * @ecc_strengths: ecc strengths
>>> + * @ecc_cfgs: ecc config values
>>> + * @flctl_off: FLCTL register offset
>>> + * @bchctl_off: BCHCTL register offset
>>> + * @dma_data_buf_off: DMA_DATA_BUF register offset
>>> + * @dma_oob_buf_off: DMA_OOB_BUF register offset
>>> + * @dma_cfg_off: DMA_CFG register offset
>>> + * @dma_st_off: DMA_ST register offset
>>> + * @bch_st_off: BCG_ST register offset
>>> + * @randmz_off: RANDMZ register offset
>>> + * @int_en_off: interrupt enable register offset
>>> + * @int_clr_off: interrupt clean register offset
>>> + * @int_st_off: interrupt status register offset
>>> + * @oob0_off: oob0 register offset
>>> + * @oob1_off: oob1 register offset
>>> + * @ecc0: represent ECC0 status data
>>> + * @ecc1: represent ECC1 status data
>>> + */
>>> +struct nfc_cfg {
>>> + enum nfc_type type;
>>> + u8 ecc_strengths[NFC_ECC_MAX_MODES];
>>> + u32 ecc_cfgs[NFC_ECC_MAX_MODES];
>>> + u32 flctl_off;
>>> + u32 bchctl_off;
>>> + u32 dma_cfg_off;
>>> + u32 dma_data_buf_off;
>>> + u32 dma_oob_buf_off;
>>> + u32 dma_st_off;
>>> + u32 bch_st_off;
>>> + u32 randmz_off;
>>> + u32 int_en_off;
>>> + u32 int_clr_off;
>>> + u32 int_st_off;
>>> + u32 oob0_off;
>>> + u32 oob1_off;
>>> + struct ecc_cnt_status ecc0;
>>> + struct ecc_cnt_status ecc1;
>>> +};
>>> +
>>> +struct rk_nfc_nand_chip {
>>> + struct list_head node;
>>> + struct nand_chip chip;
>>> +
>>> + u16 spare_per_sector;
>>> + u16 oob_buf_per_sector;
>>> + u16 boot_blks;
>>> + u16 boot_ecc;
>>> + u16 metadata_size;
>>> +
>>> + u8 nsels;
>>> + u8 sels[0];
>>> + /* Nothing after this field. */
>>> +};
>>> +
>>> +struct rk_nfc {
>>> + struct nand_controller controller;
>>> + const struct nfc_cfg *cfg;
>>> + struct device *dev;
>>> +
>>> + struct clk *nfc_clk;
>>> + struct clk *ahb_clk;
>>> + void __iomem *regs;
>>> +
>>> + u32 selected_bank;
>>> + u32 band_offset;
>>> + u32 cur_clk;
>>> +
>>> + struct completion done;
>>> + struct list_head chips;
>>> +
>>> + u8 *buffer;
>>> + u8 *page_buf;
>>> + u32 *oob_buf;
>>> + u32 buffer_size;
>>> +
>>> + unsigned long assigned_cs;
>>> +};
>>> +
>>> +static inline struct rk_nfc_nand_chip *to_rknand(struct nand_chip *chip)
> Fixed it.,to_rknand -> rk_nfc_to_rknand
>>> +{
>>> + return container_of(chip, struct rk_nfc_nand_chip, chip);
>>> +}
>>> +
>>> +static inline u8 *nand_data_ptr(struct nand_chip *chip, const u8 *p,
>> int i)
>>
>> rk_nfc_buf_to_data_ptr ?
>> Comment by Miquèl:
>> Please prepend all your functions with rk_nfc_
>>
>> For the ftrace filters it is needed to have all functions start with
>> the same prefix in a module.
>>
>>
>>> +{
>>> + return (u8 *)p + i * chip->ecc.size;
>>> +}
>>> +
>>> +static inline u8 *nand_oob_ptr(struct nand_chip *chip, int i)
>>
>> same here
>>> +{
>>> + u8 *poi;
>>> +
>>> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
>>> +
>>> + return poi;
>>> +}
>>> +
>>> +static inline u8 *nand_oob_ecc_ptr(struct nand_chip *chip, int i)
>>
>> same here
>>> +{
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> + u8 *poi;
>>> +
>>> + poi = chip->oob_poi + rknand->metadata_size +
>>> + chip->ecc.bytes * i;
>>> +
>>> + return poi;
>>> +}
>>> +
>>> +static inline int rk_nfc_data_len(struct nand_chip *chip)
>>> +{
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> +
>>> + return chip->ecc.size + rknand->spare_per_sector;
>>> +}
>>> +
>>> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
>>> +{
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> +
>>> + return nfc->buffer + i * rk_nfc_data_len(chip);
>>> +}
>>> +
>>> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
>>> +{
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> +
>>> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size;
>>> +}
>>> +
>>> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
>>> +{
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> + u32 val;
>>> +
>>> + if (cs < 0) {
>>> + nfc->selected_bank = -1;
>>> + /* Deselect the currently selected target. */
>>> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
>>> + val &= ~FMCTL_CE_SEL_M;
>>> + writel(val, nfc->regs + NFC_FMCTL);
>>> + return;
>>> + }
>>> +
>>> + nfc->selected_bank = rknand->sels[cs];
>>> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
>>> +
>>> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
>>> + val &= ~FMCTL_CE_SEL_M;
>>> + val |= FMCTL_CE_SEL(nfc->selected_bank);
>>> +
>>> + writel(val, nfc->regs + NFC_FMCTL);
>>> +}
>>> +
>>> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
>>> +{
>>> + int rc;
>>> + u32 val;
>>> +
>>> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
>>> + val & FMCTL_RDY, 10, NFC_TIMEOUT);
>>> +
>>> + return rc;
>>> +}
>>> +
>>> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
>>> +{
>>> + int i;
>>> +
>>> + for (i = 0; i < len; i++)
>>> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
>>> + BANK_DATA);
>>> +}
>>> +
>>> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
>>> +{
>>> + int i;
>>> +
>>> + for (i = 0; i < len; i++)
>>> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
>>> +}
>>> +
>>> +static int rk_nfc_cmd(struct nand_chip *chip,
>>> + const struct nand_subop *subop)
>>> +{
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + unsigned int i, j, remaining, start;
>>> + int reg_offset = nfc->band_offset;
>>> + u8 *inbuf = NULL;
>>> + const u8 *outbuf;
>>> + u32 cnt = 0;
>>> + int ret = 0;
>>> +
>>> + for (i = 0; i < subop->ninstrs; i++) {
>>> + const struct nand_op_instr *instr = &subop->instrs[i];
>>> +
>>> + switch (instr->type) {
>>> + case NAND_OP_CMD_INSTR:
>>> + writeb(instr->ctx.cmd.opcode,
>>> + nfc->regs + reg_offset + BANK_CMD);
>>> + break;
>>> +
>>> + case NAND_OP_ADDR_INSTR:
>>> + remaining = nand_subop_get_num_addr_cyc(subop, i);
>>> + start = nand_subop_get_addr_start_off(subop, i);
>>> +
>>> + for (j = 0; j < 8 && j + start < remaining; j++)
>>> + writeb(instr->ctx.addr.addrs[j + start],
>>> + nfc->regs + reg_offset + BANK_ADDR);
>>> + break;
>>> +
>>> + case NAND_OP_DATA_IN_INSTR:
>>> + case NAND_OP_DATA_OUT_INSTR:
>>> + start = nand_subop_get_data_start_off(subop, i);
>>> + cnt = nand_subop_get_data_len(subop, i);
>>> +
>>> + if (instr->type == NAND_OP_DATA_OUT_INSTR) {
>>> + outbuf = instr->ctx.data.buf.out + start;
>>> + rk_nfc_write_buf(nfc, outbuf, cnt);
>>> + } else {
>>> + inbuf = instr->ctx.data.buf.in + start;
>>> + rk_nfc_read_buf(nfc, inbuf, cnt);
>>> + }
>>> + break;
>>> +
>>> + case NAND_OP_WAITRDY_INSTR:
>>> + if (rk_nfc_wait_ioready(nfc) < 0) {
>>> + ret = -ETIMEDOUT;
>>> + dev_err(nfc->dev, "IO not ready\n");
>>> + }
>>> + break;
>>> + }
>>> + }
>>> +
>>> + return ret;
>>> +}
>>> +
>>> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
>>> + NAND_OP_PARSER_PATTERN(
>>> + rk_nfc_cmd,
>>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
>>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
>>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
>>> + NAND_OP_PARSER_PATTERN(
>>> + rk_nfc_cmd,
>>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
>>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
>>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
>>> +);
>>> +
>>> +static int rk_nfc_exec_op(struct nand_chip *chip,
>>> + const struct nand_operation *op,
>>> + bool check_only)
>>> +{
>>> + if (!check_only)
>>> + rk_nfc_select_chip(chip, op->cs);
>>> +
>>> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
>>> + check_only);
>>> +}
>>> +
>>> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int
>> csline,
>>> + const struct nand_interface_config *conf)
>>> +{
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + const struct nand_sdr_timings *timings;
>>> + u32 rate, tc2rw, trwpw, trw2c;
>>> + u32 temp;
>>> +
>>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
>>> + return 0;
>>> +
>>> + timings = nand_get_sdr_timings(conf);
>>> + if (IS_ERR(timings))
>>> + return -EOPNOTSUPP;
>>> +
>>> + if (IS_ERR(nfc->nfc_clk))
>>> + rate = clk_get_rate(nfc->ahb_clk);
>>> + else
>>> + rate = clk_get_rate(nfc->nfc_clk);
>>> +
>>> + /* Turn clock rate into kHz. */
>>> + rate /= 1000;
>>> +
>>> + tc2rw = 1;
>>> + trw2c = 1;
>>> +
>>> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
>>> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
>>> +
>>> + temp = timings->tREA_max / 1000;
>>> + temp = DIV_ROUND_UP(temp * rate, 1000000);
>>> +
>>> + if (trwpw < temp)
>>> + trwpw = temp;
>>> +
>>> + /*
>>> + * ACCON: access timing control register
>>> + * -------------------------------------
>>> + * 31:18: reserved
>>> + * 17:12: csrw, clock cycles from the falling edge of CSn to the
>>> + * falling edge of RDn or WRn
>>> + * 11:11: reserved
>>> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
>>> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
>>> + * rising edge of CSn
>>> + */
>>> + temp = ACCTIMING(tc2rw, trwpw, trw2c);
>>> + writel(temp, nfc->regs + NFC_FMWAIT);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
>>> + struct nand_ecc_ctrl *ecc,
>>> + uint32_t strength)
>>> +{
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + u32 reg, i;
>>> +
>>> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
>>> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
>>> + reg = nfc->cfg->ecc_cfgs[i];
>>> + break;
>>> + }
>>> + }
>>> +
>>> + if (i >= NFC_ECC_MAX_MODES)
>>> + return -EINVAL;
>>> +
>>> + writel(reg, nfc->regs + nfc->cfg->bchctl_off);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
>>> + dma_addr_t dma_data, dma_addr_t dma_oob)
>>> +{
>>> + u32 dma_reg, fl_reg, bch_reg;
>>> +
>>> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
>>> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
>>> +
>>> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
>>> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
>>> +
>>> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
>>> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
>>> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
>>> + (nfc->selected_bank << BCHCTL_BANK);
>>> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
>>> + }
>>> +
>>> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
>>> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
>>> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
>>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
>>> + fl_reg |= FLCTL_XFER_ST;
>>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
>>> +}
>>> +
>>> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
>>> +{
>>> + void __iomem *ptr;
>>> + int ret = 0;
>>> + u32 reg;
>>> +
>>> + ptr = nfc->regs + nfc->cfg->flctl_off;
>>> +
>>> + ret = readl_relaxed_poll_timeout(ptr, reg,
>>> + reg & FLCTL_XFER_READY,
>>> + 10, NFC_TIMEOUT);
>>> +
>>> + return ret;
>>> +}
>>> +
>>> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
>>> + int oob_on, int page)
>>> +{
>>> + struct mtd_info *mtd = nand_to_mtd(chip);
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + int ret = 0;
>>> + u32 i;
>>> +
>>> + if (!buf)
>>> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
>>> +
>>> + for (i = 0; i < chip->ecc.steps; i++) {
>>> + /* Copy data to nfc buffer. */
>>> + if (buf)
>>> + memcpy(rk_nfc_data_ptr(chip, i),
>>> + nand_data_ptr(chip, buf, i),
>>> + chip->ecc.size);
>>
>>> + /*
>>> + * The first four bytes of OOB are reserved for the
>>> + * boot ROM. In some debugging cases, sush as dump
>>
>> such as
>>
>>> + * data and write back, the last four bytes stored
>>> + * in OOB need to be write back.
>>
>> such as with a read, erase and write back test
>> these 4 bytes stored in OOB also need to be written back.>>> + */
>>> + if (!i)
>>> + memcpy(rk_nfc_oob_ptr(chip, i),
>>> + nand_oob_ptr(chip, chip->ecc.steps - 1),
>>> + NFC_SYS_DATA_SIZE);
>>> + else
>>> + memcpy(rk_nfc_oob_ptr(chip, i),
>>> + nand_oob_ptr(chip, i - 1),
>>> + NFC_SYS_DATA_SIZE);
>>> + /* Copy ecc data to nfc buffer. */
>>
>> Copy ECC data to the NFC buffer.
>>> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
>>> + nand_oob_ecc_ptr(chip, i),
>>> + chip->ecc.bytes);
>>> + }
>>> +
>>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
>>> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
>>> + ret = nand_prog_page_end_op(chip);
>>> +
>>> + /*
>>> + * Deselect the currently selected target after ops done,
>>> + * otherwise the NAND flash will has extra power consumption.
>>
>> will have
>>
>> or use for example:
>>
>> Deselect the currently selected target after the ops is done
>> to reduce the power consumption.
>>
>>> + */
>>> + rk_nfc_select_chip(chip, -1);
>>> +
>>> + return ret;
>>> +}
>>> +
>>> +static int rk_nfc_write_oob(struct nand_chip *chip, int page)
>>> +{
>>> + return rk_nfc_write_page_raw(chip, NULL, 1, page);
>>> +}
>>> +
>>> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
>>> + int oob_on, int page)
>>> +{
>>> + struct mtd_info *mtd = nand_to_mtd(chip);
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
>>> + NFC_MIN_OOB_PER_STEP;
>>> + int pages_per_blk = mtd->erasesize / mtd->writesize;
>>> + int ret = 0, i, boot_rom_mode = 0;
>>> + dma_addr_t dma_data, dma_oob;
>>> + u32 reg;
>>> + u8 *oob;
>>> +
>>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
>>> +
>>> + memcpy(nfc->page_buf, buf, mtd->writesize);
>>> +
>>> + /*
>>> + * The first blocks (4, 8 or 16 depending on the device) are used
>>> + * by the boot ROM and the first 32 bits of oob need to link to
>>
>> OOB
>>
>>> + * the next page address in the same block.
>>
>> Add more explanation why:
>>
>> We can't copy OOB directly,
>> because this page address conflicts with the bad block marker (BBM),
>> so we shift all OOB including the BBM with 4 byte positions.
>> As consequence the OOB size then is also reduced with 4 bytes.
>>
>> PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
>>
>> If a NAND is not a boot medium the first 4 bytes are left untouched
>> by writing 0xFF to them.
>>
>> 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
>>
>>
>> Could you include the above layout to make things more clear?
>>
>>> + * Config the ECC algorithm supported by the boot ROM.
>>
>> comment by Miquèl:
>>
>> s/Config/Configure/
>
> modified, please check again...
> /*
> * The first blocks (4, 8 or 16 depending on the device) are used
> * by the boot ROM and the first 32 bits of OOB need to link to
> * the next page address in the same block. We can't copy OOB
> * directly, because this page address conflicts with the bad block
> * marker (BBM), so we shift all OOB including the BBM with 4 byte
> * positions. As consequence the OOB size then is also reduced with
> * 4 bytes.
> * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
> * If a NAND is not a boot medium, the first 4 bytes are left untouched
> * by writing 0xFF to them.
> * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
> */
/*
* The first blocks (4, 8 or 16 depending on the device)
* are used by the boot ROM and the first 32 bits of OOB need to link to
* the next page address in the same block. We can't directly copy
* OOB data from the MTD framework, because this page address
* conflicts for example with the bad block marker (BBM),
* so we shift all OOB data including the BBM with 4 byte positions.
* As a consequence the OOB size available to the MTD framework is
* also reduced with 4 bytes.
*
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
*
* If a NAND is not a boot medium or the page is not a boot block,
* the first 4 bytes are left untouched by writing 0xFF to them.
*
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*
* Configure the ECC algorithm supported by the boot ROM.
*/
>
>>
>>> + */
>>> + if ((page < pages_per_blk * rknand->boot_blks) &&
>>> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
>>> + boot_rom_mode = 1;
>>> + if (rknand->boot_ecc != ecc->strength)
>>> + rk_nfc_hw_ecc_setup(chip, ecc,
>>> + rknand->boot_ecc);
>>> + }
>>> +
>>> + for (i = 0; i < ecc->steps; i++) {
>>> + if (!i) {
>>> + reg = 0xFFFFFFFF;
>>> + } else {
>>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
>>> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
>>> + oob[3] << 24;
>>> + }
>>> + if (!i && boot_rom_mode)
>>> + reg = (page & (pages_per_blk - 1)) * 4;
>>> +
>>> + if (nfc->cfg->type == NFC_V9)
>>> + nfc->oob_buf[i] = reg;
>>> + else
>>> + nfc->oob_buf[i * oob_step / 4] = reg;
nfc->oob_buf[i * (oob_step / 4)] = reg;
>>
>> Please use brackets.
>
> I don't understand this. Can you give an example of how to modify it?
>
>>> + }
>>> +
>>> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
>>
>> Do you need this cast?
>
> Yes, need dma_map_single to get phy_addr and do cache ops.
>
>>> + mtd->writesize, DMA_TO_DEVICE);
>>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
>>> + ecc->steps * oob_step,
>>> + DMA_TO_DEVICE);
>>> +
>>> + reinit_completion(&nfc->done);
>>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
>>> +
>>> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
>>> + dma_oob);
>>> + ret = wait_for_completion_timeout(&nfc->done,
>>> + msecs_to_jiffies(100));
>>> + if (!ret)
>>> + dev_warn(nfc->dev, "write: wait dma done timeout.\n");
>>> + /*
>>> + * Whether the DMA transfer is completed or not. The driver
>>> + * needs to check the NFC`s status register to see if the data
>>> + * transfer was completed.
>>> + */
>>> + ret = rk_nfc_wait_for_xfer_done(nfc);
>>> +
>>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
>>> + DMA_TO_DEVICE);
>>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
>>> + DMA_TO_DEVICE);
>>> +
>>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
>>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>>> +
>>> + if (ret) {
>>> + ret = -EIO;
>>> + dev_err(nfc->dev,
>>> + "write: wait transfer done timeout.\n");
>>> + }
>>> +
>>> + if (ret)
>>> + return ret;
>>> +
>>> + ret = nand_prog_page_end_op(chip);
>>> +
>>> + /*
>>> + * Deselect the currently selected target after ops done,
>>
>>> + * otherwise the NAND flash will has extra power consumption.
>>
>> will have
>>
>> or use for example:
>>
>> Deselect the currently selected target after the ops is done
>> to reduce the power consumption.
>>> + */
>>> + rk_nfc_select_chip(chip, -1);
>>> +
>>> + return ret;
>>> +}
>>> +
>>> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int
>> oob_on,
>>> + int page)
>>> +{
>>> + struct mtd_info *mtd = nand_to_mtd(chip);
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + int i;
>>> +
>>> + nand_read_page_op(chip, page, 0, NULL, 0);
>>> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize);
>>> +
>>> + /*
>>> + * Deselect the currently selected target after ops done,
>>
>>> + * otherwise the NAND flash will has extra power consumption.
>>
>> will have
>>
>> or use for example:
>>
>> Deselect the currently selected target after the ops is done
>> to reduce the power consumption.
>>> + */
>>> + rk_nfc_select_chip(chip, -1);
>>> +
>>> + for (i = 0; i < chip->ecc.steps; i++) {
>>
>>> + /*
>>> + * The first four bytes of OOB are reserved for the
>>> + * boot ROM. In some debugging cases, sush as dump data
>>
>> such as
>>
>>> + * and write back, it`s need to read out this four bytes,
>>
>> such as with a read, erase and write back test
>> these 4 bytes also must be saved somewhere,
>>
>>> + * otherwise this information will be lost during write back.
>>
>> otherwise this information will be lost during a write back.
>>> + */
>>> + if (!i)
>>> + memcpy(nand_oob_ptr(chip, chip->ecc.steps - 1),
>>> + rk_nfc_oob_ptr(chip, i),
>>> + NFC_SYS_DATA_SIZE);
>>> + else
>>> + memcpy(nand_oob_ptr(chip, i - 1),
>>> + rk_nfc_oob_ptr(chip, i),
>>> + NFC_SYS_DATA_SIZE);
>>
>>> + /* Copy ecc data form nfc buffer. */
>>
>> Copy ECC data from the NFC buffer.
>>> + memcpy(nand_oob_ecc_ptr(chip, i),
>>> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
>>> + chip->ecc.bytes);
>>
>>> + /* Copy data form nfc buffer. */
>>
>> Copy data from the NFC buffer.
>>> + if (buf)
>>> + memcpy(nand_data_ptr(chip, buf, i),
>>> + rk_nfc_data_ptr(chip, i),
>>> + chip->ecc.size);
>>> + }
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int rk_nfc_read_oob(struct nand_chip *chip, int page)
>>> +{
>>> + return rk_nfc_read_page_raw(chip, NULL, 1, page);
>>> +}
>>> +
>>> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
>> int oob_on,
>>> + int page)
>>> +{
>>> + struct mtd_info *mtd = nand_to_mtd(chip);
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
>>> + NFC_MIN_OOB_PER_STEP;
>>> + int pages_per_blk = mtd->erasesize / mtd->writesize;
>>> + dma_addr_t dma_data, dma_oob;
>>> + int ret = 0, i, boot_rom_mode = 0;
>>> + int bitflips = 0, bch_st;
>>> + u8 *oob;
>>> + u32 tmp;
>>> +
>>> + nand_read_page_op(chip, page, 0, NULL, 0);
>>> +
>>> + dma_data = dma_map_single(nfc->dev, nfc->page_buf,
>>> + mtd->writesize,
>>> + DMA_FROM_DEVICE);
>>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
>>> + ecc->steps * oob_step,
>>> + DMA_FROM_DEVICE);
>>> +
>>> + /*
>>> + * The first blocks (4, 8 or 16 depending on the device)
>>> + * are used by the boot ROM.
>>> + * Config the ECC algorithm supported by the boot ROM.
s/Config/Configure/
Configure the ECC algorithm supported by the boot ROM.
>>> + */
>>> + if ((page < pages_per_blk * rknand->boot_blks) &&
>>> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
>>> + boot_rom_mode = 1;
>>> + if (rknand->boot_ecc != ecc->strength)
>>> + rk_nfc_hw_ecc_setup(chip, ecc,
>>> + rknand->boot_ecc);
>>> + }
>>> +
>>> + reinit_completion(&nfc->done);
>>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
>>> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
>>> + dma_oob);
>>> + ret = wait_for_completion_timeout(&nfc->done,
>>> + msecs_to_jiffies(100));
>>> + if (!ret)
>>> + dev_warn(nfc->dev, "read: wait dma done timeout.\n");
>>> + /*
>>> + * Whether the DMA transfer is completed or not. The driver
>>> + * needs to check the NFC`s status register to see if the data
>>> + * transfer was completed.
>>> + */
>>> + ret = rk_nfc_wait_for_xfer_done(nfc);
>>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
>>> + DMA_FROM_DEVICE);
>>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
>>> + DMA_FROM_DEVICE);
>>> +
>>> + if (ret) {
>>> + bitflips = -EIO;
>>> + dev_err(nfc->dev,
>>> + "read: wait transfer done timeout.\n");
>>> + goto out;
>>> + }
>>> +
>>> + for (i = 1; i < ecc->steps; i++) {
>>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
>>> + if (nfc->cfg->type == NFC_V9)
>>> + tmp = nfc->oob_buf[i];
>>> + else
>>> + tmp = nfc->oob_buf[i * oob_step / 4];
tmp = nfc->oob_buf[i * (oob_step / 4)];
>>> + *oob++ = (u8)tmp;
>>> + *oob++ = (u8)(tmp >> 8);
>>> + *oob++ = (u8)(tmp >> 16);
>>> + *oob++ = (u8)(tmp >> 24);
>>> + }
>>> +
>>> + for (i = 0; i < ecc->steps / 2; i++) {
for (i = 0; i < (ecc->steps / 2); i++) {
>>
>> Brackets here as well please
>
> I don't understand this. Can you give an example of how to modify it?
>
>>> + bch_st = readl_relaxed(nfc->regs +
>>> + nfc->cfg->bch_st_off + i * 4);
>>> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
>>> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
>>> + mtd->ecc_stats.failed++;
>>> + /* ECC failed, return the minimum number of error bits */
>>> + bitflips = ecc->strength + 1;
>>
>> Could you explain why:
>>
>> bitflips = -1;
>>
>> changed to:
>>
>> bitflips = ecc->strength + 1;
>>
>>
>> Comment by Miquèl:
>>
>> I think you should return 0.
>>
>> Then the upper layer will check for failures.
>>
>>> + } else {
>>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
>>> + mtd->ecc_stats.corrected += ret;
>>> + bitflips = max_t(u32, bitflips, ret);
>>> +
>>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
>>> + mtd->ecc_stats.corrected += ret;
>>> + bitflips = max_t(u32, bitflips, ret);
>>> + }
>>> + }
>>> +out:
>>> + memcpy(buf, nfc->page_buf, mtd->writesize);
>>> +
>>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
>>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>>> +
>>> + if (bitflips > ecc->strength)
>>> + dev_err(nfc->dev, "read page: %x ecc error!\n", page);
>>> +
>>> + /*
>>> + * Deselect the currently selected target after ops done,
>>
>>> + * otherwise the NAND flash will has extra power consumption.
>>
>> will have
>>
>> or use for example:
>>
>> Deselect the currently selected target after the ops is done
>> to reduce the power consumption.
>>
>>> + */
>>> + rk_nfc_select_chip(chip, -1);
>>> +
>>> + return bitflips;
>>> +}
>>> +
>>> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
>>> +{
>>> + /* Disable flash wp. */
>>> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
>>> + /* Config default timing 40ns at 150 Mhz nfc clock. */
>>> + writel(0x1081, nfc->regs + NFC_FMWAIT);
>>> + /* Disable randomizer and DMA. */
>>> + writel(0, nfc->regs + nfc->cfg->randmz_off);
>>> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
>>> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
>>> +}
>>> +
>>> +static irqreturn_t rk_nfc_irq(int irq, void *id)
>>> +{
>>> + struct rk_nfc *nfc = id;
>>> + u32 sta, ien;
>>> +
>>> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
>>> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
>>> +
>>> + if (!(sta & ien))
>>> + return IRQ_NONE;
>>> +
>>> + writel(sta, nfc->regs + nfc->cfg->int_clr_off);
>>> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
>>> +
>>> + complete(&nfc->done);
>>> +
>>> + return IRQ_HANDLED;
>>> +}
>>> +
>>> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc *nfc)
>>
>> Change function name, because there are 2 clocks.
>>
>> _clks with an s to inform that there are several of them.
>>
>> _clk ==>> _clks
>>
>>> +{
>>> + int ret;
>>> +
>>> + if (!IS_ERR(nfc->nfc_clk)) {
>>> + ret = clk_prepare_enable(nfc->nfc_clk);
>>> + if (ret) {
>>> + dev_err(dev, "failed to enable nfc clk\n");
>>> + return ret;
>>> + }
>>> + }
>>> +
>>> + ret = clk_prepare_enable(nfc->ahb_clk);
>>> + if (ret) {
>>> + dev_err(dev, "failed to enable ahb clk\n");
>>> + if (!IS_ERR(nfc->nfc_clk))
>>> + clk_disable_unprepare(nfc->nfc_clk);
>>> + return ret;
>>> + }
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static void rk_nfc_disable_clk(struct rk_nfc *nfc)
>>
>> Change function name, because there are 2 clocks.
>>
>> ditto
>>
>> _clk ==>> _clks
>>
>>> +{
>>> + if (!IS_ERR(nfc->nfc_clk))
>>> + clk_disable_unprepare(nfc->nfc_clk);
>>> + clk_disable_unprepare(nfc->ahb_clk);
>>> +}
>>> +
>>> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
>>> + struct mtd_oob_region *oob_region)
>>> +{
>>> + struct nand_chip *chip = mtd_to_nand(mtd);
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> +
>>> + if (section)
>>> + return -ERANGE;
>>> +
>>> + /*
>>> + * The beginning of the oob area stores the reserved data for the NFC,
>>
>> OOB area
>>
>>> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
>>> + */
>>> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
>>> + oob_region->offset = NFC_SYS_DATA_SIZE + 2;
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
>>> + struct mtd_oob_region *oob_region)
>>> +{
>>> + struct nand_chip *chip = mtd_to_nand(mtd);
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> +
>>> + if (section)
>>> + return -ERANGE;
>>> +
>>
>>> + oob_region->offset = rknand->metadata_size;
>>> + oob_region->length = mtd->oobsize - oob_region->offset;
>>
>> oob_region->length = mtd->oobsize - oob_region->offset;
>> oob_region->offset = rknand->metadata_size;
>>
>> Keep length and offset in the same sort order as in rk_nfc_ooblayout_free().
>
> modified:
> oob_region->length = mtd->oobsize - rknand->metadata_size;
> oob_region->offset = rknand->metadata_size;
>
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
>>> + .free = rk_nfc_ooblayout_free,
>>> + .ecc = rk_nfc_ooblayout_ecc,
>>> +};
>>> +
>>> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
>>> +{
>>> + struct nand_chip *chip = mtd_to_nand(mtd);
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>>> + const u8 *strengths = nfc->cfg->ecc_strengths;
>>> + u8 max_strength, nfc_max_strength;
>>> + int i;
>>> +
>>> + nfc_max_strength = nfc->cfg->ecc_strengths[0];
>>> + /* If optional dt settings not present. */
>>> + if (!ecc->size || !ecc->strength ||
>>> + ecc->strength > nfc_max_strength) {
>>> + chip->ecc.size = 1024;
>>> + ecc->steps = mtd->writesize / ecc->size;
>>> +
>>> + /*
>>> + * HW ECC always requests the number of ECC bytes per 1024 byte
>>
>>> + * blocks. 4 Bytes is oob for sys data.
>>
>> The first 4 OOB bytes are reserved for sys data.
>>> + */
>>> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
>>> + fls(8 * 1024);
>>> + if (max_strength > nfc_max_strength)
>>> + max_strength = nfc_max_strength;
>>> +
>>> + for (i = 0; i < 4; i++) {
>>> + if (max_strength >= strengths[i])
>>> + break;
>>> + }
>>> +
>>> + if (i >= 4) {
>>> + dev_err(nfc->dev, "Unsupported ECC strength\n");
>>> + return -EOPNOTSUPP;
>>> + }
>>> +
>>> + ecc->strength = strengths[i];
>>> + }
>>> + ecc->steps = mtd->writesize / ecc->size;
>>> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
>>> + /* HW ECC always work with even numbers of ECC bytes. */
>>> + ecc->bytes = ALIGN(ecc->bytes, 2);
>>> +
>>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int rk_nfc_attach_chip(struct nand_chip *chip)
>>> +{
>>> + struct mtd_info *mtd = nand_to_mtd(chip);
>>> + struct device *dev = mtd->dev.parent;
>>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>>> + struct rk_nfc_nand_chip *rknand = to_rknand(chip);
>>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>>> + u8 *temp_buf;
>>> + int len, oob_len;
>>> + int ret;
>>> +
>>> + if (chip->options & NAND_BUSWIDTH_16) {
>>> + dev_err(dev, "16 bits bus width not supported");
>>> + return -EINVAL;
>>> + }
>>> +
>>> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
>>> + return 0;
>>> +
>>> + ret = rk_nfc_ecc_init(dev, mtd);
>>> + if (ret)
>>> + return ret;
>>> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
>>> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
>>> +
>>> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
>>> + dev_err(dev,
>>> + "Driver needs at least %d bytes of meta data\n",
>>> + NFC_SYS_DATA_SIZE + 2);
>>> + return -EIO;
>>> + }
>>
>>> + len = mtd->writesize + mtd->oobsize;
>>
>>> +
>>> + /* Check buffer first, avoid duplicate alloc buffer. */
>>> + if (nfc->buffer) {
>>> + if (len > nfc->buffer_size) {
>>
>> Check only for buffer_size.
>> Maybe split in 2. One size variable per buffer.
>> Reorder flow, see example?
>>
>>> + temp_buf = kzalloc(len, GFP_KERNEL | GFP_DMA);
>>> + if (!temp_buf)
>>> + return -ENOMEM;
>>> + kfree(nfc->buffer);
>>
>> Is there a realloc for kernels or use helper?
>>
>>> + nfc->buffer = temp_buf;
>>> + nfc->buffer_size = len;
>>> +
>>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
>>> + temp_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
>>> + if (!temp_buf)
>>> + return -ENOMEM;
>>> + kfree(nfc->oob_buf);
>>> + nfc->oob_buf = (u32 *)temp_buf;
>>> + }
>>> + return 0;
>>> + }
>>> +
>>
>> Example:
>>
>> // Check and resize existing buffer sizes.
>>
>> new_len = mtd->writesize + mtd->oobsize;
>>
>> if (nfc->buffer && new_len > nfc->buffer_size) {
>> ret = resize(...);
>> if (!ret)
>> return -ENOMEM;
>> nfc->buffer_size = new_len;
>> }
>>
>> new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
>>
>> if (nfc->oob_buf && new_oob_len > nfc->oob_buffer_size) {
>> ret = resize(...);
>> if (!ret) {
>> free(nfc->buffer);
>> return -ENOMEM;
>> }
>> nfc->oob_buffer_size = new_oob_len;
>> }
>>
>> // If no buffers exists then create new buffers.
>>
>> if (!nfc->buffer) {
>> ret = kzalloc(...);
>> if (!ret)
>> return -ENOMEM;
>> nfc->buffer_size = new_len;
>> }
>>
>> if (!nfc->oob_buf) {
>> ret = kzalloc(...);
>> if (!ret) {
>> free(nfc->buffer);
>> return -ENOMEM;
>> }
>> nfc->oob_buffer_size = new_oob_len;
>> }
>>
>>
>>> + nfc->buffer = kzalloc(len, GFP_KERNEL | GFP_DMA);
>>> + if (!nfc->buffer)
>>> + return -ENOMEM;
>>
>>
>>> +
>>> + oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
>>> + nfc->oob_buf = kzalloc(oob_len, GFP_KERNEL | GFP_DMA);
>>> + if (!nfc->oob_buf) {
>>> + kfree(nfc->buffer);
>>> + nfc->buffer = NULL;
>>
>>> + nfc->oob_buf = NULL;
>>
>> !nfc->oob_buf == (nfc->oob_buf = NULL)
>>
>> Comment from Miquèl:
>> I don't think this is needed
>>
>> If something is NULL then there's no need to set it to NULL again.
>>
>>> + return -ENOMEM;
>>> + }
>>> +
>>> + nfc->buffer_size = len;
>>> + nfc->page_buf = nfc->buffer;
>>> +
>>> + chip->ecc.write_page_raw = rk_nfc_write_page_raw;
>>> + chip->ecc.write_page = rk_nfc_write_page_hwecc;
>>> + chip->ecc.write_oob_raw = rk_nfc_write_oob;
>>> + chip->ecc.write_oob = rk_nfc_write_oob;
>>> +
>>> + chip->ecc.read_page_raw = rk_nfc_read_page_raw;
>>> + chip->ecc.read_page = rk_nfc_read_page_hwecc;
>>> + chip->ecc.read_oob_raw = rk_nfc_read_oob;
>>> + chip->ecc.read_oob = rk_nfc_read_oob;
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static const struct nand_controller_ops rk_nfc_controller_ops = {
>>> + .attach_chip = rk_nfc_attach_chip,
>>> + .exec_op = rk_nfc_exec_op,
>>> + .setup_interface = rk_nfc_setup_data_interface,
>>> +};
>>> +
>>> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
>>> + struct device_node *np)
>>> +{
>>> + struct rk_nfc_nand_chip *rknand;
>>> + struct nand_chip *chip;
>>> + struct mtd_info *mtd;
>>> + int nsels;
>>> + u32 tmp;
>>> + int ret;
>>> + int i;
>>> +
>>> + if (!of_get_property(np, "reg", &nsels))
>>> + return -ENODEV;
>>> + nsels /= sizeof(u32);
>>> + if (!nsels || nsels > NFC_MAX_NSELS) {
>>> + dev_err(dev, "invalid reg property size %d\n", nsels);
>>> + return -EINVAL;
>>> + }
>>> +
>>> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
>>> + GFP_KERNEL);
>>> + if (!rknand)
>>> + return -ENOMEM;
>>> +
>>> + rknand->nsels = nsels;
>>> + for (i = 0; i < nsels; i++) {
>>> + ret = of_property_read_u32_index(np, "reg", i, &tmp);
>>> + if (ret) {
>>> + dev_err(dev, "reg property failure : %d\n", ret);
>>> + return ret;
>>> + }
>>> +
>>> + if (tmp >= NFC_MAX_NSELS) {
>>> + dev_err(dev, "invalid CS: %u\n", tmp);
>>> + return -EINVAL;
>>> + }
>>> +
>>> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
>>> + dev_err(dev, "CS %u already assigned\n", tmp);
>>> + return -EINVAL;
>>> + }
>>> +
>>> + rknand->sels[i] = tmp;
>>> + }
>>> +
>>> + chip = &rknand->chip;
>>> + chip->controller = &nfc->controller;
>>> +
>>> + nand_set_flash_node(chip, np);
>>> +
>>> + nand_set_controller_data(chip, nfc);
>>> +
>>> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
>>> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
>>> +
>>> + /* Set default mode in case dt entry is missing. */
>>> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
>>> +
>>> + mtd = nand_to_mtd(chip);
>>> + mtd->owner = THIS_MODULE;
>>> + mtd->dev.parent = dev;
>>> +
>>> + if (!mtd->name) {
>>> + dev_err(nfc->dev, "NAND label property is mandatory\n");
>>> + return -EINVAL;
>>> + }
>>> +
>>> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
>>> + rk_nfc_hw_init(nfc);
>>> + ret = nand_scan(chip, nsels);
>>> + if (ret)
>>> + return ret;
>>> +
>>> + if (chip->options & NAND_IS_BOOT_MEDIUM) {
>>> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
>>> + rknand->boot_blks = ret ? 0 : tmp;
>>
>> Comment by Miquèl:
>> Can't you guess this entry knowing the IP version/SoC version?
>>
>> No, "rockchip,boot-blks" depends on the size of multiple partitions
>> and is user layout dependent.
>
> The "rockchip,boot-blks" is not a fixed number, can be configured with different number of blocks to store the pre loader
> for the same SoC.
>
>>> +
>>> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
>>> + &tmp);
>>> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
>>> + }
>>> +
>>> + ret = mtd_device_register(mtd, NULL, 0);
>>> + if (ret) {
>>> + dev_err(dev, "mtd parse partition error\n");
>>> + nand_cleanup(chip);
>>> + return ret;
>>> + }
>>> +
>>> + list_add_tail(&rknand->node, &nfc->chips);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
>>> +{
>>> + struct rk_nfc_nand_chip *rknand, *tmp;
>>> + struct nand_chip *chip;
>>> + int ret;
>>> +
>>> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
>>> + chip = &rknand->chip;
>>> + ret = mtd_device_unregister(nand_to_mtd(chip));
>>> + WARN_ON(ret);
>>> + nand_cleanup(chip);
>>> + list_del(&rknand->node);
>>> + }
>>> +}
>>> +
>>> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
>>> +{
>>> + struct device_node *np = dev->of_node, *nand_np;
>>> + int nchips = of_get_child_count(np);
>>> + int ret;
>>> +
>>> + if (!nchips || nchips > NFC_MAX_NSELS) {
>>> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
>>> + nchips);
>>> + return -EINVAL;
>>> + }
>>> +
>>> + for_each_child_of_node(np, nand_np) {
>>> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
>>> + if (ret) {
>>> + of_node_put(nand_np);
>>> + rk_nfc_chips_cleanup(nfc);
>>> + return ret;
>>> + }
>>> + }
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static struct nfc_cfg nfc_v6_cfg = {
>>> + .type = NFC_V6,
>>> + .ecc_strengths = {60, 40, 24, 16},
>>> + .ecc_cfgs = {
>>> + 0x00040011, 0x00040001, 0x00000011, 0x00000001,
>>> + },
>>> + .flctl_off = 0x08,
>>> + .bchctl_off = 0x0C,
>>> + .dma_cfg_off = 0x10,
>>> + .dma_data_buf_off = 0x14,
>>> + .dma_oob_buf_off = 0x18,
>>> + .dma_st_off = 0x1C,
>>> + .bch_st_off = 0x20,
>>> + .randmz_off = 0x150,
>>> + .int_en_off = 0x16C,
>>> + .int_clr_off = 0x170,
>>> + .int_st_off = 0x174,
>>> + .oob0_off = 0x200,
>>> + .oob1_off = 0x230,
>>> + .ecc0 = {
>>> + .err_flag_bit = 2,
>>> + .low = 3,
>>> + .low_mask = 0x1F,
>>> + .low_bn = 5,
>>> + .high = 27,
>>> + .high_mask = 0x1,
>>> + },
>>> + .ecc1 = {
>>> + .err_flag_bit = 15,
>>> + .low = 16,
>>> + .low_mask = 0x1F,
>>> + .low_bn = 5,
>>> + .high = 29,
>>> + .high_mask = 0x1,
>>> + },
>>> +};
>>> +
>>> +static struct nfc_cfg nfc_v8_cfg = {
>>> + .type = NFC_V8,
>>> + .ecc_strengths = {16, 16, 16, 16},
>>> + .ecc_cfgs = {
>>> + 0x00000001, 0x00000001, 0x00000001, 0x00000001,
>>> + },
>>> + .flctl_off = 0x08,
>>> + .bchctl_off = 0x0C,
>>> + .dma_cfg_off = 0x10,
>>> + .dma_data_buf_off = 0x14,
>>> + .dma_oob_buf_off = 0x18,
>>> + .dma_st_off = 0x1C,
>>> + .bch_st_off = 0x20,
>>> + .randmz_off = 0x150,
>>> + .int_en_off = 0x16C,
>>> + .int_clr_off = 0x170,
>>> + .int_st_off = 0x174,
>>> + .oob0_off = 0x200,
>>> + .oob1_off = 0x230,
>>> + .ecc0 = {
>>> + .err_flag_bit = 2,
>>> + .low = 3,
>>> + .low_mask = 0x1F,
>>> + .low_bn = 5,
>>> + .high = 27,
>>> + .high_mask = 0x1,
>>> + },
>>> + .ecc1 = {
>>> + .err_flag_bit = 15,
>>> + .low = 16,
>>> + .low_mask = 0x1F,
>>> + .low_bn = 5,
>>> + .high = 29,
>>> + .high_mask = 0x1,
>>> + },
>>> +};
>>> +
>>> +static struct nfc_cfg nfc_v9_cfg = {
>>> + .type = NFC_V9,
>>> + .ecc_strengths = {70, 60, 40, 16},
>>> + .ecc_cfgs = {
>>> + 0x00000001, 0x06000001, 0x04000001, 0x02000001,
>>> + },
>>> + .flctl_off = 0x10,
>>> + .bchctl_off = 0x20,
>>> + .dma_cfg_off = 0x30,
>>> + .dma_data_buf_off = 0x34,
>>> + .dma_oob_buf_off = 0x38,
>>> + .dma_st_off = 0x3C,
>>> + .bch_st_off = 0x150,
>>> + .randmz_off = 0x208,
>>> + .int_en_off = 0x120,
>>> + .int_clr_off = 0x124,
>>> + .int_st_off = 0x128,
>>> + .oob0_off = 0x200,
>>> + .oob1_off = 0x204,
>>> + .ecc0 = {
>>> + .err_flag_bit = 2,
>>> + .low = 3,
>>> + .low_mask = 0x7F,
>>> + .low_bn = 7,
>>> + .high = 0,
>>> + .high_mask = 0x0,
>>> + },
>>> + .ecc1 = {
>>> + .err_flag_bit = 18,
>>> + .low = 19,
>>> + .low_mask = 0x7F,
>>> + .low_bn = 7,
>>> + .high = 0,
>>> + .high_mask = 0x0,
>>> + },
>>> +};
>>> +
>>> +static const struct of_device_id rk_nfc_id_table[] = {
>>> + {
>>> + .compatible = "rockchip,px30-nfc",
>>> + .data = &nfc_v9_cfg
>>> + },
>>> + {
>>> + .compatible = "rockchip,rk2928-nfc",
>>> + .data = &nfc_v6_cfg
>>> + },
>>> + {
>>> + .compatible = "rockchip,rv1108-nfc",
>>> + .data = &nfc_v8_cfg
>>> + },
>>> + { /* sentinel */ }
>>> +};
>>> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
>>> +
>>> +static int rk_nfc_probe(struct platform_device *pdev)
>>> +{
>>> + struct device *dev = &pdev->dev;
>>> + struct rk_nfc *nfc;
>>> + int ret, irq;
>>> +
>>> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
>>> + if (!nfc)
>>> + return -ENOMEM;
>>> +
>>> + nand_controller_init(&nfc->controller);
>>> + INIT_LIST_HEAD(&nfc->chips);
>>> + nfc->controller.ops = &rk_nfc_controller_ops;
>>> +
>>> + nfc->cfg = of_device_get_match_data(dev);
>>> + nfc->dev = dev;
>>> +
>>> + init_completion(&nfc->done);
>>> +
>>> + nfc->regs = devm_platform_ioremap_resource(pdev, 0);
>>> + if (IS_ERR(nfc->regs)) {
>>> + ret = PTR_ERR(nfc->regs);
>>> + goto release_nfc;
>>> + }
>>> +
>>> + nfc->nfc_clk = devm_clk_get(dev, "nfc");
>>> + if (IS_ERR(nfc->nfc_clk)) {
>>> + dev_dbg(dev, "no nfc clk\n");
>>> + /* Some earlier models, such as rk3066, have no nfc clk. */
>>> + }
>>> +
>>> + nfc->ahb_clk = devm_clk_get(dev, "ahb");
>>> + if (IS_ERR(nfc->ahb_clk)) {
>>> + dev_err(dev, "no ahb clk\n");
>>> + ret = PTR_ERR(nfc->ahb_clk);
>>> + goto release_nfc;
>>> + }
>>> +
>>> + ret = rk_nfc_enable_clk(dev, nfc);
>>> + if (ret)
>>> + goto release_nfc;
>>> +
>>> + irq = platform_get_irq(pdev, 0);
>>> + if (irq < 0) {
>>> + dev_err(dev, "no nfc irq resource\n");
>>> + ret = -EINVAL;
>>> + goto clk_disable;
>>> + }
>>> +
>>> + writel(0, nfc->regs + nfc->cfg->int_en_off);
>>> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
>>> + if (ret) {
>>> + dev_err(dev, "failed to request nfc irq\n");
>>> + goto clk_disable;
>>> + }
>>> +
>>> + platform_set_drvdata(pdev, nfc);
>>> +
>>> + ret = rk_nfc_nand_chips_init(dev, nfc);
>>> + if (ret) {
>>> + dev_err(dev, "failed to init NAND chips\n");
>>> + goto clk_disable;
>>> + }
>>> + return 0;
>>> +
>>> +clk_disable:
>>> + rk_nfc_disable_clk(nfc);
>>> +release_nfc:
>>> + return ret;
>>> +}
>>> +
>>> +static int rk_nfc_remove(struct platform_device *pdev)
>>> +{
>>> + struct rk_nfc *nfc = platform_get_drvdata(pdev);
>>> +
>>> + kfree(nfc->buffer);
>>> + kfree(nfc->oob_buf);
>>> + rk_nfc_chips_cleanup(nfc);
>>> + rk_nfc_disable_clk(nfc);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int __maybe_unused rk_nfc_suspend(struct device *dev)
>>> +{
>>> + struct rk_nfc *nfc = dev_get_drvdata(dev);
>>> +
>>> + rk_nfc_disable_clk(nfc);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int __maybe_unused rk_nfc_resume(struct device *dev)
>>> +{
>>> + struct rk_nfc *nfc = dev_get_drvdata(dev);
>>> + struct rk_nfc_nand_chip *rknand;
>>> + struct nand_chip *chip;
>>> + int ret;
>>> + u32 i;
>>> +
>>> + ret = rk_nfc_enable_clk(dev, nfc);
>>> + if (ret)
>>> + return ret;
>>> +
>>> + /* Reset NAND chip if VCC was powered off. */
>>> + list_for_each_entry(rknand, &nfc->chips, node) {
>>> + chip = &rknand->chip;
>>> + for (i = 0; i < rknand->nsels; i++)
>>> + nand_reset(chip, i);
>>> + }
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static const struct dev_pm_ops rk_nfc_pm_ops = {
>>> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
>>> +};
>>> +
>>> +static struct platform_driver rk_nfc_driver = {
>>> + .probe = rk_nfc_probe,
>>> + .remove = rk_nfc_remove,
>>> + .driver = {
>>> + .name = "rockchip-nfc",
>>> + .of_match_table = rk_nfc_id_table,
>>> + .pm = &rk_nfc_pm_ops,
>>> + },
>>> +};
>>> +
>>> +module_platform_driver(rk_nfc_driver);
>>> +
>>> +MODULE_LICENSE("Dual MIT/GPL");
>>> +MODULE_AUTHOR("Yifeng Zhao <[email protected]>");
>>> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
>>> +MODULE_ALIAS("platform:rockchip-nand-controller");
>>>
>>
>>
>>
>