Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
Virtualization) allows guest owners to inject secrets into the VMs
memory without the host/hypervisor being able to read them. In SEV,
secret injection is performed early in the VM launch process, before the
guest starts running.
OVMF already reserves designated area for secret injection (in its
AmdSev package; see edk2 commit 01726b6d23d4 "OvmfPkg/AmdSev: Expose the
Sev Secret area using a configuration table" [1]), but the secrets were
not available in the guest kernel.
The patch series keeps the address of the EFI-provided memory for
injected secrets, and exposes the secrets to userspace via securityfs
using a new efi_secret kernel module. The module is autoloaded (by the
EFI driver) if the secret area is populated.
The first patch in EFI keeps the address of the secret area as passed in
the EFI configuration table. The second patch introduces the new
efi_secret module that exposes the content of the secret entries as
securityfs files, and allows clearing out secrets with a file unlink
interface. The third patch auto-loads the efi_secret module during
startup if the injected secrets area is populated. The last patch
documents the data flow of confidential computing secret injection.
As a usage example, consider a guest performing computations on
encrypted files. The Guest Owner provides the decryption key (= secret)
using the secret injection mechanism. The guest application reads the
secret from the efi_secret filesystem and proceeds to decrypt the files
into memory and then performs the needed computations on the content.
In this example, the host can't read the files from the disk image
because they are encrypted. Host can't read the decryption key because
it is passed using the secret injection mechanism (= secure channel).
Host can't read the decrypted content from memory because it's a
confidential (memory-encrypted) guest.
This has been tested with AMD SEV and SEV-ES guests, but the kernel side
of handling the secret area has no SEV-specific dependencies, and
therefore might be usable (perhaps with minor changes) for any
confidential computing hardware that can publish the secret area via the
standard EFI config table entry.
To enable this functionality, set CONFIG_EFI_SECRET=m when building the
guest kernel.
Here is a simple example for usage of the efi_secret module in a guest
to which an EFI secret area with 4 secrets was injected during launch:
...
[ 0.000000] efi: EFI v2.70 by EDK II
[ 0.000000] efi: CocoSecret=0x7f222680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea16418
...
[ 1.127627] Run /init as init process
Loading, please wait...
Starting version 245.4-4ubuntu3.15
...
[ 0.763204] efi_secret efi_secret.0: Created 4 entries in securityfs secrets/coco
...
# ls -la /sys/kernel/security/secrets/coco
total 0
drwxr-xr-x 2 root root 0 Jun 28 11:54 .
drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
-r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
-r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
-r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
-r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
# hd /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
00000000 74 68 65 73 65 2d 61 72 65 2d 74 68 65 2d 6b 61 |these-are-the-ka|
00000010 74 61 2d 73 65 63 72 65 74 73 00 01 02 03 04 05 |ta-secrets......|
00000020 06 07 |..|
00000022
# rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
# ls -la /sys/kernel/security/secrets/coco
total 0
drwxr-xr-x 2 root root 0 Jun 28 11:55 .
drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
-r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
-r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
-r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
[1] https://github.com/tianocore/edk2/commit/01726b6d23d4
---
v9 changes:
- Change the module into a platform driver (thanks Ard)
- Remove special auto-loading code in efi; instead register a platform
device (udev will load the efi_secret module) (thanks Ard)
- Change logging in the efi_secret module to dev_err() etc.
- efi_secret: first check that the secret area header is valid; only then start
creating securityfs dirs.
v8: https://lore.kernel.org/linux-coco/[email protected]/
v8 changes:
- Change path of filesystem to <securityfs>/secrets/coco and fix the
documentation accordingly (Thanks Gerd, Matthew)
- Remove patch 2/5 (of v7) because the latest OVMF release (edk2-stable202202)
already contains the fix to mark the launch secret page as EFI_RESERVED_TYPE.
v7: https://lore.kernel.org/linux-coco/[email protected]/
v7 changes:
- Improve description of efi_secret module in Kconfig.
- Fix sparse warnings on pointer address space mismatch
(Reported-by: kernel test robot <[email protected]>)
v6: https://lore.kernel.org/linux-coco/[email protected]/
v6 changes:
- Autoload the efi_secret module if the secret area is populated
(thanks Greg KH).
- efi_secret: Depend on X86_64 because we use ioremap_encrypted() which
is only defined for this arch.
- efi_secret.c: Remove unneeded tableheader_guid local variable.
- Documentation fixes.
v5: https://lore.kernel.org/linux-coco/[email protected]/
v5 changes:
- Simplify EFI code: instead of copying the secret area, the firmware
marks the secret area as EFI_RESERVED_TYPE, and then the uefi_init()
code just keeps the pointer as it appears in the EFI configuration
table. The use of reserved pages is similar to the AMD SEV-SNP
patches for handling SNP-Secrets and SNP-CPUID pages.
- In order to handle OVMF releases out there which mark the
confidential computing secrets page as EFI_BOOT_SERVICES_DATA, add
efi/libstub code that detects this and fixes the E820 map to reserve
this page.
- In the efi_secret module code, map the secrets page using
ioremap_encrypted (again, similar to the AMD SEV-SNP guest patches
for accessing SNP-Secrets and SNP-CPUID pages).
- Add documentation in Documentation/security/coco/efi_secret.
v4: https://lore.kernel.org/linux-coco/[email protected]/
v4 changes:
- Guard all the new EFI and efi-stub code (patches 1+2) with #ifdef
CONFIG_EFI_COCO_SECRET (thanks Greg KH). Selecting
CONFIG_EFI_SECRET=m (patch 3) will enable the EFI parts as well.
- Guard call to clflush_cache_range() with #ifdef CONFIG_X86
(Reported-by: kernel test robot <[email protected]>)
v3: https://lore.kernel.org/linux-coco/[email protected]/
v3 changes:
- Rename the module to efi_secret
- Remove the exporting of clean_cache_range
- Use clflush_cache_range in wipe_memory
- Document function wipe_memory
- Initialize efi.coco_secret to EFI_INVALID_TABLE_ADDR to correctly detect
when there's no secret area published in the EFI configuration tables
v2: https://lore.kernel.org/linux-coco/[email protected]
v2 changes:
- Export clean_cache_range()
- When deleteing a secret, call clean_cache_range() after explicit_memzero
- Add Documentation/ABI/testing/securityfs-coco-sev_secret
v1: https://lore.kernel.org/linux-coco/[email protected]/
RFC: https://lore.kernel.org/linux-coco/[email protected]/
Dov Murik (4):
efi: Save location of EFI confidential computing area
virt: Add efi_secret module to expose confidential computing secrets
efi: Register efi_secret platform device if EFI secret area is
declared
docs: security: Add secrets/coco documentation
Documentation/ABI/testing/securityfs-secrets-coco | 51 +++
Documentation/security/index.rst | 1 +
Documentation/security/secrets/coco.rst | 103 ++++++
Documentation/security/secrets/index.rst | 9 +
arch/x86/platform/efi/efi.c | 3 +
drivers/firmware/efi/Kconfig | 16 +
drivers/firmware/efi/efi.c | 9 +
drivers/virt/Kconfig | 3 +
drivers/virt/Makefile | 1 +
drivers/virt/coco/efi_secret/Kconfig | 16 +
drivers/virt/coco/efi_secret/Makefile | 2 +
drivers/virt/coco/efi_secret/efi_secret.c | 349 ++++++++++++++++++++
include/linux/efi.h | 10 +
13 files changed, 573 insertions(+)
create mode 100644 Documentation/ABI/testing/securityfs-secrets-coco
create mode 100644 Documentation/security/secrets/coco.rst
create mode 100644 Documentation/security/secrets/index.rst
create mode 100644 drivers/virt/coco/efi_secret/Kconfig
create mode 100644 drivers/virt/coco/efi_secret/Makefile
create mode 100644 drivers/virt/coco/efi_secret/efi_secret.c
base-commit: 7e57714cd0ad2d5bb90e50b5096a0e671dec1ef3
--
2.25.1
Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
Virtualization) allows a guest owner to inject secrets into the VMs
memory without the host/hypervisor being able to read them.
Firmware support for secret injection is available in OVMF, which
reserves a memory area for secret injection and includes a pointer to it
the in EFI config table entry LINUX_EFI_COCO_SECRET_TABLE_GUID.
If EFI exposes such a table entry, uefi_init() will keep a pointer to
the EFI config table entry in efi.coco_secret, so it can be used later
by the kernel (specifically drivers/virt/coco/efi_secret). It will also
appear in the kernel log as "CocoSecret=ADDRESS"; for example:
[ 0.000000] efi: EFI v2.70 by EDK II
[ 0.000000] efi: CocoSecret=0x7f22e680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea0c018
The new functionality can be enabled with CONFIG_EFI_COCO_SECRET=y.
Signed-off-by: Dov Murik <[email protected]>
Reviewed-by: Gerd Hoffmann <[email protected]>
---
arch/x86/platform/efi/efi.c | 3 +++
drivers/firmware/efi/Kconfig | 16 ++++++++++++++++
drivers/firmware/efi/efi.c | 6 ++++++
include/linux/efi.h | 10 ++++++++++
4 files changed, 35 insertions(+)
diff --git a/arch/x86/platform/efi/efi.c b/arch/x86/platform/efi/efi.c
index 147c30a81f15..1591d67e0bcd 100644
--- a/arch/x86/platform/efi/efi.c
+++ b/arch/x86/platform/efi/efi.c
@@ -93,6 +93,9 @@ static const unsigned long * const efi_tables[] = {
#ifdef CONFIG_LOAD_UEFI_KEYS
&efi.mokvar_table,
#endif
+#ifdef CONFIG_EFI_COCO_SECRET
+ &efi.coco_secret,
+#endif
};
u64 efi_setup; /* efi setup_data physical address */
diff --git a/drivers/firmware/efi/Kconfig b/drivers/firmware/efi/Kconfig
index 2c3dac5ecb36..6fa251b3709f 100644
--- a/drivers/firmware/efi/Kconfig
+++ b/drivers/firmware/efi/Kconfig
@@ -284,3 +284,19 @@ config EFI_CUSTOM_SSDT_OVERLAYS
See Documentation/admin-guide/acpi/ssdt-overlays.rst for more
information.
+
+config EFI_COCO_SECRET
+ bool "EFI Confidential Computing Secret Area Support"
+ depends on EFI
+ help
+ Confidential Computing platforms (such as AMD SEV) allow the
+ Guest Owner to securely inject secrets during guest VM launch.
+ The secrets are placed in a designated EFI reserved memory area.
+
+ In order to use the secrets in the kernel, the location of the secret
+ area (as published in the EFI config table) must be kept.
+
+ If you say Y here, the address of the EFI secret area will be kept
+ for usage inside the kernel. This will allow the
+ virt/coco/efi_secret module to access the secrets, which in turn
+ allows userspace programs to access the injected secrets.
diff --git a/drivers/firmware/efi/efi.c b/drivers/firmware/efi/efi.c
index 7de3f5b6e8d0..378d044b2463 100644
--- a/drivers/firmware/efi/efi.c
+++ b/drivers/firmware/efi/efi.c
@@ -46,6 +46,9 @@ struct efi __read_mostly efi = {
#ifdef CONFIG_LOAD_UEFI_KEYS
.mokvar_table = EFI_INVALID_TABLE_ADDR,
#endif
+#ifdef CONFIG_EFI_COCO_SECRET
+ .coco_secret = EFI_INVALID_TABLE_ADDR,
+#endif
};
EXPORT_SYMBOL(efi);
@@ -528,6 +531,9 @@ static const efi_config_table_type_t common_tables[] __initconst = {
#endif
#ifdef CONFIG_LOAD_UEFI_KEYS
{LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" },
+#endif
+#ifdef CONFIG_EFI_COCO_SECRET
+ {LINUX_EFI_COCO_SECRET_AREA_GUID, &efi.coco_secret, "CocoSecret" },
#endif
{},
};
diff --git a/include/linux/efi.h b/include/linux/efi.h
index ccd4d3f91c98..771d4cd06b56 100644
--- a/include/linux/efi.h
+++ b/include/linux/efi.h
@@ -405,6 +405,7 @@ void efi_native_runtime_setup(void);
#define LINUX_EFI_MEMRESERVE_TABLE_GUID EFI_GUID(0x888eb0c6, 0x8ede, 0x4ff5, 0xa8, 0xf0, 0x9a, 0xee, 0x5c, 0xb9, 0x77, 0xc2)
#define LINUX_EFI_INITRD_MEDIA_GUID EFI_GUID(0x5568e427, 0x68fc, 0x4f3d, 0xac, 0x74, 0xca, 0x55, 0x52, 0x31, 0xcc, 0x68)
#define LINUX_EFI_MOK_VARIABLE_TABLE_GUID EFI_GUID(0xc451ed2b, 0x9694, 0x45d3, 0xba, 0xba, 0xed, 0x9f, 0x89, 0x88, 0xa3, 0x89)
+#define LINUX_EFI_COCO_SECRET_AREA_GUID EFI_GUID(0xadf956ad, 0xe98c, 0x484c, 0xae, 0x11, 0xb5, 0x1c, 0x7d, 0x33, 0x64, 0x47)
/* OEM GUIDs */
#define DELLEMC_EFI_RCI2_TABLE_GUID EFI_GUID(0x2d9f28a2, 0xa886, 0x456a, 0x97, 0xa8, 0xf1, 0x1e, 0xf2, 0x4f, 0xf4, 0x55)
@@ -596,6 +597,7 @@ extern struct efi {
unsigned long tpm_log; /* TPM2 Event Log table */
unsigned long tpm_final_log; /* TPM2 Final Events Log table */
unsigned long mokvar_table; /* MOK variable config table */
+ unsigned long coco_secret; /* Confidential computing secret table */
efi_get_time_t *get_time;
efi_set_time_t *set_time;
@@ -1335,4 +1337,12 @@ extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt) { }
#endif
+struct linux_efi_coco_secret_area {
+ u64 base_pa;
+ u64 size;
+};
+
+/* Header of a populated EFI secret area */
+#define EFI_SECRET_TABLE_HEADER_GUID EFI_GUID(0x1e74f542, 0x71dd, 0x4d66, 0x96, 0x3e, 0xef, 0x42, 0x87, 0xff, 0x17, 0x3b)
+
#endif /* _LINUX_EFI_H */
--
2.25.1
Add documentation for the efi_secret module which allows access
to Confidential Computing injected secrets.
Signed-off-by: Dov Murik <[email protected]>
Reviewed-by: Gerd Hoffmann <[email protected]>
---
Documentation/security/index.rst | 1 +
Documentation/security/secrets/coco.rst | 103 ++++++++++++++++++++
Documentation/security/secrets/index.rst | 9 ++
3 files changed, 113 insertions(+)
diff --git a/Documentation/security/index.rst b/Documentation/security/index.rst
index 16335de04e8c..6ed8d2fa6f9e 100644
--- a/Documentation/security/index.rst
+++ b/Documentation/security/index.rst
@@ -17,3 +17,4 @@ Security Documentation
tpm/index
digsig
landlock
+ secrets/index
diff --git a/Documentation/security/secrets/coco.rst b/Documentation/security/secrets/coco.rst
new file mode 100644
index 000000000000..262e7abb1b24
--- /dev/null
+++ b/Documentation/security/secrets/coco.rst
@@ -0,0 +1,103 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================
+Confidential Computing secrets
+==============================
+
+This document describes how Confidential Computing secret injection is handled
+from the firmware to the operating system, in the EFI driver and the efi_secret
+kernel module.
+
+
+Introduction
+============
+
+Confidential Computing (coco) hardware such as AMD SEV (Secure Encrypted
+Virtualization) allows guest owners to inject secrets into the VMs
+memory without the host/hypervisor being able to read them. In SEV,
+secret injection is performed early in the VM launch process, before the
+guest starts running.
+
+The efi_secret kernel module allows userspace applications to access these
+secrets via securityfs.
+
+
+Secret data flow
+================
+
+The guest firmware may reserve a designated memory area for secret injection,
+and publish its location (base GPA and length) in the EFI configuration table
+under a ``LINUX_EFI_COCO_SECRET_AREA_GUID`` entry
+(``adf956ad-e98c-484c-ae11-b51c7d336447``). This memory area should be marked
+by the firmware as ``EFI_RESERVED_TYPE``, and therefore the kernel should not
+be use it for its own purposes.
+
+During the VM's launch, the virtual machine manager may inject a secret to that
+area. In AMD SEV and SEV-ES this is performed using the
+``KVM_SEV_LAUNCH_SECRET`` command (see [sev]_). The strucutre of the injected
+Guest Owner secret data should be a GUIDed table of secret values; the binary
+format is described in ``drivers/virt/coco/efi_secret/efi_secret.c`` under
+"Structure of the EFI secret area".
+
+On kernel start, the kernel's EFI driver saves the location of the secret area
+(taken from the EFI configuration table) in the ``efi.coco_secret`` field.
+Later it checks if the secret area is populated: it maps the area and checks
+whether its content begins with ``EFI_SECRET_TABLE_HEADER_GUID``
+(``1e74f542-71dd-4d66-963e-ef4287ff173b``). If the secret area is populated,
+the EFI driver will autoload the efi_secret kernel module, which exposes the
+secrets to userspace applications via securityfs. The details of the
+efi_secret filesystem interface are in [secrets-coco-abi]_.
+
+
+Application usage example
+=========================
+
+Consider a guest performing computations on encrypted files. The Guest Owner
+provides the decryption key (= secret) using the secret injection mechanism.
+The guest application reads the secret from the efi_secret filesystem and
+proceeds to decrypt the files into memory and then performs the needed
+computations on the content.
+
+In this example, the host can't read the files from the disk image
+because they are encrypted. Host can't read the decryption key because
+it is passed using the secret injection mechanism (= secure channel).
+Host can't read the decrypted content from memory because it's a
+confidential (memory-encrypted) guest.
+
+Here is a simple example for usage of the efi_secret module in a guest
+to which an EFI secret area with 4 secrets was injected during launch::
+
+ # ls -la /sys/kernel/security/secrets/coco
+ total 0
+ drwxr-xr-x 2 root root 0 Jun 28 11:54 .
+ drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
+ -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
+ -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
+ -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
+ -r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
+
+ # hd /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
+ 00000000 74 68 65 73 65 2d 61 72 65 2d 74 68 65 2d 6b 61 |these-are-the-ka|
+ 00000010 74 61 2d 73 65 63 72 65 74 73 00 01 02 03 04 05 |ta-secrets......|
+ 00000020 06 07 |..|
+ 00000022
+
+ # rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
+
+ # ls -la /sys/kernel/security/secrets/coco
+ total 0
+ drwxr-xr-x 2 root root 0 Jun 28 11:55 .
+ drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
+ -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
+ -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
+ -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
+
+
+References
+==========
+
+See [sev-api-spec]_ for more info regarding SEV ``LAUNCH_SECRET`` operation.
+
+.. [sev] Documentation/virt/kvm/amd-memory-encryption.rst
+.. [secrets-coco-abi] Documentation/ABI/testing/securityfs-secrets-coco
+.. [sev-api-spec] https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
diff --git a/Documentation/security/secrets/index.rst b/Documentation/security/secrets/index.rst
new file mode 100644
index 000000000000..ced34e9c43bd
--- /dev/null
+++ b/Documentation/security/secrets/index.rst
@@ -0,0 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================
+Secrets documentation
+=====================
+
+.. toctree::
+
+ coco
--
2.25.1
The new efi_secret module exposes the confidential computing (coco)
EFI secret area via securityfs interface.
When the module is loaded (and securityfs is mounted, typically under
/sys/kernel/security), a "secrets/coco" directory is created in
securityfs. In it, a file is created for each secret entry. The name
of each such file is the GUID of the secret entry, and its content is
the secret data.
This allows applications running in a confidential computing setting to
read secrets provided by the guest owner via a secure secret injection
mechanism (such as AMD SEV's LAUNCH_SECRET command).
Removing (unlinking) files in the "secrets/coco" directory will zero out
the secret in memory, and remove the filesystem entry. If the module is
removed and loaded again, that secret will not appear in the filesystem.
Signed-off-by: Dov Murik <[email protected]>
---
Documentation/ABI/testing/securityfs-secrets-coco | 51 +++
drivers/virt/Kconfig | 3 +
drivers/virt/Makefile | 1 +
drivers/virt/coco/efi_secret/Kconfig | 16 +
drivers/virt/coco/efi_secret/Makefile | 2 +
drivers/virt/coco/efi_secret/efi_secret.c | 349 ++++++++++++++++++++
6 files changed, 422 insertions(+)
diff --git a/Documentation/ABI/testing/securityfs-secrets-coco b/Documentation/ABI/testing/securityfs-secrets-coco
new file mode 100644
index 000000000000..f2b6909155f9
--- /dev/null
+++ b/Documentation/ABI/testing/securityfs-secrets-coco
@@ -0,0 +1,51 @@
+What: security/secrets/coco
+Date: February 2022
+Contact: Dov Murik <[email protected]>
+Description:
+ Exposes confidential computing (coco) EFI secrets to
+ userspace via securityfs.
+
+ EFI can declare memory area used by confidential computing
+ platforms (such as AMD SEV and SEV-ES) for secret injection by
+ the Guest Owner during VM's launch. The secrets are encrypted
+ by the Guest Owner and decrypted inside the trusted enclave,
+ and therefore are not readable by the untrusted host.
+
+ The efi_secret module exposes the secrets to userspace. Each
+ secret appears as a file under <securityfs>/secrets/coco,
+ where the filename is the GUID of the entry in the secrets
+ table. This module is loaded automatically by the EFI driver
+ if the EFI secret area is populated.
+
+ Two operations are supported for the files: read and unlink.
+ Reading the file returns the content of secret entry.
+ Unlinking the file overwrites the secret data with zeroes and
+ removes the entry from the filesystem. A secret cannot be read
+ after it has been unlinked.
+
+ For example, listing the available secrets::
+
+ # modprobe efi_secret
+ # ls -l /sys/kernel/security/secrets/coco
+ -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
+ -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
+ -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
+ -r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
+
+ Reading the secret data by reading a file::
+
+ # cat /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
+ the-content-of-the-secret-data
+
+ Wiping a secret by unlinking a file::
+
+ # rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
+ # ls -l /sys/kernel/security/secrets/coco
+ -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
+ -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
+ -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
+
+ Note: The binary format of the secrets table injected by the
+ Guest Owner is described in
+ drivers/virt/coco/efi_secret/efi_secret.c under "Structure of
+ the EFI secret area".
diff --git a/drivers/virt/Kconfig b/drivers/virt/Kconfig
index 8061e8ef449f..fe7a6579b974 100644
--- a/drivers/virt/Kconfig
+++ b/drivers/virt/Kconfig
@@ -36,4 +36,7 @@ source "drivers/virt/vboxguest/Kconfig"
source "drivers/virt/nitro_enclaves/Kconfig"
source "drivers/virt/acrn/Kconfig"
+
+source "drivers/virt/coco/efi_secret/Kconfig"
+
endif
diff --git a/drivers/virt/Makefile b/drivers/virt/Makefile
index 3e272ea60cd9..efdb015783f9 100644
--- a/drivers/virt/Makefile
+++ b/drivers/virt/Makefile
@@ -8,3 +8,4 @@ obj-y += vboxguest/
obj-$(CONFIG_NITRO_ENCLAVES) += nitro_enclaves/
obj-$(CONFIG_ACRN_HSM) += acrn/
+obj-$(CONFIG_EFI_SECRET) += coco/efi_secret/
diff --git a/drivers/virt/coco/efi_secret/Kconfig b/drivers/virt/coco/efi_secret/Kconfig
new file mode 100644
index 000000000000..4404d198f3b2
--- /dev/null
+++ b/drivers/virt/coco/efi_secret/Kconfig
@@ -0,0 +1,16 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config EFI_SECRET
+ tristate "EFI secret area securityfs support"
+ depends on EFI && X86_64
+ select EFI_COCO_SECRET
+ select SECURITYFS
+ help
+ This is a driver for accessing the EFI secret area via securityfs.
+ The EFI secret area is a memory area designated by the firmware for
+ confidential computing secret injection (for example for AMD SEV
+ guests). The driver exposes the secrets as files in
+ <securityfs>/secrets/coco. Files can be read and deleted (deleting
+ a file wipes the secret from memory).
+
+ To compile this driver as a module, choose M here.
+ The module will be called efi_secret.
diff --git a/drivers/virt/coco/efi_secret/Makefile b/drivers/virt/coco/efi_secret/Makefile
new file mode 100644
index 000000000000..c7047ce804f7
--- /dev/null
+++ b/drivers/virt/coco/efi_secret/Makefile
@@ -0,0 +1,2 @@
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_EFI_SECRET) += efi_secret.o
diff --git a/drivers/virt/coco/efi_secret/efi_secret.c b/drivers/virt/coco/efi_secret/efi_secret.c
new file mode 100644
index 000000000000..e700a5ef7043
--- /dev/null
+++ b/drivers/virt/coco/efi_secret/efi_secret.c
@@ -0,0 +1,349 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * efi_secret module
+ *
+ * Copyright (C) 2022 IBM Corporation
+ * Author: Dov Murik <[email protected]>
+ */
+
+/**
+ * DOC: efi_secret: Allow reading EFI confidential computing (coco) secret area
+ * via securityfs interface.
+ *
+ * When the module is loaded (and securityfs is mounted, typically under
+ * /sys/kernel/security), a "secrets/coco" directory is created in securityfs.
+ * In it, a file is created for each secret entry. The name of each such file
+ * is the GUID of the secret entry, and its content is the secret data.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/seq_file.h>
+#include <linux/fs.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/security.h>
+#include <linux/efi.h>
+#include <linux/cacheflush.h>
+
+#define EFI_SECRET_NUM_FILES 64
+
+struct efi_secret {
+ struct dentry *secrets_dir;
+ struct dentry *fs_dir;
+ struct dentry *fs_files[EFI_SECRET_NUM_FILES];
+ void __iomem *secret_data;
+ u64 secret_data_len;
+};
+
+/*
+ * Structure of the EFI secret area
+ *
+ * Offset Length
+ * (bytes) (bytes) Usage
+ * ------- ------- -----
+ * 0 16 Secret table header GUID (must be 1e74f542-71dd-4d66-963e-ef4287ff173b)
+ * 16 4 Length of bytes of the entire secret area
+ *
+ * 20 16 First secret entry's GUID
+ * 36 4 First secret entry's length in bytes (= 16 + 4 + x)
+ * 40 x First secret entry's data
+ *
+ * 40+x 16 Second secret entry's GUID
+ * 56+x 4 Second secret entry's length in bytes (= 16 + 4 + y)
+ * 60+x y Second secret entry's data
+ *
+ * (... and so on for additional entries)
+ *
+ * The GUID of each secret entry designates the usage of the secret data.
+ */
+
+/**
+ * struct secret_header - Header of entire secret area; this should be followed
+ * by instances of struct secret_entry.
+ * @guid: Must be EFI_SECRET_TABLE_HEADER_GUID
+ * @len: Length in bytes of entire secret area, including header
+ */
+struct secret_header {
+ efi_guid_t guid;
+ u32 len;
+} __attribute((packed));
+
+/**
+ * struct secret_entry - Holds one secret entry
+ * @guid: Secret-specific GUID (or NULL_GUID if this secret entry was deleted)
+ * @len: Length of secret entry, including its guid and len fields
+ * @data: The secret data (full of zeros if this secret entry was deleted)
+ */
+struct secret_entry {
+ efi_guid_t guid;
+ u32 len;
+ u8 data[];
+} __attribute((packed));
+
+static size_t secret_entry_data_len(struct secret_entry *e)
+{
+ return e->len - sizeof(*e);
+}
+
+static struct efi_secret the_efi_secret;
+
+static inline struct efi_secret *efi_secret_get(void)
+{
+ return &the_efi_secret;
+}
+
+static int efi_secret_bin_file_show(struct seq_file *file, void *data)
+{
+ struct secret_entry *e = file->private;
+
+ if (e)
+ seq_write(file, e->data, secret_entry_data_len(e));
+
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(efi_secret_bin_file);
+
+/*
+ * Overwrite memory content with zeroes, and ensure that dirty cache lines are
+ * actually written back to memory, to clear out the secret.
+ */
+static void wipe_memory(void *addr, size_t size)
+{
+ memzero_explicit(addr, size);
+#ifdef CONFIG_X86
+ clflush_cache_range(addr, size);
+#endif
+}
+
+static int efi_secret_unlink(struct inode *dir, struct dentry *dentry)
+{
+ struct efi_secret *s = efi_secret_get();
+ struct inode *inode = d_inode(dentry);
+ struct secret_entry *e = (struct secret_entry *)inode->i_private;
+ int i;
+
+ if (e) {
+ /* Zero out the secret data */
+ wipe_memory(e->data, secret_entry_data_len(e));
+ e->guid = NULL_GUID;
+ }
+
+ inode->i_private = NULL;
+
+ for (i = 0; i < EFI_SECRET_NUM_FILES; i++)
+ if (s->fs_files[i] == dentry)
+ s->fs_files[i] = NULL;
+
+ /*
+ * securityfs_remove tries to lock the directory's inode, but we reach
+ * the unlink callback when it's already locked
+ */
+ inode_unlock(dir);
+ securityfs_remove(dentry);
+ inode_lock(dir);
+
+ return 0;
+}
+
+static const struct inode_operations efi_secret_dir_inode_operations = {
+ .lookup = simple_lookup,
+ .unlink = efi_secret_unlink,
+};
+
+static int efi_secret_map_area(struct platform_device *dev)
+{
+ int ret;
+ struct efi_secret *s = efi_secret_get();
+ struct linux_efi_coco_secret_area *secret_area;
+
+ if (efi.coco_secret == EFI_INVALID_TABLE_ADDR) {
+ dev_err(&dev->dev, "Secret area address is not available\n");
+ return -EINVAL;
+ }
+
+ secret_area = memremap(efi.coco_secret, sizeof(*secret_area), MEMREMAP_WB);
+ if (secret_area == NULL) {
+ dev_err(&dev->dev, "Could not map secret area EFI config entry\n");
+ return -ENOMEM;
+ }
+ if (!secret_area->base_pa || secret_area->size < sizeof(struct secret_header)) {
+ dev_err(&dev->dev,
+ "Invalid secret area memory location (base_pa=0x%llx size=0x%llx)\n",
+ secret_area->base_pa, secret_area->size);
+ ret = -EINVAL;
+ goto unmap;
+ }
+
+ s->secret_data = ioremap_encrypted(secret_area->base_pa, secret_area->size);
+ if (s->secret_data == NULL) {
+ dev_err(&dev->dev, "Could not map secret area\n");
+ ret = -ENOMEM;
+ goto unmap;
+ }
+
+ s->secret_data_len = secret_area->size;
+ ret = 0;
+
+unmap:
+ memunmap(secret_area);
+ return ret;
+}
+
+static void efi_secret_securityfs_teardown(struct platform_device *dev)
+{
+ struct efi_secret *s = efi_secret_get();
+ int i;
+
+ for (i = (EFI_SECRET_NUM_FILES - 1); i >= 0; i--) {
+ securityfs_remove(s->fs_files[i]);
+ s->fs_files[i] = NULL;
+ }
+
+ securityfs_remove(s->fs_dir);
+ s->fs_dir = NULL;
+
+ securityfs_remove(s->secrets_dir);
+ s->secrets_dir = NULL;
+
+ dev_dbg(&dev->dev, "Removed securityfs entries\n");
+}
+
+static int efi_secret_securityfs_setup(struct platform_device *dev)
+{
+ struct efi_secret *s = efi_secret_get();
+ int ret = 0, i = 0, bytes_left;
+ unsigned char *ptr;
+ struct secret_header *h;
+ struct secret_entry *e;
+ struct dentry *dent;
+ char guid_str[EFI_VARIABLE_GUID_LEN + 1];
+
+ ptr = (void __force *)s->secret_data;
+ h = (struct secret_header *)ptr;
+ if (efi_guidcmp(h->guid, EFI_SECRET_TABLE_HEADER_GUID)) {
+ /*
+ * This is not an error: it just means that EFI defines secret
+ * area but it was not populated by the Guest Owner.
+ */
+ dev_dbg(&dev->dev, "EFI secret area does not start with correct GUID\n");
+ return -ENODEV;
+ }
+ if (h->len < sizeof(*h)) {
+ dev_err(&dev->dev, "EFI secret area reported length is too small\n");
+ return -EINVAL;
+ }
+ if (h->len > s->secret_data_len) {
+ dev_err(&dev->dev, "EFI secret area reported length is too big\n");
+ return -EINVAL;
+ }
+
+ s->secrets_dir = NULL;
+ s->fs_dir = NULL;
+ memset(s->fs_files, 0, sizeof(s->fs_files));
+
+ dent = securityfs_create_dir("secrets", NULL);
+ if (IS_ERR(dent)) {
+ dev_err(&dev->dev, "Error creating secrets securityfs directory entry err=%ld\n",
+ PTR_ERR(dent));
+ return PTR_ERR(dent);
+ }
+ s->secrets_dir = dent;
+
+ dent = securityfs_create_dir("coco", s->secrets_dir);
+ if (IS_ERR(dent)) {
+ dev_err(&dev->dev, "Error creating coco securityfs directory entry err=%ld\n",
+ PTR_ERR(dent));
+ return PTR_ERR(dent);
+ }
+ d_inode(dent)->i_op = &efi_secret_dir_inode_operations;
+ s->fs_dir = dent;
+
+ bytes_left = h->len - sizeof(*h);
+ ptr += sizeof(*h);
+ while (bytes_left >= (int)sizeof(*e) && i < EFI_SECRET_NUM_FILES) {
+ e = (struct secret_entry *)ptr;
+ if (e->len < sizeof(*e) || e->len > (unsigned int)bytes_left) {
+ dev_err(&dev->dev, "EFI secret area is corrupted\n");
+ ret = -EINVAL;
+ goto err_cleanup;
+ }
+
+ /* Skip deleted entries (which will have NULL_GUID) */
+ if (efi_guidcmp(e->guid, NULL_GUID)) {
+ efi_guid_to_str(&e->guid, guid_str);
+
+ dent = securityfs_create_file(guid_str, 0440, s->fs_dir, (void *)e,
+ &efi_secret_bin_file_fops);
+ if (IS_ERR(dent)) {
+ dev_err(&dev->dev, "Error creating efi_secret securityfs entry\n");
+ ret = PTR_ERR(dent);
+ goto err_cleanup;
+ }
+
+ s->fs_files[i++] = dent;
+ }
+ ptr += e->len;
+ bytes_left -= e->len;
+ }
+
+ dev_info(&dev->dev, "Created %d entries in securityfs secrets/coco\n", i);
+ return 0;
+
+err_cleanup:
+ efi_secret_securityfs_teardown(dev);
+ return ret;
+}
+
+static void efi_secret_unmap_area(void)
+{
+ struct efi_secret *s = efi_secret_get();
+
+ if (s->secret_data) {
+ iounmap(s->secret_data);
+ s->secret_data = NULL;
+ s->secret_data_len = 0;
+ }
+}
+
+static int efi_secret_probe(struct platform_device *dev)
+{
+ int ret;
+
+ ret = efi_secret_map_area(dev);
+ if (ret)
+ return ret;
+
+ ret = efi_secret_securityfs_setup(dev);
+ if (ret)
+ goto err_unmap;
+
+ return ret;
+
+err_unmap:
+ efi_secret_unmap_area();
+ return ret;
+}
+
+static int efi_secret_remove(struct platform_device *dev)
+{
+ efi_secret_securityfs_teardown(dev);
+ efi_secret_unmap_area();
+ return 0;
+}
+
+static struct platform_driver efi_secret_driver = {
+ .probe = efi_secret_probe,
+ .remove = efi_secret_remove,
+ .driver = {
+ .name = "efi_secret",
+ },
+};
+
+module_platform_driver(efi_secret_driver);
+
+MODULE_DESCRIPTION("Confidential computing EFI secret area access");
+MODULE_AUTHOR("IBM");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:efi_secret");
--
2.25.1
On Thu, Mar 31, 2022 at 09:56:05PM +0000, Dov Murik wrote:
> The new efi_secret module exposes the confidential computing (coco)
> EFI secret area via securityfs interface.
>
> When the module is loaded (and securityfs is mounted, typically under
> /sys/kernel/security), a "secrets/coco" directory is created in
> securityfs. In it, a file is created for each secret entry. The name
> of each such file is the GUID of the secret entry, and its content is
> the secret data.
>
> This allows applications running in a confidential computing setting to
> read secrets provided by the guest owner via a secure secret injection
> mechanism (such as AMD SEV's LAUNCH_SECRET command).
>
> Removing (unlinking) files in the "secrets/coco" directory will zero out
> the secret in memory, and remove the filesystem entry. If the module is
> removed and loaded again, that secret will not appear in the filesystem.
>
> Signed-off-by: Dov Murik <[email protected]>
Reviewed-by: Gerd Hoffmann <[email protected]>
take care,
Gerd
On 01/04/2022 0:56, Dov Murik wrote:
> Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
> Virtualization) allows guest owners to inject secrets into the VMs
> memory without the host/hypervisor being able to read them. In SEV,
> secret injection is performed early in the VM launch process, before the
> guest starts running.
>
> OVMF already reserves designated area for secret injection (in its
> AmdSev package; see edk2 commit 01726b6d23d4 "OvmfPkg/AmdSev: Expose the
> Sev Secret area using a configuration table" [1]), but the secrets were
> not available in the guest kernel.
>
> The patch series keeps the address of the EFI-provided memory for
> injected secrets, and exposes the secrets to userspace via securityfs
> using a new efi_secret kernel module. The module is autoloaded (by the
> EFI driver) if the secret area is populated.
>
> The first patch in EFI keeps the address of the secret area as passed in
> the EFI configuration table. The second patch introduces the new
> efi_secret module that exposes the content of the secret entries as
> securityfs files, and allows clearing out secrets with a file unlink
> interface. The third patch auto-loads the efi_secret module during
> startup if the injected secrets area is populated. The last patch
> documents the data flow of confidential computing secret injection.
>
> As a usage example, consider a guest performing computations on
> encrypted files. The Guest Owner provides the decryption key (= secret)
> using the secret injection mechanism. The guest application reads the
> secret from the efi_secret filesystem and proceeds to decrypt the files
> into memory and then performs the needed computations on the content.
>
> In this example, the host can't read the files from the disk image
> because they are encrypted. Host can't read the decryption key because
> it is passed using the secret injection mechanism (= secure channel).
> Host can't read the decrypted content from memory because it's a
> confidential (memory-encrypted) guest.
>
> This has been tested with AMD SEV and SEV-ES guests, but the kernel side
> of handling the secret area has no SEV-specific dependencies, and
> therefore might be usable (perhaps with minor changes) for any
> confidential computing hardware that can publish the secret area via the
> standard EFI config table entry.
>
> To enable this functionality, set CONFIG_EFI_SECRET=m when building the
> guest kernel.
>
> Here is a simple example for usage of the efi_secret module in a guest
> to which an EFI secret area with 4 secrets was injected during launch:
>
> ...
> [ 0.000000] efi: EFI v2.70 by EDK II
> [ 0.000000] efi: CocoSecret=0x7f222680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea16418
> ...
> [ 1.127627] Run /init as init process
> Loading, please wait...
> Starting version 245.4-4ubuntu3.15
> ...
> [ 0.763204] efi_secret efi_secret.0: Created 4 entries in securityfs secrets/coco
> ...
>
> # ls -la /sys/kernel/security/secrets/coco
> total 0
> drwxr-xr-x 2 root root 0 Jun 28 11:54 .
> drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
> -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
> -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
> -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
> -r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
>
> # hd /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
> 00000000 74 68 65 73 65 2d 61 72 65 2d 74 68 65 2d 6b 61 |these-are-the-ka|
> 00000010 74 61 2d 73 65 63 72 65 74 73 00 01 02 03 04 05 |ta-secrets......|
> 00000020 06 07 |..|
> 00000022
>
> # rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
>
> # ls -la /sys/kernel/security/secrets/coco
> total 0
> drwxr-xr-x 2 root root 0 Jun 28 11:55 .
> drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
> -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
> -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
> -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
>
>
> [1] https://github.com/tianocore/edk2/commit/01726b6d23d4
>
>
> ---
>
> v9 changes:
> - Change the module into a platform driver (thanks Ard)
> - Remove special auto-loading code in efi; instead register a platform
> device (udev will load the efi_secret module) (thanks Ard)
> - Change logging in the efi_secret module to dev_err() etc.
> - efi_secret: first check that the secret area header is valid; only then start
> creating securityfs dirs.
>
> v8: https://lore.kernel.org/linux-coco/[email protected]/
> v8 changes:
> - Change path of filesystem to <securityfs>/secrets/coco and fix the
> documentation accordingly (Thanks Gerd, Matthew)
> - Remove patch 2/5 (of v7) because the latest OVMF release (edk2-stable202202)
> already contains the fix to mark the launch secret page as EFI_RESERVED_TYPE.
>
> v7: https://lore.kernel.org/linux-coco/[email protected]/
> v7 changes:
> - Improve description of efi_secret module in Kconfig.
> - Fix sparse warnings on pointer address space mismatch
> (Reported-by: kernel test robot <[email protected]>)
>
> v6: https://lore.kernel.org/linux-coco/[email protected]/
> v6 changes:
> - Autoload the efi_secret module if the secret area is populated
> (thanks Greg KH).
> - efi_secret: Depend on X86_64 because we use ioremap_encrypted() which
> is only defined for this arch.
> - efi_secret.c: Remove unneeded tableheader_guid local variable.
> - Documentation fixes.
>
> v5: https://lore.kernel.org/linux-coco/[email protected]/
> v5 changes:
> - Simplify EFI code: instead of copying the secret area, the firmware
> marks the secret area as EFI_RESERVED_TYPE, and then the uefi_init()
> code just keeps the pointer as it appears in the EFI configuration
> table. The use of reserved pages is similar to the AMD SEV-SNP
> patches for handling SNP-Secrets and SNP-CPUID pages.
> - In order to handle OVMF releases out there which mark the
> confidential computing secrets page as EFI_BOOT_SERVICES_DATA, add
> efi/libstub code that detects this and fixes the E820 map to reserve
> this page.
> - In the efi_secret module code, map the secrets page using
> ioremap_encrypted (again, similar to the AMD SEV-SNP guest patches
> for accessing SNP-Secrets and SNP-CPUID pages).
> - Add documentation in Documentation/security/coco/efi_secret.
>
> v4: https://lore.kernel.org/linux-coco/[email protected]/
> v4 changes:
> - Guard all the new EFI and efi-stub code (patches 1+2) with #ifdef
> CONFIG_EFI_COCO_SECRET (thanks Greg KH). Selecting
> CONFIG_EFI_SECRET=m (patch 3) will enable the EFI parts as well.
> - Guard call to clflush_cache_range() with #ifdef CONFIG_X86
> (Reported-by: kernel test robot <[email protected]>)
>
> v3: https://lore.kernel.org/linux-coco/[email protected]/
> v3 changes:
> - Rename the module to efi_secret
> - Remove the exporting of clean_cache_range
> - Use clflush_cache_range in wipe_memory
> - Document function wipe_memory
> - Initialize efi.coco_secret to EFI_INVALID_TABLE_ADDR to correctly detect
> when there's no secret area published in the EFI configuration tables
>
> v2: https://lore.kernel.org/linux-coco/[email protected]
> v2 changes:
> - Export clean_cache_range()
> - When deleteing a secret, call clean_cache_range() after explicit_memzero
> - Add Documentation/ABI/testing/securityfs-coco-sev_secret
>
> v1: https://lore.kernel.org/linux-coco/[email protected]/
>
> RFC: https://lore.kernel.org/linux-coco/[email protected]/
>
>
>
> Dov Murik (4):
> efi: Save location of EFI confidential computing area
> virt: Add efi_secret module to expose confidential computing secrets
> efi: Register efi_secret platform device if EFI secret area is
> declared
> docs: security: Add secrets/coco documentation
>
This series has Reviewed-by tags on all patches (though, as I mentioned,
there's a missing #ifdef in patch 3).
Ard, are you going to take this through the EFI tree?
Should I resend the series with the fix for patch 3?
Thanks,
-Dov
> Documentation/ABI/testing/securityfs-secrets-coco | 51 +++
> Documentation/security/index.rst | 1 +
> Documentation/security/secrets/coco.rst | 103 ++++++
> Documentation/security/secrets/index.rst | 9 +
> arch/x86/platform/efi/efi.c | 3 +
> drivers/firmware/efi/Kconfig | 16 +
> drivers/firmware/efi/efi.c | 9 +
> drivers/virt/Kconfig | 3 +
> drivers/virt/Makefile | 1 +
> drivers/virt/coco/efi_secret/Kconfig | 16 +
> drivers/virt/coco/efi_secret/Makefile | 2 +
> drivers/virt/coco/efi_secret/efi_secret.c | 349 ++++++++++++++++++++
> include/linux/efi.h | 10 +
> 13 files changed, 573 insertions(+)
> create mode 100644 Documentation/ABI/testing/securityfs-secrets-coco
> create mode 100644 Documentation/security/secrets/coco.rst
> create mode 100644 Documentation/security/secrets/index.rst
> create mode 100644 drivers/virt/coco/efi_secret/Kconfig
> create mode 100644 drivers/virt/coco/efi_secret/Makefile
> create mode 100644 drivers/virt/coco/efi_secret/efi_secret.c
>
>
> base-commit: 7e57714cd0ad2d5bb90e50b5096a0e671dec1ef3
On Tue, 12 Apr 2022 at 12:03, Dov Murik <[email protected]> wrote:
>
>
>
> On 01/04/2022 0:56, Dov Murik wrote:
> > Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
> > Virtualization) allows guest owners to inject secrets into the VMs
> > memory without the host/hypervisor being able to read them. In SEV,
> > secret injection is performed early in the VM launch process, before the
> > guest starts running.
> >
> > OVMF already reserves designated area for secret injection (in its
> > AmdSev package; see edk2 commit 01726b6d23d4 "OvmfPkg/AmdSev: Expose the
> > Sev Secret area using a configuration table" [1]), but the secrets were
> > not available in the guest kernel.
> >
> > The patch series keeps the address of the EFI-provided memory for
> > injected secrets, and exposes the secrets to userspace via securityfs
> > using a new efi_secret kernel module. The module is autoloaded (by the
> > EFI driver) if the secret area is populated.
> >
> > The first patch in EFI keeps the address of the secret area as passed in
> > the EFI configuration table. The second patch introduces the new
> > efi_secret module that exposes the content of the secret entries as
> > securityfs files, and allows clearing out secrets with a file unlink
> > interface. The third patch auto-loads the efi_secret module during
> > startup if the injected secrets area is populated. The last patch
> > documents the data flow of confidential computing secret injection.
> >
> > As a usage example, consider a guest performing computations on
> > encrypted files. The Guest Owner provides the decryption key (= secret)
> > using the secret injection mechanism. The guest application reads the
> > secret from the efi_secret filesystem and proceeds to decrypt the files
> > into memory and then performs the needed computations on the content.
> >
> > In this example, the host can't read the files from the disk image
> > because they are encrypted. Host can't read the decryption key because
> > it is passed using the secret injection mechanism (= secure channel).
> > Host can't read the decrypted content from memory because it's a
> > confidential (memory-encrypted) guest.
> >
> > This has been tested with AMD SEV and SEV-ES guests, but the kernel side
> > of handling the secret area has no SEV-specific dependencies, and
> > therefore might be usable (perhaps with minor changes) for any
> > confidential computing hardware that can publish the secret area via the
> > standard EFI config table entry.
> >
> > To enable this functionality, set CONFIG_EFI_SECRET=m when building the
> > guest kernel.
> >
> > Here is a simple example for usage of the efi_secret module in a guest
> > to which an EFI secret area with 4 secrets was injected during launch:
> >
> > ...
> > [ 0.000000] efi: EFI v2.70 by EDK II
> > [ 0.000000] efi: CocoSecret=0x7f222680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea16418
> > ...
> > [ 1.127627] Run /init as init process
> > Loading, please wait...
> > Starting version 245.4-4ubuntu3.15
> > ...
> > [ 0.763204] efi_secret efi_secret.0: Created 4 entries in securityfs secrets/coco
> > ...
> >
> > # ls -la /sys/kernel/security/secrets/coco
> > total 0
> > drwxr-xr-x 2 root root 0 Jun 28 11:54 .
> > drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
> > -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
> > -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
> > -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
> > -r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
> >
> > # hd /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
> > 00000000 74 68 65 73 65 2d 61 72 65 2d 74 68 65 2d 6b 61 |these-are-the-ka|
> > 00000010 74 61 2d 73 65 63 72 65 74 73 00 01 02 03 04 05 |ta-secrets......|
> > 00000020 06 07 |..|
> > 00000022
> >
> > # rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
> >
> > # ls -la /sys/kernel/security/secrets/coco
> > total 0
> > drwxr-xr-x 2 root root 0 Jun 28 11:55 .
> > drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
> > -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
> > -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
> > -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
> >
> >
> > [1] https://github.com/tianocore/edk2/commit/01726b6d23d4
> >
> >
> > ---
> >
> > v9 changes:
> > - Change the module into a platform driver (thanks Ard)
> > - Remove special auto-loading code in efi; instead register a platform
> > device (udev will load the efi_secret module) (thanks Ard)
> > - Change logging in the efi_secret module to dev_err() etc.
> > - efi_secret: first check that the secret area header is valid; only then start
> > creating securityfs dirs.
> >
> > v8: https://lore.kernel.org/linux-coco/[email protected]/
> > v8 changes:
> > - Change path of filesystem to <securityfs>/secrets/coco and fix the
> > documentation accordingly (Thanks Gerd, Matthew)
> > - Remove patch 2/5 (of v7) because the latest OVMF release (edk2-stable202202)
> > already contains the fix to mark the launch secret page as EFI_RESERVED_TYPE.
> >
> > v7: https://lore.kernel.org/linux-coco/[email protected]/
> > v7 changes:
> > - Improve description of efi_secret module in Kconfig.
> > - Fix sparse warnings on pointer address space mismatch
> > (Reported-by: kernel test robot <[email protected]>)
> >
> > v6: https://lore.kernel.org/linux-coco/[email protected]/
> > v6 changes:
> > - Autoload the efi_secret module if the secret area is populated
> > (thanks Greg KH).
> > - efi_secret: Depend on X86_64 because we use ioremap_encrypted() which
> > is only defined for this arch.
> > - efi_secret.c: Remove unneeded tableheader_guid local variable.
> > - Documentation fixes.
> >
> > v5: https://lore.kernel.org/linux-coco/[email protected]/
> > v5 changes:
> > - Simplify EFI code: instead of copying the secret area, the firmware
> > marks the secret area as EFI_RESERVED_TYPE, and then the uefi_init()
> > code just keeps the pointer as it appears in the EFI configuration
> > table. The use of reserved pages is similar to the AMD SEV-SNP
> > patches for handling SNP-Secrets and SNP-CPUID pages.
> > - In order to handle OVMF releases out there which mark the
> > confidential computing secrets page as EFI_BOOT_SERVICES_DATA, add
> > efi/libstub code that detects this and fixes the E820 map to reserve
> > this page.
> > - In the efi_secret module code, map the secrets page using
> > ioremap_encrypted (again, similar to the AMD SEV-SNP guest patches
> > for accessing SNP-Secrets and SNP-CPUID pages).
> > - Add documentation in Documentation/security/coco/efi_secret.
> >
> > v4: https://lore.kernel.org/linux-coco/[email protected]/
> > v4 changes:
> > - Guard all the new EFI and efi-stub code (patches 1+2) with #ifdef
> > CONFIG_EFI_COCO_SECRET (thanks Greg KH). Selecting
> > CONFIG_EFI_SECRET=m (patch 3) will enable the EFI parts as well.
> > - Guard call to clflush_cache_range() with #ifdef CONFIG_X86
> > (Reported-by: kernel test robot <[email protected]>)
> >
> > v3: https://lore.kernel.org/linux-coco/[email protected]/
> > v3 changes:
> > - Rename the module to efi_secret
> > - Remove the exporting of clean_cache_range
> > - Use clflush_cache_range in wipe_memory
> > - Document function wipe_memory
> > - Initialize efi.coco_secret to EFI_INVALID_TABLE_ADDR to correctly detect
> > when there's no secret area published in the EFI configuration tables
> >
> > v2: https://lore.kernel.org/linux-coco/[email protected]
> > v2 changes:
> > - Export clean_cache_range()
> > - When deleteing a secret, call clean_cache_range() after explicit_memzero
> > - Add Documentation/ABI/testing/securityfs-coco-sev_secret
> >
> > v1: https://lore.kernel.org/linux-coco/[email protected]/
> >
> > RFC: https://lore.kernel.org/linux-coco/[email protected]/
> >
> >
> >
> > Dov Murik (4):
> > efi: Save location of EFI confidential computing area
> > virt: Add efi_secret module to expose confidential computing secrets
> > efi: Register efi_secret platform device if EFI secret area is
> > declared
> > docs: security: Add secrets/coco documentation
> >
>
>
> This series has Reviewed-by tags on all patches (though, as I mentioned,
> there's a missing #ifdef in patch 3).
>
> Ard, are you going to take this through the EFI tree?
>
> Should I resend the series with the fix for patch 3?
>
Yes, please send a final version with all tags in place etc, and I
will queue it up.
Thanks,
Ard.
On 12/04/2022 13:04, Ard Biesheuvel wrote:
> On Tue, 12 Apr 2022 at 12:03, Dov Murik <[email protected]> wrote:
>>
>>
>>
>> On 01/04/2022 0:56, Dov Murik wrote:
>>> Confidential computing (coco) hardware such as AMD SEV (Secure Encrypted
>>> Virtualization) allows guest owners to inject secrets into the VMs
>>> memory without the host/hypervisor being able to read them. In SEV,
>>> secret injection is performed early in the VM launch process, before the
>>> guest starts running.
>>>
>>> OVMF already reserves designated area for secret injection (in its
>>> AmdSev package; see edk2 commit 01726b6d23d4 "OvmfPkg/AmdSev: Expose the
>>> Sev Secret area using a configuration table" [1]), but the secrets were
>>> not available in the guest kernel.
>>>
>>> The patch series keeps the address of the EFI-provided memory for
>>> injected secrets, and exposes the secrets to userspace via securityfs
>>> using a new efi_secret kernel module. The module is autoloaded (by the
>>> EFI driver) if the secret area is populated.
>>>
>>> The first patch in EFI keeps the address of the secret area as passed in
>>> the EFI configuration table. The second patch introduces the new
>>> efi_secret module that exposes the content of the secret entries as
>>> securityfs files, and allows clearing out secrets with a file unlink
>>> interface. The third patch auto-loads the efi_secret module during
>>> startup if the injected secrets area is populated. The last patch
>>> documents the data flow of confidential computing secret injection.
>>>
>>> As a usage example, consider a guest performing computations on
>>> encrypted files. The Guest Owner provides the decryption key (= secret)
>>> using the secret injection mechanism. The guest application reads the
>>> secret from the efi_secret filesystem and proceeds to decrypt the files
>>> into memory and then performs the needed computations on the content.
>>>
>>> In this example, the host can't read the files from the disk image
>>> because they are encrypted. Host can't read the decryption key because
>>> it is passed using the secret injection mechanism (= secure channel).
>>> Host can't read the decrypted content from memory because it's a
>>> confidential (memory-encrypted) guest.
>>>
>>> This has been tested with AMD SEV and SEV-ES guests, but the kernel side
>>> of handling the secret area has no SEV-specific dependencies, and
>>> therefore might be usable (perhaps with minor changes) for any
>>> confidential computing hardware that can publish the secret area via the
>>> standard EFI config table entry.
>>>
>>> To enable this functionality, set CONFIG_EFI_SECRET=m when building the
>>> guest kernel.
>>>
>>> Here is a simple example for usage of the efi_secret module in a guest
>>> to which an EFI secret area with 4 secrets was injected during launch:
>>>
>>> ...
>>> [ 0.000000] efi: EFI v2.70 by EDK II
>>> [ 0.000000] efi: CocoSecret=0x7f222680 SMBIOS=0x7f541000 ACPI=0x7f77e000 ACPI 2.0=0x7f77e014 MEMATTR=0x7ea16418
>>> ...
>>> [ 1.127627] Run /init as init process
>>> Loading, please wait...
>>> Starting version 245.4-4ubuntu3.15
>>> ...
>>> [ 0.763204] efi_secret efi_secret.0: Created 4 entries in securityfs secrets/coco
>>> ...
>>>
>>> # ls -la /sys/kernel/security/secrets/coco
>>> total 0
>>> drwxr-xr-x 2 root root 0 Jun 28 11:54 .
>>> drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
>>> -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
>>> -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
>>> -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
>>> -r--r----- 1 root root 0 Jun 28 11:54 e6f5a162-d67f-4750-a67c-5d065f2a9910
>>>
>>> # hd /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
>>> 00000000 74 68 65 73 65 2d 61 72 65 2d 74 68 65 2d 6b 61 |these-are-the-ka|
>>> 00000010 74 61 2d 73 65 63 72 65 74 73 00 01 02 03 04 05 |ta-secrets......|
>>> 00000020 06 07 |..|
>>> 00000022
>>>
>>> # rm /sys/kernel/security/secrets/coco/e6f5a162-d67f-4750-a67c-5d065f2a9910
>>>
>>> # ls -la /sys/kernel/security/secrets/coco
>>> total 0
>>> drwxr-xr-x 2 root root 0 Jun 28 11:55 .
>>> drwxr-xr-x 3 root root 0 Jun 28 11:54 ..
>>> -r--r----- 1 root root 0 Jun 28 11:54 736870e5-84f0-4973-92ec-06879ce3da0b
>>> -r--r----- 1 root root 0 Jun 28 11:54 83c83f7f-1356-4975-8b7e-d3a0b54312c6
>>> -r--r----- 1 root root 0 Jun 28 11:54 9553f55d-3da2-43ee-ab5d-ff17f78864d2
>>>
>>>
>>> [1] https://github.com/tianocore/edk2/commit/01726b6d23d4
>>>
>>>
>>> ---
>>>
>>> v9 changes:
>>> - Change the module into a platform driver (thanks Ard)
>>> - Remove special auto-loading code in efi; instead register a platform
>>> device (udev will load the efi_secret module) (thanks Ard)
>>> - Change logging in the efi_secret module to dev_err() etc.
>>> - efi_secret: first check that the secret area header is valid; only then start
>>> creating securityfs dirs.
>>>
>>> v8: https://lore.kernel.org/linux-coco/[email protected]/
>>> v8 changes:
>>> - Change path of filesystem to <securityfs>/secrets/coco and fix the
>>> documentation accordingly (Thanks Gerd, Matthew)
>>> - Remove patch 2/5 (of v7) because the latest OVMF release (edk2-stable202202)
>>> already contains the fix to mark the launch secret page as EFI_RESERVED_TYPE.
>>>
>>> v7: https://lore.kernel.org/linux-coco/[email protected]/
>>> v7 changes:
>>> - Improve description of efi_secret module in Kconfig.
>>> - Fix sparse warnings on pointer address space mismatch
>>> (Reported-by: kernel test robot <[email protected]>)
>>>
>>> v6: https://lore.kernel.org/linux-coco/[email protected]/
>>> v6 changes:
>>> - Autoload the efi_secret module if the secret area is populated
>>> (thanks Greg KH).
>>> - efi_secret: Depend on X86_64 because we use ioremap_encrypted() which
>>> is only defined for this arch.
>>> - efi_secret.c: Remove unneeded tableheader_guid local variable.
>>> - Documentation fixes.
>>>
>>> v5: https://lore.kernel.org/linux-coco/[email protected]/
>>> v5 changes:
>>> - Simplify EFI code: instead of copying the secret area, the firmware
>>> marks the secret area as EFI_RESERVED_TYPE, and then the uefi_init()
>>> code just keeps the pointer as it appears in the EFI configuration
>>> table. The use of reserved pages is similar to the AMD SEV-SNP
>>> patches for handling SNP-Secrets and SNP-CPUID pages.
>>> - In order to handle OVMF releases out there which mark the
>>> confidential computing secrets page as EFI_BOOT_SERVICES_DATA, add
>>> efi/libstub code that detects this and fixes the E820 map to reserve
>>> this page.
>>> - In the efi_secret module code, map the secrets page using
>>> ioremap_encrypted (again, similar to the AMD SEV-SNP guest patches
>>> for accessing SNP-Secrets and SNP-CPUID pages).
>>> - Add documentation in Documentation/security/coco/efi_secret.
>>>
>>> v4: https://lore.kernel.org/linux-coco/[email protected]/
>>> v4 changes:
>>> - Guard all the new EFI and efi-stub code (patches 1+2) with #ifdef
>>> CONFIG_EFI_COCO_SECRET (thanks Greg KH). Selecting
>>> CONFIG_EFI_SECRET=m (patch 3) will enable the EFI parts as well.
>>> - Guard call to clflush_cache_range() with #ifdef CONFIG_X86
>>> (Reported-by: kernel test robot <[email protected]>)
>>>
>>> v3: https://lore.kernel.org/linux-coco/[email protected]/
>>> v3 changes:
>>> - Rename the module to efi_secret
>>> - Remove the exporting of clean_cache_range
>>> - Use clflush_cache_range in wipe_memory
>>> - Document function wipe_memory
>>> - Initialize efi.coco_secret to EFI_INVALID_TABLE_ADDR to correctly detect
>>> when there's no secret area published in the EFI configuration tables
>>>
>>> v2: https://lore.kernel.org/linux-coco/[email protected]
>>> v2 changes:
>>> - Export clean_cache_range()
>>> - When deleteing a secret, call clean_cache_range() after explicit_memzero
>>> - Add Documentation/ABI/testing/securityfs-coco-sev_secret
>>>
>>> v1: https://lore.kernel.org/linux-coco/[email protected]/
>>>
>>> RFC: https://lore.kernel.org/linux-coco/[email protected]/
>>>
>>>
>>>
>>> Dov Murik (4):
>>> efi: Save location of EFI confidential computing area
>>> virt: Add efi_secret module to expose confidential computing secrets
>>> efi: Register efi_secret platform device if EFI secret area is
>>> declared
>>> docs: security: Add secrets/coco documentation
>>>
>>
>>
>> This series has Reviewed-by tags on all patches (though, as I mentioned,
>> there's a missing #ifdef in patch 3).
>>
>> Ard, are you going to take this through the EFI tree?
>>
>> Should I resend the series with the fix for patch 3?
>>
>
> Yes, please send a final version with all tags in place etc, and I
> will queue it up.
>
Great! Thank you, I'll do that shortly.
-Dov